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Introduction

Suppose that G(F) is a real or p-adic group. That is, G is a connected reductive algebraic
group over a local field F, which we take to be of characteristic 0. Harmonic analysis
on G(F) is built upon the set Htemp(G(F)) of irreducible tempered representations of
G(F). These representations include the discrete series for G(F), and consist in general
of irreducible constituents of representations induced from discrete series. We shall be
interested in the subset of elliptic representations in IItemp(G(F)). The elliptic tempered
representations also include the discrete series, and can be regarded as basic building
blocks in HItemp(G(F)). The purpose of this paper is to study some properties of their
characters.

We should recall that in general a representation 7rEIItemp(G(F)) is infinite dimen-
sional, and does not have a character in the classical sense. One of the cornerstones of

(1) Supported in part by NSERC Operating Grant A3483
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the work of Harish-Chandra was his theory of characters of infinite dimensional repre-
sentations. In general, the character of 7r is first defined as a distribution

e(7r, f) =tr( f(x)7r(x)dx), fEC (G(F)),
(F)

which can then be identified with a function on G(F). In other words,

e(7r, f) = )f(x)e(7, x) dx, f eC ((F)),
(F)

where 9(7r, x) is a locally integrable function on G(F) that is smooth on the open dense
subset Greg(F) of regular elements. The elliptic representations Iltemp,ell(G(F)) are the
ones for which 8(7r, x) does not vanish on the elliptic set in Greg(F). We would like to
study the functions

(r(7, 'y) - D(y) 12E(Tr, ), 7r E temp, ell(G(F)), E Greg(F),
where

D(7) = det(1 -Ad(y))9/,l
is the Weyl discriminant.

In §2 we shall discuss the classification of elliptic tempered representations. This is
well known for real groups, and is based in general on standard results. The problem is es-

sentially that of decomposing an induced representation Zp(a), where P(F)=M(F)N(F)
is a parabolic subgroup and a is an irreducible tempered representation of the Levi com-

ponent M(F). In fact it is enough to treat the case that a is square integrable, modulo
the split component AM(F) of the center of M(F). Let Wa be the set of elements in
the Weyl group of (G, AM) which stabilize a. For every element wEW,, one can define
a (normalized) self-intertwining operator R(w, a) of Zp(a). The group Wa itself has a

decomposition
Wa= W' >x R,

where W' is generated by reflections, and consists of elements wEW, such that the

operator R(w,a) is a multiple of the identity. It is the complementary subgroup Ra
which determines the decomposition of Ip(a). This is because the operators R(w, a),
wERa, are known to be a C-basis of the space of self-intertwining operators of Ip(a).

Suppose for a moment that the map

w - R(w,), E R,,
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is a homomorphism. The basis theorem then yields a bijection --lre, from the set {g}
of irreducible representations of R. onto the set of irreducible constituents of Ip(a). To
describe which of the representations 7rO are elliptic, we introduce a subset R, reg of R,.
The group Ra acts on a real vector space

aM = Hom(X(M)F, R).
We define Ra, reg to be the subset of elements in R, which leave pointwise invariant only
the subspace aG of aM. In Proposition 2.1 we shall see that the elliptic constituents of

Ip(a) correspond to the irreducible characters

9(Q, r) = tr(o(r)), r E R,,
of R, which do not vanish on Ro, reg. Proposition 2.1 actually applies to the general case,
in which the map r-R(r, a) is only a projective representation of R,. To deal with this

complication, we take a suitable central extension

1 Z --> R ,--R 1

of the R-group. The correspondence Q--7Tre then carries over verbatim, except that L now

ranges over irreducible representations of Ra with a fixed central character on Z,. The
classification of elliptic tempered representations follows. There is a bijection between

HItemp, ell(G(F)) and the set of G(F)-orbits of triplets

7= (M, a, ),
where o is an irreducible representation of Ra, with a certain central character X 1 on

Z,, such that (ge) does not vanish on Ra, reg
With the preliminary discussion of §2 out of the way, we will turn to our study of

characters. One of the simplest questions to describe concerns orthogonality relations.

Suppose that ir9 and ire, are two irreducible constituents of the induced representation
Zp(a). Given the characters E(ire) and E(7r), we can form the elliptic inner product

]eW(G(F),T(F))\-1 (f GD(7y)19(',,7y))(',,'7) d, (1)
{T} T(F)/AG(F)

where T runs over G(F)-conjugacy classes of elliptic maximal tori, and dy is the nor-
malized Haar measure on T(F)/AG(F). The problem is to express this inner product in
terms of the characters 0(o) and O(e'). In Corollary 6.3 we shall show that it equals a

parallel inner product
R1,7-1 E Id(r)l(e,r)0(e',r) (1*)

rERR, reg
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on the R-group, in which

d(r) = det(1-r)aM/a.
The analogy of d(r) with the Weyl discriminant is rather remarkable. It is a further
example of a general correspondence between objects on G(F) and objects on the R-
group.

The identity of (1) with (1*) suggests a different point of view. Instead of irreducible

representations of Ra we ought to be working with conjugacy classes. Let T(G) be the
set of G(F)-orbits of triplets

r =(M, a, r),
with M and a as above, and r an element in RF. Set Tell(G) equal to the subset of orbits
for which r lies in R, reg. For any such r, define

e(r, f) = tr(R(r, a)p(a, f)), f E C°(G(F)),
where R( , a) is the representation of R, obtained from the projective representation
R( , a). Then ((r) is a virtual tempered character, in that it is a finite linear combina-
tion of irreducible tempered characters. The subset {((r): ETell(G)} presumably spans
the space of virtual characters which are supertempered in the sense Harish-Chandra [22].
In any case, each distribution @(r) is represented by a locally integrable function 8(r, x)
on G(F). The identity of (1) and (1*) will be a consequence of Corollary 6.2, which
establishes orthogonality relations for the functions

(7, t)= PD(y)1/28(rT, ), T E Teii(G), E Greg(F).
(In the paper we shall actually define T(G) to be a slightly smaller set, by discarding
certain triplets r for which @(r) vanishes identically.)

The orthogonality relations (as well as most of the other results of the paper) will

ultimately be consequences of the local trace formula introduced in [11]. The local trace
formula can be regarded as an expansion of a certain distribution Idisc(f', f) in terms
of weighted orbited integrals and weighted characters. Notice that there are two test
functions f' and f, which we take to be in the Hecke algebra H(G(F)) on G(F). The
distribution Idisc is defined by an elementary, but not uninteresting, linear combination
of irreducible characters. The weighted orbital integrals and weighted characters are

transcendental objects, related to noninvariant harmonic analysis on G(F). We shall
discuss the local trace formula in §3 and §4. The virtual characters 9(r) are made to

order for this purpose. In Proposition 3.1 we shall convert the definition [11, §12] of

Idisc(f', f) into a simple expansion

Idisc(f', f) = i(-r)(7 , f')(r, f) dr
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in terms of these virtual characters, where = (M, av, r) denotes the contragredient of

r=(M, a, r). In §4 we shall convert the (noninvariant) trace formula of [11] into a local
trace formula whose terms are all invariant distributions on 1-i(G(F)) x (G(F)). As a

bi-product of this discussion, we will obtain a local proof in Corollary 5.3 of the theorem
of Kazhdan, which asserts that the invariant orbital integrals

IGJ(7, f) = ID(7)I1/2 / f(x-1yx) dx, y E Greg(F), f E H(G(F)),
JG (F)\G(F)

on G(F) are supported on characters.
The invariant orbital integrals IG(?, f) belong to a more general family of invariant

distributions

IM(7,f), MCG, 7E Greg(F)nM(F),
attached to the (noninvariant) weighted orbital integrals

JM(Y, f) = ID(7)\1/2J( (F -f(x-1x)VM(x) dx.
JG =F)\G(F)

These invariant distributions are the primary terms of the invariant local trace formula.

(They play a similar role in the global trace formula [5].) One of the principal results
of this paper is a formula (Theorem 5.1) for IM(y, f) when f is a cuspidal function.

Suppose that ? is a G-regular element in the elliptic set of the Levi subgroup M(F). The
formula is then an expansion

IM7,f)= (1l)dim(A /AG )/ d(T)| (Tv ,)e(Tf) dT (2)
Tell(G)

of IM(7y, f) in terms of the elliptic tempered (virtual) characters (7rv), evaluated at the

(hyperbolic) element 7. We shall establish Theorem 5.1 from the invariant local trace

formula, or rather the simple version (Corollary 4.3) that applies to the case that f is

cuspidal. If we take f to be a "pseudo-coefficient" of a fixed element rETeii(G), we will

recognize Theorem 5.1 as an extension to elliptic representations of formulas [2], [3] for
characters of discrete series as weighted orbital integrals. The applications to the proof
of Kazhdan's theorem (Corollary 5.3) and the orthogonality relations (§6) will both be
obtained from special cases of the formula (2).

The weighted orbital integral JM(Y, f) is a compactly supported function of the con-

jugacy classes 7 in M(F). However, the corresponding invariant distribution ImM(7, f)
does not have compact support. To take care of this problem, and the resulting difficul-
ties for the application to base change, we introduced a parallel family {CIM(y, f)} of
distributions in [4, §4]. The distribution CIM(y, f) is invariant in f and compactly sup-
ported in y. It is obtained from the definition of IM(7, f) by changing a certain contour
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of integration, in a fashion suggested by the Paley-Wiener theorem. Changes of contour
lead naturally to residues. In this case, one defines two further families

{DM(, X, f), cDM(a,,Xf) : a E Itemp(M(F)), X E aM,F} (3)

of invariant distributions in terms of the residues in AEa , of weighted characters

e-A(X)JM(a), f) = e->(X) tr(ZM(aAI, P)Zp(a, f)).

We shall review all of these distributions, and various related objects, in §7. Since most
of the ideas have been treated elsewhere, the discussion will be quite brief.

A second principal result of this paper is a parallel formula (Theorem 8.1) for

IM(^Y, f) when f is cuspidal. As in (2), suppose that y is a G-regular element in the

elliptic set of M(F). The formula is then an expansion

CIM(7, f) =(-)dim(AM/AG) Id(r)- c(v, y)e(r, f)dr (4)
Tel(G)

of CIM(y, f) in terms of truncated (virtual) characters CI(TV). The truncated character

c4(rV, 7) is defined to be q(7V, 7) or 0, according to whether or not the image HM(y)
of y in aM lies in the subspace aG. We shall establish Theorem 8.1 from Theorem 5.1
and properties of characters that apply separately to real and p-adic groups. For real

groups we use the usual differential equations as in [7, §6], while for p-adic groups we use
Casselman's formula for characters in terms of Jacquet modules.

We shall give two applications of Theorem 8.1. The first (Corollary 8.2) is a precise
description of the support of a certain contour integral

e-X(X) tr(RM(aX, P)Zp(a,, f)) dA,
(X)+ia ,F

regarded as a function of XEaM,F. Here p(X) is any point in the chamber (a*)+ which
is far from the walls, and QDM is the unique parabolic subgroup such that X lies in

aQ. This contour integral occurs in the definition of CIM(7, f). The required support
property follows inductively from the definition of the functions CIM (r, y) on the right
hand side of (4). Corollary 8.2 is valid only under quite restrictive conditions on f, which

appear effectively to limit its use to the p-adic case. However, it may be relevant in this

setting for the study of p-adic orbital integrals of spherical functions.
The second application of Theorem 8.1 is in §9. We shall establish two formulas

relating characters to residues. The distributions (3) can easily be defined with a replaced
by an element TMET(M). Restricted to cuspidal functions f, the resulting distributions
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can be written as linear combinations of our basic virtual elliptic characters at f, with
coefficients

{DM(TM, X, r), DM(TM, X, 7): r E Tell(G)}.
It is these coefficients which contain the information about residues. Theorem 9.1 consists
of one formula for the character M(rv, -y) in terms of the coefficients

CDL(TL, HL(),7), LDM, TL ETe1(L),

and an inverse formula for the truncated character CM (rV, y) in terms of the coefficients

CDL(TL, HL (), r), L DM, TLE Tell(L).

It would be interesting to investigate the relationship of these formulas with Osborne's

conjecture (proved by Hecht and Schmid) on characters of real groups, and Casselman's
formula for characters of p-adic groups.

I would like to thank Laurent Clozel and Marie-France Vigneras for interesting
discussions on some of the topics in this paper.

1. Elliptic tempered representations
Let G be a connected, reductive algebraic group over a local field F of characteristic 0.
As in the paper [11], our concern will be the harmonic analysis of the locally compact
group G(F). We fix a maximal compact subgroup K of G(F), which is hyperspecial if
F is a p-adic field. For convenience, we recall some notation from [11, §1] that we will
use in this paper.

As usual, one forms the real vector space

aG = Hom(X(G)F, R)

from the module X(G)F of F-rational characters on G. There is a canonical homomor-
phism

HG:G(F) - aG

defined by
e(H)(zx)'=I|(x)l, x e G(F), X e X(G)F,

where is the normalized valuation on F. Let AG be the split component of the center
of G. Then

aG,F = HG(G(F))
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and

aG,F = HG(AG(F))
are closed subgroups of aG, while

aG F = Hom(aG,F, 2riZ)

and
a F = Hom(aG,F, 2LriZ)

are closed subgroups of ia*. If F is a p-adic field, these four groups are all lattices.
However, if F is Archimedean, aG,F=aG,F= G and =G F={0}I ,F ac and QG,F G,F=101)

It is convenient to fix a Haar measure on aG. This determines a dual Haar measure
on the real vector space ia*. If F is a p-adic field, we normalize the measures so that
the quotients ac/aG,F and ia/aGFi each have volume 1. In this case, the volume of the

quotient
iaG,F = iaG/G,F

equals the index acG,F/ac,F| of aG,F in aG,F. In general, the kernel of HG in AG(F)
is compact, and therefore has a canonical normalized Haar measure. Since the group
aG,F=HG(AG(F)) is either discrete or equal to aG, it also has a fixed Haar measure.
These two Haar measures then determine a unique Haar measure on AG(F).

Let Mo be a fixed F-rational Levi component of some minimal parabolic subgroup
of G defined over F. We assume that K and Mo(F) are in good relative position [11, §1].
Any parabolic subgroup P of G which is defined over F, and contains Mo, has a unique
Levi component Mp which contains Mo. Both Mp and the unipotent radical Np of P
are defined over F. We write £ for the finite set of subgroups of G of the form Mp, and
we refer to the elements in £ simply as Levi subgroups of G. Given any ME£, we write

.F(M)=FG(M) for the set of parabolic subgroups P of G over F such that Mp contains

M, and P(M)=PG(M) for the subset of groups PEF(M) with Mp=M. We also write

£(M)=LG(M) for the set of Levi subgroups which contain M.

Suppose that MEL is a Levi subgroup. Then KM=M(F)nK is a maximal com-

pact subgroup of M(F), and the triplet (M, KM, Mo) satisfies the same hypotheses as

(G,K,Mo). Any construction we make for G of course has an analogue for M. In

particular, we can form the objects aM, HM,AM, and so on. If P belongs to P(M) it
is sometimes convenient to write ap=aM and Ap=AM. The symbol Hp, however, is

reserved for the usual map from

G(F) = P(F)K = Mp(F)Np(F)K



ON ELLIPTIC TEMPERED CHARACTERS 81

to aM, defined for any element

x=mnk, mEMp(F), n ENp(F), kEK,

in G(F) by
Hp(x)= HM(m).

