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Introduction

Suppose for a moment that G is a finite group. There are two canonical bases for the
vector space of class functions on G. One is parametrized by the set F(G) of conjugacy
classes in G, the other by the set 17(G) of (equivalence classes of) irreducible representa-
tions. Consider the elements of these bases as G-invariant linear functionals on C(G). In
other words, set

fG()= IG-1 E f(x-lx), ye(G),
xEG

and

gO() =IGI-tr( E g(x)r (x)), 7 17(G),
xeG

for functions f, g C(G). Then the two families of linear functionals satisfy inversion
formulas

(1) f(7) = E IG(y, r)fG(7r)
incE(G)

and

(1)V gG(V) = E IG(y,)gW(y)IGl~1-
yer(G)

where

IG(7, y) = tr(7r(y))
is the character of 7r, and

(2) IG(YI) =IG (7t,Y) = IG(7r, ~)

*) Supported in part by NSERC Operating Grant A3483.
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These formulas are of course immediate consequences of the definitions and the orthogo-
nality relations for irreducible characters.

Suppose now that G is a connected reductive algebraic group over a local field F of
characteristic 0. The purpose of this paper is to find the natural analogues for G(F) of the
relations (1) and (1)V. There is already a partial solution to the problem which comes from
the orthogonality relations satisfied by elliptic tempered characters. However, the solution
is valid only for cuspidal functions. We are looking for a general solution, which applies to
hyperbolic as well as elliptic elements.

The two families of linear forms carry over to G(F), and are defined on the Schwartz
space W(G(F)). The first family consists of the invariant orbital integrals

fG(y) = IG(y,f)= ID(y)I1 i f(x-' x)dx,
G,(F) \G(F)

parametrized by regular conjugacy classes y E F(G(F)) r) Gre(F). For the second family,
one might consider taking the tempered characters

gG (7) = IG (, g) = tr( (g))

associated to irreducible tempered representations Ire Htemp(G(F)). However, it is more
appropriate to choose the slightly different family of virtual characters

g(T) = IG(, g) = E tr ( (r)) gG(Q)

parametrized by the triplets z = (M1, a, r) e T(G) of the paper [8]. For example, the elliptic
elements T,, (G) in T(G) are more natural than the elliptic representations in 7temp (G (F));
it is known ([20], [22]) that Tel(G) provides a basis of the virtual characters which are
supertempered in the sense of Harish-Chandra. A cuspidal function fec (G(F)) is one for
which fG(r) vanishes on the complement of Tel(G) in T(G). The partial solution we have
mentioned applies to cuspidal functions f and g. It takes the form

(3) IG(7,f) = f IG(y,)f(z) dr,
T(G)

and

(3)V IG (Z, g) =) IG (Z, 7)g (y) dy,
F(G(F))nGreg(F)

where

IG(T, y)= ID(y)20,(T y)

is the virtual character associated to z (normalized by the Weyl discriminant), and

(4) IG (, z)= iG(z)IG(zV, Y)
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Because f and g are cuspidal, each integrand will actually be supported on the appro-
priate set of elliptic elements; it is for these elements thatthe formula (4) is given. (We leave
the precise description of the constant iG(r) and the measures dz and dy, and for that
matter the triplets T, until the text.)

The identities (3) and (3)V will actually hold without the restrictions on f, g and z.
The second one is essentially Harish-Chandra's theorem that an irreducible character is
given by a locally integrable function. The first identity is the assertion that the Fourier
transform of an invariant orbital integral, regarded as a tempered distribution on T(G), is
also given by a function. This will be a special case of Theorem 4.1. The adjoint relation
(4) between the two functions, however, does not hold in general. It is peculiar to the
elliptic case. What could be its general analogue? To answer this question, we must enlarge
the families of invariant distributions under consideration.

We shall have to take into account the weighted orbital integrals

JM(7,f) = ID(y)12 J f(x-1x)vM(x)dx,
Gy(F)\G(F)

which we shall study as linear forms on W(G(F)). These distributions are parametrized by
Levi subgroups Me S of G, and by conjugacy classes y E F (M(F))n Greg(F). IfM is a
proper Levi subgroup, the weight factor vM(x) is not a constant, and JM(y,f) is a non-
invariant distribution. In §3 we shall review the formal procedure for constructing an
invariant distribution IM (y, f) from JM (y, f). Weighted orbital integrals, and the associated
invariant distributions, are important objects for the study of automorphic forms. They are
among the principal terms in the trace formula. We are going to investigate their Fourier
transforms. Our main result will be Theorem 4.1, which provides a qualitative description
of the Fourier transform of IM(y, *) as a tempered distribution on T(G). It expresses the
Fourier transform as a finite linear combination of smooth functions

IM (,T),Z) E Tdisc(L), LE ,

on certain submanifolds Tdis,(L) of T(G). This result can be regarded as the natural
generalization of the expansions (1) and (3).

As dual analogues of weighted orbital integrals, one might choose the weighted
characters

JL(, g) = tr(9L(7, P) fp(r, g)),
also familiar from the trace formula, which are parametrized by Levi subgroups L E YS and
representations 7C c Htemp(L(F)). Following our earlier lead, we shall instead take the
weighted virtual characters

JL (, g) = tr (V(r)) IL (71, g)

attached to triplets T = (L1, a, r) in T(L). This gives us a second family of noninvariant
distributions. The formal procedure for constructing invariant distributions, or rather its
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dual analogue, runs into difficulty in this case. The problem comes from the behaviour of
weighted orbital integrals near singular points. However, if we are prepared to replace
6(G(F)) by the smaller space Cc7 (Greg (F)), we can still construct an invariant distribution
IL(r,g) from JL(z,g). Theorem 4.3 provides a qualitative description of IL(z,g) as an
invariant distribution on Greg(F). It asserts simply that the distribution can be identified
with a smooth function

IL(T, 7), yE Fe,,(M(F))nGreg (F), ME ',

on Greg(F). This result can be regarded as the natural generalization of the expansions
(1)v and (3)V.

Thus, Theorems 4.1 and 4.3 provide us with two functions IM(y, T) and IL(T, y) with
which we can expand the two kinds of invariant distributions IM(yf) and IL(T,g). In
Theorem 4.5, we shall establish a simple adjoint relation

(5) IM (, T) = (- )dim(AM x AL) iL () I (T 7)

between the two functions. It is this result which is the natural generalization of the
formulas (2) and (4).

Most of the paper will be taken up with the proof of the three theorems we have
described. Our main tool will be the local trace formula of [7] and [8]. In fact, given the
qualitative assertions that comprise Theorems 4.1 and 4.3, the relation (5) is precisely
equivalent to the local trace formula. We shall discuss the local trace formula in §5. We
shall actually derive a different version of the formula (Theorem 5.1), that makes use of
both families of invariant distributions. The earlier invariant version of the local trace
formula [8] employed only the distributions {Im(y,f)}, and is less suited to the present
purpose. We shall then use the formula, in §6, to derive Theorems 4.3 and 4.5 from
Theorem 4.1. This leaves us with our primary task, to establish Theorem 4.1.

Suppose that T is an elliptic maximal torus in M, and that 0 is a function in
Cc (Treg(F)). The local trace formula can be translated (Lemma 6.1) into a spectral
expansion

(6) IM(0,)= Z WOLI WO, IM (0,zT)L(T)dT
LeY' Tdisc (L)

for the inner product

M(0,f)= 0 (y)IM(yf)dy.
T(F)

If we let 0 approach the Dirac measure at a point y in Treg(F), the identity (6) ought to
approach the expansion for IM (y, f) required by Theorem 4.1. However, to make this work,
we have to be able to control the behaviour of the linear form 7M(0, I). In the case F = AP,
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we can take care of the difficulties by using the differential equations satisfied by I(y, f).
We shall establish Theorem 4.1 for F = R in § 7. When F is a p-adic field, we have to use
something else. In § 8, we shall prove an analogue of the Howe conjecture (Theorem 8.1)
for the distributions {I (y, f)}. Our method will be to combine the identity (6) with the
kind of residue argument that is familiar from Paley-Wiener theorems. This theorem, which
was originally proposed as a problem in [6], will allow us to establish Theorem 4.1 for
p-adic F in §9. Theorem 8.1 actually gives us control over singular set in the p-adic case.
For example, we shall show (Corollary 9.3) that the smooth function y - IL(zy) on
Greg (F) is locally integrable on G (F). In other words, the distribution g - IL(, g) is given
by a locally integrable function on G(F). This is a generalization ofthe character theorem of
Harish-Chandra and Howe.

Our original interest in the paper is reflected in the title. We wanted to find the ob-
struction to the Fourier transform of I (y, f) being a smooth function on T(G). The idea
actually goes back to an observation of Kottwitz on the results in [24]. As we have already
noted, there is no obstruction when M = G. For arbitrary M, the situation is described by
Theorem 4.1. In general, the complement of Tel(L) in the stratum Tpdi(L) is properly
embedded in T(G). It is on this complement that the Fourier transform fails to be a smooth
function, since it is a multiple of the Dirac measure in the normal directions. We shall give
an explicit expression (4.7) for the singular part of IM(y, f) in terms of the regular parts of
the corresponding distributions on Levi subgroups of G. In particular, we will obtain a
simple formula for the "discrete part" of IM(y, f), that is, the contribution to the Fourier
transform from the subset Tdi,,(G) of T(G). This formula may be useful for comparison
problems that arise from endoscopy.

§ 1. Weighted orbital integrals

Let G be a reductive algebraic group over a local field F of characteristic 0. Weighted
orbital integrals on G() are among the principal termsin(F)al the global trace formula. Our
purpose is to study these objects as tempered distributions. In other words, we shall con-
sider them as linear forms on the Schwartz space (G (F)) of G (F). In this section we shall
review a few of their elementary properties.

We first recall the basic objects on G(F) which go into the construction of weighted
orbital integrals. Let K be a fixed maximal compact subgroup of G(F), and let MO be a
fixed F-rational Levi component of some minimal parabolic subgroup of G defined over
F. We assume that K and Mo(F) are in good relative position [7], §1. It is also under-
stood that K is special in the case that F is a p-adic field. Any parabolic subgroup P of G
which is defined over F, and contains MO, has a unique Levi component Mp which contains
MO. Both Mp and the unipotent radical Np of P are defined over F. We write Y = YjG for
the finite set of subgroups of G of the form Mp, and we refer to the elements in Y simply
as Levi subgroups of G. As usual, fS/(M) = fG (M) denotes the set of Levi subgroups which
contain a given ME Y. Similarly, F(M) = G (M) stands for the set of parabolic sub-
groups P of G over F such that MP contains M, and A(M) = yG (M) denotes the subset of
groups P eY(M) with MP = M. If M is any group in f, KM = Krn M(F) is a maximal
compact subgroup of M(F). The triplet (M, KM, Mo) then satisfies the same hypotheses as
(G, K, Mo).
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Suppose that M E Y is a Levi subgroup. We have the canonical homomorphism HM
from M(F) to the real vector space

a = Hom(X(M)F,I9)
which is defined by

e<HM(m)x> = IX(m)I, meM(F), X X(M)F.

Let AM be the split component of the center of M. Then aMF = HM(M(F)) and
M,F = HM(AM(F)) are closed subgroups of aM, while a,F = Hom(aF,271Z) and
aM F = Hom(M,F, 27niZ) are closed subgroups of iaM. The quotienttIM,F W F~

ia*,F = iaM/aM,F

is a compact torus if F is p-adic, and simply equals ia} if F is Archimedean.

For each M E ?, we fix a Haar measure on the vector space aM, and we choose the
dual Haar measure on the real vector space ia*. In the case that F is a p-adic field, we
require that the measures be normalized so that the quotients aM/aM,F and iaM/M, F each
have volume 1. The kernel of HM in AM(F) is compact, and therefore has a canonical
normalized Haar measure. Since the group a F, = HM(AM(F)) is either discrete or equal
to aM, it too has an assigned Haar measure. These two Haar measures in turn determine a
unique Haar measure on AM (F). We have so far just lifted the conventions from § 1 of the
paper [8]. In this paper we shall also normalize the Haar measures on maximal tori. If T is
an elliptic maximal torus in M over F, the quotient T(F)l/A(F) is compact. The nor-
malized Haar measure on this compact group, together with the Haar measure on AM (F),
then determines a Haar measure on T(F). This in turn provides a Haar measure on the
group of rational points of any maximal torus in G over F, since any such torus is G(F)-
conjugate to an elliptic maximal torus in some M. In particular, if y lies in the set Geg (F)
of (strongly) regular points in G(F), and Gy denotes the centralizer of y in G, then Gy(F)
will have a fixed Haar measure.

Fix the Levi subgroup M e Y. If P belongs to Y(M), we have the map

Hp: G(F) aM ,

which is defined for any element

x = mnk, meM(F), ne Np(F), keK,
in G(F) by

Hp(x) = HM(x).
The functions

Vp(A,x) = e-A(Hp(x)), AE ia, P e (M),

form a (G, M)-family [2], § 6-7. Writing
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Op(A) = vol(a'/Z(A^))-1 [n (aV)
as Ap

in the usual notation [7], (6.7), we take the limit

vM(x)= lim E vp(A,x) p(A)-.
A 0 Peg(M)

We recall that the limit exists ([2], Lemma 6.2), and in fact equals the volume in aM/aG of
the convex hull of the points

{-Hp(x): P E (M) .

As a function of x E G(F), vM(x) is left M(F)-invariant. It is used to define noninvariant
measures on conjugacy classes.

Suppose that y lies in M(F) n Grg (F). The weighted orbital integral at y is the linear
functional

JM(y) =JM(y):f JM(yf), fE W(G(F)),
on W(G(F)) defined by

(1.1) JM(Yf) = ID(y)ip2 f(x-Xyx)VM(X)dx.
Gy(F)\G(F)

As usual,
D (y) = det ( - Ad(y)),/Y

denotes the Weyl discriminant. The convergence of the integral follows from [2], Lemma
8.1, as does the fact that the linear functional f-> JM(y,f) on W(G(F)) is continuous.
Thus, JM(y) is a tempered distribution on G(F). It depends on a choice ofHaar measure on
G(F), as well as the measure on Gy(F) which we fixed above.

Following [8], §1 we write F (M(F)) for the set of conjugacy classes in M(F). Since
the integral in (1.1) depends only on the image of y in F(M(F)), we can regard JM (' f)
as a function on F(M(F)) fGreg(F) instead of M(F)nG,eg(F). We shall in fact use the
two interpretations interchangeably. Observe that when M = G, JM(y,f) is just the
invariant orbital integral over the G(F)-conjugacy class of y. In this case we shall write

(1.2) fG(Y)= JG(Yf), y Greg(F),

when we want to emphasize the dependence on y. If Q belongs to 9(M), and fQ is the
familiar Schwartz function

fQ(m) = Q(m) J f(k1-mnk)dndk, meM(F),
K NQ(F)
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on M(F), the function (fQ)M is independent of Q. We denote it simply by fM. One sees
easily that

(1.3) fM(7) =fG(7), yeM(F) nGreg(F).

