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UNIPOTENT AUTOMORPHIC REPRESENTATIONS: CONJECTURES

James Arthur

Foreword.

In these notes, we shall attempt to make sense of the notions of semisimple and unipotent
representations in the context of automorphic forms. Our goal is to formulate some conjectures,
both local and global, which were originally motivated by the trace formula. Some of these con-

jectures were stated less generally in lectures [2] at the University of Maryland. The present
paper is an update of these lectures. We have tried to incorporate subsequent mathematical

developments into a more comprehensive discussion of the conjectures. Even so, we have been
forced for several reasons to work at a level of generality at which there is yet little evidence.
The reader may prefer to regard the conjectures as hypotheses, to be modified if necessary in the
face of further developments.

We had originally intended to describe in detail how the conjectures are related to the spec-
tral side of the trace formula. However, we decided instead to discuss the examples of Adams
and Johnson (§5), and the applications of the conjectures to intertwining operators (§7) and to the
cohomology of Shimura varieties (§8). We shall leave the global motivation for another paper
[5].

I would like to thank Robert Kottwitz and Diana Shelstad for a number of very helpful
conversations, particularly on the topic of endoscopy. Any remaining inaccuracies are due
entirely to me.

Notational Conventions: Suppose that H is a locally compact group. We shall write 1(H)
for the set of equivalence classes of irreducible (continuous) representations of H, and rlunit(H)
for the subset of representations in n(H) which are unitarizable. The symbol Z(H) will denote
the center of H, and so(H) will stand for the group of connected components of H.
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§1. Introduction.

Suppose that G is a connected reductive algebraic group over a field F. We shall always
assume that F has characteristic 0. For sections 1 and 2 we shall also take F to be a number
field. The adeles AF of F form a locally compact ring, in which F is embedded diagonally
as a subring. We can take the group G(AF) of adelic points of G, which contains G(F) as a

discrete subgroup. The basic analytic object is the regular representation

(R(y)O)(x) = O(xy), e L2(G(F)\G(AF)), x,ye G(AF).
It is a unitary representation of G(AF) on the Hilbert space of square integrable functions on

G(F)\G(AF) (relative to the right-invariant measure). A basic goal of the modern theory of auto-

morphic forms is to deduce information about the decomposition of R into irreducible represen-
tations.

Let 1I(G) be the set of irreducible representations Ire Init(G(AF)) which occur in the

decomposition of R. In general, there will be a part of R which decomposes discretely and a

part which decomposes continuously, so the definition is somewhat informal. Nevertheless, the
theory of Eisenstein series [28] reduces the study of the decomposition of R to that of the
discrete spectrum. Set

G(AF)1 = (xEG(AF): IX(x)l = 1, XEX(G)F) ,

where I is the absolute value on AF, and X(G)F is the group of F-rational characters on
G. For example, if G =GL(n), G(AF)1 is the group of matrices in GL(n,Ap) whose deter-
minant has absolute value 1. In general, G(AF)1 is a subgroup of G(AF) which contains
G(F) as a discrete subgroup of finite co-volume. If n is any representation in Iut(G(AF)),
let mo(x) be the multiplicity with which the restriction of i to G(AF)1 occurs as a direct
summand in L2(G(F)\G(AF)1). The nonnegative integers mo(0), and their analogues for
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smaller groups, essentially determine the decomposition of R. More precisely, let rno(G) be the
set of representations te flnmt(G(AF)) with mo(x) * 0. The theory of Eisenstein series gives a

decomposition of I(G) into induced representations

Ip(7l) , 7ClE r-o(MP) ,

where P = MpNp ranges over parabolic subgroups of G.