As we observed in [11, §1], the embeddings

AG(F) C AM(F) c M(F) c G(F)

give rise to mappings
aG,F 'c- M,F C aM,F- GlaG,F

These in turn provide an embedding aG'-C-aM and a surjection aM---aG, from which we
obtain a canonical decomposition aM=aMG (aG. We fix Haar measures on the groups aM,
ia*, iaMF and AM(F) by following the prescriptions above for G. The Haar measures
on aM and aG then induce a Haar measure on aG. We may assume that as M varies
over the finite set £, the measures are all compatible with the transformations induced
by elements in the Weyl group WG of (G, AMo)-

Let M(F)ell denote the set of elements 7 in M(F) whose centralizer Mv(F) in M(F)
is compact modulo AM(F). We write Fell(M(F)) for the set of M(F)-conjugacy classes
in M(F)ell. As in [11], we shall only be concerned with the intersection of ren(M(F))
with Mreg(F), the set of M-regular elements in M(F). The Haar measure on AM(F)
determines a canonical measure on reii(M(F)), which is supported on the intersection
of rell(M(F)) with Mreg(F), such that

)
(y)d7y =E IW(M(F), T(F)) -1 b(t) dt,

Jreii(M(F)) {T} T(F)

for any continuous function q( of compact support on rell(M(F))nMreg(F). Here {T}
is a set of representatives of M(F)-conjugacy classes of maximal tori in M over F with

T(F)/AM(F) compact, W(M(F), T(F)) is the Weyl group of (M(F), T(F)), and dt is the
Haar measure on T(F) determined by the Haar measure on AM(F) and the normalized
Haar measure on the compact group T(F)/AM(F). We can then use the measures on

rell(M(F)), MEf, to write the Weyl integration formula as in [11, (2.2)]. The result is

/G f(x)dx= E WO MIWG-1 ID(7Y)l( f(x-lyx)dx) d-y,G(F) MeL eJl(M(F)) AM(F)\G(F)

where f is any function in C'°(G(F)), and

D(y) = det(1 -Ad(-))/g/g
6-935203 Acta Mathematica 171. Imprim6 le 28 octobre 1993
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is the Weyl discriminant.
There is a simple notational convention, suggested by the work of Harish-Chandra,

that we shall use regularly throughout the paper. Suppose that e is an invariant distri-
bution on G(F) which coincides with a function. In other words,

(f) = J e(x)f(x)dx, f E C°(G(F)),
G(F)

where E(x) is a locally integrable function on G(F). Suppose also that the restriction
on 8(x) to the regular set Greg(F) is smooth. Then we shall write

(y) = ID(-)11/28(), y E Greg(F), (1.1)

for the "normalized" function on the regular set. In addition, if M belongs to £, we let

(M denote the function on M(F)nGreg(F) defined by

I)(7'), if 7 E M(F)ellnGreg(F),
{( .0, otherwise. (1.2)

The functions 4 and _M are of course invariant under conjugation by G(F) and M(F)
respectively. In this situation the Weyl integration formula takes the form

8(f)ME=L rel (M(F))nGrg(F)

in which the distribution

I(, f) IG(Y, f), E Greg(F), f E CC(G(F)),

is the normalized orbital integral

D(7) 11/ f(x- yx)dx.
JG((F)\G(F)

The main example is a virtual character, by which we mean a finite linear combination
of characters of irreducible representations of G(F). Many of our results will be stated
in terms of normalized (virtual) characters (1.1) and (1.2).

In connection with distributions, it will actually be convenient for us to work with
the Hecke algebra H(G(F)) rather than the full space CC(G(F)). Recall that H(G(F))
is the space of functions in C~C(G(F)) which are left and right K-finite. We shall refer
to a continuous linear functional on 'H(G(F)), somewhat incorrectly, as a distribution on

H(G(F)). This of course is a more general object than a distribution on G(F).
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Finally, we recall a few standard notions from representation theory that we will
need. Let Itemp(G(F)) be the set of (equivalence classes of) irreducible tempered rep-
resentations of G(F). For any irEHtemp(G(F)), we write avX for the stabilizer of ir in
ia*, relative to the locally free action

rA(X) = r(x)e(HG()), E ia, x E G(F),
of ia* on Itemp(G(F)). Then

GF C aGv C aGF

and we have
age = Hom(aG,r, 2riZ),

for a subgroup aG,r in aG such that

aG,F C aG,a C aG,F.

Suppose that MEL and that i belongs to Htemp(M(F)). Given PeP(M) and
AEia*, we can form the parabolically induced representation

ZP(7rX, x), xE G(F),
of G(F). It acts on a Hilbert space 7Hp(7r), of vector valued functions on K, which is
independent of A. The most important case is when 7r=a belongs to the subset IH2(M(F))
of representations in IItemp(M(F)) which are square integrable modulo AM(F). We
shall write Hl(G(F)) for the set of irreducible constituents of the induced representation
lp(y). This is a finite subset of Itemp(G(F)) which is independent of P.

It is a fundamental consequence of the work of Harish-Chandra that as M and a

range over £ and H2(M(F)) respectively, the sets Ha(G(F)) exhaust Htemp(G(F)). The
problem of classifying Itemp(G(F)) is then reduced to classifying the representations in
the finite sets II(G(F)), and to determining the intersection of any two such sets. This
second question is answered by the proposition below, another consequence of work of
Harish-Chandra.

We shall write i for any representative in K of an element w in the Weyl group
WG. If M and a are as above, wM=wMw-1 is another Levi subgroup, and

(wu)(m') =aw-lm'iw), m' E (wM)(F),
is a representation in II2((wM)(F)). We obtain an action

(M, a) --(wM, w), E WG,
of WG on the set of pairs

(M, a), M E C, a E IH2(M(F)).
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PROPOSITION 1.1. Let (M,a) and (M',a') be any two pairs. If (M',a') equals
(wM, wa) for an element wEWo, the subsets HI,(G(F)) and l,, (G(F)) of Itemp(G(F))
are identical. Conversely, if the sets II,(G(F)) and II,,(G(F)) have a representation in
common, there is an element WEWoG such that (M', a')=(wM, wa).

The first assertion follows easily from the formula for the characters of the induced
representations Zp(cr) and lp,(a'). The second assertion is a deeper result, which is a

consequence of Harish-Chandra's asymptotic estimates for matrix coefficients [19], [21],
[36]. This was first observed by Langlands [32, §3], who used the property in his classi-
fication of admissible representations in terms of tempered representations. [

The proposition tells us that Itemp(G(F)) is the disjoint union, over all WG-orbits
of pairs (M, a), of the sets IIH(G(F)). The remaining classification problem, apart from
that of the square integrable representations a in II2(M(F)), is then to determine the
structure of the finite sets HI(G(F)). Its solution is provided by the theory of the R-

group.
A representation of G(F) is said to be elliptic if its character does not vanish on

the regular elliptic set. We shall denote the character of a general representation irE

Iltemp(G(F)) by e(7r). That is,

tr(r(f )) = e(T), f) =/ i (r, x)f(x) d, f E H(G(F))

Then Ir is elliptic if and only if the normalized character 4G(1r) does not vanish. We
write IItemp,een(G(F)) for the set of elliptic representations in IItemp(G(F)). It is the

disjoint union, over all WG-orbits of pairs (M, a), of the sets

na, ell(G(F))= , (G(F))))nntemp,ell(G(F)).
In the next section we shall describe the sets IIH(G(F)) and the subsets HI,eii(G(F)) in

terms of the corresponding R-groups. The rest of the paper will be devoted to a study
of the functions

AM(7T), M E £, 7r e Itemp, ell(G(F)),
and their relationships with other objects that arise naturally in the harmonic analysis
on G(F).

2. The R-group
We shall review the theory of the R-group, which provides a classification of the repre-
sentations in the sets II,(G(F)) and HI, eii(G(F)). These results are well known, at least
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in the Archimedean case [29]. There are some complications for p-adic groups, but the

general ideas are similar. In particular, the classification follows from Harish-Chandra's
commuting algebra theorem and Silberger's dimension theorem.

The decomposition of induced representations is of course determined by intertwin-

ing operators. For each ME£ and 7rElHtemp(M(F)), one can construct normalized inter-

twining operators

RQp(w) = rQIp(lr)- JQIp(lr): H(p(7r) -- HQ(7r), P,Q E (M),
between the induced representations 1p(7r) and IQ(r). The scalar normalizing factors

rQp(7r) are not unique, although there has been progress [35] towards constructing the
canonical normalizations conjectured by Langlands [31, Appendix II]. The normaliz-

ing factors are, however, canonically determined from the case that 7r=a belongs to

H2(M(F)). We fix them so that the conditions of [6, Theorem 2.1] all hold.
Let a be a representation in I12(M(F)). We shall consider the stabilizer

W = {wE W(aM) :waa}
of a in the Weyl group of aM. For every w in W~, we must define a normalized inter-

twining operator
R(w, a) = Rp1p(w, a), P e P(M),

from Ip(a) to itself. Observe that a can be extended to a representation of the group
M+(F) generated by M(F) and w. If aw is such an extension, we define an intertwining
operator

A(aw):1i--ip-(a) -* lip(a)
between IW-lpw(a) and Ip(a) by setting

(A(aw)qt)(x) =aw(w)q'(w-lx),Y) ' E N-ilpw(a)
The composition

R(w, a) = A(aw)Ri-ipolp(a)
is then the desired intertwining operator for lp(a).

In general, we shall denote the contragredient of any representation 7r by 7rv. In
the case that 7r=a belongs to II2(M(F)) as above, the scalar normalizing factors can
be chosen so that rQip(av) equals rplQ(a). We shall also occasionally write Av for the

transpose of an operator A if there is no danger of confusion. One finds that

R(w, a)v = rz-l pwp(a)-lJwZ- pplp(')vA(ow)v
= rpl,-lpiw(aV)-lJplw-lPw(aV)A(aV)-
= Rpl--lpwv )A(aw)-
=R(w, aV)-l,
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for any wE W,. We file the resulting formula

R(w, aV)= (R(w, a)- )v (2.1)

for future reference.
Fix a representation a in 12(M(F)). We write W° for the subgroup of elements w

in Wa such that the operator R(w, a) is a scalar. Then W° is a normal subgroup of We.
The quotient

R :=Wa/W°
is the R-group of a. It is known that W° is the Weyl group of a root system, composed of
scalar multiples of those reduced roots a of (G, AM) for which the reflection w, belongs
to W°. (See [28, §13], [37]. The proof makes essential use of the separate characterization
of {a} as the roots whose corresponding Plancherel density vanishes.) These roots divide
the vector space aM into chambers. Fixing such a chamber a+, we identify Ra with the

subgroup of elements in W, which preserve a+. We can then write Wa as a semi-direct

product
Wa =W > Ra.

According to Harish-Chandra's commuting algebra theorem ([20, Theorem 38.1],
[36, Theorem 5.5.3.2]), the operators

{R(r, a): rE Ra}

span the algebra of intertwining operators of lp(a). The dimension theorem ([27,
Theorem 2], [28, Theorem 13.4], [37]) asserts further that these operators are linearly in-

dependent. Before we can exploit these facts, however, we must deal with the possibility
that the map r-R(r, a) is not a homomorphism. In general, we have only a formula

R(rlr2, a) = (rl, r2)R(rl, a)R(r2, a), r, r2 e Ra,

where

77, (rl r2)= A(arlr2)A(cr2 )-lA(arj)-1=Orrr2 (l2)r22)r2 (f2 rl (1)-

is a 2-cocycle for R, with values in C*. The image f?1 of ra in H2(R,,C*) is the

obstruction to being able to extend the representation a to the group generated by M(F)
and {r:rER,}. For real groups the cocycle always splits [26, Theorem 7.1]. However, for

p-adic groups the question is presently unresolved [25]. The expected parameterization
of representations in L-packets in fact suggests that the cocycle might sometimes be
nontrivial.
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We shall deal with the problem by fixing a finite central extension

1 -+ Z-+F -.Ra 1

over which rf1 splits. (See [16, Theorem 53.7]. For example, one could take Z, to be the
cyclic group generated by ja in H2(R,, C*).) We then choose a function ,: R --tC*
which splits r. This means that

7 (rl, r2) =r( (rlr2)(r2)-T1(rl)-1 r1,rr2 ER,

where l is obviously identified with its pullback to Ra x R. It follows easily that

~a(zr) = Xa(Z)Ja(r), z E Za, r E Ra,

for a linear character X, on the central subgroup Z,. We can use (a to twist the inter-
twining operators. The result is a homomorphism

R(r, a)= (r)-1R(r, ),rER), (2.2)
of R, into the group of unitary intertwining operators for Ip(ar), with the property that

R(zr, o) = X(z)-lR(r, a), z E Z, r E R,.

In fact, the map R-+R can be defined for any projective representation R of R, with
multiplier r;. It determines a bijection from the set of such objects onto the set of
ordinary representations of R. whose central character on Z, equals X,1.

Observe that

1(r, x) = R(r, a)Zp(a, x), r E Ra, x E G(F),

is a representation of R x G(F) on Hp (a). It has a decomposition into irreducible
representations, which we write in the form

R=G me,r(ev 7r).
e,T

Here e ranges over the set II(Ra, Xa) of irreducible representations of Ra with Z,-central
character X,, Tr ranges over Ha(G(F)), and each men is a nonnegative integer. The
commuting algebra theorem implies that each integer me,, equals 0 or 1, and in addition,
that for any e there is at most one ir with mL,,=l, and that for any 7r there is at most
one Q with m,, =1. The dimension theorem provides a bound in the other direction. It
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tells us that the map r-+R(r,a) of Rk into EndG(F)(7Hp(a)) must be equivalent to the
representation obtained by inducing X`1 from Za to Ri. We conclude that for every
EII(R, Xa), there is a unique 7roETI(G(F)) such that mo,==l1. In other words, there

is a bijection Q-+ ir of I(Ra, Xa) onto HIa(G(F)) such that

' = ((v®7re).
een(Ro,X )

Expressed in terms of characters, the bijection is a formula

tr(R(r, a))Zp(O, f)) = E tr(V(r)) tr(7r,(f)), (2.3)
E n(R,X )

for any rERa and f E H(G(F)). We have thus obtained a classification of the represen-
tations in II(G(F)). We have still to determine which of these are elliptic.

If II is a set of equivalence classes of irreducible representations of some group, let us
write C(II) for the complex vector space of virtual characters generated by II. In partic-
ular, we can form the finite dimensional vector spaces C(H(Ra, X,)) and C(II,(G(F))).
From the bijection Q-*7ro we obtain an isomorphism 0-+O from C(n(Ra,,X)) onto

C(II(G(F))). To describe e in terms of 0, we have only to invert the formula (2.3).
The result is

s(f) = iRa,-1 E O(r) tr(R(r, a)Zp(a, f)), fE (G(F)). (2.4)
rE R,

The correspondence 0->e behaves well under induction. To describe this, we must first
introduce a family of subgroups of Rk.

Consider a Levi subgroup LE£(M) with the property that the closure a+ of the
chamber a+ contains an open subset of aL. Set

R = WL(aM)nRa,

where WL(aM) denotes the Weyl group of aM relative to L instead of G. We claim that
RL can be identified with the R-group of a relative to L. To see this, take any element
w in the stabilizer

Wa = WanWL(aM)
of a in WL(aM), and consider the decomposition

w=wor, EWoW, r E R,.
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The conditions on r and w imply that the element w l=rw-1 maps aLna+ into a+.
Since a+ is a fundamental domain for W°, we see that wo71 leaves the open subset aLnaa+
of aL pointwise fixed. Therefore the whole space aL is left pointwise fixed byW 1, and
hence also by wo and r. In other words, wo belongs to the group (WL)O =W°nWL(aM),
and r belongs to R1. It follows that WL=(WL)° x RL, so R can indeed be identified
with the R-group relative to L. It is the complement of (WL)0 in W4L determined by
the chamber (a++-L) for the action of (WL)° on aM. Having defined RL we take R1
to be the inverse image of Ra in Ra. Then

1 -* Za -+R1 -R 1

is a central extension of RL which splits the restriction of the cocyclerra to RL. We shall
consider representations of Ra induced from subgroups RL.