Weighted orbital integrals have natural symmetry and descent properties that we
should recall. There is an obvious action

(M,y) -_ (WoM , coeW

of WoG on the set of pairs

(M,y), MeyE, (M(F))nGreg(F).
The symmetry condition

(1.4) JWM(WY,f) =JM(,f), WWG,

is an immediate consequence of the fact that vuw(wx) equals VM(x). For the descent
condition, we assume that y lies in M1 (F) n) Greg(F), where M, E Y is a subgroup of M.
It then follows without difficulty from [4], Corollary 7.2 that

(1.5) JM(yf)= Z dMl (M, S)Ml (y, fQ),
SeQ (M1)

where dml (M, S) is the constant described in [4], p. 356, and

S -- Qs E i(S),

is the retraction defined on p. 357 of [4]. Let Fe, (M(F)) denote the set of M(F)-conjugacy
classes in the F-elliptic set M(F)ell of M(F). Any class in the complement of Fe,,(M(F))
in r(M(F)) n Greg (F) will intersect a proper Levi subgroup M1 (F) of M(F). In this case,
the right hand side of (1.5) is a sum over proper subgroups of G. The descent formula
therefore reduces the study of J(y, f) to the case that y is elliptic in M(F).

§ 2. Weighted characters

We are going to study weighted orbital integrals in conjunction with a parallel family
of tempered distributions, the weighted characters on G(F). We really ought to say
weighted "virtual" characters, for the elements in this second family will be parametrized
by the virtual tempered characters on M(F) discussed in [8]. We shall review some of the
constructions of [8], with minor adjustments to allow us to work with the Schwartz space
instead of the Hecke algebra.

We shall generally follow the notation of [8]. If Me £' is a fixed Levi subgroup,
ltemp(M(F)) denotes the set of (equivalence classes of) irreducible tempered representa-
tions of M(F), and n2(M(F)) stands for the subset of representations in tempn(M(F))
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which are square integrable modulo AM(F). On each of these sets we have the contra-
gredient involution n -+ nv. We also have the natural action

t,(m) = n (m)eA(H(m)), ccltemp(M(F)), E iam,me M(F),

of ia*. Recall that if F is a p-adic field, the stabilizer a", of 7t in iaM is a lattice. If F = R
on the other hand, a" is trivial. In fact any representation in Htep (M(R)) can be written
uniquely in the form an,, where A lies in ia* and n7 belongs to the subset
Intemp(M(I)/AM(l)°) of representations in ntmp(M(R)) whose central character is
trivial on the connected Lie group AM(?)°. In this case, we shall write #, for the linear
form that determines the infinitesimal character of ric. Thus, #JL is a Weyl orbit of ele-
ments in the dual of a complex Cartan subalgebra, which we assume is equipped with a
suitable Hermitian norm II. Then

P,.II = IIi + 11 = 11 +11+PII -

For any parabolic subgroup Pe Y(M), we can form the induced representation

JP (7rA) : X - Jlp (re, x), x G(F) ,

of G(F). It acts on a Hilbert space eip(n) of vector valued functions on K which is inde-
pendent of A. Weighted characters depend on normalized intertwining operators between
these induced representations. However, the factors that one can use to normalize the
intertwining operators are not unique. In fact it will be important in this paper to be able
to vary the normalizing factors. We shall summarize the properties of the normalizing
factors that we require.

Fix MEcY and c E 7,tmp (M(F)). The unnormalized intertwining operators

JPlp(7 ) : .p(7) (7XP,(), P,P'e60)(M),
are defined by analytic continuation as meromorphic, operator valued functions of

CEa'4 . We want to choose scalar valued meromorphic functions rp, P(r,) so that the
normalized operators

Rp'lp(tX) = rp,lp(r7t)- 1Jp,lp())

have certain properties. We ask that the normalizing factors be subject to the following list
of conditions.

(r. 1) rpp(z) r= lrplp'(7t=),

where each rp(n,) is a meromorphic function that depends only on the projection (jBV).

(r. 2) If nr is an irreducible constituent of an induced representation

R (a), cE n2(M1(F)), R M(M), M1c M,
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then

rp,1p(7A) = rp'(R) P(R) (CA)

(r. 3) rp, p(r)rplp, (Pr) = Jpip(xA)JpIp, (7) .
(r.4) rpu (PA) = rpIp(X- A)-
(r.4 ) rplp(r.) = rpip, (r A).
(r. 5) ^|p(^)= Yp~p'(^A).
(r.6) rwP'lp(Wp. A) = rp, Ip(x), weW oW .

(r. 7) Suppose that F is a p-adic field with residue field of order q. Then rp ip (7ri)
is a rational function in the variables

{q(:v) :EZ,,nrZ}.
(r. 8) Suppose that F = R, and that

qP'p(I ) = I A(fV)nil), i 7rltemp (M(fI)/Am(L)°), A Eiam,

where n (7r) is the order of the pole of rp (ir) of i = 0. (It is known that np (n) equals 0 or
1.) Then if D. is an invariant differential operator on ia4, there are constants C and N
such that

DA(qp, tp(A) rp, Ip(HA))- < C(1 + 11 # + A 11)N,

for every n and A.

The conditions we have just described are quite familiar, and follow standard notation.
Thus, Zp, denotes the set of reduced roots of (P', AM), P is the parabolic subgroup oppo-
site to P, and in (r. 2), P(R)e 9(Ml) is the parabolic subgroup with P(R)nM = R and
P(R) c P. When combined with the corresponding properties ([5], § 1) of the operators
Jp,p(11), these conditions lead to the properties we expect of the normalized operators
Rp, p(1t.). For example, as analogues of (r. 2)-(r. 7) we have

(R.2) Rplp(z) = RP(R)IP(R)(a), r = J(a)

(R. 3) Rp,,p(r,) = Rp,, (rn) Rplp(rt), P, P', P" E Y(M).

(R.4) Rp, p(7rA)* = RpIp,(7-).

(R.5) Rpp()v = RpIp, (v-

where Rp,Ip(iA)V denotes the transpose of Rp, i(Zn).

(R. 6) R I, p( )= A() Rpp()A((W) , W e WO
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where A (w) is the map from 4p(i) to Jtp(w0ii) determined by a representative w of w
in K.

(R. 7) If F is a p-adic field with residue field of order q, the matrix coefficients of
Rp',p(R7) are rational functions in the variables {q(fi )} of (r.7).

The analogue of (r. 8) is a growth condition ([2], (7.6)) that was quoted from an un-
published manuscript. For convenience we shall reproduce the proof of the estimate here.

Lemma 2.1. Assume that F = R, and that the normalizing factors satisfy the condi-
tions (r. 1)- (r. 8). For each irreducible K-type 6 E H(K), let Yp(7)j be the 6-isotypical
subspace of XJp(n), and let Rp' p(t7rj) be the restriction of Rp, Ip(7r) to XJp(n),. Then if D,
is an invariant differential operator on ia*, there are constants C and N such that

(R. 8) IDA Rp, p(7x)^ I< C(1 + ||i + II)N(1 + 11 \Il)N

for all rC ( ltemp(M(L)/AM(lg)°), A; e ia*, and 6 E H(K).

Proof. Since any EH7/temp(M(X)) is a constituent of a representation induced from
discrete series, the formula (R. 2) leads to an immediate reduction of the problem. We need
only establish the estimate for representations n7 which belong to H2(M(R)/AM(Sl)0).
Moreover, from the analogues of (r.1) and (r.3) for Rp, ip(n,), we can reduce the pro-
blem further to the case that dim(A/AG) = 1 and P' = P. We shall in fact estimate
the Hilbert-Schmidt norms

II DR-1pp()TlI2, eE H2(M(R)1/AM(a)'°), A e iaM,

in which T ranges over linear operators on Xp(r),.

Harish-Chandra has defined a linear isometry T -- 'PT from End (4Jp(7r)) onto the
space ',,(M(R)/AM(R)°, 6 x 6) of 6-spherical Schwartz functions attached to 7r. Thus,

IIDa RpIp (7i) T112 = II DAVT1II,
where

T, = Rplp(nz) T = rplp(g)-J~lpIp() T.

But yPT has an expression

VpT1 = Co rpIp()- Plp(, )PWT

in terms of Harish-Chandra's c-functions, with co being a constant that depends only on
M ([19], Corollary to Lemma 18.1). Moreover, one can use Harish-Chandra's techniques
of harmonic analysis to estimate the c-functions. By [9], Lemma 4.5, there are constants
C' and N' such that

qpp()Cpp(l,) C'(1 + Il +±l2)N'(1 + 11 11)N'I111
12 Journal fur Mathematik. Band 452
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for all n EH2(M(w)/AM(lR0)), A E ia*, 6 E H(K), and WEc,(M(I)/AM(1)°, 6 X 6). It
follows from (r. 8) that there are constants C" and N" such that

IIADxRlp(A)Trll2 < C"(1 + II/+1+ LII)N"(1 + IIIa\l)N"ITll2,
for all 7t, Ai and 6, and all Te End (p(7i),). This clearly implies the reduced form of the
required estimate, and therefore the required estimate itself. o

Lemma 2.2. The normalizingfactors {rp ip(7ni)} can be chosen so that the conditions
(r. 1)-(r. 8) all hold. Moreover, if {rp (7r,)} satisfy the eight conditions, so do the comple-
mentary functions

rp, p(nA) = relp, (7,).

Proof. In [5], Theorem 2.1, the intertwining operators were normalized subject to a
slightly different set of conditions. However, the only conditions here which are not implied
by the earlier ones are (r. 5) and (r. 8). It is easy to see that these additional constraints are
also satisfied by the normalizing factors chosen in the proof of [5], Theorem 2.1. For
example, ifF = R, the condition (r. 5) follows without difficulty from the construction [5],
(3.2) of rp, ip(nr) in terms of L-functions. Moreover, (r. 8) follows from standard proper-
ties of the gamma function. In the case of a p-adic field, the general existence argument of
Langlands implies (r. 5). Therefore, the normalizing factors of [5], Theorem 2.1 satisfy the
conditions (r. 1)-(r. 8).

For the second assertion of the lemma, recall that Harish-Chandra's M-functions

Pp,'p(A.) = (JP' p(A7)JpJpI (P7))-1
are symmetric in P and P'. This implies that (r. 3) holds for the functions rp, p(7r). All
the other conditions for rp, p(7r) are obvious. o

Remark. There is a condition (R7) in [5], Theorem 2.1 which asserts that rp, p(Rr)
has no zeros or poles with the real part of) in the positive chamber attached to P. This
property, which is useful for studying Langlands quotients, is stronger than the conditions
here. It cannot be satisfied by the functions rplp(nt) and rp l(ip ) simultaneously.

Fix a family

rpTp(i7r), P, P'e (M), 7t Htemp(M(F)), im,

of functions which satisfy the conditions (r. 1)-(r. 8). If {Rp, (ip(n)} is the corresponding set
of normalized intertwining operators, we can form the (G, M)-family

,Q(A, 7r, P) = RQIp(7)- 1 RQIP(A), A E iaM, QE (M),
of operator valued functions. We can then take the associated operator

M(7r, P)= lim Q ,(AA,P) O(X)-1A O Qe~(M)
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(See [2], §7.) The weighted character at it is the linear functional in '(G(F)) defined by

(2.1) JM(r,f) = tr(M(rc, P)A p(7r,f)), fe (G(F)).
It is easy to see that the operator on the right is of trace class. If F is Archimedean, this
follows from (R. 8), while if F is p-adic, the operator is actually of finite rank. In either
case, f ,JM(rc, f) is a continuous linear functional on W(G(F)), and is therefore a tem-
pered distribution on G(F).

We want to focus on the basis of virtual tempered characters introduced in [8] rather
than on the set of irreducible tempered characters. The elements in this second basis are
determined by the set T(G) of essential triplets

= (M1,ao,r), M e , ace1H2(M (F)), reRa

defined in [8], § 3. Recall that Ra = RG is a fixed central extension

1 -o Z, -RA -R -R 1

of the R-group of a which splits a certain 2-cocycle. The process singles out a character
X, of Z,, and we write H(R,, X) as in [8] for the set of irreducible representations of A,
whose central character on Z, equals X, We shall also sometimes write Z, = Z, and
XT = X, as well as

TA =(M, ax, r), 2e aG,C

zz = (M, a,zr), zeZ,,
and

V = (M, aVr).

In § 2 of [8] we used the normalized intertwining operators to construct a representation

r -+ R(r, a) = gA(r)A(ar)Rr-plp (a), P1i (M1),

of RA on Xp (a). This representation then determined a bijection e n0, from 7(R,, X)
onto the set of irreducible constituents of p1 (a), with the properties that

(2.2) tr (R (r, a) (af)) = tr (e (r)) tr (n (f))
Qen(R,,,Xa)

and

(2.3) tr (7 (f)) = I-1 tr ( (r)) tr (R(r, a) Jp (a,f))
reRa

We dealt only with the Hecke algebra in [8]. However (2.2) and (2.3) are clearly identities
between tempered distributions, and are valid for anyfe ( (G(F)). The distributions on the
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left hand side of (2.2) provide a basis for the virtual tempered characters on G(F). The
identities (2.2) and (2.3) are simply the transition matrices between this basis and the
original basis of irreducible tempered characters.

Suppose that

=(M, a, r), M1 c M, a E H2(M (F)), re Ra
is a triplet in T(M). The weighted character at z is the linear functional

JM(Z) = JM(T) f JM(z,f), fEc(G(F)),

on ((G(F)) defined by

(2.4) JM(T,f) = Z tr (V(r)) JM (7,f).
eEn(R, xa)

It is clear that JM(z, ) is a tempered distribution on G(F). It depends on a choice of Haar
measure on G(F).

As in [8], §3, we write T(M) for the set of W0M-orbits in T(M). Since the sum in
(2.4) depends only on the image ofz in T(M), we can regard JM(, f) as a function on T(M)
instead of T(M). We shall again use the two interpretations interchangeably. Notice that
when M = G, JM(T, f) is just the virtual character defined by (2.2). As in §1, we write

(2.5) fG(z) = JG(T,f), z T(G).

Thus, fG stands for a function either on regular conjugacy classes in G(F) or on WoG-
orbits in T(G). Recalling that fM = (fQ)M for any group Q e F(M), we see easily that

(2.6) fM(T) = fG(T), T E T(M).

Weighted characters also have descent and symmetry properties. There is an action
of WoG on the set of pairs

(M, ), ME,e,TeT(M).

There is also an equivalence relation on T(M) determined by orbits of the groups ZT. One
sees directly from (R. 6) and the definition (2.4) that

(2.7) JW(wzz, f) = X,(z)- JM(z,f), W Woe , z Z.