For each valuation v of F, let Fv be the completion of F at v. We can write G(AF)
as a restricted direct product of the local groups G(Fv), and a given representation in nI(G(AF))
has a unique decomposition [11]

7 =®v,, 7evvE(G(FV)).
v

Moreover, almost all the representations xv are unramified. This means that for each valuation
v outside a finite set S, ITv is an irreducible quotient of the representation induced from an

unramified quasi-character on a Borel subgroup. Any such 7it is determined by a unique sem-

isimple conjugacy class o(7v) = acv(t) in the L-group LG of G [8]. In other words, n

defines a family
a(n) = {av(t): vS}

of semisimple conjugacy classes in the complex group LG. Let us write Y(G) for the set of
families a = {ov: v )S} of semisimple conjugacy classes in LG such that a = o(7i) for some

representation 7t in II(G). (Strictly speaking, the elements in £(G) are equivalence classes,
two families a and a' being equivalent if Tv = (v for almost all v.) The representations
enI(G) are believed to contain arithmetic information of a fundamental nature. This will show

up in the data needed to describe the different conjugacy classes in a family Uo(c).
If G = GL(n) and x is cuspidal, the family ao() uniquely determines n7. This is the

theorem of strong multiplicity one. In general, however, the map x --o(71) from f(G) onto
£(G) is not injective. One could consider the problem of decomposing R in two stages,
namely, to describe the set E(G), and to determine the fibres of the map 7t -<o(r). This is a
utopian view of what can actually be accomplished in practice, but it is a useful way to motivate
some of the constructions in the subject. For example, the theory of endoscopy, due to Langlands
and Shelstad, is aimed especially at the second aspect of the problem. One goal of the theory is
to partition the representations in H(G(AF)) into certain classes, L-packets, according to the
arithmetic properties of the local representations fl(G(Fv)). The representations in the intersec-
tion of an L-packet with 1I(G) should then all lie in the same fibre.

The theory of endoscopy works best for tempered representations. Recall that the subset
Itemp(G(Fv)) c 1unIit(G(F)) of tempered representations consists of the irreducible constituents

in the spectral decomposition of L2(G(Fv)). (We refer the reader to [13, §25] and [14, §14] for
the formal definition of a tempered representation.) Let nItemp(G(AF)) be the subset of represen-
tations in nunit(G(AF)) of the form
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I = )nv, nCve ntemp(G(Fv))
The theory of endoscopy suggests conjectural formulas for the multiplicities mo(7c), when n
belongs to ltemp(G(AF)). (See the examples in [24] and [38].) This amounts to a conjectural
description of the tempered representations in II(G). However, the formulas break down for

nontempered representations. The purpose of these notes is to describe a conjectural extension of
the theory which would account for all the representations in n(G).

Much of this conference has been based on the dual nature of conjugacy classes and charac-
ters. In this spirit, we should think of the tempered representations in H(G) as semisimple auto-

morphic representations. Our goal is to decide what constitutes a unipotent automorphic
representation. More generally we would like to know how to build arbitrary representations in

H(G) from semisimple and unipotent automorphic representations.
Stated slightly differently, our aims could be described as follows: Given a representation n

in the complement of -Itemp(G(AF)) in lIut(G(AF)), describe mo(t) in terms of the multipli-
cities

mo((l) , 1iE ntemp(GI(AF))
for groups G1 of dimension smaller than G. This is of course a global problem. Its local

analogue is essentially that of the unitary dual: Classify the representations ivt in the comple-
ment of Itemp(G(Fv)) in IIunt(G(Fv)). The parameters we shall define (§4, §6, §8) seem to

owe their existence to the global problem. For example, they suggest an immediate definition for
a unipotent automorphic representation, while on the other hand, the definition of a unipotent
representation for a local group is more subtle. (See [7].) However, the existence of nontem-

pered automorphic forms does mean that the local and global problems are related. In particular,
the global parameters should lead to many interesting nontempered representations of the local

groups G(FO).

§2. The case of GL(n).
As motivation for what follows, we shall discuss the example of GL(n). Here the situation

is rather simple. We shall state the conjectural description of the discrete spectrum for GL(n) in

the form of two hypotheses.
We should first recall the space of cusp forms. Let L2sp(G(F)\G(Ap)1) be the space of

functions eL2(G(F)XG(AF)1) such that

J ¢(nx)dn = 0
Np(F)Np(Ap)

for almost all points xeG(AF), and for every proper parabolic subgroup P = MpNp of G. It

is known that this space is contained in the discrete spectrum. That is, the regular representation
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of G(AF)1 on L2p(G(F)\G(AF)') decomposes into a direct sum of irreducible representations,
with finite multiplicities. If x is any representation in Iunt(G(AF)), let mcusp() be the mul-
tiplicity in L,2sp(G(F)\G(AF)1) of the restriction of t to G(AF)1. Then

mCUSp(;) < mo(K).
If rICusp(G) denotes the set of n with mcusp() . 0, we have

Icusp(G) c Io0(G) c Hunit(G(AF)).
These definitions of course hold for any G. If G = GL(n), the multiplicity one theorem asserts

that mcusp(;) equals 0 or 1.