Given L as above, let QL be a representation in II(Rl, Xa). We can induce this
representation from 1R to R , thereby obtaining a character 0 in C(II(R, X)). On the
other hand, QL determines a representation 7rL=lreL in II,(L(F)), which for any QEP(L)
we can induce from Q(F) to G(F). This gives a character O in C(IIa(G(F))) which is

independent of Q. We claim that 0 and 0 correspond under the bijection described
above, and in particular, are related by (2.4). To see this, we first apply (2.4) to the
characters of 7rL and QL. Taking PEP(M) to be any group contained in Q, we obtain

0(f) =tr(ZQ(rL, f))
= |ILI-1' tr(eL(r))tr(R(r,a)Zp(a, f)), f E H(G(F)),

rERL

from the transitivity properties of induction. Since

r- tr(R(r, a)p(a, f)), r E R,

is a class function on Ra, the last expression becomes the right hand side of (2.4) when
we apply the standard formula for the induced character 0.

Let us write Cind(I(R(, Xa)) for the submodule of C(II(Ra, X)) generated by all
characters 0 of Ry induced from representations QL EII(RL, Xa), where LE£C(M) ranges
over proper Levi subgroups of G with our condition that a+ contains an open subset of
aL. Let us also write Cind(IIa(G(F))) for the submodule of C(IIn(G(F))) generated by
all characters

o(f) = tr(IQ(lrL, f)), Q E P(L), rL E II,(L(F)),
where LeL(M) ranges over all proper Levi subgroups of G. For any such 0, we can
replace 7rL by a representation W7rL in II ((wL)(F)) for an element wEW. This means
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that we can replace the space aL by waL. We can therefore assume that L satisfies our
condition that a+ contains an open subset of aL. It follows that the bijection 0--+
maps a set of generators of Cind(n(R0, Xa)) to a set of generators of Cind(HI(G(F))).
Therefore, the image of Cind(H(R,, Xa)) is Cind(IH(G(F))).

An element in Cind(HI(G(F))), regarded as a locally integrable class function on

Greg(F), vanishes on the elliptic set rell(G(F)). Therefore there is a map from the
quotient

C(nI,(G(F)))/Cind (I,(G(F)))
into a space of functions on renl(G(F))nGreg(F). The map is actually injective, a fact
that is implied by the stronger result [24, Theorem A]. It follows that the elliptic repre-
sentations HI,,,e(G(F)) are precisely the representations in IIH(G(F)) whose characters
do not lie in Cind(l,(G(F))).

It is easy to describe the irreducible representations in l(R,, X,) which correspond
to elliptic representations in HI,(G(F)). Let Ra,reg be the inverse image in Ra of the set

Ra,reg = {r :a = aG}, (2.5)

where
a = {H E aM :wH=H}

denotes the space of fixed vectors of an element wEW(aM). If r is an arbitrary element
in Ro, the space ar is of the form aL for some Levi subgroup LE£(M). Moreover, it is
a straightforward consequence of the invariance of a+ under r that a+ contains an open
subset of aL, as above. It follows that Ra is the disjoint union of R,, reg with the set

R' = U Ra
L4G

Now Cind(II(Ra,xa)) is the space of X,-equivariant class functions on RF which are

supported on R'. This follows from the usual formula for an induced character, and
a simple induction argument based on the stratification of R' by the subgroups {R }.
There is consequently an isomorphism from the quotient

C(nI(Ra, Xa))/Cind(II(Rn, Xa))

onto the space of X,-equivariant class functions on R, reg. Since Cind(LI(R, X,)) corre-

sponds with Cind(IIa(G(F))), we conclude that the elliptic representations in fn(G(F))
are given by the irreducible characters in II(Ra, Xy) which do not vanish on R, reg. O

In summary we have
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PROPOSITION 2.1. (a) There is a unique bijection e-7reg from II(R,,Xa) onto

ITa(G(F)) which satisfies the character identity (2.3).
(b) A sum of characters in I(Ra, X,) is induced from a proper subgroup RL ofR. if

and only if the corresponding sum of characters in II(G(F)) is induced from a parabolic
subgroup with Levi component L(F).

(c) A representation 7te in HI(G(F)) is elliptic if and only if the character of e does
not vanish on Ra,reg. O

Remarks. (1) For elements wo in W°, one can use the scalar valued operators
R(wo, a) to normalize the extensions aro. Each extension can then be chosen so that
the corresponding operator R(wo, a) is the identity. One obtains a representation

R(wor,)R(r,,W)= R( , r Ra,

of the group
Wa = W°)X Ra

on 'Htp(c). In particular, the operators R(r, a) do not have to depend on the embedding
of R, into We.

(2) In the paper [13, §5], Clozel conjectured various relationships between repre-
sentations in II(G(F)) and induced representations from the sets II(L(F)). More

recently, D. Goldberg and R. Herb have discovered some unexpected phenomena for
p-adic groups. (See R. Herb, "Elliptic representations for Sp(2n) and SO(n)", preprint.)
In general, Proposition 2.1 will be a good vehicle for studying the questions raised
by Clozel. One has only to look for parallel relationships between representations in

II(R,,a,) and induced representations from the sets II(RF, Xe).

3. The distribution Idisc

We have described the classification of irreducible tempered characters in terms of ir-
reducible representations of R-groups. For some purposes it is better to work instead
with the objects determined by conjugacy classes in R-groups. These objects are virtual
tempered characters, and provide a second basis for the complex vector space spanned
by the irreducible tempered characters. They are particularly suited to the study of the
discrete part of the local trace formula. The local trace formula, we will recall, is an ex-
pansion of a certain distribution Idisc(f', f) on 7(G(F)) x -t(G(F)) in terms of weighted
orbital integrals and weighted characters [11, §12]. We shall first discuss the basic virtual
tempered characters. We will then be able to give a simple description of Idisc(f', f).
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In §2 we attached certain objects to representations a in H2(M(F)) which were not

uniquely determined. These were the scalar normalizing factors {rQI(a))}, the extensions

{(Ow} of a to the groups {M+(F)}, the chamber a+, the extension Ra,-R,, and the
function a,: R,- C* which splits the cocycle r/a. The degree to which other objects,
such as the bijection p--Tre, depend on these choices is minimal. In fact many of the

objects we will look at are completely independent of the choices. In any case, we assume
from now on that these choices have all been made, for every M and a, subject only to

any obvious compatibility conditions. For example, we will want a symmetry condition
with respect to the action of W0G. We require that conjugation of Ra by an element w in

WG extends to an isomorphism r--wr from Ra onto Rw,. Another condition involves
the contragredient. We can clearly take Rav =R and Xv =X1, and by (2.1), we can

also assume that the representation of Ra x G(F) attached to av is the contragredient of
the representation attached to a. This means that the correspondence (2.3) for av takes
the form

tr(R(r, aV)Ip( , f))= tr((r)) tr(7r (f)).
QLI(Ra Xa )

In what follows, we shall generally not distinguish in our notation between objects
defined on Ra and the corresponding Za-invariant objects on R,. For example, X- rX
could stand for the action of Ra on aM with isotropy subgroup Za, as well as the under-

lying Re-action from which it is obtained.
We shall consider triplets

r=(M,7a,r), M E , E 2(M(F)), rERo.

For any such r, we define a distribution

e(7, f) = tr(R(r, a)Zp(a, f)), f E -I(G(F)). (3.1)

This is the virtual character whose decomposition is given by (2.3). Set Z -=Z and

XT=X. Then if z belongs to Zr,

zr = (M, a, zr)

is another triplet, which satisfies

E(zr, f) = XT(Z)-E(-r, f).

There is also an action

T- WI= (WM,waC,wr), wEWoG,
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of WG on the set of all triplets, with the property that

O(wT, f) =)(, f).

These two conditions force some of the distributions @(r) to vanish. We shall say that r=

(M, a, r) is essential if the subgroup of elements in Z, which stabilize the R.-conjugacy
class of r is contained in the kernel of X,. (This is always the case if the cocycle ra
splits.) The inessential distributions @(r) are then zero and can be discarded. We shall
write T(G) for the remaining set of essential triplets, and we define T(G) to be the set
of WG-orbits in T(G). Our basic objects are then the distributions

{9(r):r E T(G)}.

Taken up to the equivalence relation defined by the action of the groups ZT, these distri-
butions form a basis of the vector space of all virtual tempered characters. This follows
from Proposition 1.1 and the formula (2.3) for the irreducible constituents of Ip(a). We
are particularly concerned with the subset

Tell(G) = (M, a, r) E T(G): r E R, reg}

of orbits in T(G) which are elliptic. These triplets correspond to distributions which do
not vanish on G(F)en. They are the elliptic tempered (virtual) characters of the title.

Observe that T(G) has a natural structure of an analytic manifold. For ifr= (M, a, r)
is any triplet, the isotropy subspace aM of aM equals aL for some LE£(M). There is a

locally free action
r -Tr\ = (M,a , r), AE ia,

of ia4 on the subset of elements rET(G) of this form. In this way, T(G) becomes an
analytic manifold which is homeomorphic to either a disjoint union of Euclidean spaces
(Archimedean case), or a disjoint union of compact tori (p-adic case). The set T(G) then
acquires the quotient topology from the action of WG.

One place where the set T(G) is simpler to use than Iltemp(G(F)) is in the formu-
lation of the trace Paley-Wiener theorem. Let I(G(F)) be the space of functions

q: T(G)-C

which satisfy the following four conditions.

(i) q is supported on finitely many components of T(G).
(ii) q(zr)=Xr(z)-10(r), rET(G), ZEZ.
(iii) ) is symmetric under W0G.
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(iv) The function obtained by restricting j to any connected component of T(G)
belongs to the Paley-Wiener space; that is, the function is a finite Fourier series in the
p-adic case, or the Fourier transform of a smooth function of compact support if F is
Archimedean.

There is a natural topology which makes Z(G(F)) into a complete topological vector
space. By means of the inversion formula (2.4), we can in fact identify I(G(F)) with
the topological vector space of functions on Itemp(G(F)) introduced in [6, §11], and
also denoted by Z(G(F)). The trace Paley-Wiener theorem [12] [14] is equivalent to the
assertion that the map which sends fEH(G(F)) to the function

fG(T) = E(r, f), r E T(G), f E (G(F)),

is a continuous surjective map from JH(G(F)) onto I(G(F)). Observe that if r is an
element in Ten(G), there is a function f in I(G(F)) with fG(r)=l, and such that

fG vanishes away from the (Zr x iaG)-orbit of r in T(G). We shall call such an f a

pseudocoefficient for r.
For the local trace formula it is useful to take a set which lies between Tenl(G) and

T(G). If r belongs to an R-group R, we write Wa(r)reg for the intersection of the
W°-coset

W (r) = W°r

in W, with the set

Wr, reg = { E Wa: aM =aG}

of regular elements. This also serves to define W,(r) and Wa(r)reg for elements rER2,
as we have agreed earlier. We define Tdisc(G) to be the set of orbits (M, a, r) in T(G)
such that Wa(r)reg is not empty. It is clear that

Tell(G) C Tdisc(G) C T(G).

To each element r=(M,a, r) in Tdisc(G) we attach a number

i(r)=iG(7)=-IW°-1 E Ea(w) det(l-w)a 11. (3.2)
wEWa (r)reg

As in [11, p. 139], e,(w) stands for the sign of the projection of w onto the Weyl group
W°, taken relative to the decomposition Wa=W° Ra. The numbers i(r) encode combi-
natorial data from Weyl groups that is relevant to the comparison of global trace formulas

[9]. We shall see in a moment that the numbers also arise in the local trace formula.
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We can now describe the distribution Idisc. Fix functions f', f E(t(G(F)). According
to the definition [11, (12.4)], Idisc(f', f) equals the expression

E IWoMlWo-l|det(l-w)aG|-le la /a -l

a JG(aAw,f' f)d,
(M,a,W) aGF

where
a = Hom(aG,f, 27riZ) = a nia,

and

JG(Ta, w, f' x f) = tr(R(w, av )Ip(avx, f')) tr(R(w, ax)Ip(ax, f)).
The sums are over Meo, oatI2(M(F))/iaG (the set of iaG-orbits in II2(M(F))), and
E Wa, reg. We would like to write this expression in a simpler form.

The essential step is to change the sum over wEWa,reg into a double sum over

rERa and wE W(r)reg. We shall in fact sum over rERr, at the same time dividing the
summand by the quotient IZ|I=IR IRa|-1. By (2.1) we can write

R(w, aVx) (R(w, ax)-1)V

(This formula was used in [11, p. 136] without comment to write Idisc in the form above.)
Combining this with the definitions of W° and R(r, a), we see that if w lies in Wa(r)reg,
the operators R(w, aV_ ) and R(w, ax) differ from R(r, avx) and R(r, ax) respectively by
scalar multiples which are inverses of each other. It follows that

JG(aX, f' x f) = tr(R(r, aV )Ip(aVx, f')) tr(R(r, a,)Zp(ox, f))
= e(7-,, f')(Tr, f),

where r is the triplet (M, a, r) and

= (M,aVr). (3.3)

In particular, this term depends only on r. The sum over Wa(r)reg then leads directly to
the number i(r) defined in (3.2). We find that Idisc(f', f) equals the sum over all triplets

r=(M,a,r), MEL, a EI2(M(F))/ia, rE R,,

of the expression

i(Tr)\WO(l1Wo\\ \WII\YZY7\^la a \-1 EI e(r ', )e(T,Jf) dA. (3.4)
C.,F
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The summand (3.4) depends only on the We-orbit of r. Moreover, the summand
vanishes unless the triplet T is essential, and the set W (r)reg is nonempty. The collection
of all such WG-orbits is just Hdisc(G), or rather, the set Hdisc(G)/ia* of orbits of ia*
in Idisc(G). We can therefore take the sum over HIdisc(G)/ia*, provided that we replace
IWG[-1 in the summand by the inverse of the order of the W0G-stabilizer of r. The
stabilizer ofM in WG is the subgroup WoM W(aM). The stabilizer of a in this subgroup
is W0M-W. Finally, the stabilizer of r in this second subgroup is Wo W° .Rr, where

Ra,r is the stabilizer of r in Ra. Therefore, the stabilizer of r=(M,a,r) in WG is

WoM W° R,r. The order of this last group equals

IWOMI lW0|l lR ,rl IZ 1-1,
where RF,r is the centralizer of r in RJ. It follows that Idisc(f', f) equals

(T)ra,, IIa",/ a' 0 f')f)(rvx , f) dX,
aG,F

where the sum is over elements =(M, o, r) in Ildisc(G)/iaG.
Let us define a measure dr on Tdisc(G) by setting

0() dT = IRr -laC,/aG, -1 e(r,)dA (3.5)
Tdisc(G) rTIdisc(G)/ia iaGF

for any function 0ECc(Idisc(G)). We can then express the formula for Idisc as follows.

PROPOSITION 3.1. Suppose that f' and f are functions in h-(G(F)). Then

Idisc(f f) = i(T)(rV, f')e(, f) dr. (3.6)
Tdisc (G)

Remark. We mentioned that the numbers i(r) have occurred elsewhere [9]. They
satisfy a combinatorial identity [9, Theorem 8.1] which is related to endoscopy. In that

context they can be expected to play a significant role in the derivation of multiplicity
formulas for automorphic representations. The occurence of the numbers in formula (3.6)
here seems to be a separate issue. It is not clear what implication it might have for local
harmonic analysis.