The descent condition is parallel to (1.5). Suppose that T E T(M) lies in the image of T(M1),
for a Levi subgroup M1 of M. (In other words, z is the WM- orbit of a triplet in the subset
T(M1) of T(M).) Then

(2.8) JM(T, f ) -= d (M,S)S (T,f o).
SE.(M1)
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This formula follows without difficulty from [4], Corollary 7.2. Recall [8], § 3 that Te, (M)
stands for the set of WoM-orbits T = (M1, a, r) in T(M) for which r lies in the subset Rreg
of regular elements in RA. (That is, the space a1 of vectors in aM, left fixed by r equals
aM.) Any T in the complement of Tell(M) in T(M) lies in (the image of) T(M1), for a
proper Levi subgroup M1 of M. In this case, the right hand side of (2.8) is a sum over
proper subgroups of G. The descent formula therefore reduces the study of JM (,f) to the
case that T is elliptic.

§ 3. Invariant distributions

The distributions we have described are not generally invariant. Their values change
when they are evaluated at conjugates

fY(x)= f(yxy-l), x,y G(F),

of a given function f in (G (F)). Take any group Me Y, and let JM = Jm stand for either a
weighted orbital integral JM(y) or a weighted character JM(T). Then

(3.1) JM(fy)= E JMM (fQ,y),
Qe5(M)

where fQ, is the function

m - 6(m)J J f(k-~mnk)uQ(k,y)dndk,
K NQ(F)

in W(MQ(F)) defined in [2], (3.3). (See [2], Lemmas 8.2 and 8.3.) We first recall the
formalism by which one can attach an invariant distribution to JM.

To account for general spaces of test functions, let us suppose that for each S E A, we
have been given a topological vector space C(S) which injects continuously into W(S(F)).
We assume that the subspaces C(S) c ((S(F)) are invariant under conjugation, and also
under the transformations

f - f, , fE C(S), Q Ee-s(Mo), y E S(F).

The notion of an invariant distribution on C(S) then makes sense. Moreover, each JM can
be regarded as a distribution on C(G) for which the property (3.1) holds. We suppose in
addition that we have been given a second family {I(S)} of topological vector spaces, as
well as open, continuous maps !s: C(S) -+ I(S) which are surjective, and which are
invariant under conjugation in C(S). We shall say that a continuous, conjugation-invari-
ant map 0 from C(S) to some other topological vector space V is supported on I(S) if it
vanishes on the kernel of gs. If 0 has this property, there is a unique continuous map
6: I(S) -+ V such that 0 = o 9s. Of course, the most important case is when V = C. Then
0 is supported on I(S) if and only if it lies in the image of the injective transpose map
~s': I'(S) c+ C'(S) between dual topological vector spaces. The distribution a on I(S) is
then equal to the inverse image of 0 under ,s'.
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Having been given the spaces {C(S)} and {I(S)}, we then suppose that we have been
able to construct a family of continuous maps

C(S') - I(S), ScS',

for which the obvious analogues of (3.1) are valid. In particular, Os = sjG satisfies

(3.2) qs(fY)=- qESQ(fQ,y), feC(G),yEG(F).
QE6(S)

The invariant distribution IM = Im attached to JM can then be defined inductively by a
formula

(3.3) J,(f)= im S(Os(f))
SE.(M)

Part of the inductive definition includes the hypothesis that ifM c S ' G, the distribution
IS on C(S) is supported on I(S). To complete the definition, one is then faced with having
to show that the distribution

IM(f) = M(f)- Z I(Os(f))
SE (M)
S*G

on C(G) is supported on I(G).

A process similar to what we have described was carried out for the Hecke algebra
in [8] (as well as in various papers on the global trace formula). We shall consider two other
families of spaces here.

For the first example, we take C(G) to be the Schwartz space W(G(F)) itself. We take
I(G) to be the space f(G(F)) of functions 0 on T(G) which satisfy the innocuous
symmetry condition

b(zz) = X(Zz)-1'(T), z Z,,ZeT(G),

and which, as WOG-invariant functions on T(G), lie in Y(T(G)) in case F is Archimedean,
and in CF (T(G)) if F is p-adic. In the latter case, T(G) is a disjoint union of compact tori,
and CC (T(G)) has a standard meaning. In the former case, T(G) is a disjoint union of
Euclidean spaces, on which one can define a Schwartz space. To give a more precise
definition, we write #u = #i if z = (M1, a, r) is any element in T(G). Then Y(T(G)) is the
space of smooth functions ¢ on T(G) such that for each L E A, each integer n, and each
invariant differential operator DA on ia*, transferred in the obvious way

D,4 () = lim D, (z,), reTe (L) ,
A - 0

to Tel (L), the semi-norm

llL,D,n = sup (I|D )(T)l(1 + l|rll)n )
rE Tell(L)
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is finite. In each case, it is clear how to assign a topology to the space. We can actually identify
J(G(F)) with the topological vector space of functions on Itemp(G(F)) defined in [2], §5,
and also denoted by J(G(F)). The passage back and forth is through the formulas

(Tr)= Z tr ( (r)) (),
ee II(Rc,Xa)

and

q =()=l Ra - E tr(e(r)) (Tr), Tr= (Ml,,o ,r),
rezR,

obtained from (2.2) and (2.3).

Given the spaces W(G(F)) and J(G(F)), we set

(Gf )(T) =fG(T) = JG(, f) , T E T(G),

for any fE W(G(F)). It is clear that /f is invariant under conjugation of f. It is also
known [10] that G is an open, continuous and surjective map from C(G(F)) onto f(G(F)).
Replacing G by an arbitrary Levi subgroup, we obtain maps

A : W(S(F)) -. J(S(F)), SEe ,

with the required properties. We then define the map Os, as in earlier papers, by simply
taking Os(f ) to be the function Js(T,f ) of T E T(S). According to [2], Corollary 9.2, Os
maps W(G (F)) continuously to f(L (F)). (The proof relies on the estimate [2], (7.6), which
is the inequality (R. 8) we established in Lemma 2.1.) Moreover, the required formula (3.2)
follows from the corresponding property (3.1) for JS(z,f). By the general construction
above, then, we obtain a family of invariant distributions {IM^()} onl(G(F)) from the
weighted orbital integrals {JM(y)}. These distributions are quite complicated and contain
interesting information. The invariant distributions {IM(z)} corresponding to the weighted
characters {JM(z)}, on the other hand, are trivial. It follows inductively from (3.3) that
IM () vanishes ifM * G, while I'(T, f) simply equals fG().

For purposes of comparison, we shall restate the construction for this example as a
formal definition.

Definition 3.1. If

S: W(G(F)) -. J(S(F)), SeJ?,

is the map whose value at any fe W(G(F)) is the function

(3.4) Cs(f): -' JS(,f), TT(S),

we define invariant distributions

IM(y) =I.(y), yEM(F) nGreg(F),
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on W(G(F)) inductively by

(3.5) IM(y,f) = JM(7y,f)- I(y,(f )).
SeY(M)S:G

In § 5 we shall complete the inductive definition by showing that IM(y) is supported
on N(G(F)).

The second example will be dual to the first one, in that we shall interchange the roles
ofconjugacy classes and characters. However, Js (y, f) is a badly behaved function of y near
the singular set. It is not generally the invariant orbital integral of a Schwartz function on
S(F). To get around this difficulty, we take C(G) to be CC, (Greg(F)), the space of smooth
compactly supported functions on the open set of regular elements in G (F), equipped with
the usual topology. We take I(G) to be the space I, (Greg(F)) of class functions on F(G(F))
whose restrictions to any maximal torus T of G over F are smooth functions of compact
support on

Treg (F) = T(F)C Geg (F)

The topology on I (Greg(F)) is defined by the topologies on the various spaces
Cc (reg F)).

Given the spaces Cc (Greg(F)) and Ic (Greg(F)), we set

( g)() = gG(y) = J (7,g), y E F(G(F)),
for any ge Cc (Greg(F)). It follows easily from the fact that Greg(F) is a finite union of
fibre bundles over spaces Teg (F) that Y is an open, continuous and surjective map from
C° (Greg(F)) onto Ic (Greg(F)). We therefore obtain maps

s: C7 (Sreg(F)) - (Sreg(F)), SE ,

with the required properties. We then define the map Os by taking ks (g) to be the function
Js(y, g) of y e F (S(F))n Greg(F). The smoothness properties of weighted orbital integrals
imply that Os maps C (Greg(F)) continuously to Ic (Sreg(F)). Moreover, the required
formula (3.2) again follows from the corresponding property (3.1) for Js(y,g). It will help
to maintain the distinction between the two examples if we write L here instead of M.
Then our general construction yields a family of invariant distributions {IL(z)} on

Cc (Greg (F)) from the weighted characters {JL (T)}. These are the distributions which in this
second example are complicated. The invariant distributions {IL(y)} corresponding to

weighted orbital integrals {JL(y)} are the ones which are trivial. It follows inductively from
(3.3) that IL(y) vanishes if L * G, while IG(y, g) simply equals gG(y).

In summary, we have

Definition 3.2. If

s5: Cc (Greg ()) -I (Sreg ()), SF y,,

is the map whose value at any g e Cc (Greg(F)) is the function
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(3.4)V s (g) '-- s (yg), ye rF(S(F))n Greg (F),
we define invariant distributions

IL () = IL (T) T(L),

on C (Greg(F)) inductively by

(3.5)v IL(, g) = JL(T,g)- E I s(T, Os(g)) . o
SeY(L)S * GStG

We shall complete this inductive definition in §5 as well, by showing that IL(z) is
supported on I, (Greg(F)).

Remarks. 1. It would actually be easy to show directly that IL(T) is supported on
It (Greg(F)). If F = R?, for example, this would follow easily from a much more general
result of Bouaziz [12], Corollaire 3.3.2(a). IfF is p-adic, the result could be deduced from
[21], Proposition 4. The induction hypothesis of Definition 3.2 is therefore simpler than
that of Definition 3.1. However, for the sake of symmetry, we may as well complete the
two inductive definitions together.

2. The distributions IM(r) of Definition 3.2 have been studied in slightly different
guise by Labesse [23]. For if 4 is any function in IO (Greg(F)), there is an feC- (G(F))
such that

J ) = 0c (), if S=G
Js(,f)=o{0, if S G.

(See the proof of [23], Lemma 2.1.) One obtains

IL(r, p) = JL(T, f)

for any such f. The results of Labesse show that these distributions are natural objects to
use in comparison of global trace formulas.

There is some overlap in the notation between the two examples. Thus, Kis stands for
the two different maps (3.4) and (3.4)V. In future contexts, we shall generally specify the
meaning of any ambiguous notation. However, unless stated otherwise, {IM(y)} will stand
for the distributions of Definition 3.1, while {IL(T)} will stand for the distributions of
Definition 3.2.

The invariant distributions IM(y) and IL(T) inherit symmetry properties from JM(Y)
and JL(T). It follows easily from (1.4) and (2.7) that

(3.6) IWM(wy,f) = IM(,f), WE G,
and

(3.6)V ,(wzgU^ = 1,()-l,(zg), we WozeZ,.
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Moreover, the descent properties (1.5) and (2.8) are also reflected in the invariant distri-
butions. If y lies in a Levi subgroup M1 of M, the proof of [4], Corollary 8.3 yields a
formula

(3.7) IM(y f) = E dM(M,S)i1(y,fs), f e(G(F)).
SE6Y(M1)

As in the notation (2.6) of §2, fs is the image in J(S(F)) of any of the functions
fQ, Q E Y(S). If T lies in the image of T(L1) in T(L), for a Levi subgroup L1 of L, we can
apply a similar argument to IL (T, g). The formula is

(3.7)V IL(z,g) = dL (L, S) (z, gs), ge C(Greg(F)),
Se Y(L1)

where, as in the notation (1.3) of §1, gs is the image in Io (Seg (F)) of any of the func-
tions fQ.

§ 4. Statement of three theorems

We can now give a precise description of the main results. We shall state three theorems
on the distributions {IM(y)) and {IL(z)}, together with two corollaries on the noninvariant
distributions {JM(y)} and {JL(T)}. We shall then make some general remarks, interpreting
some aspects of the results, before we begin to discuss the proofs.

Notice that both families of invariant distributions depend on choices of normali-
zations for the intertwining operators. For the first family {IM(y)), the dependence is
through the maps c(s(f) defined by (3.4). For the second family {IL(z)}, it is through the
noninvariant distribution JL(T) which occurs on the right hand side of the definition (3.5)V
We are going to impose a restriction on these two possible choices. We require that the
two families of normalizing factors be complementary in the sense of Lemma 2.2. In other
words, if {r(pp(ir)} is one family, the second family must be {rp1,p(nr) = rpip'(rc)1.

As in [8], §3, we shall write TdiSc(G) for the set of WoG-orbits

(L1, , r), L1, a I2 (L1(F)), reR,

in T(G) for which the set

Wa(r)reg = {W( Wa(r): aLi = aG}

of regular elements in W, (r) is nonempty. (Recall [8], § 3 that WJ (r) = W, ' r is the subset of
elements in W(aL1) which stabilize a and which have the same projection onto the R-group
as r. For any w in this set, we write E,(w) for the sign of the element wr-1 in the Weyl
group Wf.) The function

i(z) = iG(z) = Wo-1 C E ,(w)Idet(1-w')a,~IG -1,
WEWa(r)reg
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defined on elements z = (L1, a, r) in TdiSC(G), will play an interesting role in our results.
Observe that Td,,, (G) contains the set Tell(G) of elliptic triplets. As we noted in [8], § 3, the
group W,' is trivial if z lies in T,,,(G). In this case i(z) equals the positive number
Id(z)l-, where

d(T) = d (T) = det(1 - r)aL,, .

In general, TdiSc (G) is a countable disjoint union of orbits under the group iaG F. We shall
use the measure dr on TdiSc(G) defined in [8], (3.5) by

J 0(T)dz = Z IRarl 'aGa/rGFI f O(T,)dA,
Tdisc(G) te Tdisc(G)/ia* iaF

where 0 is any function in Cc (Tdi (G)), and Ra,. is the centralizer of r in R.

Theorem 4.1. The invariant distribution IM(7) on W(G(F)) has an expansion

(4.1) IM(V,f)= Z I WOLIIWoG- J IM(y,T)fL(T)dT,
LE~ Tdisc(L)

for a smooth function

IM (,T) = IM (y, T) y F(M(F)) Greg(F), T Tdis (L),

which satisfies the symmetry condition

(4.2) IWM(wy, zw ) = X(Z)IM(7, ), z Z,, w,w EW .

If y lies in a Levi subgroup M1 of M, the function also satisfies a descent condition

(4.3) IM(y, T) = dM (M, S) ( E Is (7, wT)).
SEY.(M1) weWoS\Wo

wLcS

Finally, ifF is Archimedean, the function satisfies a growth condition

(4.4) DD IM(, ) < C(y)(1 + T )",

where n is a positive integer and c(y) is a locally boundedfunction on F(M(F))n Greg(F),
both depending on a given pair of invariant differential operators Dy and DT transferredfrom
AM(F) and ia* respectively.

Corollary 4.2. The weighted orbital integral JM(y) on cW(G(F)) has an expansion

(4.5) JM(Yf) = E Wo,LJ OII IS(y) Js(T, f)d .