Hypothesis 2.1: Any unitary cuspidal automorphic representation of GL(n) is tempered. That
is, nlcsp(GL(n)) is contained in nltmp(GL(n,AF)). O

This is the generalized Ramanujan conjecture, whose statement we have taken from [29, §2].
For GL(n), the global problem becomes that of describing mo(7c) in terms of the cuspidal mul-

tiplicities mcusp(;l).
Suppose that v is a valuation of F. The unitary dual of GL(n,Fv) has been classified by

Vogan [49] if v is Archimedean, and by Tadic [45] if v is discrete. However, one does not
need the complete classification to describe the expected local constituents of representations in

no(GL(n)). Suppose that d is a divisor of n, and that Pd = MdNd is the block upper triangu-
lar parabolic subgroup of GL(n) attached to the partition

(dd,..,d), n = dm,
m

of n. Suppose that tv is a representation in Iltmp(GLd(FV)). Then the representation
m 1 (m-2i+l)

(iv 8)(gd) =(g)= )(gi)detgi 2

defined for any element
m m

g = gi E nGL(d,Fv) = Md(F),
i=l i=l

belongs to nI(Md(Fv)). Let Ipd(ICtV d) be the corresponding induced representation of
GL(n,Fv). The Langlands quotient JPd(v')6d) belongs to n(GL(n,Fv)), and is the unique
irreducible quotient of IPd(7Cv6®d).

Theorem: (Speh [42], Tadic [45]). The representation Jpd(7v®5d) is unitary. D

Thus, if

t = iCEv 7Ve funit(GL(d,FV)),
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is a representation in Iuit(GL(d,AF)), we can form the unitary representation ®Jpd(X:'C d) of

GL(n,AF). The following conjectural description of the discrete spectrum of GL(n) is widely
believed, but has not yet been established, even modulo Hypothesis 2.1. (For more information,
see [16].)

Hypothesis 2.2: The set rI0(GL(n)) is the disjoint union, over all divisors d of n and all

representations I ncusp(GL(d)), of the representations

(2.1) ®JPdt vg8]d).
The representations in Icusp(GL(n)) should be the semisimple elements in I10(GL(n)).

Some of these are parametrized by certain irreducible complex representations
Gal(F/F) -- GL(n,C)

of the Galois group of F. In fact, any such representation of the Galois group is thought to be
attached to an automorphic representation. This is part of Langlands' functoriality principle.
From this point of view, it makes sense to parametrize more general representations in

IIO(GL(n)) by equivalence classes of irreducible complex representations

(2.2) V: Gal(F/F) x SL(2,C) -* GL(n,C).

Indeed, any such Wy is a tensor product Vss®Vip, where

ss: Gal(F/F) - GL(d,C)
and

Munip: SL(2,C) -4 GL(m,C)

are irreducible representations, with n = dm. In particular, Vunip 1 is the principal unipo-

tent element in GL(m,C), the one whose Jordan normal form has one block. If Vss
parametrizes the cuspidal automorphic representation sie Insp(GL(d)), Vy itself will parametrize
the representation (2.1). The analogy with the Jordan decomposition for conjugacy classes is
clear. In particular, a unipotent automorphic representation in ol0(GL(n)) will be one for which

\yss is trivial. That is, munip corresponds to the principal unipotent conjugacy class in GL(n,C).
The associated representation (2.1) is just the trivial one dimensional representation of GL(n,AF).

A similar parametrization could be used for the larger set II(GL(n)). One would simply not

insist that the n-dimensional representations (2.2) be irreducible. The unipotent automorphic
representations in n(GL(n)) are then the representations of GL(n,AF) induced from trivial one

dimensional representations of parabolic subgroups P(AF) of GL(n,AF). It will not be possible
to parametrize all the representations in FI(GL(n)) (or 110(GL(n))) in this way. To do so

would require replacing Gal(F/F) by some larger group. However, the point is irrelevant to the
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present purpose, which is to illustrate how one can describe nontempered automorphic representa-
tions in terms of tempered ones.