In this paper we shall use the special case of Proposition 3.1 in which one of the

functions is cuspidal. A function f in 7-(G(F)) is said to be cuspidal if for every proper
Levi subgroup L of G, the function

fL(TrL)=tr(lrL(fQ)) =tr(ZQ(7rL,f)), WrL E Itemp(L(F)),
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vanishes identically. (Here, fQ is the usual function

m - Q(m)'l/2J f(k-mnk) dndk, m E L(F),
NQ(F)

on L(F), defined for any group QEP(L).) Notice that the map f-*fL factors through
the space I(G(F)), so the same condition defines cuspidal functions in I(G(F)). Suppose
that feTl(G(F)) is cuspidal. Take a triplet T=(M,a, r) in Hdisc(G), and let LEC(M)
be the Levi subgroup such that a' equals aL. Applying the formula (2.3) to L, and

keeping in mind the transitivity properties of induction, we see that the distribution

(T, f) = tr(R(r, a)Ip(a, f))

is a linear combination of values fL(7rL), with lrL ranging over the representations in

H,(L(F)). Since f is cuspidal, the distribution vanishes unless L=G. In other words,
the distribution vanishes unless r belongs to Ra,reg, which is to say that r belongs to

Teln(G). Thus, the integrand in the formula (3.6) for Idisc(f' f) is supported on the
subset Teii(G) of Tdisc(G).

For a given aEII2(M(F)), the set Ra,reg could of course be empty. We claim that
if it is not empty, then the subgroup W° of W, is trivial. To see this, recall that W°
is the Weyl group of a system of roots on the real vector space aM. The decomposition
Wa==W x Ra is determined by the chamber a+ for W° in aM, and Ru acts on aM as a

group of automorphisms of W° which preserve the chamber. In particular, the elements
in Ru preserve the positive roots in the root system. They leave invariant the vector
in a+ obtained in the usual way as half the sum of the positive co-roots. If W° {1},
this vector is not zero. In particular, any element in Ru has an invariant vector in the
complement of aG in aM, and R,, reg is therefore empty. This establishes the claim.

We have just seen that if r=(M, a, r) belongs to Teni(G), then W°={1}. The coset

W,(r) then equals r itself. Since eu(r)=l, the formula (3.2) for the number i(r) reduces
simply to the inverse of the absolute value of the number

d(r) = d(r) = det(1-r)aM/aG. (3.7)

We have established

COROLLARY 3.2. Suppose that f' and f are functions in 7i(G(F)) and that f is
cuspidal. Then

Idisc(f, f) = i d(rT)-10(V, f') (r, f) d. D
(G)

7-935203 Acta Mathematica 171. Imprimn le 28 octobre 1993
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4. The invariant local trace formula

The formula (3.6) can serve as a definition of Idisc(f', f). The local trace formula provides
a second formula for this distribution in terms of weighted orbital integrals and weighted
characters. The terms in this second expression are distributions which are not invariant
under conjugation. We are going to need a formula whose constituents are all invariant.
We shall therefore describe how to convert the original (noninvariant) local trace formula
into an invariant formula. The process is similar to that of the global trace formula
[5, §§3-4]. In particular, we will obtain in the end a local proof of the theorem of
Kazhdan [24] that (invariant) orbital intergrals are supported on characters. The results
of this section have been sketched elsewhere [8, §8], [10, §3], so we can afford to be rather
brief.

We should first review the noninvariant trace formula in the context of the expression
(3.6) for Idisc(f', f). As in [11], it is best to present the formula as an identity of two

distributions, evaluated at a function

f'X f, f', f E i(G(F)),
on G(F)x G(F). One distribution is given as an expansion in terms of weighted orbital

integrals (the geometric side), while the other distribution is a parallel expansion in terms
of weighted characters (the spectral side). In this setting, Idisc(f', f) is just the leading
term in the spectral expansion.

The geometric side is the expansion

E IWoMlwG (l)dim(AM/AG) JM (', x f) d, (4.1)
MECL ell(M)

whose constituents are defined as in [11, §12]. In particular, rell(M) stands for the
set reli(M(F)) of F-elliptic conjugacy classes in M(F), but embedded diagonally in

M(F) xM(F). The measure dy is the image of the measure on reii(M(F)) defined in

§1. The integrand JM(^, f' x f) is the weighted orbital integral

ID(7)||/JI (F)\G(F) f (x1- yxl)f(x21'yx2)vM(x1, x2)dxl dx2,
AM(F)\G(F) AM(F)\G(F)

where vM(x1,x2) is the number

lim E VQ(A,x1,x2)OQ(A)-1A--+O
QEP(M)

obtained from the (G, M)-family

vQ(A, x1, x2) = e-A(HQ(2)-H(x1)), A E ia*, Q E P(M),
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is the usual way [2, Lemma 6.2].
The spectral side will be an expansion

ME WoMIWG-I(-1)dim(AM/AG )T iM(r)JM(r, f x f) dr, (4.2)
MEC Tdisc(M)

where JM(r, f' x f) is a weighted virtual character attached to r. It is a linear combina-
tion of the weighted characters

JM(7Tr 072, f f), 71, 7r2 E Itemp(M(F)),
defined by [11, (12.8)], with coefficients determined by the analogue for M of (2.3). More

precisely, if

r=(Ml,a, r), M C M, a E 2(Ml(F)), E R,
we take the formula

JM(T, f'x f) = Ltr(e'(r)) tr(QV(r))JM(lr, 0Tre, f x f) (4.3)
e', egn(RetX)

as a definition of JM(, f' x f). We recall for convenience that

JM(I' 071r2, f x f) = tr(JM(7rl$07_r2, P)p(r 07r2, f'x f)),

where JM (7r' ®7r2, P) is the operator

im JQ(A, 7rlv072,P)OQ(A)-l
QE'P(M)

obtained from the (G, M)-family

JQ(A, 7ir' 07r2, P)= (JQlp(7rl )JQ p(72))- (jp(7_A))JQIp(72,A)),

Aeia4, QEP(M). The operators

JQop(7r): ip(7r) -ioQ(Tr), r E Itemp(M(F)),
are the unnormalized intertwining operators from Tp(7r) to TQ(7r). They can have poles
in 7rETItemp(M(F)), so the functions JQ(A, 7r07rl2, P) are defined only for 7r'07r12 in
general position. However, the operator JM(Ir1r97r2, P) is regular at 7r'07r2 if I7r and
7r2 belong to IlI(M(F)) as above [11, Lemma 12.1]. The formula (4.3) used to define
JM(r, f' x f) therefore makes sense.

Stating our version of the noninvariant local trace formula formally, we have
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PROPOSITION 4.1. For any functions f' and f in )-i(G(F)), the geometric expansion
(4.1) equals the spectral expansion (4.2).

Proof. The proposition is a restatement of the main result (Theorem 12.2) of [11].
The geometric sides (4.1) and [11, (12.9)] are the same. We need only reconcile our

expansion (4.2) with

IEWoI IWGl( l)1dimAG_/1) J( adisc(T7r1 Tr2)JJM(1r/ 7r2, fX f)d(7r ®t2),
ME disc (M)

(4.4)
the original spectral side [11, (12.10)]. The numbers acG,(7rl0r2) are defined as coeffi-
cients of an expansion [11, (12.6)] of Idisc(f', f). Comparing this with the expansion (3.6),
and taking into account the measures [11, (12.5)] and (3.5) on IIdisc(G) and Tdisc(G),
one finds that aGisc(7rl 7r2) vanishes unless

T1 72 =7r (g7r L,eeQ (R, Xa),
for some EI2(Ml(F)), with M EC, and that

adisc(V e)=E IR,l-li(M1, a, r) tr('(r)) tr((r)),
r

the sum being over conjugacy classes in RJ. The coefficients aMfs(7r 07r2) are of course

given by the specialization of this formula from G to M. Combining this with the
definition (4.3), and taking into account the measures on IIdisc(M) and Tdisc(M), we see

that the expressions (4.2) and (4.4) are equal. The proposition follows from [11, Theorem
12.2]. O

The primary ingredients of the invariant local trace formula are to be invariant
distributions

IM(,f X f)= IG(7 f' x f)
of two variable functions attached to the weighted orbital integrals JM(-, f'x f). They
are defined inductively by a formula

IM(, f'xf)= JM(Y, f' xf)- E i(7, qL(f'x )) (4.5)
LEC(M)
LOG

[4, (2.1)], [8, (8.1)], and they are related by a splitting formula

IM(7, f' x f)= E d(L',L)I (7, fQ,)IM(, fQ), (4.6)
L',LEL(M)
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Q'E'P(L'), QeP(L), to the analogous distributions in one variable [4, Proposition 9.1].
These formulas contain some undefined terms from earlier papers. In particular,
OL(f'X f) could be defined as the function on Htemp(L(F)) X temp(L(F)) whose value
at 7rv 0 7r2 equals

tr(R1L(T7r 7r2, P)'p(r 07r2, f'x f)), P E (L),

where RTL(7' 07r2, P) is the operator

lim RQ(A, 7r 07r2, P)0Q(A)-1A--->0
QEP(L)

obtained from the (G, L)-family

RQ(A, 7 8V7)2, P) = (RQIp(7rv)0RQIp(R2))-1(RQIp(71_A)0,RQ|p(7r2,)),
Aeia2, QEP(L). There is a technical problem that kL(f'x f) does not quite belong
to the space I(L(F)x L(F)) discussed in §3. This can be resolved by working with the
spaces Hac(L(F)xL(F)) and Tac(L(F)xL(F)) introduced in [6, §11]. In the present
situation it is simpler to observe that JM(7, f'x f) depends only on the restriction of
f' x f to the subgroup

(G(F) x G(F))1 = {(x', x) E G(F) x G(F): HG(X') = HG(X)}.

Consequently, JM(-y, ) can be regarded as a distribution on the associated Hecke alge-
bra 7-((G(F)x G(F))1). The corresponding space I((G(F)x G(F))1) consists of Paley-
Wiener functions on the set of ia*-orbits in either T(G) xT(G) or Itemp(G(F))x
ntemp(G(F)). From [6, Theorem 12.1], one can interpret 4L as a continuous map
from Ji((G(F) xG(F))1) to I((L(F) xL(F))1). The inductive definition (4.5) then gives
IM(7,Q ) as (the pullback to G(F)x G(F) of) a distribution on NH((G(F) x G(F))1).

In general, an invariant distribution I on Hi(G(F)) is said to be supported on char-
acters if I(f)=0 for every function fEi-(G(F)) such that fG=O. If this is so, there is a
unique distribution I on the topological vector space I(G(F)) such that

I(fG) = I(f), f e i(G(F)).

Similar definitions apply to invariant distributions on the spaces H((G(F)xG(F))1),
i-ac(G(F) xG(F)) or7-ac(G(F)). In particular, the Fourier transform IM(7)) in (4.5)
is defined provided that IL (y) is supported on characters. This has been proved by
global means [5, Theorem 5.1], but we prefer to establish the property here by local
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means. We shall therefore make only the induction assumption that for any LElC(M)
with LOG, and any point yEMreg(F), the distribution IL (-) on H-(L(F)) is supported
on characters. It follows from the splitting formula (4.6) that the corresponding distribu-
tions on IH(L(F) x L(F)) are also supported on characters. Therefore, the formula (4.5)
makes sense.

The secondary ingredients of the invariant local trace formula are simpler. They will
be the invariant distributions attached to the weighted characters JM (r, f' x f). Suppose
that ryj0r2 is a representation in Iltemp(M(F))x IItemp(M(F)), and that PEP(M) is
fixed. The (G, M)-families {JQ (A, 7r'07r2, P)} and {RQ(A, 7r/ j 7r2, P)} described above
are related by the formula

JQ(A, 71rV 2, P) = rQ(A, 7rl (02, P)RQ(A, 7rl ®7r2, P), (4.7)

QEP(M), AEia*, where

rQ(A, 7rV()72, P) = (rQlp(7r )rQIp(72))-1(rQlp(7r1,_-A)rQip(72,A))
is a (G, M)-family constructed from the scalar normalizing factors. As with the (G, M)-
family JQ(A, 7r/ ®7r2, P), the function rQ(A, 7ry ®Or2, P) is well defined only for 7r 07r2
in general position. However, if r=(Ml,, r) belongs to Tdic(M), the function

rM(wl 7r2, P) = im rQ(A,7rlV 07r2, P)0Q(A) 1
A-~O :

QEP(M)

is regular at T7r r2 whenever T1 and 7r2 belong to HI(M(F)). This follows from the
analogous property for JM(7rvw7r2, P). It can also be deduced directly from the fact
that the normalizing factors rQip(7r), 7rEIIa(M(F)), depend only on a. We shall write

rM(r, P) = -rM(rvT2,P), 7r, r2 e H,(M(F)), (4.8)

since the special value on the right is independent of 7rv O 7r2. The invariant distributions

rM(T, f X f) = rM(T, P)O(TV, fp)E(T, fp), f', f E J(G(F)), (4.9)

on '(G(F)x G(F)) will occur on the spectral side of the invariant trace formula.

THEOREM 4.2. For any functions f' and f in H(G(F)), the expression

ME lSC~r~rM lIwS l' l)dl"'1 "1 l /y fM( 'x f ) d7 (4.10 )ME[IWMIW-I ( -l)dim(AM/AG)eI IM(,fXf) (4.10)
MEL Fei(M)
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equals

ELW |I Wl (l)dim(A/AG) j iM(r)rM(r'f'x f) d7. (4.11)
MeL Tdisc(M)

Proof. Observe that (4.11) is equal to the expression

E IWMI WGI-l(-l1)dim(AM/AG) Z iM(T)rM(T,f'xf), (4.11*)
MEL rETdisc(M)/iaM

where

fM(T, f'x f) =IR l-aM,/aM Fl1 rM(rA, fx f) dA, (4.9*)
ia*M,F

for r=(Ml, a,r). Similarly, the noninvariant spectral expansion (4.2) equals

lWOM IWtW -l(_)dim(AM/AG) S iM(T)JM(T f' xf), (4.2*)
MEL rETdisc(M)/iaM

where

JM(T, f'X f) = |Ru,-lI|aM,/aM,FI f JM(rA,f'xf) d. (4.3*)
M,F

The first step is to check that the invariant distributions

rM(, f X f) =r , f x f)

are related to weighted characters by a formula

JM(, f xf)= rM(T, bL(f 'f)) (4.12)
LEL(M)

which is parallel to (4.5). The distributions rL (r) can be regarded as functionals on

(L(F) x L(F))1 which are supported on characters, so the summands on the right hand
side of (4.12) are well defined.

To establish (4.12) we apply the decomposition property [2, Lemma 6.5] to the

product (4.7) of (G, M)-families. The result is

JM (7r T7r2, P)= 5 rM(Tr t2, P)1ZL (Trv 7r2, P),
LE£(M)

in the notation of [2, §6]. This in turn leads to a formula

JM(7rV 2,1 Xf)= E r(TP))tr(L(7rl 07r2,P)Ip(7rlv'r2, f X )),
LEL(M)
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in which T=(Mi,a, r) belongs to Tdisc(M) and 7l1, r2 lie in HI(M(F)). The definitions
(4.3) and (4.3*) express JM(T, f'X f) as an integral (over A) of a linear combination of
functions on the left hand side of the last formula. The same operations, applied to a
summand on the right hand side, given the corresponding summand ?r(r, LL(f' x f)) for
the right hand side of (4.12). This follows from the definitions (4.9) and (4.9*) of fr(r),
together with the definitions and an obvious descent property [2, (7.8)] of the map 4L.
In this way we derive the required formula (4.12).