LeY Se.-(L)n.(M) Tdisc(L)

Recall that F,,(G(F)) denotes the set of elliptic conjugacy classes in G(F). We shall
use the measure dy on Frl (G(F)) defined in [8], §1 by

J b(y)dy = IW(G(F),T(F))I-' J k(t)dt, qse Cc(Fcn(G(F))),
Frei(G(F)) {T} T(F)
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where {T} is a set of representatives of G(F)-conjugacy classes of elliptic maximal tori in
G over F, and W(G(F), T(F)) is the Weyl group of (G(F), T(F)).

Theorem 4.3. The invariant distribution IL(z) on Cc (Greg(F)) has an expansion

(4.1)V IL(Q,g)= Z IWo |IIW0G- S IL (z, )g () dy,
ME. rFen(M(F))

for a smooth function

IL(, 7) = IG(r, y), TE T(L), yEFel(M(F))n Greg(F),

which satisfies the symmetry condition

(4.2)V IWVL(zwVz,w) = xT(Z)-IL(zy), zE Z, WV, w W .

The function also satisfies a descent condition

(4.3)V IL (r,y) = E dL (L, S)( IL (T W^)),
SE.(L1) weWS\WowLcS

if T lies in T(L1) for a Levi subgroup L1 of L, and a growth condition

(4.4)V tD DIL(T, 7) c(y)(1 + 11j,'l)n,

ifF is Archimedean and D,, Dy, c(y) and n are as in (4.4).

Corollary 4.4. The weighted character JL() on Cc (Greg(F)) has an expansion

(4.5) JL (z,g)= Z I X Wo WOS IL (T, 7) Js (y, g) d .

M E Feli(M(F)) SE-.Y(M)nY(L)

The structure of the two theorems we have stated is obviously parallel. Our third
theorem asserts that the connection is more than formal.

Theorem 4.5. The functions defined by Theorems 4.1 and 4.3 satisfy a reciprocity
relation

(4.6) IM(Y, ) = (-l)dim(AM xAL)iL() IL (V, ),

for any pair ofpoints y E Fell(M(F)) n Greg(F) and T E TdiSC(L).

Remarks. 1. The function IM(y, z) of Theorem 4.1 will be uniquely determined by
the expansion (4.1) and the part of the symmetry condition (4.2) that applies to z. This is
because the functions fL(z) in the integrand of (4.1) are subject to a parallel symmetry
condition, but are otherwise free to range over the natural Schwartz space of test functions
on Td, (L). Similarly, the function L(z, y) of Theorem 4.3 will be uniquely determined by
(4.1)" and the part of (4.2)v that applies to y.
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2. If F is a p-adic field, the integrands in (4.1) and (4.5) are smooth, compactly sup-
ported functions of T, so the integrals converge. If F is Archimedean, it is the growth con-
dition (4.4) which insures the convergence of the integrals. As for the expressions (4.1)v
and (4.5)V, the integrands are smooth, compactly supported functions of y for any F.

3. The notation in Theorem 4.1 is slightly ambiguous. We might have denoted the
postulated function by IM,L(y, -) instead of IM (y,, ), since the sets {Tdi, (L)} need not be
disjoint. For the purpose of (4.1), however, we have only to consider points T E TdiSc(L)
which are G-regular in the obvious sense. Any such T then determines L uniquely, and the
notation IM(y, T) makes more sense.

4. (a) Theorem 4.1 describes the (invariant) Fourier transform IM(y) of IM(y), as a
tempered distribution on the (multidimensional) manifold T(G). The assertion is that this
tempered distribution is a sum of C°-functions on the strata {Tdis (L)} of T(G). In parti-
cular, the singular support of IM(y) is contained in the union

U (Tdisc(L)-Tell (L))

or rather the image of this set in T(G).

(b) To describe the singular values of IM(y), consider a point T in Tdi, (L) - Te (L).
Then there is a proper Levi subgroup L1 ofL such that z lies in Tel (L1). We have noted earlier
that the number iL (T) equals IdL" (T) I-. By combining (4.3)V with (4.6), we can deduce a
formula

(4.7) I ( ()=(- l)dim(AL/AL)iL(z^)l dL (T) a ,d (L S)( E IM(WZY,))
Se.(Li) weW oS\W

wMcS

of descent relative to the second variable. In particular, the values of IM(y, T) for general
z are determined by functions Is (y', z) in which r is elliptic.

(c) Consider the special case of (4.7) in which M = G. Then S must equal G, and
we have

dG(L \S) = dLG(L, G if L = L,
,L1J1 if Li =L.

Consequently, IG (y, ) vanishes if z lies in the complement of Tell (L) in Tdic (L). Therefore,
the Fourier transform of the invariant orbital integral IG(y) has no singular support. It can
be regarded as a C°-function on T(G).

5. Theorem 4.3 describes IM (z) as an invariant tempered distribution on Geg (F). The
assertion is that the distribution is actually a C°-function on Greg(F). Since there is no
singular support, we do not have to look for an analogue of the descent formula (4.7).

6. Corollary 4.2 can be regarded as a description of the (noninvariant) Fourier trans-
form of a weighted orbital integral. It follows directly from (4.5) that the Fourier transform
ofJM (y) is a sum of smooth functions on strata defined by {T^ (L)}. Finally, Corollary 4.4
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tells us about the restriction of a weighted character to Geg (F). It follows easily from (4.5)v
that as a distribution on Greg(F), JL(r) is a C°-function.

The proofs of the theorems will take up the rest of the paper. The two corollaries, on
the other hand, are easy consequences of the corresponding theorems. To see this, take any
group Se F(M). Applying (4.1) to Is (y), and recalling the definition (3.4) of Os/(f), we
see that

s(7^, s(f)) = Z Wo' I WoS-' I (y, T) s(f, T)d
LEYS Tdisc(L)

E WO|LI WOl J I (y,T)JS,(Tf)dz.
LE Ys Tdisc(L)

Similarly, if S e F(L), we obtain a formula

s(T ,(s(g))= Z WOM IWS-1 ILS(Z, ) JS(, g)d7
MeYS Fre (M(F))

from (4.1)v and (3.4)V. The required expansions (4.5) and (4.5)V of Corollaries 4.2 and 4.4
then follow from (3.5) and (3.5)V respectively.

We shall conclude this section by observing that the symmetry and descent assertions
of Theorems 4.1 and 4.3 are easy consequences of the assertions. The half of the symmetry
condition (4.2) that pertains to is actually part of the definition of IM (, T). It serves to
determine the function uniquely, once we have established an expansion (4.1). The other
half of (4.2), that which applies to y, follows from (3.6), (4.1) and the uniqueness of IM (y, z).
Similar remarks apply to the symmetry condition (4.2)V. The descent conditions (4.3) and
(4.3)V are equally straightforward. For example, we see easily from (3.7) that if IM(y, T) is
replaced by the right hand side of (4.3), the expansion (4.1) remains unchanged. But the
right hand side of (4.3) is symmetric under translation of z by ZT and WG. It must therefore
equal the uniquely determined function IM (7,). The formula (4.3)V follows in the same
way from (3.7)V

Keep in mind that an element y e F(M(F)) n Geg(F) will lie in TiF(M1(F)), for some
Levi subgroup M1 of M. If M1 is a proper Levi subgroup of M, we can use (4.3) to define
IM (y, ) inductively in terms of the functions I7m (y, wr). The growth condition (4.4), as well
as the smoothness of IM (y, T), then follows from the corresponding property for I l(y, wr).
Moreover, the descent formula (3.7) yields the expansion (4.1) for IM(y,.f) in terms of its
analogues for IS (y, fs). Therefore, it will be sufficient to establish what remains to be proved
of Theorem 4.1 in the special case that y lies in F,,,(M(F)). Similarly, it is enough to
establish the rest of Theorem 4.3 when z lies in the subset Tel(L) of T(L). To deal with
the basic cases, we shall use the local trace formula on G(F).

§ 5. The local trace formula

The theorems stated in § 4 will be proved by means of the local trace formula. In the
paper [8] we constructed an invariant local trace formula from the original noninvariant
version [7] and the distributions of Definition 3.1. In this section we shall modify the
construction by including the distributions of Definition 3.2. The result will be a different
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version of the invariant local trace formula, one which is particularly simple, and which is
more easily applied to the theorems of § 4.

The conventions of § 4 are to remain in force for the rest of the paper. Thus, the
intertwining operators implicit in the construction of the invariant distributions IM(y) and
IL() of Definitions 3.1 and 3.2 will be assigned complementary normalizations.

Theorem 5.1. For any pair offunctions g E C, (Greg(F)) and feC(G(F)), the ex-
pression

(5.1) WM1{WGI-1(-l)dim(AMI/A) J IM(y,f)gM(y)dy
MeY Fell(M(F))

equals

(5.2) Z WyoLl WyGl--l(-l)dim(AL"AG) X iL(Z) IL(,g)fL(_d)dA.
L E Tdisc(L)

Proof. We shall derive the identity from the noninvariant trace formula of [7],
Theorem 12.2. The results of [7] were established only for functions in the Hecke algebra
Jf(G(F)) of K-finite functions in Cc (G(F)), so we shall have to assume for the moment
that g and f lie in this space. As interpreted in [8], Proposition 4.1, the noninvariant trace
formula asserts that the geometric expansion

(5.3) WoM I WOG - (_)dim(AM/AG) J J(y, g xf)dy
M e fell(M(F))

equals the spectral expansion

(5.4) 0W0LIIWlGI -'(l)dim(AL/G) iL(z)JL(,g xf)dT.
L e . Tdisc(L)

The notation here follows [7], § 12 and [8], §4. Thus, JM(y,g x f) is a weighted orbital
integral ([7], (12.2)) on the product G(F) x G(F). According to [4], Corollary 7.4, it can be
decomposed in terms of the distributions (1.1) of § 1 by the splitting formula

(5.5) JM(yg xf) = E d (M, M2)JM'(7,gQ1,)JM (7, fQ2),
M, M26.E(M)

where

(M, M2) - (Q1, Q2)e (M1) x (M2)
is the retraction defined in [4], pp. 357-358. Similarly, if z = (L1, a, r), JL(T,g xf) is the
weighted character

C tr (Q'(r)) tr (QV (r)) JL(rVy'® 0nQ, g Xf)
Y,o'an(~,z~)e,' 'e7H(_Xar)

on G(F) x G(F) defined in [8], §4. This weighted character was defined in terms of un-
normalized intertwining operators. We claim that it nonetheless has a decomposition

(5.6) JL(z,g xf) = Z dfG(L, L2)JL'(T, gQ1)JL2(z,fQ2)
L1,L2.E.(L)
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in terms of the distributions (2.1), (2.4) constructed in §2 by means of normalized oper-
ators. The normalizations implicit in the two terms JLL (zv, fQ) and J2(z, gQ2) are under-
stood to be complementary.

To prove the claim, we recall from [8], §4 that

JL ( )r22 g x f) = tr (L(7r( tr2,P)P(r1 ®2n g xf)),

if n1 and 7t2 are irreducible constituents of the induced representations

L = R(a), ReYL(L1),

of L(F). Here, JOL(ltV n2 P) is the operator

lim E Q(A,l 2,P)0Q(A)-
A ~ QeY(L)

obtained from the (G, L)-family

JfQ(A, tv1 0 72, P) = (J[IP(1-A) )JQ) P( 2,))2,~Q ~1( )2,® ,) (^| )7 )JQIP(I2))-vi(Jo[P( ^ ®^|pv7

A iaL*, Q E Y(L). Let {Q(A, it 0
7t2, P)} be a second (G, L)-family obtained by assign-

ing complementary normalizations to the intertwining operators. That is,

JQ(A , i ® n2 P) = rQ(A,n 1 ( t2, P) Q(A,v(i 0 t2, P),
where

..vCJ p)j_.=(rP(v(2)1 1 (rQnV, -EA) rQp AP2,'rQ(A,71 ( t2, P) = (rop(1)rQIp(7t2)),l(rQP(7 rQP(i2 )).
Now

rivp(7j) = rlQ(7tl) = rQ1p(i71) = rplQ(7t)
by the properties (r. 5) and (r. 1) of the normalizing factors. Since zn and n2 are irreducible
constituents of aL, the corresponding normalizing factors are the same as the ones for aL
Therefore

rlp(lt)rQlp(i72) = riPQ(OL)rQ1p(L) = rip( L)

It follows that

rQ(A, ni ®0 2, P) = rip(LT)- rilpO),
a function which is independent of Q, and which equals 1 at A = 0. We conclude that
fL(ltl 0 rt2, P) equals

L( 1
7( t2, P) = lim E (/,A C) P) 0()-

A-0 Qe.(L)

In other words, the weighted character J4(7 0it2, g x f) above may also be constructed
from normalized intertwining operators, provided that we use complementary normaliza-
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tions for n1 and n2. Since Q(A, 7i ®0 7n2, P) is a product of (G, L)-families, the splitting
formula [4], Corollary 7.4 gives us a decomposition

JL(E®2,gxf)=- dL (L1,L2)JL1 (X, gQ)J 2(12,fQ2)L, L2 e.(L)

into distributions constructed in §2. The required formula (5.6) then follows from the
definition (2.4).

Before we go on, we shall show that the identity of (5.3) with (5.4) remains valid if
g and f are taken from the given spaces Cc (Greg(F)) and g(G(F)) rather than from
$((G(F)). In fact, the identity holds for any pair of Schwartz functions. We have only to
show that (5.3) and (5.4) both extend to continuous bilinear forms on W(G(F)). To deal
with (5.4) first, consider the splitting formula (5.6). The integrand in (5.4) is the product
of iL(T) with a finite linear combination of products

JL'(TV, gQ1) JLL (, fQ2),
each of which we can write as

'1 (gQ, T) L2 (fQ )

in the notation (3.4). As we have already noted in § 3, 4L maps l((G(F)) continuously to
J(L(F)). It follows easily from the definition of f(L(F)) that

(g, f) - I iL (T) L '(gQl, T ) ALL2 ' T) dT
Tdisc(L)

is a continuous bilinear form on W(G(F)). The same is therefore true of (5.4). As for (5.3),
we use the other splitting formula (5.5) to write the integrand as a finite linear combina-
tion of products

JM1 (y, gQ1) JM2 (y' fQ2).
If F is Archimedean, [1], Corollary 7.4 gives an estimate

(5.7) IJM(y, f)l < v(f)(l + |loglD(y)ll)P(l +!IHM(y)II)-", fc-e(G(F)),
where v is a continuous semi-norm on W(G(F)) which depends on an arbitrarily chosen
positive integer n. A similar estimate holds if F is p-adic. One needs the Howe conjecture
[14], §2, Corollary 2 to handle the case that M = G, but the proof is otherwise the same
as that of [1], Corollary 7.4. It is easy to see that for any p ER, the function
(1 + I logIl (y) II)P is locally integrable and tempered on any maximal torus in M(F). It
follows without difficulty that

(g, f) - JM(M, gQ1) JM (7, fQ2) dy
rei(M(F))

is a continuous bilinear form on ;(G(F)). The same is therefore true of (5.3). Since
'(G(F)) is dense in C(G(F)), the identity of (5.3) with (5.4) holds if g and f are Schwartz

functions.