A general implication of the functoriality principle is the existence of a map from n-
dimensional representations of the Well group WF of F to automorphic representations of
GL(n). (The reader is referred to [46] for generalities on the Weil group, and to [8] for the func-
toriality principle.) How does this relate to our parameter W? The absolute value on the idle
class group of F provides a canonical map w -* wl of WF to the positive real numbers.
Moreover, any representation of Gal(F/F) lifts to a representation of WF. For v as above, the

map

I[wl14 0o
%|(w) = V(w, I0 iwl ), weWF,

becomes an n-dimensional representation of the Weil group. Moreover, (2.1) is precisely the
automorphic representation attached to h, by the functoriality principle. Keep in mind that the

general automorphic representation of GL(n) does not belong to Iro(GL(n)), or even to

fI(GL(n)). The parameters (2.2) provide a convenient means to characterize those representations
of WF which are tied to these sets.

The group GL(n) is special, in that the decomposition of the discrete spectrum into cuspi-
dal and residual components matches its decomposition into tempered and nontempered represen-
tations. (Of course, we are relying here on both Hypotheses 2.1 and 2.2.) This will not be true
in general. For general G, the noncuspidal representations in the discrete spectrum are quite
sparse. I do not know a good way to characterize them. On the other hand, after the examples
of Kurckawa [23] and Howe and Piatetskii-Shapiro [15] for Sp(4), it was clear that there would
be many nontempered cusp forms. For general G, the decomposition of the discrete spectrum
into tempered and nontempered representations seems to be quite nice. It is this second decom-
position, suitably interpreted, which runs parallel to that of GL(n).

§3. Endoscopy.
Before we can consider nontempered representations for general G, we must review some

of the ideas connected with endoscopy. These ideas are part of a theory of Langlands and Shel-
stad, which was originally motivated by the trace formula and its conjectured relation to algebraic
geometry [24], [31]. The theory is now developing a close connection with the harmonic analysis
on local groups [40], [41], [33].

There are three notions to consider: stable distributions, endoscopic groups, and transfer of
functions. We shall discuss them in turn.

Suppose first that F is a local field. Recall that a distribution on G(F) is invariant if it
remains unchanged under conjugation by G(F). Typical examples are the invariant orbital
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integrals

fo(T) = J f(x-'yx)dx, fe Cc(G(F)),

in which y is a strongly regular element in G(F). It can be shown that any invariant distribu-
tion on G(F) lies in the closed linear span of the orbital integrals; that is, it annihilates functions
f such that f(Cy) vanishes for all y. (This property is most difficult to establish for

Archimedean fields, and the proof has not been published. We have mentioned it only for

motivation, however, and we will not need to use it in what follows.) For any y, let YG be the

associated stable conjugacy class. It is the intersection of G(F) with the conjugacy class of y
in G(F), and is a finite union of conjugacy classes (yi) in G(F). The stable orbital integral
of f at YG is the sum

fGC(G) = fG(i).
i

A stable distribution on G(F) is any invariant distribution which lies in the closed linear span
of the stable orbital integrals. That is, it annihilates any function f such that fG(Yc) vanishes
for every yG. The theory of endoscopy describes invariant distributions on G in terms of stable

distributions on certain groups H of dimension less than or equal to G. It is enough to analyze
invariant orbital integrals in terms of stable orbital integrals.

The groups H are the endoscopic groups for which the theory is named. They are defined
if F is either local or global. As in [33, §1], we shall denote the L-group by

LG = G >4 WF,
where G is the complex "dual group", and WF is the Weil group of F. The Weil group acts

on G through the Galois group F = Gal(F/F). We shall also fix an inner twist

r: G G*,

where G* is quasi-split over F. Then there is a canonical identification LG -X LG* between
the L-groups of G and G*. (See [33, (1.2)].)