Theorem 4.2 is a rather formal consequence of Proposition 4.1 and the identities
(4.5) and (4.12). For convenience, we repeat the argument from [8, Proposition 8.1].
Write JG(f xf) and IG(f' f) for the respective geometric expansions (4.1) and (4.10).
Substituting the identity (4.5) into (4.10), we find that IG(f'x f) equals

JG(f' Xf)-E IWLI IWGI-l(-_l)dim(AL/AG)iL(LI(f'x )).
L$G

Our induction assumption insures that for L$G, the distribution IL is supported on
characters. Proposition 4.1 tells us that JG(f'x f) is also equal to the original spectral
expansion (4.2). Write rG(f' x f) for either invariant spectral expansion (4.11) or (4.11*).
Substituting the identity

rM(r, f' f)=JM(, f Xf)- rM(TL(f ))
LE (M)
L$G

obtained from (4.12) into (4.11*), we find that rG(f'x f) equals

JG(f'xf)-EIWoLI IWGI (-1)dim(AL/AG)L(OL(f'x f)).
LEG

We are trying to show that the distributions IG and rG are equal. We are certainly
free to assume inductively that this is so if G is replaced by any proper Levi subgroup.
In particular IL(qL(/'xf)) equals (L(qL(f'xf)) for any LEL with L:G. The two

expressions we have obtained for IG(f' xf) and rG(f x f) are therefore equal. In other

words, (4.10) equals (4.11), as required. O
Our use of the local trace formula in this paper will be confined to a simpler version,

in which one or both of the functions is cuspidal.
COROLLARY 4.3. Suppose that f' and f are functions in T-(G(F)), and that f is

cuspidal. Then the invariant local trace formula reduces to the identity of an expression

E IWdwI Iwo, ll(-l)dim(AM/A) j IcG(7, f')IM(, f)dy (4.13)
MEL ron(MfF))
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with

J|I(G |Id(r) I-e(r, f')E(T, f) dr. (4.14)
Tel(G)

If both f' and f are cuspidal, the formula simplifies further to

ell(G(F)) 1Te(G)Jfr(G(F), f')1G(?y, f) d7-/=j Id(r)K-O(?rv, f')e(T, f) dT. (4.15)
Proof. We start with the formula of Theorem 4.2, taking f to be the given cuspidal

function. Consider first the geometric expansion (4.10). We shall apply the splitting
formula (4.6) to the integrand IM(, f' x f) in (4.10). If L is any group in £(M) with

L$G, the distribution IM^() on HT(L(F)) is assumed to be supported on characters. We
obtain

IM(7Y, fQo)=I (7,(fQ)L) =-M(7,JL) = 0, Q E P(L),
from the cuspidality of f. In other words, all the terms in (4.6) with L$G vanish.
Moreover, the coefficient dG(L',G) in (4.6) vanishes unless L'=M, in which case it

equals 1. (See [4, §7].) The splitting formula reduces simply to

IM(7, f X f)= IM(7, fp, )IM(y, f), P' E 7(M).
Since

IMM(y, fP) = IG(,f'), 7E M(F)nGreg(F), (4.16)
by a standard change of variables formula, the geometric expansion (4.10) is equal to

(4.13).
The terms in the spectral expansion (4.11) are easily dealt with. The distributions

(-(r) are supported on characters, as we see directly from (2.3). If r belongs to Tdisc(M),
for some MAG, we obtain

rM(r, f' x f) = rM (-, P)e(rv, fp/)o((, fp)
= rM(T, P) (rv, f)M)(T, fM) = 0,

from the definition (4.9) and the cuspidality of f. Consequently, the summands with
M$G in (4.11) all vanish. This leaves only the leading term, which by construction is

just Idisc(f', f). (See Proposition 3.1.) It follows from Corollary 3.2 that the spectral
expansion (4.11) equals (4.14). This establishes the first assertion of the corollary.

Suppose that f' is also cuspidal. Then if M$G, IG(7, f') vanishes for any element

rEM(F)nGreg(F), as we observe from (4.16). The summands with M$G in (4.13)
therefore vanish, and (4.13) reduces to the left hand side of (4.15). This establishes the
formula (4.15), the second assertion of the corollary. O

To complete the original induction argument, we have to show that the distributions
IM(y) on 7H(G(F)) are supported on characters. This will be an immediate consequence
(Corollary 5.3) of the next theorem.
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5. Characters and weighted orbital integrals
The elliptic tempered (virtual) characters 9(r) are locally integrable functions on G(F).
We shall establish a formula which relates their values with the invariant distributions

IM(?) on J-(G(F)). The formula is a general analogue of earlier results [1], [3] relating
the characters of discrete series to weighted orbital integrals of their matrix coefficients.
It will be a consequence of the invariant local trace formula, or rather the simple version
of Corollary 4.3.

The contragredient

T= (Ml,a, r) -- TV = (Ml, a, r)

defines an involution on the set Teii(G) of basic elliptic virtual characters. If y lies in

M(F)nGreg(F), for some Levi subgroup MEL, we have

(5.1)
v - ,f jD(y)1/28('rV,y), if -yEM(F)eii,

0, otherwise,

in the notation of §1. Thus ImM(TV) expresses the values of the normalized character of
rv on (noncompact) tori in G which are elliptic in M.

THEOREM 5.1. Suppose that f is a cuspidal function in NI(G(F)). Then

IM(^, f)= ( 1)dim(AM/AG) I d(T)I-aM(Tv, 7)e(T, f) dT, (5.2)
_eii(G)

for any group MEL and any G-regular point 7 in M(F).
Proof. Suppose that y does not lie in M(F)en. We are still carrying the earlier

induction hypothesis that the distributions I7(y), LCG, are supported on characters.
It then follows from a descent formula [4, Corollary 8.3] and the cuspidality of f that

IM(7, f) vanishes. The right hand side of (5.2) vanishes by definition, so the formula
holds in this case. It is therefore enough to establish (5.2) when y lies in M(F)eii.

To deal with elliptic points in M(F) we apply the simple version of the local trace

formula. Consider the two expressions (4.13) and (4.14) in Corollary 4.3, with f the

given cuspidal function, and f' a variable function in X-I(G(F)). The expressions depend
on f' through different distributions IG(y, f') and E(TV, f'). However, E(TV, f') is given
by a locally integrable function, and has an expansion

E(7rV, f)= IWMI IWGI1 j (M(V, 7)IG(7, f') d
MEL J-1e(M(F))
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as in (1.3). Substituting this into (4.14), we collect the coefficients of IG(Y, f') in the

resulting identity of (4.13) with (4.14). We see that if

6M(Y, f) IM(7, f)- ()dim(AM/AG) / Id(r)-'IM(v, 7)e(r, f) dr,
Te(G)

then the expression

E iW]1 --Wi(-l)dim(AM/AG) J/r IM(t,f)IG(,f') d^Y (5.3)
MEC ren(M(F))

vanishes.

We must show that bM(Y, f) equals 0 for all M and y. We have so far only established
that the expression (5.3) vanishes if f' is any function in Ti(G(F)). To handle the
approximation argument we first enlarge the family of test functions.

LEMMA 5.2. The expression (5.3) vanishes if f' is any function in Cg°(G(F)).
Proof. If F is p-adic, the spaces Cgj(G(F)) and iH(G(F)) are the same, and there

is nothing to prove. For Archimedean F, however, 7i(G(F)) is only dense in CC (G(F)).
We must show that as a function of f', the absolute value of (5.3) extends to a continuous
semi-norm on CC(G(F)). This will be a consequence of the estimates in [11, §4] (as was
the convergence of the various geometric expansions discussed in §4).

Observe that the difference

itl('Y, f) M(Y, f)-IM(7, f), yE M(F)ell,

is essentially a finite linear combination of values of (normalized) irreducible characters.
It follows from the local integrability of characters that the contribution of 6M(-, f) to
the absolute value of (5.3) extends to a continuous semi-norm on CC (G(F)).

To deal with the contribution of IM(y, f), we first consider the weighted orbital

integral
JM (7, h) = ID(a) 1"/2 JA(M h(x-'yx)vM(x) dx,

AM(F)\G(F)
for heH(G(F)) and yEM(F)elinGreg(F). It is not hard to show that there are positive
constants Ch and d such that

IJM(7, h)l <Ch(l+l log ID(7)| I)a
for all yEM(F)ell. This estimate is a consequence of the proof of [11, Lemma 4.3],
which we leave to the reader. (The result from [11] actually dealt with more complicated
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weighted orbital integrals JT(y, h' xh) on 7-(G(F))x H-(G(F)). However, the technique
applies equally well here.) Recall [4, §2] that the invariant distributions on 'H(G(F)) are
defined by a formula

IM(y,h)=JM(y,h)- EI>M(,L(f))
LEC(M)
LOG

which is similar to (4.5), and in which XL is the continuous map between the spaces
Nac(G(F)) and ac(L(F)) introduced in [6, §§11-12]. We obtain an estimate

IIM(7, h)l < Ch(HM(7))(l+l log ID(y) )d, y e M(F)ell,

where ch( ) now is a locally bounded function on aM. This follows by induction from
the definition of Ic(L(F)), and the estimate above for IJM(y, h)l. We shall apply this

inequality with h=f. We shall also apply the fundamental bound ([17, Theorem 2],
[18, Theorem 14]) of Harish-Chandra on orbital integrals that was used in [11, §4]. This
result implies an estimate

JIG(7, f')l s a(f'), 7 E Greg(F), f' E H(G(F)),

where a( ) is a continuous semi-norm on C°°(G(F)). Since

7 - (1+1 log ID(7y) I)d

is a locally integrable function on any maximal torus in G(F), and IIG(7, f')l is compactly
supported, the contribution of IMM(y, f) to the absolute value of (5.3) also extends to a

continuous semi-norm on C°°(G(F)).
We have shown that the absolute value of (5.3) extends to a continuous semi-norm

on CC°(G(F)). Since (5.3) vanishes for any function f' in the dense subspace 1I(G(F))
of Cg(G(F)), it vanishes for any f' in CC (G(F)). D

We can now finish the proof of the theorem. Fix a group M' E and a G-regular
element 7' EM'(F)ell. The centralizer T'=Gy, of y' in G is of course a maximal torus.
We take f ECC (G(F)) to be supported on the open set of elements in G(F) which are

conjugate to points in T'(F)nGreg(F). The function

IG(7, f'), 7' E T'(F)nGreg(F),

is of course symmetric under the Weyl group W(G(F),T'(F)) of T'(F). However, we

are free to vary f' so that this function approaches the sum of Dirac measures on T'(F)
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at the W(G(F),T'(F))-translates of y'. On the other hand, SM(y, f) is smooth in 7.
Moreover, as a function on the set

{(M, 7):M E l, y E rei(M(F))f Greg(F)},

6M('Y, f) is symmetric under the natural action of WOG. The set of WoG-orbits of such pairs
is bijective with the set of G-regular conjugacy classes in G(F). Therefore, the symmetry
condition on IG(Y, f') in (5.3) is matched by a symmetry condition on 6M(y, f). As
IG(Y, f') approaches the sum of Dirac measures, the expression (5.3) approaches

(_-)dim(AMi/AG) IW(G(F), T'(F))IM, (7Y', f ).

Since (5.3) vanishes for all such f', we can assert that M,'(-y', f) also vanishes. In other
words,

IM,(y f) = ( 1)dim(AM /AG) JT d(Tr) lM, (Tr, ') (r, f) dT.
Tell(G)

This becomes the required formula (5.2) if we relabel M' and y' by M and -y. O

The theorem allows us to complete the induction argument begun in §4.

COROLLARY 5.3. The distributions

IM(, f), M E C, 7 E M(F)nGreg(F), f E'(G(F)),

on 1-(G(F)) are supported on characters.

Proof. Fix a function f E (G(F)) such that fG=O. We must show that IM (, f)
vanishes for any M and y. The condition on f implies that the function is cuspidal. It
also implies that the right hand side of (5.2) vanishes. The identity (5.2) then tells us
that IM(Yf)=0. ]

It might be helpful to restate a version of the theorem in a more concrete form. For

simplicity, assume that G is semisimple, and that

r=(Mi,a,r), M1EC, aEI2(MI(F)), rER,reg,

is an element in Ten(G) with Z,={1}. This last condition is essentially that the cocyle
r7a of §2 splits, so we may also assume that R(r, a) equals R(r, a).
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COROLLARY 5.4. Suppose that f is a function in IH(G(F)) such that for any triplet

(M, a',r'), M1 e L, a' 2(M(F)), r'e R,,

the expression
tr(R(a', r')p,(a', f)), P' E P(M'),

vanishes unless (Ml, a', r') belongs to the WG-orbit of (M1, a, r), in which case it equals 1.
Then IM (7, f) equals

(-1)dim(AM)|Ra,|-| det(1-r)|-1 E tr(o(r))|D(f)|1/2E(7rvy,'),
QEn(R )

for any G-regular point 7 in M(F)ei.
Proof. Though it may already be clear, let us just convince ourselves that f is

cuspidal. Clearly f is a pseudo-coefficient for r, in that

f 1, ifT'=r,
(T',f)

0, otherwise,

for any 'E T(G). Suppose that LE is a proper Levi subgroup of G. As a function on

T(L), fL satisfies

fL(TL) =eo(r f, TL E T(L),
where rf is the W _-orbit of TL. This follows directly from Proposition 2.1. Since the

image of T(L) in T(G) is disjoint from Tell(G), a set which contains r, the function fL
vanishes. Therefore f is cuspidal.

We apply the theorem, taking into account the definition (3.5) of the measure on

Tei(G) and the definition (3.7) of d(r). We obtain

IM(7, f) = (-1)dim(AM) IRor,r-l1 det(1-r)l-1M(rV, ).

But the formula (2.3), applied to av instead of a, gives a decomposition

O(v)= E tr(°(r))e(7rV )
eEIn(Ra)

for the virtual character O(7V). Therefore

M(T , 7) = ID(?)ll/2e(TV, 7)= tr(g(r)) ID() 11/2 (,v ,7)
Q~~~~~~~~~~~~~~~L
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The corollary follows. [
Remarks. (1) Consider the special case that 1(T, f) is supported on the subset

{ = (G, a, 1): E n2(G(F))}

of Ten(G). The right hand side of (5.2) is then a linear combination of characters of
discrete series. Under the additional assumption that F is Archimedean, Theorem 5.1
reduces to an earlier formula [7, Theorem 6.4]. This special case is also closely related
to the main results in [1] and [3].

(2) It is sometimes convenient to express the right hand side of (5.2) in terms of the
function

fG(r, X)= fG(r)e-(x) dA= (r, f)e-(X) dA, (5.4)
GF G,F

for elements r=(Ml, a, r) in Tein(G) and X in aG,F. The assertion (5.2) of Theorem 5.1
is then equivalent to an identity

IM(Yf)=(-1)dim(AM/AG) ld(r)-l1M(TV'7 t)fG(r, HG(7)), (5.2*)
rETenl(G)/ia*

where

d1 (T) = IR,rlGa,a/avG,FI d(T). (5.5)
This follows immediately from the definition (3.5) of the measure on Teii(G).

6. Orthogonality relations

There is a simple consequence of the last theorem that deserves a separate discussion. It
concerns orthogonality relations for our basic elliptic (virtual) characters. We shall show
that the class functions

{IG (T) T E Tell(G)}
on G(F)en, taken up to the equivalence relation defined by the action of the groups
Z, x ia*, form an orthogonal set; we shall also find an explicit formula for their norms.
The result can be regarded as a generalization of Harish-Chandra's orthogonality relations
for characters of discrete series.

The orthogonality relations are best motivated from the framework of §2. Re-
call that for any aEI2(M(F)), there is a unique bijection eQ--7r of II(R,,X,) onto
Il,(G(F)) which satisfies (2.3). Equivalently, there is a unique bijection 0--- from the
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X,-equivariant class functions on Ra onto a space of invariant distributions on G(F)
which satisfies (2.4). The identity (2.4) can be written

(f)= IR,rl-10(r) tr(R(o, r)IZp(a, f)), f E (G(F)),
rEr(R,)

where r(R,) denotes the set of conjugacy classes in Ra. That is,

e(/)= E irI-'r (r)(7rr f),
rEr(R,)

for Tr =(M, , r). This ought to be viewed as a map from finite linear combinations of
Dirac distributions on the space T(G) to virtual characters on G(F). It is the concrete

expression of the isomorphism, determined by the trace Paley-Wiener theorem, from the

topological dual space of I(G(F)) onto the space of invariant distributions on -I(G(F))
which are supported on characters. In other words, the map 08-- of §2 extends to
elements 0 in the full dual space I'(G(F)) of Z(G(F)). We shall be interested in the case
that 0 is a cuspidal test function. Then 8 will be a locally integrable function on G(F).
We would like to describe the inner product over G(F)ell of two such functions in terms
of the initial two functions on Tell(G).