13 Journal fur Mathematik. Band 452
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Our main task is to derive an invariant formula by converting the terms in (5.3) and
(5.4) into invariant distributions. We shall follow the general procedure of §3, but with
maps Os acting on functions on the product G(F) x G(F). Instead of defining these maps
purely by weighted characters, as was done in [8], §4, we shall put the dual maps (3.4) and
(3.4)V together.

If SE. , we must construct a map Os from the (algebraic) tensor product

Cc (Greg(F)) 0 (G(F)) into Ic (Sreg(F)) ® y(S(F)).

Turning once again to the splitting formula [4], Corollary 7.4, this time for motivation,
we define

s (g x f), g E Cc (Greg), fE 7((G(F)),
to be the function

Os(g X f, 7 X T) = Z d(S S2) JSS (y, gQ)Jjs2(rsfQ2)
Sl ,S26.(S)

of (y x r) in (F(S(F))nSreg(F)) x T(S). The splitting formula, in fact, implies that we
could have equally well expressed (s (g x f, y x z) directly in terms of the product of the
two (G, S)-families that occur in the definitions of Js (y) and Js (z). This second formulation
leads directly to the expansion of

Os((gxf)Y), yeG(F)x G(F),

which is analogous to (3.2). Since similar expansions hold for conjugates JM(y, (g x f)Y)
and JL(z, (g f)Y) of the distributions in (5.3) and (5.4), we can apply the general
construction in § 3. We define invariant distributions IL() = IG(T) and IM(y) = I G(y) on

C< (Greg (F)) )0 (G(F))

inductively by the prescriptions

(5.8) IM(ygxf)= JM(ygf)- M(7y s(g xf)),
SeS.(M)
StG

and

(5.9) IL(, g xf) = JL(T, g xf)- IS (T, s(gx f)).
SEY(L)
S=G

Of course we have to assume inductively that if S c G, then IS (y) and IS (T) are sup-
ported on I7((Sreg(F)) )j(S(F)). We shall presently establish that the same property
holds if S = G.

We claim that the invariant versions

(5.10) lWM lIW1-l(- 1)dim(AM/AG) J IM(^, g xf)dy
M6.fe rell(M(F))
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and

(5.11) E I WoLIJ WoGI-1(-1)dim(AL/AG) S iL(Z)IL(T,g Xf)dy
L e Tdisc(L)

of (5.3) and (5.4) respectively, are equal to each other. Assume inductively that this is so
if G is replaced by any group of smaller dimension. Writing Igom(g x ) and Jgom(g xf)
for the respective expressions (5.10) and (5.3), and substituting the expansion (5.8) into
(5.10), we see that

Ig(g x f)Jgeom(g X f)- E os l WoGI (l)dim(ASAG) P ( ( Xf))
S G

Similarly, we have a parallel relation

Ispec(g xf) = Jse(g xf)- 0WJlG (-1( )dim(As/AS ( (g x))
ScG

between the spectral expressions (5.11) and (5.4). Since Jgeom (g x f) equals Jec(g xf), the
claim follows from the induction assumption.

Invariant distributions on G(F) x G(F) such as those in (5.10) and (5.11) are also
subject to a splitting formula. The usual version [4], Proposition 9.1 is for the case that the
map Os is defined entirely by weighted characters as in (3.4). However, the same proof
applies if Os is defined entirely by weighted orbital integrals as in (3.4)V, or by a combina-
tion of the two, as is the case here. The only requirement is that Os itself have the split-
ting property

,3s(g xf) = E dG (S1,S2) S4(gQ)) 0S (fQ2),
S, S2Ee(S)

which in the present situation was actually part of the definition. The splitting property
(5.5) for the noninvariant distribution JM(y) then leads to the formula

(5.12) IM(y,g xf) = E dM(M M,gM)IgM) (Y, fM2)M1,M2eIf(M)

for the integrand in (5.10). Similarly, the splitting property (5.6) for the noninvariant
distribution JL(z) leads to the formula

(5.13) IL(z,g xf) = E dfL(L1,L2)IL (zV, gL,)iL(zTfL)L1,L2eY(L)

for the integrand in (5.11). Now the invariant distributions if1' (y, gM) in (5.12) are defined
by means ofthe maps (3.4)V. They are essentially trivial. According to the remarks preceding
Definition 3.2, M (y, gMl) vanishes unless M1 = M, in which case it equals gM(y). More-
over, ifM1 = M, the constant d (M1, M2) vanishes unless M2 = G, in which case it equals 1.
The formula (5.12) reduces to

(5.14) IM(,g xf) = I,(y, /W, y) .
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Substituting this into the geometric expansion (5.10), we obtain the original expression
(5.1). In (5.13) it is the distributions IL (TfL2) which are essentially trivial. According to
the remarks preceding Definition 3.1, IL2(r, fL2) vanishes unless L2 = L, in which case it
equals fL(r). The formula (5.13) reduces to

(5.15) IL(T,g xf) = IL(, g)fL ()-

Substituting this into the spectral expansion (5.11), and changing the variable of summa-
tion from z to TV, we obtain the original expression (5.2). The given expressions (5.1) and
(5.2) are therefore equal.

We have proved the theorem, except to complete the induction argument. What
remains is to show that the invariant distributions (5.8) and (5.9) are supported on
Ic (Greg(F))(S) (G(F)). From the splitting formulas (5.14) and (5.15), we see that it is
enough to show that the distributions IM(y, f) and IL(, g) are supported on Y (G(F)) and
Ic (Greg(F)) respectively. This is the induction assumption we have been carrying since
§3. We shall establish it now from the identity of (5.1) and (5.2) we have just proved.

Suppose first that fe G(G(F)) is such that the function f in J(G(F)) vanishes. We
shall show that IM (7, f) = 0 for any M and any point y e r (M(F)) n Greg (F). The descent
formula (3.7) together with our induction hypothesis reduces the problem immediately to
the case that y lies in Iell(M(F)) r) Greg(F). Now the condition f means that fL(zV) = 0
for every L e Y' and T E Tdic(L). The expression (5.2) then vanishes, and so therefore does
(5.1). Choose ge Cc(Greg(F)) such that the function gGe I (Greg(F)) approaches the
delta function at (the image in F(G(F)) of) a fixed G-regular class y in Fe,,(M(F)). The
expression (5.1) then converges to a nonzero multiple of IM(y,f) as we can plainly see
from (1.3) and (1.4). It follows that IM(, f) vanishes.

Similarly, suppose that ge C'(Greg(F)) is such that the function gG in I (Greg(F))
vanishes. We shall show that I (z, g) = 0 for any L and any z E T(L). Again, by the descent
formula (3.7)v and the induction hypothesis, we can assume that IL (T,g) vanishes if z lies
in the complement of Tell(L). In particular, the integral in (5.2) can be taken over the sub-
set Tll (L) of Tdic (L). The condition on g implies that g (y) = 0 for every M and >. The
expression (5.1) then vanishes, and so therefore does (5.2). Choose fe W(G(F)) such that
the function fG e f(G(F)) approaches the (Z,-equivariant) delta function at (the image in
T(G) of) a fixed point rV e Tell(L). Since T is elliptic, the constant iL(T) is positive. The
expression (5.2) then converges to a nonzero multiple of IL(r, g), as we can see from (2.6) and
(2.7). It follows that I (r,g) vanishes.

We have shown that the invariant distributions (5.8) and (5.9) are supported on
I7c (Greg (F)) () (G(F)). This establishes the induction hypothesis, and completes the
proof of the theorem. o

We have also established the following corollary, which serves to complete the
inductive Definitions 3.1 and 3.2.

Corollary 5.2. The invariant distributions IM(y, f) and IL(z,g) are supported on
f(G (F)) and I7, (Greg (F)) respectively. C
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Let us state as a second corollary a result obtained earlier in the proof of the theorem,
even though we shall have no further need for it in the paper.

Corollary 5.3. The noninvariant trace formula holds for any pair offunctions in the
Schwartz space. That is, the identity of(5.3) with (5.4) is valid iff andg lie in ?(G(F)). o

Remark. Corollary 5.3 depends on the inequality (5.7), which requires the Howe
conjecture ifF is p-adic. The theorem, however, does not depend on the Howe conjecture.
This is because Cc (G(F)) is already contained in the Hecke algebra when F is p-adic. In
this case, one requires only a weaker version of (5.7), in which y ranges over a compact
subset of M(F)n Greg(F). In §8 we shall use Theorem 5.1 to prove a generalization of
the Howe conjecture.

§ 6. Proof of the theorems: first steps

We can now begin to prove the three theorems stated in § 4. With the version of the
local trace formula we have just established, it will be an easy matter to derive Theorems
4.3 and 4.5 from Theorem 4.1. We shall do this first. We shall then discuss the initial stages
of the proof of Theorem 4.1.

Suppose that Theorem 4.1 is valid. We are then free to combine the expansion (4.1) with
the local trace formula. Choose functions fe.(G(F)) and g E C (Geg(F)) as in the
statement of Theorem 5.1, and substitute the formula (4.1) into the geometric expansion
(5.1). The growth condition (4.4), combined with the fact that the functionsfL and gm lie in
J(L(F)) and I' (Mreg(F)) respectively, insures that the resulting double integrals over
,ell(M(F)) x Tdisc(L) converge absolutely. The geometric expansion (5.1) then becomes

(6.1) IWoLIWl0G-1(_1)dim(ALAG) I(,g)fL()dZ,
LeEP Tdisc (L)

where

I'(zg) = Z WJMIIWoG-1(-l)dim(AMxAL) J IM (yV)gM(Y)dy.
Me.Y Fell(M(F))

The spectral expansion (5.2) must therefore equal (6.1). Consider these two expressions as
distributions in fG. Their difference is a finite sum of smooth symmetric functions on the
strata {Tdis(L)} of T(G). Since fS ranges over the entire space J(G(F)), we can separate
the contributions of the various strata. We deduce without difficulty that

(6.2) iL (T) IL(T, g) = I(^, g), L E a, T Tdis (L) .

Suppose that T lies in Tel(L). Then iL(z) equals IdL(z)J-1, and in particular, does not
vanish. The required expansion (4.1)v of Theorem 4.3 then follows from (6.2) and the
definition of IL (r, g). As we remarked at the end of § 4, this in turn implies that (4.1)V holds
for any z E T(L).
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Consider the identity (6.2) again, for an element r in Td,, (L). We can expand the left
hand side according to (4.1)", and the right hand side according to the definition of
IL (y, g). Comparing coefficients of

gM(y) = gG(y), y7 l(M(F))n Greg(F),
while taking account of the relevant symmetry conditions, we see immediately that

(_l)dim(A x AL) IM(y, V) = iL(Z) IL (z, y)

Since iL(zV) = iL(z), this yields the required identity (4.6) for Theorem 4.5. Observe that
if T E Tell(L), the growth condition (4.4)V, and also the smoothness of IL(z, y), follow from
the corresponding properties for IM(y, z). In view of the remarks at the end of §4, this
establishes Theorem 4.3 in complete generality. We have shown that Theorems 4.3 and 4.5
follow from Theorem 4.1.

The proof of Theorem 4.1 is more difficult. The local trace formula will again be our
main tool, but it will have to be combined with something else. For the moment we shall
be content to restate Theorem 5.1 in the form we shall eventually use.

The principal assertion of Theorem 4.1 is the existence of the expansion (4.1) for
IM(yf). As we noted at the end of §4, we can assume that y is an elliptic element in
F(M(F))n Grg (F). We shall therefore confine our attention to points y in Teg(F), where T is
a fixed elliptic, maximal torus in M over F. (It is unfortunate that we now have a second
meaning for the symbol T. There is probably not much consolation in knowing that the
original T is really an upper case z.) Suppose that 0 is a smooth function ofcompact support
on Teg (F). Theorem 5.1 will provide us with an expansion akin to (4.1), but for the inner
product

(6.3) IM(0,f) = 0(y)IM(yf)dy
T(F)

of 0 with IM(,f).

To see this, define a function

(6.4) 0(y)= E 0(wy), yeT(F),
weW(G(F), T(F))

which is symmetric under the Weyl group of T(F). Then ¢0 can be identified with a func-
tion in I, (Greg(F)) which is supported on the conjugacy classes which meet T'eg(F). We
can consequently choose go in Cc (Greg(F)) such that

geo = 0e-
This means that the function

go,M (yI), ME i, y1 fell (M (F))n Greg (FF),

equals 4o(y) if (M1, y1) is G(F)-conjugate to a pair (M, y) with y in T(F), and that the
function vanishes otherwise. Counting the number of conjugates ofM in i, and keeping
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in mind that IM(y,f) itself is symmetric under translation of y by W(G(F), T(F)), we see
that

IM(0,f)= IW(G(F),T(F))I-1 S e(y)IM(yff)dy
T(F)

=I W(aM)I-1 0 (y) Im(y,f)d
Fell(M(F)n T(F))

= IEWoMi o1 - Im (7lf)g0,M(y)dy) .
M1ie Felii(Mi(F))

This last expression equals the product of (-l)dim(AM/AG) with the geometric expansion
(5.1). It follows from Theorem 5.1 that IM(O,f) equals

E IWL lGIW -1(- 1)dim(AM x A) i(Z)IL (Z, go)fL (T)d .

Le6Y Tdisc(L)

It is convenient to change the variable of integration from z to TV, and to set

(6.5) IM(0,z ) = (-l)dim(AmAL)iL(T)IL(TV, go).

Observe that the notation makes sense; since the distribution IL(zV) is supported on
Ic (Greg(F)), the right hand side of (6.5) depends only on 0,, which is determined in turn
by 0. We can then state what we have obtained from Theorem 5.1 as follows.

Lemma 6.1. The identity

IM(O,f)= Z IWLlw oGI-' S IM(O,z)fL(z)dT
LeY Tdisc(L)

holds for any pair offunctions fE 6(G(F)) and 0 e Cc, (Treg(F)). o

Recall that TdiS(L) is a disjoint union of ia*-homogeneous spaces. Let us write
(Tdis (L)) for the topological vector space of functions b on TdiSc (L) which satisfy the usual

symmetry condition

O(ZT) = X,(Z)-' (T), ce Tdi(L), zE Z,,

and which lie in 9Y (Tds (L)) ifF is Archimedean, and in Cc (Tdic (L)) ifF is p-adic. These
conditions are familiar from the definition of J(L(F)) in § 3. In fact, '(Tdi (L)) is just
the space obtained by restricting functions in (L(F)) to the submanifold Tdis (L) of T(L).