An endoscopic group is part of an endoscopic datum (H,H,s,4) for G, the definition of
which we take from [33, (1.2)]. Then H is a quasi split group over F, H is a split extension

1 -+ Hf- H -+ WF 1,

s is a semisimple element in G, and 5 is an L-embedding of H into LG. It is required that

5(H) be the connected centralizer of s in G, and that

st(h)s-1 = a(w(h))4(h), he H

where w(h) is the image of h in WF, and a(-) is a 1-cocycle of WF in Z(G) which is

trivial if F is local, and is locally trivial if F is global. It is also required that the actions of

WF on H defined by H and LH be the same modulo inner automorphism. Two endoscopic
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data (H,H,s,4) and (H',H',s',4') are said to be equivalent if there exist dual isomorphisms
a: H -> H' and I: H' - H, together with an element geG, such that

g4(P(h'))g- = 4'(h'), h'EH',
and

gsg-1 = zr's',
where z belongs to Z(G) and r' lies in the centralizer of 4'(H') in G. Finally, an endos-
copic datum is said to be elliptic if E(H) is not contained in any proper parabolic subgroup of
LG.

There is a simple class of examples one can keep in mind. Suppose that G is a split group
of adjoint type. Then G is semisimple and simply connected. A theorem of Steinberg asserts
that the centralizer of a semisimple element s in G is connected. It follows that for any
endoscopic datum attached to s, the group H is also split. It is completely determined by s.

The elliptic endoscopic data can thus be obtained in the familiar way from the extended Dynkin
diagram. They are attached to vertices whose coefficient in the highest root is greater than one.

For example, if G = SO(2n+l), G = Sp(2n,C), and the diagram is

1 2 2 2 2 1
0==0-O - ... -0--0=

Deleting vertices with coefficient 2, we obtain

H = Sp(2r,C) x Sp(2n-2r, C), 0 < r < n,

so that the proper elliptic endoscopic groups are of the form

H = SO(2r+l) x SO(2n-2r+l).

The group H need not be isomorphic to the L-group LH. The minor complications that
this causes are easily dealt with however [33, (4.4)], so we shall assume that for a given endos-
copic datum, we have also been given an isomorphism of LH with H. We shall also assume
for the rest of this section that F is local. Langlands and Shelstad have defined a function
A(YH,y), where YH is a stable conjugacy class in H(F) that is G-regular, and y is a regular
conjugacy class in G(F) [33]. This function vanishes unless y belongs to a certain stable conju-
gacy class yG in G(F) (possibly empty), which is associated to YH. For any feCc (G(F)),
the finite sum

fH()H) = ZA(YH,y)fG(y)

then gives a function fH on the set of classes {TH}.
For a given H, the transfer factor A(yH,y) is canonically defined only up to a scalar multi-

ple. The same is therefore true of the function fH. However, if H equals G*, A(YH,Y) is just
a constant, so it can be normalized. Following the convention of [41], we shall set A(yG.,y)
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equal to the sign
e(G) = e(G,F)

defined by Kottwitz in [20]. For example, if F = R,

e(G,F) = (_l)q(G)-q('*)
where q(G) equals one half the dimension of the symmetric space attached to G.

The functions A(yH,y) are the transfer factors for orbital integrals. Langlands and Shelstad

anticipate that there is a function ge Cc(H(F)) such that

fH(YH) = gH(yH).
If f is archimedean, the map fH is the same as the one defined by Shelstad in [41]. In this
case the function g is known to exist. For p-adic F, Langlands and Shelstad have shown how
to reduce the existence of g to a local question in an invariant neighbourhood of 1 in H(F).
In any case, g will not be uniquely determined. However, if S is a stable distribution on

H(F), S(g) will depend only on f".
The regular orbital integrals are a natural family of invariant distributions on G(F). A

second family is provided by the tempered characters. For each tempered representation
7 Htemp(G(F)),

fG(x) = tr7(f), feC C(G(F)),
is obviously an invariant distribution. The tempered representations are also expected to provide
a second natural family of stable distributions. This is known if F is archimedean. In fact,
Shelstad [41] has shown that there is a theory of transfer of tempered characters which is parallel
to that of orbital integrals. Let us recall her results.