By a cuspidal test function 0 in I'(G(F)) we mean a function on T(G) whose trans-

pose
T --+0(7), r E T(G),

belongs to I(G(F)), and is supported on Ten(G). Guided by the definition (3.5) of the
measure on Tell(G), and the description above of (2.4), we define a distribution

e(f) = 0(r)e(r, f) dr, f e 7I(G(F)), (6.1)
Te1(G)

on T(G(F)). Then e can be identified with a locally integrable class function O8() on

G(F). According to our usual convention, we can form the class function

(y)= ID(Iy)1/28(y) (6.2)
on Greg(F) and its restriction

' J(7)e=| 0(T)$G(T, ) dr
ITel(G)

to rei(G(F)). Following parallel notation, let us also introduce the function

Tr) = Id(-r) 1/20(r). (6.3)



ON ELLIPTIC TEMPERED CHARACTERS 113

THEOREM 6.1. Suppose that 0 and O' are two cuspidal test functions in I'(G(F)).
Then the associated pairs 4, V' and 0, 4' of functions, defined by (6.2) and (6.3) respec-
tively, satisfy the inner product formula

J (7)I'(7)d7= (T)q'(T) dr. (6.4)
'ren(G(F)) Tenl(G)

Proof. Notice that r--Id(r)I0(rv) is also a function in I(G(F)) which is supported
on Teii(G). The trace Paley-Wiener theorem therefore provides us with a cuspidal func-
tion f EH(G(F)) such that

fG(T)=(Tf) = d(r)|0(rV), rET(G).

We shall apply the formula (5.2) of Theorem 5.1, with M=G. If 7 is any G-regular point
in G(F), we obtain

IG(Y7, f)= (G )Id(r)-l G(r, -y)O(r, f)dr
ll(G)

!'TiG Id(v)l-lE(rv, f)cG(r, y) dTlTe(G)

=IJ/ei 0()r)$G(r, y) dT
Teii(G)

= 'G(Y)-

Given 0', we define a second cuspidal function f'E'I(G(F)) in the same way. It has the
property

G(') -=IG(Y, f')= I (7, f').
The simple version (4.15) of the local trace formula then tells us that the inner product

J| G() Q4G(7y)G(Vt) dy = J IG(Y, f)IG(7f, ') dY
ell (G(F)) ell(G(F))

equals
id(r)- (rv, f)E(r, fT) dr.

Tell(G)

In general, one can write

o(rv, f') = tr(R(r, av)Ip(a, f')) = tr(R (r, a)l (a, f')),
8-935203 Acta Mathematica 171. Imprim6 le 28 octobre 1993
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if r=(M, o, r). The term on the right stands for the character of the contragredient of
the representation of Ra x G(F) attached to a. Since this representation is unitary, we
obtain

e(Tv, f') = tr(R(r, a)Zp (a, f')) = O(7, f').
Substituting this into the expression above, we see that the inner product on the left
hand side of (6.4) equals

J1(G) Id(T)l-1O(7V, f)9(, f') dr.
Tell(G)

Since d(r)=d(TV), this can be written as

Ji(G \d(Tr)0(T)0'(r) dr = j (T>)'(r) dT,
Tell(G) Tell(G)

the right hand side of the required formula (6.4). [
We shall give two corollaries. The first will be the orthogonality relations for the

basic elliptic (virtual) characters {6(r)}. In the second corollary, we shall derive a dual
inner product formula for the irreducible elliptic characters {0(T7r)}.

Any element r=(M, a, r) in T(G) has a central character C( on AG(F). That is,

e(r, ya) = Cr(a)e(r, ), y E Greg(F), a e AG(F),

where by is the restriction of the central character of a to AG(F). Suppose that r' is

another element in T(G) with the same central character. The function

(T7, 7)'(Tt, y), Y E Greg (F),

is then invariant under AG(F), and can be integrated over the elliptic conjugacy classes
in G(F)/AG(F). This integral can be expressed as an elliptic inner product

S IW(G(F), T(F))|-1 J (,)(7 7', y) dy, (6.5)
{T} T(F)/AG(F)

where {T} is summed over the G(F)-conjugacy classes of elliptic maximal tori in G.

COROLLARY 6.2. Suppose that r and r' are two elements in Tell(G) with the same

central character. Then the inner product (6.5) vanishes unless r' belongs to the

(Z x ia*)-orbit ofi in Tell(G). However, if/'=T=(M, a, r), the inner product equals

IR,r Id(r),
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where r is the image of r in Ra.

Proof. We shall apply Theorem 6.1, with 0 supported on the (Z, x iaG)-orbit of r

and O' supported on the (Zr x ia*)-orbit of r'. If r and r' lie in different orbits, the

right hand side of (6.4) vanishes. We leave the reader to check that for suitable 0 and 9',
the left hand side of (6.4) becomes the inner product (6.5). This implies the vanishing
of the inner product.

To deal with the second assertion of the corollary, in which r'=r=(M, a, r), we take
9'=0. We first substitute the formula (3.5) for the measure on Ten(G) into the right hand
side of (6.4). We obtain

JTG 1((r)12dr' = Id(r)I J 0(T)12 d7
Ill(G) T ll(G)

=Id(T)I IRrr aG/aG, FZF j 1e(zrx)2 dA,
zEZ,/ZO aG/,F

where Z° is the stabilizer of r in Z,. The integrand is independent of z, and since Z° is
the stabilizer in Zr of the RF-conjugacy class of r, we have

IRo,rl-lZr/ZOl = iR,~i-1.

The right hand side of (6.4) becomes

Id(r)I IR0I, Ia1 /a, -1v (-r)12 d

=ld(fr) IR,f1-1 J rI(TA)l2 dA
ia*G/aGf,a*/,a,

=ld(r) IRr,|l-1a~G,F/alG a I (x)12 dX,

where

O(X)= IaG,F/aG,a-1 (r,\)e(x) dA, X E aG,a,
iaG/a

is the Fourier transform of 0 relative to the normalized Haar measure on ia*/av a.

On the other hand, observe that

((r, y) = (T, y)eA(HG(7)), A E iaa/a,.
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In particular, $(r, y) vanishes unless HG(7) belongs to aG,,. Consequently

(7) = Ti 0G(T)4(T, 7) dr
eii(G)

=,ar, aG F/aG-F E /Z J e9(zr7A)(z7r), )d
ZEZT/ZE G,F

~e~/zo br,= R,-| I a' /aGFl (T,7 m) J O(T)e(HG()) dA
G,F

= IRa, I- laGV,Fv/aG,a| (r, y)G(HG (Y)).-

The left hand side of (6.4) therefore equals

i-2-v /2 2Rr,r aG,F G,o1a/a l2 4 (T, 7)Il20(HG(Y)) dy.
rell (G(F))

Since I4(r, y)12 is invariant under translation of y by elements in AG(F), we can write
the integral in this last expression as

E |W(G(F), T(F))-1 / |(r, Y7)12r/(HG((7)) d7, (6.6)
{T} T(F)/AG(F)

where

,j(X)= BI(HG()+Y)2 dY, XE ao,.
aG,F

Identifying the expressions we have obtained for the two sides of (6.4), we see that
the integral (6.6) equals a product