Lemma 6.2. The map which sends 0 e Cc (Treg(F)) to the function

IM (0, T), T 6 Tdis, (L),

is a continuous linear transformation from Cc (Tr (F)) to r(Tdis (L)).
Proof. We shall have to examine the right hand side of (6.5) as a function of 0. We

claim that the map which sends -k e I, (Greg(F)) to the function

V^)=4I~(Z,), z^T(L),
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is a continuous linear transformation from I, (Greg(F)) to J(L(F)). Assume inductively
that this is so if G is replaced by a proper Levi subgroup S in YS(L). Since the map Os
defined by (3.4)V sends C (Greg(F)) continuously to I, (Lreg(F)), we see that

g -* 7 (r , g (Gg(F)),C(G(F) T(L),
is a continuous linear transformation from C' (Geg(F)) to J(L(F)). Moreover, the map

g JL(z,g), gC(G (), C(Gg (F)) ,T(L),

taken from the definition (3.5)V, is the composition of the continuous embedding of
Cc (Greg(F)) into W(G(F)) with the continuous map of (G(F)) to J(L(F)) defined by
(3.4). It follows from the definition (3.5)" that

g - IL(r,g), g Cc (Greg(F)), r T(L),

is a continuous linear transformation from C (Greg(F)) to J(L(F)). But the distribution
IL(z) is supported on IC (Greg(F)). It follows from the general remarks of § 3 that

(6.6) 4> - , GeIr(Greg(F)),
is a continuous linear transformation from Ic (Greg(F)) to J(L(F)), as claimed.

Now, it follows directly from the definitions that

(6.7) 0 - ,, OeCc(Teg(F)),
is a continuous linear transformation from C (Teg(F)) to Ic (Greg(F)). Similarly, if

()= (-1)dim(AM xAL)ihL()(;V),r() TdiC,(L),
the map

(6.8) W- ,, VEe(L(F)),
is a continuous linear transformation from J(L(F)) to ((Tdijs(L)). Substituting

IL (Z, go) = IL(zV, O4)

into the definition (6.5), we see that the map given in the statement of the lemma is the
composition of (6.7), (6.6) and (6.8). The lemma follows. o

Notice the similarity between the required expansion (4.1) of Theorem 4.1 and the
formula in Lemma 6.1. The obvious strategy would be to let 0 approach the Dirac measure
at a regular point y in Teg (F). However, Lemma 6.2 is not strong enough to give us control
over the functions 1M (0,-). We are going to have to treat the real and p-adic cases separately.
For real groups we shall use the differential equations satisfied by the distributions
IM(y, f). For p-adic groups we shall have to establish an analogue of the Howe conjecture
for these distributions.
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§ 7. Completion of the proof (Archimedean F)

In this section we shall finish the proof of the theorems of §4 in the case F is Archi-
medean. We may as well take F = R. What remains is to establish Theorem 4.1, for elliptic
G-regular elements y in M(?). Observe that ifM is replaced by a strictly larger Levi sub-
group S, no such y will be elliptic in S((R). The distribution Is(y,f) can then be expanded
according to (3.7), as a sum over proper subgroups ofG for which we can assume inductively
that Theorem 4.1 holds. We may therefore assume that the assertions of Theorem 4.1 are
valid for Is(y,f), if y is an elliptic G-regular element in M(X).

We fixed an elliptic maximal torus T of M in the last section. Our task is to con-
struct the function IM(y, z) for y E Treg(l), and to establish the expansion (4.1) and the
growth condition (4.4). We shall combine Lemma 6.1 with the differential equations satis-
fied by IM(y, f).

The expansion

(7.1) IM(Of)= Z IWoL W0o- 1 IM(0,T)fL(T)d
LeS- Tdisc(L)

of Lemma 6.1 holds for any functions fec(G(t)) and 0 E Cc (Teg((B)). Before discussing
the differential equations, let us look at a concrete estimate for IM(0, z) implied by the
assertion of Lemma 6.2. Suppose that D, is a differential operator on Tdi,,(L) as in (4.4).

Then

sup (I DTo('), wo (T7(disc(L)),
re Tdisc(L)

is certainly a continuous semi-norm on (Tisc (L)). If w (z) = IM (0, ) Lemma 6.2 asserts
that the resulting function of 0 is a continuous semi-norm on C ((Treg()). It follows that
there is a locally bounded function b (y) on Trg (R), and a finite set of invariant differential
operators Di on T(S), such that

(7.2) DIM(0, z) sup (b(y)ID 07)(y),
ye Treg(R) i

for every 0 E C, (Treg(R)) and z E Tdisc(L). If the total degree of D, is bounded by a non-
negative integer N, we can clearly choose the differential operators {Dij to have total
degree bounded by an integer dN which depends only on N. It follows from this estimate
that the right hand side of (7.1) extends to a continuous linear functional of 0 in the topo-
logical vector space cd°0(Treg(R)). The same is clearly true of the inner product (6.3) which
appears on the left hand side of (7.1). The expansion (7.1) therefore holds if 0 is any func-
tion in cdo (Treg ()).

The differential equations

IM(,Yzf)= Ma)(, Zs)(Is(,f), y Treg(X),SE.(M)
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were described in [3], § 11-12 and [4], (2.6). (The weighted orbital integrals JM(y) were
studied in [3] only on C (G (R)), and the invariant distributions IM(7) were defined in
[4] only on the Hecke algebra of G(1R). However, the results in [3], §11-12 extend to
W(G(/M)) by [1], Lemma 8.5, while the one line justification of [4], (2.6) applies equally to
our Definition 3.1.) The elements z lie in the center 3 = EG of the universal enveloping
algebra of the Lie algebra of G(C). For each such z, zs is the image of z in 4s, and
a (y, Zs) is a differential operator on Tg(I(R) whose coefficients are analytic functions of y.
In the case that S = M, we have

aM (, zM) = (hT(z)) ,
where

hT': - S(t(C))
is the Harish-Chandra homomorphism, and a (w) stands for the invariant differential
operator on T(lS) attached to any cw in the symmetric algebra S(t(C)) on the Lie algebra
of T(C). The differential equations become

(7.3) ((hT(z))IM(y,f) =IM(yzf)- as(7y,zs)Is(7,f).
Se (M)
S$M

To establish (4.1) we shall use the technique [17], Lemma 48 of Harish-Chandra in the
form that applies to the present situation. (See [1], § 8, [15], lecture 3, p. 13, [3], Lemma
13.2.)

Let c be the element in S(t(C)) such that (co) is the Laplacian on T(I) relative to
a suitable invariant metric. Suppose that m is an arbitrary positive integer, which for the
moment will be fixed. Since S(t(C)) is a finite module over hT(Y), we can find a positive
integer r and elements {zj: 1 <j < r} in S such that

r

mr- Z hT(0)m(-j) = 0.
j=1

The adjoint involution on S(t(C)) induced by the automorphism X -O-X of t(C) fixes
W, so we can assume that it also fixes the elements hT(zj). Let 1 be the Dirac delta distri-
bution at 1 in T(lf). From the theory of elliptic operators, we know that we can find a
function 0, in C2n'-mO(T(R)), for some positive integer mo which depends only on the
dimension of T, such that

1 = a((a)mr

This function is in fact infinitely differentiable on the complement of 1 in T(aR). Let a be
a smooth, compactly supported function on the Lie algebra of T(Ml) which equals 1 in a

neighbourhood of 0, and set

Oe(y)= -(y)C(e-logy), ye T(a),

for any small positive number E. Then OQ also belongs to C2m"-mo(T(y)), and we have

= a (co))rnO + l,
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where tr belongs to C, (T((R)). Both 0, and r, are supported on a ball about 1 in T(IR)
whose diameter depends linearly on e. We can also assume that these functions are invariant
under the automorphism y y-. Substituting the equation above for om', we obtain

(7.4) 6 = E hT(z) a (c)m('- + E
j=l

We are trying to establish the expansion (4.1) for IM(, f), with f in W(G(R)). As we
have already observed, Lemma 8.5 of [1] and the inductive nature of Definition 3.1 insure
that IM (y, f) is a smooth function of y E Treg (). This function of course does not change
if we take its convolution with 6,. To describe the resulting contributions from the com-
pactly supported distributions on the right hand side of (7.4), we write O,9 and r,,y for the
translates of 0O and qr by a point y-1 in Treg(R). We fix e so that as y varies over some
preassigned region which is relatively compact in Tg( )), the support of each of the func-
tions 0,,y and r, y is contained in Trg(R). Then the value at y of the convolution of
M(', f) with qr is just the inner product of r,y with IM (, f). Moreover, the convolution of
IM(, f) with the jth summand in (7.4) has value at y equal to

J (a(ro)m(r-j) O)( (')(a(hT(z,)) I(y',f))y' .
Treg(R)

According to the differential equations (7.3), this in turn equals

J ((o)m( j), Y) (y')(IMy'(7, zjf)- E 8 Is (7,f))dy',
Treg(R) S-M

where

ais = AM (/, z,,j )

We can therefore write IM(7 f) as the sum of

X rl,Y(y')I(y',f) dy',
Treg(R))

E f ((W)m(r-j)) (y) IM(y,)fdy ,
j=1 Treg(R)

and

- E Z ( (r-j) 0.)(y)(aS'jIs(y ))dy.
j=1 S M Treg(R)

We shall deal with these expressions in turn.

The first expression is just the inner product IM(Ol,, f) defined by (6.3). By (7.1) it
has an expansion

E WoL II Wo S IM(7,z)fL() dz,
L Tdisc(L)

in which we have written

I(Y(,z) = IMleY.T)
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To deal with the second expression, we have to put a condition on the original integer m.
We assume that 2m - mo > do. The functions

(a (o)m(r-J)Ot (y), 1 j r,

then all lie in C[°(Treg(a)), and may consequently be substituted for 0 in the identity (7.1).
Since

(zjf)L() = <hT(Zj),1> fL (T) ,

the second expression equals

EI WOLII WOG- IM(y, ) fL(T)dz,
L Tdisc(L)

where

2 (y, T) = Z (h(j), Ir> IM(a(o)m(r- J), ) .
j=l

The third expression involves distributions Is(y',f) for which we are assuming Theorem
4.1 is valid. In particular, we are assuming that the functions IS(y' t) have been defined
and satisfy the required properties. Applying the expansion (4.1) in this case, we write the
third expression as

E i WOL Wo1' IM(y,z)fL(T)dz,
L Tdisc(L)

where

IM(y, ) = J (a(O)m(r- j)o Y)(y (SIS (7; T))dy.
j=l S M Treg(R)

The sum of these three expressions gives the required expansion (4.1) for IM(y, ). The
expansion holds if we set

(7.5) IM (7, T) = IM (Y, T) + I (y, T) + IM (, ).

The function I (7y, z) appears to depend on the choices ofm and E. However, it is clear
from (6.5) and (3.6)V that IM(y, ) and 12(7, T) are symmetric in T, in the sense of (4.2).
(We are using the property that Xv = X-, as in the beginning of § 3 of [8].) Our induction
hypothesis implies that the same thing is true of I3 (y, T). It follows that

IM(,ZWV T) = X(Z)- IM(y, T), Z Z,, wV WoG

As we noted in §4, the expansion (4.1) and this symmetry property together characterize
IM (y, T) uniquely. The function therefore does not depend on the various objects that went
into its definition. In particular, we are free to let the integer m vary when we want to
establish other properties of I (y, r).

We must show that IM(y, r) is smooth and that the growth condition (4.4) holds. The
proofs are both straightforward consequences of the estimate (7.2). Each property is local
in y, so we can restrict y to points in some relatively compact, open subset of Teg(IR). To
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establish the smoothness, we shall show that all partial derivatives of IM(y, T) in y and z,
each taken with total degree up to an arbitrary given integer N, exist. Suppose that D, is
a differential operator on Tdis(L) as in (4.4), with total degree bounded by N. It follows
from (7.2) that D IM(, T) extends continuously to a linear functional of 0 in C"N(T7eg ()).
If 0 lies in CN+dN (Tieg(/)), and if the translates 0y of 0 by the points in some given open
set are supported on a compact subset of T,,g(R), the function DIM(0y, z) has continuous
partial derivatives in y of degree up to N. This also follows easily from (7.2). Now, the
functions

((or)m(r-)0, 1 j <r,

all lie in C,2m- mo(T7g(T)). Ifm is large enough, they therefore belong to CrN+dN(Tig(a1)).
Since

a(())m(r - j)0E, = (a(w))(r- j) 0)y,
we see from the definition that the function 12 (7, T) is continuously differentiable in (y, r)
of order up to N. Similarly, since r' lies in C (Treg(R)), we see that IM(y, T) is in fact
infinitely differentiable. As for the third function 13 (y, T), we use our induction assumption
to assert that the functions

ajIs (y, T), S M, j r,

are smooth in (y, T). Since 1 3 (y, z) is a sum of terms obtained by convolving each of these
functions of y with functions of compact support, it too is a smooth function of (y, z). It
follows that IM (y, T) is differentiable of order up to N. Since N is arbitrary, we obtain the
required smoothness of IM(y, z).

The growth estimate is proved in a similar way. Choose differential operators Dy and
D£ on Treg (?) and Tdi, (L) as in (4.4). If the total degree of each of them is bounded by N,
we choose m so that

2m-mo > N+dN.

Arguing as above, we can estimate the function

DY Do Im(y, T)

by means of (7.2). To deal with the second function, we choose positive integers c and n
(depending on m, and hence on Dy and D?) such that

<hT (Zj), > c(1 +IIJ1YI)", 1 j _ r, z Tdisc(L), L '.

We can then estimate

n the (. F l)y,

in the same manner. Finally, we can estimate the third function

oyZV^(y,T)
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from our induction hypothesis. The required growth condition (4.4) follows. Our proof of
Theorem 4.1 in the case F = X is complete. o

§ 8. A variant of the Howe conjecture

We turn now to the p-adic case. The differential equations are no longer available to
control the behaviour of IQ(y, z). For ordinary orbital integrals (the case that M = G), the
Howe conjecture is known to be a useful replacement for the differential equations. (See
[14].) A similar principle applies to weighted orbital integrals. We shall establish a
generalization of the Howe conjecture, which applies to the distributions IM(7, f), and
which will allow us to prove Theorem 4.1 in § 9.

For the next two sections, F will be a p-adic field whose residue field has order q. As
before, ME 2Y will be a fixed Levi subgroup, and T will be a fixed elliptic maximal torus
in M over F. If A is any subset of T(F), we set

Areg =A Greg(F) = AT (F).

Theorem 8.1. Suppose that Ko is an open compact subgroup of G(F) and that A is an
open compact subset of T(F). Then the restriction of the set of invariant distributions

f -- ImM(Y f), Y Areg,

to the space W (G(F)//KO) of KO-bi-invariant functions in i (G(F)) spans a finite dimen-
sional space.

Proof. Although the distribution I(y, f) is invariant, it does not generally have
compact invariant support. Therefore the Howe conjecture, which is actually equivalent to
the case that M = G, does not imply Theorem 8.1. It does not seem possible to extend
Clozel's proof [13] to the case at hand, although we shall use a key step [13], Lemma 5
from his argument. We shall obtain the theorem instead as another consequence of the
local trace formula, or rather its reformulation as Lemma 6.1.

If 0 is a function in Cc (Treg (F)) which is supported on A, we can construct the linear
form

IM(0,f)= J 0(y)IM(, f)dy, fe(G(F)//K0),
T(F)

on W(G(F)/IKO). It will be sufficient for us to show that the space spanned by all such
linear forms is finite dimensional. Lemma 6.1 asserts that

M(0, f)= Z IwoL Wol- S IM(0, T) fL(T) dT,
Left Tdisc (L)

where

IM(O, ) = (-l)dim(A xAL)iL(T) I(ZVg) .
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Substituting the definition of the measure dz, we obtain an identity

(8.1) M(0 f) = E E c,(T) 5 IL(,g)fAL(T_-)d ,
L TeTdisc(L)/iai iaLF

where

C= RIW'iI /()CL (T) = OLIIWGI-l(_l)dim(AMXAL) R | lLa/aFl i (T),

if T = (L1, a, r). The function go ECK(Greg(F)) was described in § 6. We can in fact always
arrange that g& lies in the subspace CA° (Greg (F)) of functions in C7(Greg(F)) which are
supported on Ad (G(F))A. Moreover, as long as f remains in W(G(F)//Ko), the sum over
z in (8.1) can be taken over a fixed finite set. It is enough, then, to study the bilinear form

(8.2) 5 IL (r,, g)fL(-,)dA, gEC (Greg(F)), f (G(F)//Ko),
iaL, F

for any fixed z e Tdis (L).

Appealing t the Plancherel formula on ia PF, we write (8.2) as

E IL(T,X,g)fL(T ,X),
X.aL,F

where

IL(T,Xg)= 5 IL(z, g)e- () dlA
ia* F

and

fL(TV,X)= S fL(T)e-A(X)dA.
ia*L,F

The next lemma is clearly the essential point.

Lemma 8.2. The set of distributions

g - I,(T X,g), g Ca (Greg(F)), XE aL F,

on C, (Greg(F)) spans a finite dimensional space.

Proof. The assertion is evidently equivalent to the finite dimensionality of the space
spanned by all linear functionals

+ iL,(T,,,X, ), /I (Greg(F)), XE aL,F,
on the image I (Greg(F)) of Ca (Greg(F)) under-rG. Set

J,(z,X,g)= JJ5(ag)e-X(X)di.
iaLF
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Then the original definition (3.5)V can be written

IL(z,X,g) = J(z,X,g)- IL(T.zX, s (g)),
SES9(L)S:G

where Os is the map given by (3.4)V. We assume inductively that the lemma holds if G is
replaced by any S s G. Since Os maps Ca (Geg (F)) into IA (Seg (F)), we can then conclude
that the distributions

g - i(T(,X s(g)), g C (Greg(F)), S G, XE aL,F

span a finite dimensional space. It is therefore sufficient to prove the lemma with IL (T, X, g)
replaced by JL (, X, g).

To deal with J (z, X, g), we shall use a Paley-Wiener argument. It is convenient first
of all to write

(8.3) JL(z,X, g)= J e- (x)d2,
E+ iaL,F

where £ is a small point in a* in general position. This is of course possible, since JL (A, g)
is a meromorphic function of A Ee a0,c which is analytic in a neighbourhood of ia*. To
prepare for more serious changes of contour, we recall the scheme ([5], § 10, [8], §7) that
is used to keep track of residues. For each group Q E F(L), let #JQ e aQ be a fixed point in
the chamber (a) + associated to Q which is very far from any of the walls. Then if X is
any point in aLF, we set

u(X)= IQ,

where Q e F(L) is the unique group such that X lies in aQ. Finally, given E and X, and
also a group Se ?(L), we define

Vs = (Xs) + S,

where Xs and iS are the projections of X and £ onto as. The integral over + iaF, above
can then be written as a sum of integrals over the contours vs + ia F. More precisely, for
each S there is a set Rs (£, ^A'S) of residue data for (S, L), which depends only on the family

As = {vs : L cS SS},

with the property that the integral on the right hand side of (8.3) equals the sum over
S e S(L) of

(8.4) J ( E Res (e- ( ,JL g)))dv.
vs +iasF \2eRs(e, As) fn, A An +v

(See [5], Proposition 10.1. We are following notation and terminology introduced in [5],
§8.) We can therefore analyze JM(z,X,g) by studying the integrals (8.4). We must show
that the family of linear functionals in g E Ca (Greg(F)) given by (8.4), with X ranging over
aL,F, spans a finite dimensional space.
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The point vs depends on X. Since it is a highly regular point in the chamber (a*)+
for which Xs lies in aQ, we can use the classical Paley-Wiener argument to bound the norm
of Xs. The discussion at this stage is similar to the proofs of [5], Theorem 12.1 and [4],
Lemma 4.2, so we shall not go into detail. The point is that

i -o JL (I, g) 2ea*L,C

is a function of exponential type, apart from a finite set of poles, and the exponent of
growth depends only on the support of g. We conclude that (8.4) vanishes unless XS lies in
a compact subset of as which depends only on A. Since Xs lies in a lattice in as, it will in
fact take on only a finite set of values.

What remains is to show that as X ranges over the subset of aLF(Y) of elements in
aL,F which project onto a given point Ye as, the space spanned by the corresponding linear
functionals (8.4) is finite dimensional. The problem is that the set Rs (, As) could a priori
be infinite, even though for a given g, all but finitely many summands in (8.4) vanish. We
must show that RS(£e, Js) is actually a finite set. The set is of course determined by the
multiple residues encountered in changing the contours of integration in (8.3). We must
therefore show that the poles (with multiplicities) of the function

A -+ J,(-A g), a C

can be taken from a finite set which is independent of g. As Clozel remarks in [13], this
phenomenon is peculiar to p-adic groups.

Suppose that i is a representation in Htemp(L(F)). Recall (R.7) that the matrix
coefficients of the normalized intertwining operators Rp, p(7) are rational functions of the
variables

(8.5) {q(4v)' fEi,,n Z} .

We shall show that these rational functions all have a common denominator.

Lemma 8.3. Fix groups P', P e Y(L). Then there is a product

(8.6) eQ'Ip()= n eQ(qA(av)),*la*I ElZ nX1

of polynomials of one variable with the property that all of the matrix coefficients of the
operators

(8.7) QP () Rp, IP(()
are polynomials in the variables (8.5).

Proof. It is known that there is an open compact subgroup K1 of K with the pro-
perty that any composition factor of any of the induced representations Ap(irc), i E a*,
has a Kl-fixed vector. (See [13], Lemma 5 and [11], 3.5.2.) Let Qp(C)1 be the finite di-

14 Journal fur Mathematik. Band 452
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mensional subspace of vectors in Xp(n) which are K1- fixed, and let F1 be the canonical
projection of p(ir) onto Xp(n)1 which commutes with the action of K1. Since Rp, lp(rn)
also commutes with the action of K1, and since the matrix coefficients of this operator are
rational functions, there is a polynomial Qp' p(A) in the variables (8.5) with the property
that the matrix coefficients of the operators

Qplp () F Rp,lp(n.)rF = ep,Ip(A) Rp, p(n^) F1

are all polynomials in the variables (8.5). Since the singularities of RpIp(ir) lie along
hyperplanes of the form

(8.8) qI(#V) -c=0 ,/3 2, ce *,

we can take Qp,'p(A) to be of the form (8.6).

We claim that ep',(A) satisfies the required property of the lemma. It is enough to
show that any matrix coefficient of the operator (8.7) is an entire function. Suppose that
this is not so. Then there is a matrix coefficient which has a pole of order k > 1 along some
hyperplane of the form (8.8). If , is a fixed generic point on the hyperplane, the operator

R, = lim (q(v c) Qp Ip(A)Rp,[(nA)

is well defined and is not equal to 0. Observe that

RJp(i8,h) = Jp, (y,h)R, he C, (G(F)).

It follows that the kernel N(RM) of R, is an invariant subspace of 4Xp(7r) under the repre-
sentation ap(7i,). But N(R,) contains Xp(n)1, by construction. Therefore, the quotient of
the representation 4p(7i) on 4p(n)/N(R,) has no Kl-fixed vector. This contradicts the
definition of K1. E

Having established Lemma 8.3, we can now complete the proof of Lemma 8.2. We
are trying to control the singularities of the functions JL (z, g) in (8.4). Recall that JL (A, g)
is a finite linear combination (2.4) of distributions

JL (rA,g)= tr (L(7C, P) P(7rA, g)), cEHtmp (L(F)).

The operator WL(7n, P) is obtained from the (G, L)-family

Rp'IP(7r)- RP'IP(lr+A) = RPIP (7C)RP IP(lrA+), Pec (L),A e ia.

According to the general formula [2], (6.5), we can write

&0(r,,P)!= P'(L) - P)) ()
P'E(L) d7l/ /
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where p = dim (AL/AG) and A is a fixed point in ia*. We therefore obtain an expression

P'e(L)
in which Jp (A,, tA, g) is the entire function

tr(eI,(A))Rpp,() erpp( + tA)Rp, p(7 +tA) ' p(rg)) Op (A)

of A E a*a. Thus, JL (ir, g) is a finite sum of terms, each of which is the product of an entire
function of A which depends on g, and a rational function in the variables {q`(fv)} which
is independent of g. It follows that the poles (with multiplicities) of JL (7t, g) can be taken
from a finite set which is independent of g. The same assertion is therefore true for the
function JL(Tz, g) in (8.4). This is what we had to prove. We conclude that as X varies over
aLF,F the integrals (8.4), and hence also the functionals JL(, X, g), span a finite dimensional
space of distributions on CA (Greg(F)). The proof of Lemma 8.2 is complete. c

Now that we have verified our pair of embedded lemmas, we shall finish up the proof
of the theorem. Lemma 8.2 implies that as f varies over W(G(F)//KO), the functionals

(8.9) E IL(ZXg)fL(T,X)
XEQL,F

span a finite dimensional space of linear forms in gE Ca (Greg(F)). This is the same as
saying that as g varies, the functionals (8.9) span a finite dimensional space of linear forms
in f. But (8.9) equals our earlier bilinear form (8.2). When g = go, (8.2) in turn appears as
the integral in the expression (8.1) for IM(0, f). Recall that 0 was allowed to be any function
in C ((Treg(F)) with support in A. We have established that as 0 varies, the linear forms

f--, IM(Of), f ec(G(F)//Ko),
span a finite dimensional space. This yields the assertion of Theorem 8.1. o

Corollary 8.4. Suppose that Ko and A are as in Theorem 8.1. Then the weighted
orbital integrals

f- J,(7,f), y Areg,
span a finite dimensional space of linear forms on W(G(F)//Ko).

Proof. According to the definition (3.5), JM(,f) equals

E IM(^,Gbs(f)),
Se . (M)

where 4s is the map (3.4). The image of S(G(F)//Ko) under 4s is contained in a subspace
of functions in f(S(F)) which are supported on a fixed compact subset of T(S). Any such



208 Arthur, Fourier transforms of weighted orbital integrals

subspace is in turn contained in s (W(S(F)//Ko)), for some open compact subgroup Ko
of S(F). This follows from the fact [10] that gs(: (S(F)) - J(S(F)) is an open sur-
jective map. The corollary then follows from the theorem. o

§ 9. Completion of the proof (p-adic F)

For this section, F will continue to be a p-adic field. Our last task is to prove Theorem
4.1 in this case. We shall actually be able to do more. The theorem of the last section is
strong enough to give us some control of the function y -+ I(y, r) near the singular set.
This will lead to an expansion (4.1) if y is a singular element in M(F). It will also allow us
to define the distributions IL(r,g) for any function in C (G(F)).

Recall that T(G) is a disjoint union of finite quotients ofcompact tori. Let Q be a fixed
connected component in T(G). We shall write f(G(F),Q) for the closed subspace of
functions 4 in f(G(F)) which are supported on Q. By the properties [10] of the map G,
we can find an open compact subgroup K(Q) of G(F) such that the closed subspace

(9.1) W(G(F), Q) = G- 1'((G(F), Q)) n W(G(F)//K(2Q))
of W(G (F)) is mapped surjectively onto J(G(F), Q) by G.

In §6 we fixed an elliptic maximal torus T in M over F. To prove Theorem 4.1 it
remains for us only to establish the expansion (4.1) for elements y in Treg(F). Let A be an

open compact subset of T(F). We shall consider the space of linear functionals on

W(G(F), Q) spanned by the invariant distributions

f IM(yf), y Areg,= A nGreg((F).

By Theorem 8.1, this vector space is finite dimensional. Taking a fixed basis

{I,: acA (A, Q)}

of the space, we obtain functions

{t": aeA(A,Q)}
on Areg such that

IM(,f) = Z t (y) I(f )
x A(A,Q2)

for any y Areg and fe gW(G(F), Q). The functions are smooth and linearly independent.
We can therefore choose functions {0': P E A (A Q)} in C, (Areg) such that for any a and f/,

t' (t) Opi (y)d= {1' if x =f,
T(F) tM fY 0, otherwise.

Then the form

I(M,f) = f Oa(Y)IM(7,f)dy, fe (G(F),Q),
T(F)
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defined in (6.3), equals I,(f). Applying Lemma 6.1, we obtain an expansion

I(f)= EZ J Wlol IIG I(0, z)fL(z)dz
LE~ Tdisc(L)

for I,(f) in terms of the functions IM(O, T) defined by (6.5). Let us write QL for the pre-
image of Q under the canonical map T(L) -+ T(G). It is a finite (possibly empty) union of
connected components in T(L). If f lies in (G(F), Q), fL will be supported on 2L, and
the integral above can be taken over TdiSC (L) n QL. For any such f, and for y e Areg, we have

IM (Y,f) = E t () I (f)
aeA(A,O)

= E WOL Wo Jf IM(7, T) fL()d,
L Tdisc(L)nQL

where

(9.2) M (Y, ) = t (y) IM(0,1 ), zT Tdisc (L) n L.

The function (9.2) is defined and smooth on the open compact subset

Areg X (disc(L) 2L) of Treg(F) xTdisc(L).
As the notation suggests, it will be the restriction to this subset of the required function of
Theorem 4.1. Since T(L) is the disjoint union of sets QL, we can certainly define a smooth
function IM(7, z) on Areg x Tdis(L) so that its restriction to any Aeg x (Tdisc(L) L) is
given by (9.2). We would like to show that the expansion (4.1) holds for any y E Areg if f
is any function in W(G(F)). It certainly holds iff lies in W(G(F), Q) as above, since fL is
then supported on 2L. An arbitrary function f will still be bi-invariant under some open
compact subgroup of G(F), so the function fG = 9Gfon T(G) will be supported on finitely
many components {Qi,: 1 < i < r}. For each i, choose a function fi e W(G(F), Q2) such that

' fi and Gf have the same restrictions to Qi. Since GJf vanishes on the complement of
2Q, the function f- E fi lies in the kernel of IG. But the distribution IM (y) is supported on
f(G(F)), which implies that

IM (y f)= IM (Y f)
i=1

We also have fL = AfL, for any L E Y. The expansion (4.1) then holds for f, since it holds
for each fi.