( r|a F/av d(f) llRa, -IliaG,F/al \,I X)\2 dX
~~~\ ^0~~~~G,o

which in turn simplifies to

IRa,r d(fr) laG,/aaG,Fl-1 0(X)l\ dX.
G,a

The group aG,F of course has finite index in aG,,. We can therefore choose 0 so that

r(X)= 1 for any point X in aG,,. The expression (6.6) then reduces to the required inner
product (6.5). Moreover,

1(X2 dX = r(X) = IaG,,/aG,F.
aG'a XEaG,0, /aG,F

The inner product (6.5) therefore equals IR,,r Id(r)l. This was the second assertion of
the corollary. O
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COROLLARY 6.3. Fix aEII2(M(F)), and suppose that

({r,,7r,: ', E Hn(kR, X,)}
are two elliptic representations in IIl(G(F)). Then the elliptic inner product

IW(G(F), T(F))I|-1 D(-y) |0(7r, y)e(7r, 7) d (6.7)
{T} JT(F)/AG(F)

equals
IRl-1 E Id(r)itr(o(r))tr(Q(r)).

rERa, reg

Proof. The character 6(%e) is the image of the function

(e, r) = tr(e(r)), rE Ra,

under the correspondence of §2. It follows from (2.4) that

e(7rr, 7)= i -1 E tr(&o(r))0(r, ?Y)
rER_

= IRsl- _1 tr(o(r))O(rr,?)
=|R|-1 E tr(o(r))(rr,,7),

= E |IRcrL tr(Q(r))e(Trry),
yEr(R,)

for any G-regular element y in G(F)eii. Here Tr =(M, a, r) as before, and the summands
are well defined class functions on R,. If r belongs to the complement of Ra, reg in R,,
the virtual character e(rr) is a linear combination of induced characters, and vanishes
on the regular elliptic set. We may therefore take the last sum over the set r(R, reg) of
R.-conjugacy classes in R,, reg. The formula becomes

ID()ll1/20(Te,?)= E) IR,'- tr(o(r))(Trr, y),
rEr(R., reg)

upon multiplication of each side by ID(-y)1/2.
We now substitute this formula for ID(-y)l/28(re,,y), and we substitute its com-

panion for ID(-y)1/2E(7r,,̂y), into the inner product (6.7). The result is a double sum
over r, r'E(Ra, reg) of the expression obtained by multiplying
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with the inner product

E IW(G(F), T(F))|-1 A (Tr Y)(7r) dry.
{T}{T} T(F)/AGc(F)

By Corollary 6.2, the last inner product vanishes unless r=r', in which case it equals
IRa,rl Id(r)l. Consequently the original inner product (6.7) equals

E |IR,r I|-l- d(r)I tr(Lo(r))tr(o' (r)).
rer(Ra, reg)

This in turn equals the required expression

IRl-1 E Id(r)ltr(o(r))tr('(r)). o
rERo, reg

Remarks. (1) Suppose that 7reElIl(G(F)) and 7,t EII,,(G(F)), where a En2(M(F))
and a'EII2(M'(F)) have the same central character on AG(F). If (M', a') is not WG-
conjugate to (M,a), it follows easily from Corollary 6.2 that the inner product (6.7)
vanishes. This special case was conjectured by Harish-Chandra [13] and was proved by
Kazhdan [24, Corollary to Proposition 5.4].

(2) We are seeing a miniature dictionary between objects attached to G(F) and

objects attached to the groups R . This includes the correspondence ret e of irreducible

representations, the analogy between the elliptic sets G(F)e11 and Ra, reg the parallel roles
of the central subgroups AG(F) and Z, in the formulation of the last corollaries, and

perhaps most striking, the analogy between the Weyl discriminant

D(7) = det(- Ad(7))g/g,
on G(F)/AG(F) and the function

d(r) = det(1-r)aM/aG

on R,=Ra/Z.. Corollary 6.3 is one of the clearest statements of this parallelism. It
introduces an elliptic pairing

(O, QO)el = IRa|-1 E Id(r)l tr(o(r))tr(o'(r))
rER., reg

between irreducible (projective) representations of the R-group. It would be interesting
to investigate this pairing in the various examples [25] of nonabelian R-groups. Perhaps
some version of the pairing might also play a role in the general character theory of Weyl
groups.
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7. The distributions CIM()), DM(TM,X) and CDM(TM,X)
The objects {IM(7)} are only one of several families of invariant distributions that arise
from questions on harmonic analysis on G(F). Some of these distributions are attached
to conjugacy classes, others are associated to intertwining operators and their residues.
All of them are related. The various distributions were defined and discussed in some

detail in the papers [4, §§3-6] and [7]. We shall review some of them in this section,
taking the opportunity to streamline a couple of the definitions.

For reasons discussed in [6, §11], it is convenient to identify objects in I(G(F)) with
functions of two variables. Thus, if q$ belongs to the space I(G(F)), as it is defined in

§3, we set

0(r, X)= F (,)e-r(X)dA,
G,F

for any r7T(G) and XEaG,F. This is compatible with the notation (5.4). In the earlier

paper [6], I(G(F)) was defined as a space of functions on Htemp(G(F)) x aG,F. The two

interpretations are related by the formula

(r, X) = E tr(QV(r))(7ro, X), r = (M, , r), (7.1)
oen(R ,Xa)

obtained from (2.3). The functions 0(r,X) in I(G(F)) are compactly supported and
smooth in X. In [6, §11] and [4, §4] we defined extensions

Z(G(F))C Zac(G(F)) Cac(G(F))

by successively weakening the conditions of compact support and smoothness. We shall
use these spaces here, and we shall regard their elements simultaneously as functions on

Iltemp(G(F)) X aG,F and on T(G) xaG,F, the two being related by (7.1). In the earlier

papers, we also defined extensions

X(G(F)) C Hiac(G(F)) C Xhac(G(F))

of the Hecke algebra, and we noted that f--fG had a natural extension to a continuous,
surjective map from any one of these latter spaces onto the corresponding space above.

Fix a group MEL. If f belongs to 7'(G(F)), q5M(f) is defined as the function on

TItemp(M(F)) x aM,F given by

M(f,fir, X) = F tr(RZM(7rx, P)Z( 7rx, f))e-x(X) dA.
M,F
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More generally, one can form the function

M,-(f 7r, X)= tr(71M(rA, P)Ip(rA, f))e (X) dA (7.2)
M+iaMF

for any point /.EaM for which the integrand is regular. Then qM,, extends to a contin-
uous map from tac(G(F)) to Zac(M(F)) which sends 7-ac(G(F)) into Zac(M(F)). (See
[6, §11], [4, §4].) Bear in mind that the image of H(G(F)) under OM,,, or in particu-
lar under the map OM, is not generally contained in Z(M(F)). If f lies in 'H(G(F)),
OM(f, ir,X) need not be compactly supported in X. However, one can define another
map which preserves the property of compact support at the expense of smoothness.

For each group Q E (M), let /QEaa be a fixed point in the chamber (ab)+ as-
sociated to Q which is very far from any of the walls. Then if X lies in aM, we can
set

-(X) = pQ,

where QEJ(M) is the unique group such that X lies in aQ. For any f Eiac(G(F)), we
define a function C'M(f) on Htemp(M(F))x aM,F by setting

COM(f, It, X) = (M,(X) (f, r, X). (7.3)
This definition is slightly different from the one on p. 341 of [4]. However, it is a simple
matter to show that c4M maps ,/ac(G(F)) continuously to Iac(M(F)) as in [4, §4].
Moreover, the compact support property [4, Lemma 4.2] remains valid, a fact we will
leave the reader to verify.

The distributions IM (y) are defined inductively as linear functionals on either of the

spaces 'ac(G(F)) or N/ac(G(F)), by the formula

JM(,f)= , iM(7,Y L(f)). (7.4)
LEC(M)

To know that the definition works, one has to realize that the weighted orbital integral
JM(Y, f) makes sense for f in 1ac(G(F)) on hac(G(F)) as well as for functions in the
original space TI(G(F)). We remark that the reformulation (5.2*) of Theorem 5.1 remains
valid if f is any function in 'Hac(G(F)).

One difficulty with the distribution IM('y) is that it does not preserve the property
of compact support. If f lies in H(G(F)), and 7y is confined to a maximal torus in M(F),
y-IM(/y,f) generally has unbounded support. This is due to the presence of the map
XL in the definition (7.4). The problem can be rectified by replacing OL by COL. We
obtain invariant distributions

CIM(2)=CIMG(^), E M(F)nGreg(F),
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defined inductively by
JM(rY,f)= Z I (7, COL()) (7.5)

LEC(M)

for any function f in 7ac(G(F)). If f lies in 7I(G(F)) and 7 remains in a maximal torus,
-yCIM(7y, f) does have bounded support [4, Lemma 4.4].

Recall also that the relations among the various objects are expressed in terms of
invariant maps {0M=G I} and {C9M=CG} from ,,ac(G(F)) to ,ac(M(F)). The maps
are defined inductively by formulas

qCM(f) = E OM(q)L(f) (7.6)
LEC(M)

and

<M(f) = E ^CL(cOL(M))- (7-7)
LEC(M)

The other relations are given by

CIM("('f)= E i(7,cL(f)), (7.8)
LEL(M)

M(aX7J) = CE c&i(7L^(f)), (7.9)
LE£(M)

and

E cL (L(f/))= (L f))=
fG, ifM=G(7.10)

LEL(M) LEC(M) M0 otherwise,

all being valid for any f in Xac(G(F)). (See [4, §4].) The notion of having support
on characters is relevant to invariant maps as well as distributions. Theorem 6.1 of [4]
establishes this property for CIM(y), OM and cOM, thereby justifying the notation in the
formulas above. The result relies on the fact that the original distributions IM(y) are

supported on characters, which we of course have established in present local context in

Corollary 5.3.
There are other invariant distributions, which are supported on characters, that

come from residues. We refer the reader to [7, §1] for the definition of the residue

Res 0(A) = Res (Ao)s2,A--Ao

of a meromorphic function $ on a* with respect to a residue datum Q for (G,M).
The operation is essentially just a sequence of iterated residues of b at Ao. Applied to
the weighted characters, it yields an invariant distribution

f -- Res aA(7%M(7rA,P)p(TrA, f))i,A- oto

8t-935203 Acta Mathematica 171. Imprimt le 28 octobre 1993
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on H(G(F)) for any representation rEIItemp(M(F)) and any analytic function aA on
a*M [6, Lemma 8.1]. One can then establish that this distribution is supported on
characters [7, Theorem 5.2].

Residues arise from changes of contour. Fix irEntemp(M(F)), and take aA=e-A(X)
for a point X in aM,F. Consider two other objects, a point /EaM in general position,
and a family

A/= {JL: L E L(M)},
where for each L, VL is a point in a* in general position. Then for each L there is a finite
set RL(IL,NfL) of residue data for (L, M), which depends only on the family

J/L = {VL,: L1 E £(M), L1 C L},

with the property that

/
+

(A)dA= Ji ( Res4(An+A))dA
pzM,F L£EL(M) +aL,F f2ERL(/,/VL)LCLi

for any group L' EL(M), and for

P(A) = e-A(X) tr(TRZ(7rA, P)Zp(7A, f)), f E -(G(F)).

This is a simple consequence of the usual residue theorem [6, Proposition 10.1]. The
residue data are determined in a straightforward geometric fashion from /, K/ and the

singular hyperplanes of the function 4. We set DM, (r, X, f) equal to

IaF ( (ResA(e X) tr(jM(7rA, P)Z(TrA, )))) dA.
a,F ERG(t,,)'^-^"+(e

Then DG(r,, X) is an invariant distribution on -'(G(F)) which is supported on char-
acters.

There are two cases of particular interest. Fix a small point e E aM in general position.
We also have the point p(X)aM for any element XEaM,F. Set

.A(X, E) = {yL =/(XL) +E L E C(M)),

where XL and EL denote the respective projections of X and e onto aL,F and a*. With
this notation, we define

DM(r, X,, f) = DG r,X f) = D (rX, f) (7.11)M MX) ,, Or)Xf (.11
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and

CDM(Tr, X, f) = D (7r, X, f) = DM(X, ) (T, X, ). (7.12)
We obtain two more families {DM(7r,X)} and {cDM(7r,X)} of invariant distributions
which are supported on characters. The first is defined by the residue scheme of the real
Paley-Wiener theorem and the spectral decomposition of Eisenstein series. The second is
defined by the "inverse" residue scheme. There is no need to include e in the notation; as
a matter of fact, the next lemma implies that the values of the distributions at cuspidal
functions are independent of e. Observe that the value of DM(Tr, X) or CDM(7r, X) at

any function f in -I(G(F)) depends only on the restriction of f to

G(F)XG ={x E G(F): HG() = XG}.

It depends in fact only on the derivatives of the function

A Ip(7rA, fXG)= f(x)Ip(7rA,f)dx, A EaM,
G(F)XG

up to a certain order, at a finite set of points. In particular, DM(lr, X) and CDM(7r, X)
can be regarded as distributions on 7tac(G(F)). Incidentally, DM(lr,X) is almost the
same as the distribution defined (and denoted by DM((r,X)) in [7, §6]. The minor
discrepancy, as with the map CqM above, is due to our use here of the point /(X).

There are of course similar distributions indexed by elements in T(M) instead of
lHtemp(M(F)). The connection is given by the analogue of (7.1). That is,

DM(TM,X, f)= E tr(QV(r))DM (7r, X, f)
eenI(RM,x, )

and

DM(rM, X, f)= E tr(Lo (r)) DM (re, X, f),
en(RMX.)

for any element TM =(M1, a, r) in T(M).
LEMMA 7.1. Suppose that f is a cuspidal function in iSac(G(F)). Then OM(f) and

cOM(f) are cuspidal functions in Iac(M(F)). Furthermore,

DM(TM,X, f) = OM(f, TM,X) (7.13)

and

CDM(TM, X, f) = COM(f , M, X) (7.14)
9-935203 Acta Mathematica 171. Imprimt le 28 octobre 1993
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for any TM ET(M) and XeaM,F.

Proof. The part of the lemma that pertains to OM(f) was established in [7, §6].
Since the definitions are slightly different here, we must persuade ourselves that the
results continue to hold. The essential step is to verify the analogue of the formula (4.9)
in [4, Lemma 4.7]. In the present context, the assertion is that

OM(h, Xr, X) = IM,u,(X)+E(7r, X, h), (7.15)
for any hE1.ac(G(F)), 7relItemp(M(F)) and XEaM,F. Here

IM,~(r, X, h) = IM(7r, X, h)e-4(x), E ab,
is the invariant distribution which is supported on characters [4, Theorem 6.1], and which
is defined inductively in [4, §3] by a formula

4M,,(h, 7r,X)= E iM (7TX, L(h)).
LEL(M)

Taking u=p(X)+e, we can write the left hand side of this formula as

0M,(X)+e(h, , X) = M,4(X)(h, 7, X) =CM(h, X, X) = E (OL(f), , X),
LEL(M)

by deforming the contour of integration in (7.2), and then turning to the definitions (7.3)
and (7.6). Assuming (7.15) inductively, we have

M(OL(h)/Lir,, X) = IM,,(X)+e(7r, X OL(h))
for any L$G. The required formula (7.15) is then the identity of terms with L=G.

Apply (7.15) with h equal to the cuspidal function f. If 7rEIttemp(M(F)) is properly
induced, the descent formula [4, Corollary 8.5] tells us that IM,,((X)+E(7r, X, f) vanishes.
Therefore OM (f, 7r, X) also vanishes. It follows that OM (f) is a cuspidal function. Com-

bining this with (7.10), we see inductively that the function c0M(f) is also cuspidal.
It remains to establish (7.13) and (7.14). At first glance, this might seem to be a

direct consequence of the two pairs (7.6), (7.7) and (7.11), (7.12) of parallel definitions.

However, we must be careful. For example, if g is a nontempered representation

IR(A), R eFL(Mo), a E ntemp(MR(F)), A Ea*Rc,
of L(F), the function eL(f, , X), defined by analytic continuation from its values for

purely imaginary A, is not generally equal to to the integral

/ tr(7L(eA, Q)IQ(L, f))e-(X) dA, Q e P(L).
iaLF
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The identity (7.13) is actually false if f is not required to be cuspidal.
It will be enough to prove the identities with TM replaced by any representation

trElltemp(M(F)). There is also no harm in assuming that M$G. We shall use the
general reduction formula of [7], which for any p and K, relates IM,C,(lr, X, f) with the
residues DLAL (r X). Applied to the cuspidal function f, the formula isM,I

IM,(7r, XIf) D ir, X,I,(XILv(f)), (7.16)
LEZ(M)

in the notation of [7, Corollary 6.1]. IL,L (f) really stands for the function

(A, L,X) -) ILYL(e, XL, f)e-A()
of three variables, AE a ,c, Q a standard representation of L(F) as above, and X EaM,F
(See [7, (2.5) and the discussion preceding Corollary 6.1].) If g is properly induced, the
descent formula [4, Corollary 8.5] implies that IL,VL(Q, XL, f) vanishes, as explained at
the beginning of [7, §6]. Since 7r is tempered, DL',L (7r) is supported at those e with

unitary central character (as in the proof of [7, Corollary 6.2]), so it suffices to consider

only the case that Q is tempered. To obtain (7.13), we take A/=Ar(O, e) and /=[t(X)+e.
Following the proof of [7, Corollary 6.2], we see that

IL,vL (, XL, f) =IL,e((, XL, f) =, E Itemp(L(F)), L G,

by [4, Lemma 4.5]. In particular, the summands with L$G on the right hand side of
the identity (7.16) vanish. The summand with L=G equals DM(7r, X, f), while by (7.15)
the left hand side of (7.16) equals 0(f, ir,X). The identity reduces simply to (7.13). To
establish (7.14) we take Af=A/(X,e) and /u=e. Then it is the left hand side of (7.16)
which vanishes, while (7.15) tells us that

IL,VL (e, XL, f) = IL,,(XL)+EL (e, XL, f) = OL(f, Q, XL),
for tempered e. If we assume inductively that (7.14) holds when G is replaced by a proper
parabolic subgroup L, the corresponding summand on the right hand side of (7.16)
equals O(OL (fa), r, X). The summand with L=G equals CDM(r., X,f). Therefore
(7.16) reduces to

CDM(7r X, f)+E C (L(L(f), X) = 0.
L:G

We combine this with the equation

C0M(T,X, f)+ CL (oL(f), ,X) =
L-G

obtained from (7.10). The obvious conclusion is the required formula (7.14). This com-
pletes the proof of the lemma. [
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8. Truncated characters

The invariant distribution CIM(Y, f) is a companion to IM(7, f). It is given by an induc-
tive definition (7.5) which is obviously parallel to that (7.4) of IM(7, f). As we recalled
in §7, the property that distinguishes IM (y, f) from IM(y, f) is its compact support
in y. Now for cuspidal f, we have an expansion (5.2) for IM(y, f) in terms of elliptic
tempered characters of G(F). Is there a similar expansion for CIM(7, f)? In particular,
can one be more precise about the support of CIM (y, f) if f is cuspidal? The answer to
these questions is yes. We shall derive an expansion for CIM (y, f) in terms of "compact
traces" of elliptic tempered characters which is parallel to the expansion for IM(-, f).

Set

M(F)G ={ E M(F): HM(y)E aG}, M EC.
Then if e is a finite linear combination of irreducible characters on G(F), and y is a

G-regular point in M(F), we define the truncated character

( { M(7), if EM(F)G,
0, otherwise.

In particular, we have

(8.1)V·a···,(v' D( )l /2E(-Vr , if7y E M(F)elnM(F)G,

O.M(0, otherwise,

for any rETell(G). Truncated characters play an important role in p-adic harmonic

analysis, as for example in Clozel's proof of the Howe conjecture. The Archimedean case