Our definition of

IM (Y, ), yT Areg,, z T di (L),

depends on the set A. However, we may certainly assume that the function satisfies the
required symmetry condition (4.2). As we remarked in §4, the conditions (4.1) and (4.2)
determine the function uniquely. In particular, if A' is an open compact subset of T(F)
which contains A, the restriction to Areg of the function defined for A' equals the function
defined for A. Letting A run over an increasing sequence of sets whose union is T(F), we
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obtain smooth functions IM (y, r) on Trg (F) x Tdi, (L) for which the required conditions (4.1)
and (4.2) hold. According to the remarks at the end of §4, this finishes the proof of
Theorem 4.1. o

We have established the theorems of § 4 in complete generality. In the p-adic case we
are now considering, our version of the Howe conjecture provides further qualitative in-
formation. Let us summarize what we can say about the kernels IM (y, ).

Changing notation slightly, we take A to be an open compact subset of M(F), and
we set Areg = A rh Greg(F). If Q is a connected component of T(G), and W((G(F), Q) is the
subspace (9.1) of W(G(F)//K(Q)), the larger family of distributions

(9.3) {Is(y): SE S(M), y6Areg}
still spans a finite dimensional space of linear functionals on (W(G(F), Q). Let

{Ia: A'(A, Q)}

be a fixed basis of this space. We can then write

(9.4) Is(,f) = E ts(y)I (f), f e W(G(F),Q),
acEA'(A,fQ)

for uniquely determined smooth functions

{ts (7): a e A' (A, Q)}

on Areg. Each I, is the restriction to W(G(F),Q) of a distribution in the space (9.3).
Theorem 4.1 then gives us an expansion

(9.5) IW(f) = E WoL WOG-J I ()fL() d
L Tdisc(L)

for any a E A'(A, Q) and fe (G(F), Q), in which

I,(z), a A'(A, Q2), z Tdisc(L),

are uniquely determined smooth functions on Tdic (L) which vanish on the complement of
2L, and which satisfy the symmetry condition

I(zw T) = X(z)I,(T), Ze,Z wV Wo.

Combining the formulas above for Is(y, f) and I,(f) with the fact that j maps
W(G(F), Q) surjectively onto J(G(F), Q), we obtain a locally finite presentation

(9.6) Is(Y, T) = ~ t, (y)Ia(), y Areg, T 6 disc(L),
n aeA'(A,Q)

for our kernel.
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The linear forms I, were defined on W(G(F), Q). It will be convenient to extend them
to invariant distributions on the entire Schwartz space. We do so by simply requiring that
the expansion (9.5) for I,(f) hold for any f in W(G(F)). We then have a formula

I(y,f)- t (y)I(f) ,
Q a0sA'(A,Q))

which is valid for any fe (G(F)).
We shall now deduce some corollaries of the theorems of § 4 and § 8, and of the for-

mula (9.6) in particular, which we are able to prove only in the p-adic case. The first corollary
concerns the distributions IM(y, f) for singular y. In earlier papers, we considered these
distributions only as linear functionals on the Hecke algebra CC (G(F)). However, we did
define them for arbitrary elements y in M(F) ([3], § 2, § 5, [4], § 2). For singular elements,
the distributions were defined by a limiting process from their values at G-regular points
in M(F).

Corollary 9.1. Suppose that y is an arbitrary element in M(F). Then the invariant
distribution IM(y) on C, (G(F)) is tempered. For each function f E (G(F)), IM(y,f) has
an expansion (4.1), for uniquely determined smooth functions

IM (y, ), T E Tdisc(L), LE A ,

which satisfy the symmetry condition (4.2).

Proof. As above, take A to be an arbitrary open compact subset of M(F). It is of
course enough to prove the result if y equals a given point y, in A. We shall first show that
the distribution IM(1) is tempered. In fact, by the construction in [3], § 2, § 5 and [4], § 2,
IM (y) lies in the (weak) closure of the space of continuous linear forms on C (G(F))
spanned by the distributions (9.3). However, if Ko is any open, compact subgroup of G(F),
Theorem 8.1 tells us that the space of linear forms on CC(G(F)//Ko) spanned by (9.3) is
finite dimensional. The restriction of IM(yi) to CO(G(F)I//K) is therefore in this space.
Since the distributions in (9.3) are tempered, the restriction of IM(7y) to C~c(G(F)//Ko)
coincides with a tempered distribution. It therefore extends to a continuous linear form on
W(G(F)//Ko). The group Ko is arbitrary, so by the definition of the Schwartz space, IM(y1)
extends to a continuous linear form on Wg(G(F)) which remains in the (weak) closure of
the space spanned by (9.3). In particular, IM(V1) is tempered.

To establish (4.1), we have only to observe that a decomposition of the form (9.4)
holds if y equals our general point yV in A. Indeed, since IM (y1) lies in the weak closure of
the space spanned by (9.3), the restriction of IM(y1) to W(G(F), Q) is spanned by the finite
set {I: a e A' (A, Q)}. This means that

IM(71, f)= E tM(yV)I(f), fE ((G(F),Qi),
aeA'(A,f)

for uniquely determined functions t Ion the entire set A. It follows that

IM(VYlf)= Z Z t (Yl)I(f)
Q aEA'(A,.)
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if f is an arbitrary function in W(G(F)). Substituting the expansion (9.5) for Ij(f), we
obtain the required expansion (4.1) for IM(V1,f) if we define

IM(Y1, ) X= E t((yI)I(), Te Tdis(L).
Q aEA'(A,,Q)

The symmetry condition (4.2) for IM(y1,,) follows easily from the corresponding sym-
metry conditions for IM(y1, f) and I. (z). o

Remark. It is a consequence of the discussion that the limiting process by which one
defines IM(y, f) for singular y, holds without change for the functions IM (y, T). The process
has two stages. If the centralizers My and Gy of y in M and G are the same, one sees that
the function

6 I,(bsf), eM(F)n(Geg(F),
is equal to the invariant orbital integral of some function h. E CT (M(F)), as long as 6 is
close to y. The function IM(y, T) can then be defined from I (6, T) by inverting the Shalika
germ expansion. If y is an arbitrary element in M(F), one must take a limit over points
ay, with a e AM(F). (For any a which is close to 1, but in general position, May equals Gay.)
In this case, one can show that

IM(, T) = lim E rS(y, a) Is(ay, r),
a--l Se.P(M)

where {(r(y, a)} are the functions defined in [3], §5.

Corollary 9.2. There is a constant p with the following property. For any open com-
pact subset A of M(F) and any connected component Q of T(G), there is a constant
c(A,Q) such that

IM(y,T) c(A, Q)(1 + Ilog ID(y) )P,
for all y E Areg, and all T E Tdi, (L) n QL with L E Y.

Proof. We shall apply the formula

IM (Y, T) I ta (y) I (T), y E Aeg T Tdi,, (L) n QL
aEA'(A,0)

obtained from (9.6) by restricting the elements z to be in Tdis,(L)n QL. The distributions
(I : a E A'(A, Qf)} provide a finite set oflinearly independent forms on the space W(G(F), Q).
We can therefore find functions (f : f E A'(A, fQ)} in W(G(F), Q) with the property that

{ 1, if a=fl,
I(f)= 0, otherwise.

It follows from the formula (9.4) (with S = M) that

tM(y) = IM(7,f,f Y Areg.
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Now, recall the estimate (5.7) stated during the proof of Theorem 5.1. Combined with the
inductive definition (3.5), it yields an estimate of the form

IIM(Yf)l < v(f)(1 + loglD(y)ll)P(1 + IIHM(y)II)-
for any f and y. If we specialize to f=fa and y E Areg, we obtain an inequality

t1(7)1 _< c'(l +|log|D(y)ll)P, y7 Are,
for some constant c'. The required estimate follows with

c(A, ) =) c,(sup I(T)|). °
aA'(A,Q) L,T

Corollary 9.3. The distribution

g IL(T, g), geCc (Greg(F)), T (L),

is given by a function which is locally integrable on G(F). In particular, the distribution has
a canonical extension to functions g in Cc (G(F)).

Proof. Theorem 4.3 tells us that as a distribution on Greg(F), IL() is given by the
smooth class function

F(y) = ID(y)- 2L(T, y), y E Fl,(M(F))nGreg(F), ME f'.

We must show that the integral
J IF(x) d(x)dx

G(F)

is finite, for any nonnegative function g in Cc (G(F)).

By the descent formula (3.7)V, it will be sufficient to prove the corollary when T lies
in Tel (L). In this case, iL (T) equals the positive real number dL (T) I-, and the formula of
Theorem 4.5 becomes

IL(T, ) = (- )dim(AMXAL)I dL() IIM(y, TV).

It follows from the Weyl character formula that

J IF(x) g(x)dx
G(F)

-= EZ IW0MIIW f ID(y)1I F()l gM(7y)dy
M E.S rFeli(M(F))n Greg(F)

= E IWoMlIWoG1 W(M(F), T(F))I-l I |dL(z)| IM(y, zV) gM(y)dy,
Me..' {T} Treg(F)
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where {T} is a set of representatives of M(F)-conjugacy classes of elliptic maximal tori
in M over F. According to a basic theorem of Harish-Chandra ([16], Theorem 2, [18],
Theorem 14), the orbital integral

gM(y) = JG(y,g) = ID(y) 12 f(x-'yx)dx, ETeg(F),
T(F)\G(F)

is bounded. But Corollary 9.2 gives us a bound for IIM(y, zV)1 in terms of

(1 + log ID(y)l)P,
a function which is locally integrable on T(F). It follows that the original integral is finite,
and therefore that F(y) is a locally integrable function on G(F).

The second assertion is clear. One simply defines

IL(z,g)= J F(x)g(x) dx,
G(F)

for any function g e C, (G(F)). o

Remark. In case L = G, we remark that

IG(z,g) = JG(z,g) = gG(z), g e CC (G(F)) .

With the transition formulas (2.2) and (2.3) in mind, we can think of this distribution as
being essentially an irreducible tempered character on G(F). Corollary 9.3 can therefore be
regarded as a generalization of the theorem of Harish-Chandra and Howe that an irre-
ducible (tempered) character is a locally integrable function. A parallel generalization would
be the assertion that the weighted character

g - JL(z,g), g e C(G(F)), zT T(L),

is given by a locally integrable function on G(F). This assertion can be established from
Corollary 9.3, the formula (4.5)V, and the estimate (5.7) for Js(y, g).

We are not going to attempt to establish Corollaries 9.1- 9.3 for Archimedean F. The
proof is undoubtedly more difficult. One would probably need Archimedean germ expan-
sions of the functions IM(y, z) about a singular point yl.

§ 10. The distributions IM, disc () and IL,ell (r)
We shall conclude with a few brief comments on the extremal terms in the expansions

of Theorems 4.1 and 4.3. Let us write IM,dic (7, f) for the summand corresponding to L = G
in the expansion (4.1) for IM (, f). Similarly, we write IL, el(z, g) for the summand corre-
sponding to M= G in the expansion (4.1)v for IL(, g). Thus

'M,disc()/f) = IM(y,z)fG(T)dz, fe (G(F)),
Tdisc (G)
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and

IL, 11(T, g)= f IL(z, )g0(y)dy, ge C (Greg(F)).
Feii(G(F))

These distributions can be described in more elementary terms.

In the first case, suppose that yE Fell(M(F)) n Greg (F) and that T E Tisc(G). It then
follows from (4.6) that

IM(TY,T) = (-l)dim(AMAG) iG(T) I(TV, ) .

We obtain

(10.1) M,disc(Yf)= (-l)dim(AMIAG) J iG(z)I (V, Y) fG(T)dz,
Tdisc(G)

for any function fet (G(F)). As we observe directly from (4.1)V, IG(TV,y) is just the
value at y of the virtual character on G(F) attached to TV (normalized by the Weyl dis-
criminant). More precisely, if

z = (L1, a, r), L1 E, aE 172(L1(F)), r e R,,
we have

IG( , y)= E tr (Q (r)) ID (y)|10(er, y),
ee n(R,,x, )

where (iR,.)is the character of the irreducible representationr'T of G(F). (See the dis-
cussion at the beginning of [8], §3.) The integral in (10.1) is a discrete sum (except for an
insignificant integral over ia .) In other words, IM, disc (y) is essentially a linear combination
of irreducible characters.

In the second case, suppose that T e Tel(L) and that y ell(G(F)) n Greg(F). It then
follows from (4.6) that

IL(z, y) = (-1)dim(ALAG) I dL(T)II (Y, V),

since iL(z) = IdL(z)1-. We obtain

(10.1)v IL,e (zg) = (_l)dim(AL/AG)I dL(T)l J I(y, TV)go(Y)dy,
re11(G(F))

for any function g Cf (Greg(F)). As we see from (4.1), IG(y, TV) is the value at TV of the
tempered function on T(G) obtained by inverting the elliptic orbital integral IG(y). There-
fore, ILeII (T) is a continuous linear combination of functions obtained from elliptic orbital
integrals.

A function fe 9(G(F)) is said to be cuspidal if fL = 0 for every L C G. Suppose
that this is so. Then the summands in (4.1) with L $ G all vanish, and IMdisc(y f) equals



216 Arthur, Fourier transforms of weighted orbital integrals

IM(7,f). Moreover fG(z) equals 0 unless T lies in the subset Te11(G) of TdiSC(G). Since
iG(r) = dG(z)I-1 for any ze Tell(G), the formula (10.1) becomes

(10.2) IM(yf) = (-1)dim(AMIAG) J IdG(T)l-lI (zv, 7)fG()dz.
Ten1(G)

This relationship between weighted orbital integrals and elliptic tempered characters is just
[8], Theorem 5.1. Similarly, suppose that g E C7 (Greg (F)) is cuspidal. Then the summands
in (4.1)v with L * G all vanish, and IL,,, (z,g) equals IL(T,g). The formula (10.1)v becomes
a relationship

(10.2)v I (,g) = (-)dim(ALAG) dL(Z)I IG(y, ZV)ga(Y)dy
Fell(G(F))

between weighted characters and elliptic orbital integrals. If G = GL(n) and z is unrami-
fied, (10.2)v is essentially Waldspurger's formula [24], § II, Theoreme.

The distribution IMdisc () is of particular interest. It is to be regarded as the "dis-
crete part" of IM(y) (or more precisely, of the distribution IM(y) on T(G)). The fact that
IM(y) has a discrete part is relevant to the general problem of comparing global trace
formulas. In order to establish reciprocity relations between automorphic representations
on different groups, one would try to prove identities between the terms of the correspond-
ing global trace formulas. The distributions /M(y) occur on the geometric side, but the dis-
crete part IM disc(y) has the potential to interfere with information obtained from the spec-
tral side. To preclude this possibility, one would like to establish identities between certain
linear combinations of distributions {IH, disc (YH)} on endoscopic groups. It is likely that at
least some of these identities could be established from the explicit formula (10.1) for
I disc(y). The coefficients iG(z) that occur in (10.1) are of course an essential part of the
problem.
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