is simpler. Then C4M(TV, ) can be ignored if M$G, since it vanishes for y in an open
dense subset of M(F), while C M(rV,7) equals DM(rV, y) if M=G.

THEOREM 8.1. Suppose that f is a cuspidal function in 7-(G(F)). Then

CM,(Y, f) = (_1)dim(AM/AG) jd(T)|-1 c M(Tr, 7)(7, f) dT, (8.2)
Tel(G)

for any group MEl and any G-regular point y in M(F).
Proof. We noted at the end of §5 that the assertion (5.2) of Theorem 5.1 had an

equivalent formulation (5.2*). The same remark applies here. The formula (8.1) has an

equivalent version

cM(^yf) = (-)dim(AM/AG) Ild' (rT)-1 cM(T , )fG(T, HG(y)), (8.2*)
rETeii(G)/ia*G
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in which f is permitted to lie in the larger space -/tac(G(F)). We shall prove it in this
form.

As in the proof of Theorem 5.1, we can easily dispense with the case that y does
not belong to M(F)ell. The right hand side of (8.2*) vanishes by definition in this case.

To show that the left hand side CIM(y, f) also vanishes, we write

cIM(yf)= i(^ .OL(f)),
LE£(M)

as in (7.8). By Lemma 7.1 the function COL(f)ET,,(L(F)) is cuspidal. We can therefore
apply the descent formula [4, Corollary 8.5] to conclude that

I(Y, coL(f)) = 0

Thus CIM(y, f) vanishes, and the formula (8.2*) holds for y outside of M(F)ell.
To deal with the elliptic points in M(F), we shall compare the two expressions (5.2*)

and (7.9) for IM(y, f). The first one expresses IM(CY, f) as a function

F(y)= (-_l)dim(AM/AG) E 7dl(T)I-l M(TV, )fG(T, HG(7)),
TE Tell(qG)/iaG

while the second allows us to write IM(y, f) in the form

CIM(Yf)+ E CIM(y,0L(f)).
L EC(M)
LOG

In other words,
CIM(yf)=Fl(^)- S Ci(. wL(f))

LEC(M)
L.G

Assume inductively that (8.2*) holds whenever G is replaced by a Levi subgroup LCG.
By Lemma 7.1 the function OL(f)EZac(L(F)) is cuspidal. We can therefore use the
induction assumption to write

cI (7,L(f)) (-_l)dim(AM/AL) IdlL(7L)T-1c( (7L,7)Lf, L,HL()),
TL ETeii(L)/iaL

for any LCG; we are using the notation

CL (TLV 7) =CM(TL y )

here to emphasize the role of L. Lemma 7.1 also asserts that

OL(f, TL, HL (Y)) = DL (TL, HL (7), f).
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It thus follows that CIM(y, f) equals the difference between F1 () and the function

F2(y)= E (-1)dim(AM/AL) S dl(L)-l1c) (TLy )DL (TL HL (), f)
LEC TL ETell(L)/ia*

Given the G-regular point 7EM(F)eii, we form the vector HM(-) in aM. This vector
belongs to a chamber aQ, for a uniquely determined parabolic subgroup Q EF(M). We
shall consider separately the cases that Q=G and Q&G.

If Q=G, y lies in M(F)G. Then

M(TV, y) =- c(M(TV,'), 7 TeTll(G),

from which it follows that Fl(y) equals the right hand side of the formula (8.2*). The
vectors HL(y) which occur in the expression above for F2(7) are each equal to HM(-),
a point in aG. The change of contour involved in the definition of the distributions

DL(TL, HL (), f) is therefore trivial, and DL(TL, HL(), f) vanishes for any LCG. Con-

sequently F2(y) vanishes. We have obtained an identity

CJM(, f) = F1(y)-F2(?) = F1(),

which is just the required formula (8.2*) in the case under consideration.

Suppose finally that Q$G. Then y does not lie in M(F)G, so the functions

C4M(7V, 7) on the right hand side of (8.2*) are all equal to 0. To complete the proof of
the theorem, we must show that CIM(y, f) vanishes. Suppose that a is a point in the

semigroup
r(Q) = {a E AQ(F): HQ(a) E ana}.

Then ya is still a G-regular point in M(F)eii, and the vector

HM(ya) = HM(y)+HQ(a)

stays within the chamber aQ. We shall study the identity

CIMM(Ta, f) = F1(/a)- F2 (ya) (8.3)

as a function of a.

The left hand side of (8.3) is a compactly supported function of a. Since we are taking
f in 7(G(F)), this follows from [4, Lemma 4.4]. Our remaining task is to establish that
the right hand side of (8.3) behaves in the opposite way. We shall show that the function
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on the right is r(Q)-finite. This means that its r(Q)-translates span a finite dimensional
space of functions of a, or equivalently, that the right hand side of (8.3) is a finite sum

Zpk(HQ(a))(k (a), (8.4)
k

where {(k} are quasi-characters on AQ(F) and {Pk} are polynomial functions on aQ.
To this end, we observe that the first function Fl(ya) on the right hand side of (8.3)

is a finite linear combination of virtual characters

·M(TV, ya), rE Tej(G)/iaG.

Each such virtual character can in turn be written as a finite linear combination of
irreducible tempered characters

mM(7, ya)= ID(ya)li/20(7, a).

If F is Archimedean, yr(Q) is contained in a connected component of T(F)nGreg(F),
where T is a maximal torus in G. In this case one concludes from Harish-Chandra's

theory of characters on real groups, and the differential equations they satisfy, that each

-M(r, ya) is a r(Q)-finite function of a. If F is p-adic, we can use Casselman's theorem
[15, Theorem 5.2]. This result provides a formula

bM(7T, ya) = M(7Q, 7a)

for MM(w) in terms of the normalized Jacquet module

Q (6 )-1/27rN = (6Q)/21
attached to the group QEP(MQ) opposite to Q. Since lrQ has finitely many composition
factors, each mM(7r, a) is a r(Q)-finite function in the p-adic case as well. It follows
that Fl(-ya) is a r(Q)-finite function of a. To deal with the second function F2(ya),
observe that if L is not contained in MQ, the vector HM(^ya) does not lie in aL, and the
truncated characters c(mL (T-,7 ) vanish. It follows that

F2(a)- (_l)dim(AM/AL)E jdl(rL)-1 L (T-, f7a)OL(7L,HL(7a),)f)
LEC(M) TL
LCMQ

where TL can in fact be summed over a finite subset of Te,1(L)/ia. Ifr'L equals (M1, a, r),
the function

â-4 cp(,7rV,-), a E r(Q),
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is just a multiple of the central character of o. Moreover, DL(rL, HL(ya), f) is a finite
linear combination of residues, taken with respect to the complex variable AEa ,c, of
functions

tr(RL(7r(, P)Zp(7r,, f))e-X(HL(-)+HL(a)) r E rI (L(F)).
As a function of a, any such residue is obviously the product of an unramified quasi-
character with a polynomial in HL (a). It follows that F2(Mya) is also a r(Q)-finite function
of a.

We have just established that

Fi(ya)-F2(ya), aFr(Q),

the right hand side of (8.3), is r(Q)-finite. It is therefore of the general form (8.4). We
have also observed that the same function, as the left hand side of (8.3), is compactly
supported in aEr(Q). The two properties are mutually exclusive. They force each side
of (8.3) to vanish. In particular, CIM(7a, f) equals 0 for each aEr(Q). Taking a=l, we
obtain the required property that CIM(7, f) vanishes. This establishes the formula (8.2*)
in the final case that Q&G. The proof of the theorem is complete. O

Observe that the theorem gives a precise description of the support of IM(^y, f).
This has an application to the maps Cq'M(f), which may play a role in the study of p-adic
orbital integrals. We know that for any fE-(G(F)), the functions XC-+MC(f, rM,X)
are compactly supported. We shall show that with a (noninvariant) condition on f,
stronger than cuspidality, the support has a description like that of the theorem.

A function fEH(G(F)) is cuspidal if and only if the invariant orbital integrals

JG(,f)=IG(7,f), E Greg(F),

vanish for y in the complement of the elliptic set G(F)ell. We shall use the uninspired
phrase cuspidal with respect to weighted orbital integrals for the stronger condition that
all of the weighted orbital integrals

JM(7 f), M E , EM(F)nGreg(F),

vanish except in the case that M equals G and y lies in G(F)eil. (The term very cuspidal
has been taken [30], and denotes a slightly different property.) Observe, for example, that

any function which is supported on G(F)e\, is cuspidal with respect to weighted orbital

integrals. Since we also require that the function lie in 't(G(F)), this example pertains
essentially to the p-adic case. It can be used to study the invariant orbital integrals of

spherical functions.
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COROLLARY 8.2. Suppose that fEl(G(F)) is cuspidal with respect to orbital inte-
grals, and that MEL. Then the function C'M(f) is cuspidal, and its values

CmM(f, TM,X), TMET(M), XE M,F,

vanish for elements X in the complement of aGnaM,F.

Proof. We shall combine the theorem with the inductive definition

JM(Yf)= E CiLc(YC ML(f)), 7EM(F)nGreg(F),
LEC(M)

of CIM(?). If M=G, COM(f) equals fG, and the assertions are obvious. We can therefore
assume that M$G. Then the left hand side of the formula vanishes by assumption.
Moreover, CIMM(y) equals IM(y), and is simply the invariant orbital integral on M(F).
We obtain

i(7yCM(f))=- ZE CL(,CL(Xf)), (8.5)
LEC(M)L.M

for any G-regular element y in M(F).
Assume inductively that the assertions of the corollary are true if M is replaced by

any group LEL(M) with L$M. Then the functions c4L(f) on the right hand side of

(8.5) are cuspidal. Applying the version (8.2*) of the theorem, with G replaced by L, we

write the right hand side of (8.5) as

(_l)dim(AM/AL)+1 dl(TL)-1 CL (T7 )c)L(fTL,HL(7)) (8.6)
L$M TLETell(L)/iaL

Suppose that y does not lie in M(F)ell. Then the functions cL(rL, y) vanish by def-
inition, and the right hand side of (8.5) equals 0. We have taken y in M(F)nGreg(F),
but this set is dense in Mreg(F). It follows that

IM (, CO5M(f)) = 0

for any y in the complement of M(F)ell in Mreg(F). Consequently, CoqM(f) is a cuspidal
function in Ia,(M(F)), as required.

To deal with the second assertion of the corollary, we shall again use the fact that

IM(Qy, cOM(f)) equals (8.6). Fix a point X in the complement of aG in aM,F. We claim
that IM(7,yCM(f))=0 for any point 7 in M(F)nGreg(F) with HM(y)=X. Suppose
this is not so. Then one of the summands in (8.6) is nonzero. From the nonvanishing of
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CL (rL, 7) we infer that X lies in aLnaM,F. In particular, X is also equal to HL(Y).
From the nonvanishing of the second function

'L(f TL, HL()) = cL(f TL, X)

and our induction hypothesis, we conclude that X actually lies in aGnaM,F. This con-
tradicts the assumption on X. The claim is therefore valid. It remains for us simply to
evaluate a distribution E(7M), TMET(M), on the cuspidal function COM(f). It follows
easily from the formula (1.3) that

COM(/ TM, X)= 4M(TM, 7)IM (7, 'M(f)) dr

where d? is the appropriate measure on the set

{y C rell(M(F)): HM() = X}.

We have just seen that the integrand vanishes on the G-regular classes, a set whose

complement has measure 0. It follows that CqM(f, rM,X)=O for any TMET(M). This
establishes the second assertion of the corollary. O

9. Characters and residues

We shall finish the paper with a simple application of Theorems 5.1 and 8.1. We shall es-

tablish a relation between elliptic tempered characters and residues of intertwining oper-
ators. The characters will take their usual form as the normalized functions {(M(T7, )}
and their truncated analogues {CfM(7V, )}. The residues will come in through the two

families {DM(TM, X)} and {CDM(TM, X)} of distributions discussed in §7. We shall in

fact prove two identities, in which the two functions associated to characters are related

separately to the two families of distributions.
The invariant distributions

{DM(TM, X), DM(TM, X): TM E Tell(M), X E aM,F}

are supported on characters. Their values at cuspidal functions fENH(G(F)) can therefore
be written as linear combinations of distributions fG(T, XG). We obtain expressions

DM(TM,X, f)= E DM(TM,X,T)fG(TXG) (9.1)
rET,.n(G)1ia)
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and

cDM(TM, X, f) = E CDM(Tr X,, r)fG(r, XG), (9.2)
rETell(G)/iaGl

with uniquely determined coefficients {DM(TM, X, T)} and {CDM(M, X,))} such that

DM(TM, X, ZTA) = Xr(Z)DM(TM, X, r)e- (XG)

and

cDM(TM, X, ZTA)= XT(Z)CDM(TM, X, ,)e-(XG),
for any zEZ, and AEia*.

These coefficients are curious objects. If we work backwards through their definitions
in terms of residues, keeping in mind that the residues define invariant distributions,
we see that they are related to subquotients of induced representations. For example,
if TM=a and r=7r are square integrable representations (in HI2(M(F)) and II2(G(F))
respectively), and X is constrained to lie in any of the convex cones in the relevant

decomposition of aM, DM(TM, X, r) and CDM(TMX, X, r) are finite linear combinations of
functions

pA(X)e-A(X),
A

EM,,pea (X)E C[X], (9.3)
taken over points A at which the induced representation Ip(aA) is reducible. More pre-
cisely, Ip(7A) should have irreducible constituents whose expansions in terms of standard
representations contain 7r. The residue operations will assign polynomials to these con-
stituents, the sum of which equals pA(X).

As before we shall write

(,'-y) = M(TL,Y)

and

CLM(, ^)= CM(TL,M 7), TL E T(L), yE M(F)nGreg(F),
for the normalized characters on a Levi subgroup LEC(M).

THEOREM 9.1. Suppose that r belongs to Tel(G), that M is a group in C, and that
y is a G-regular point in M(F). Then

M(TV, ) =E dL(TL, T)CLM(Trv, )DL(L, HL (Y), T) (9.4)
L rL

and

cM(TV, 7)= > dL(TL, r) 4(TrL, 7)DL(rL, HL (), T), (9.5)
L TL
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where L and rL are summed over C(M) and Tel(L)/ia* respectively, and

dL(TL),T)=( )dim(AL/AG) dl(TL)l-1jdl(T)l.

Proof. Suppose that f is a cuspidal function in 'I(G(F)). To derive the first formula,
we start with an expression

E Idl (G) M(7rG )fG(TG HG ()), (9.6)
rGETell (G)/iaG

obtained from the version (5.2*) of Theorem 5.1. We shall repeat some of the formal

manipulations of the proof of Theorem 8.1. According to (5.2*), the expression (9.6)
equals the product of (-l)dim(AM/AG) with IM(Y, f). This can in turn be written

E (_-)dim(AM/AG) CL(Y(, OL(f))
LeL(M)

by (7.9). But OL(f) is cuspidal by Lemma 7.1. We can therefore apply the version

(8.2*) of Theorem 8.1, with G replaced by L, to the summand CIL (y, L(f)). The whole

expression becomes

S (_l)dim(AL/AG) Id1(TL)I-1 M(LV Y)L(f L, HL())
LEL(M) TL Tenl(L)/iaL

The last step is to make the substitution

0L(f, TL, HL(^)) = DL(rL HL()Yf)
DL(TL, HLf(7), G)fG(TG, HG()),

rTGTeii(G)/iaG

which comes from Lemma 7.1 and the definition (9.1). With this substitution, the ex-

pression becomes a linear combination of functionals fG(rG, HG(Y)). The coefficient of

fG(r, HG(y)) is in fact the product of Id1(r)K-1 with the right hand side of (9.4). The
same coefficient in the original expression is simply the product of Id(Tr)l-1 with the left
hand side of (9.4). If we take f to be a pseudocoefficient of r, the identity (9.4) follows.

To derive (9.5), we perform similar manipulations on the dual expression

E Idl(r(G)-l CM(TG,7)ffG(rG, HG(Y)). (9.7)
TG ETell (G)iaG

Applying the formulas (8.2*) and (7.8) in turn, we reduce the expression to

E (-)dim(AM/AG)rL ( COL(f)))
LEC(M)
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The formula (5.2*) for IL(7) then expands the expression to

(_l)dim(AL/AG) E Idl(7L)I-1(L(TL' 7)COL(f7,'rLHL(7^))
LEL(M) TLETel(L)/iaL

Finally, with the substitution

COL(f, L,HLH(7))= E CDL(TL, HL(),TG)fG(rG,HG()),
rG Tell(G)/iaG

obtained from Lemma 7.1 and the definition (9.2), we arrive at a linear combination
of functionals fG(rG, HG(7)). Comparing coefficients of fG(r, HG(Y)) in the initial and
final expressions, as before, we obtain the required identity (9.5). O

Remarks. (1) The sum over L in (9.4) is a bit misleading. If f is Archimedean,
the terms with L$M vanish almost everywhere, and can be ignored. These terms also
vanish for p-adic F if HM(y) does not lie on any of the singular hyperplanes in aM. The

identity (9.5), on the other hand, is a kind of inversion formula, and here the sum over
L is an essential ingredient.

(2) The formula (9.4) gives an interpretation for the restriction to M(F)eii of a

(virtual) character O(rV) on G(F). There is another well known such interpretation. In
the p-adic case it is Casselman's theorem [15] for characters in terms of Jacquet modules.
For real groups it is Osborne's conjecture, proved by Hecht and Schmid [23], for characters
in terms of np-homology modules. The residues DM(TM,X,T), which account for the
character exponents here, are not so explicit. Still, it would be interesting to try to relate
them directly to Jacquet modules or np-homology modules.

We conclude with a few informal comments on a possible application of the results
in §§7-9. Fix a cuspidal function fE-H(G(F)). Suppose also that 7r is a representation
in Htemp(M(F)), and that a(A) belongs to the Paley-Wiener space on ia* r. For some

purposes it would be useful to understand the integral

I a(A) tr(ZM(7rA, P)Ip(lrA, f)) dA (9.8)
aM,F

as a linear functional in a(A). This integral appears, for example, in Waldspurger's
formula [38, §II, Theoreme] for orbital integrals of spherical functions on GL(n). Similar
integrals have been studied by Laumon [33] and [34] in work on the cohomology with
compact support of Shimura varieties.

One can apply Fourier inversion to a(A). The problem becomes that of understanding

'[/ e- (X) tr(ZM(7lr, P)Zp((7rA, f)) dA = OM(f, r, X)
M,F
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as a function of XEaM,F. In view of (7.1), this is in turn equivalent to studying the
function

X M(f, TM,X),
for a fixed element TMET(M). Suppose that f is actually cuspidal with respect to
weighted orbital integrals. Then one can exploit the expansion

qM(f,TM, X)= S C L(CL(),TM,TX)
LEL(M)

given by (7.7). Indeed, C iL(f) is a cuspidal function by Corollary 8.2, and one can apply
Lemma 7.1. This yields an identity

CL (COL((f) TM X)= cDL (rM X, cL(f)),

which in fact vanishes unless TM lies in Tell(M). It follows from the definition (9.2) that

0M(f,TM,X) = S S CD(TM,X, TL) 'L(f, L, XL). (9.9)
LEL(M) TLETen1(L)/iaL

The problem then reduces to studying CqL(f, TL, XL) and DL (TM, X, TL) separately as

functions of X.
The qualitative behaviour of the right hand side of (9.9) is pretty clear. By Corollary

8.2, CL (f TL, XL) is supported on the set ofX E M,F which lie in aM(CG. On the other

hand, if X remain iin the appropriate chamber, CDf (rM, X, TL) is a linear combination
of functions (9.3). One could hope to obtain more information about these functions
from the inversion formula (9.5).
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