Assume that F = R. Recall [8] that

¢(G) = O(G,R)
denotes the set of admissible maps

<: WR LG,
determined up to G conjugacy in LG, while Ntemp(G) denotes the subset of maps (EO(G)
whose image projects onto a bounded subset of G. Associated to any 4e ¢(G) there is a finite

packet I', of irreducible representations. These representations are tempered if and only if 4

belongs to )temp(G). If 4 does belong to Otemp(G), it turns out that the distribution

fG() = fG(), feCc(G(R)),
'AE no

is stable.

Suppose that H is as above, and that OH is an element in Itemp(H). If f belongs to

Cc'(G(R)), fH is the image of a function in Cc'(H(R)) whose value on any stable distribution

22



UNIPOTNT AUTOMORPHIC REPRESENTATIONS : CONJECTURES

on H(1R) is uniquely determined. Therefore, fH(OH) is well defined. Shelstad studies fH(nH)
as a function of f. She obtains a formula

fH(OH) = A(HH,7C)fG() ,

for a certain complex valued function A(OH, ) on Itemp(G(lR)). If e I)temp(G) is defined by
the composition

WiR - LH LG
then A(OH,) is supported on the finite subset fi of litemp(GOR)). The functions A(0H,A)
are dual analogues of the transfer factors for orbital integrals. They are closely related to the
representation theory of a certain finite group.

Suppose that ( is an element in Otemp(G). Let S, denote the centralizer in G of the

image ((WR). Set

S = S/So = 7C(So),
the finite group of connected components of S,. Now, suppose that s is a semisimple element
in S,. Take H to be the connected centralizer of s in G, and set

H = H((WR).
Then H is a split extension of WR by H. The action of WR on H can be modified by
inner automorphisms to yield an L-action. We can therefore identify H with the dual of a well
defined quasi-split group H = Hs over R. Since H comes with an embedding into LG, the
element s determines an endoscopic datum. We shall assume for simplicity that H is iso-
morphic to LH. Then for any such isomorphism there is a unique parameter OHe(temp(H) such
that the diagram

WR

LH - Hc_ LG
is commutative. The distribution

fa(OH), feC (G(R))
is independent of the isomorphism. We therefore have a function

5(S,7) = A((H,x)
on S, x n-I, with the property that

fH(tH) = z 6(s,7)fG(C), fe C (G(R)),
RE rI,

for H=Hs.
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The transfer factors are uniquely determined up to a constant multiple. It follows that for

any fixed t1EIeI, the function

<S',xiI1> = 6(s,7)6(s,l)-1 , (s,n)eSSxn ,

is canonically defined. One of the results of [41] asserts that, as the notation suggests, the func-
tion depends only on the image s of s in So. Moreover,

<s, 7 17> , se-SE ,

is an irreducible character on So. In fact, Shelstad shows that for any fixed n1, the map
X -4 <',xnI> > is an an injection from Fl into the set 11(Sp) of (irreducible) characters on

SO. This gives an elegant way to index the representations in the packet Hn.
We should recall that the group So is abelian. The quotient

S /SO Z(G)r = S /no(Z(G)r)
is in fact a product of several copies of Z/2Z. (Here, Z(G)r denotes the group of
F = Gal(C/R)-invariant elements in the center Z(G).) Shelstad actually takes So to be this quo-
tient, since the characters < *, x l > are all trivial on the center. However, in more general
situations one encounters nonabelian finite groups. A corresponding irreducible representation
could have a central character which is essential, in the sense that it remains nontrivial under

twisting by any one dimensional character. That one must allow for this possibility was pointed
out to me by Vogan, and more recently, Kottwitz.

§4. Conjectures for real groups.
Endoscopy works beautifully for characters of real groups which are tempered. However,

the theory breaks down for nontempered characters. For example, there seems to be no stable
distribution naturally associated with a general irreducible character. What goes wrong?

We continue to take F = R. Suppose that 4 is an arbitrary parameter in ('(G). Then the

representations in FI are Langlands quotients. More precisely, there is a parabolic subgroup
P = MN of G, a tempered parameter ME (I)tenp(M), and a character

XM: M(JR) - IR*,
which is positive on the chamber defined by P, such that

FI = {Jp(XIM®XM): iME HIM)

Here JP(M®@XM) is the unique irreducible quotient of the induced representation Ip(EM®XM).
(Such induced representations are often called standard representations.) Now 0 is just a twist

of OM by the parameter of the character XM. It follows easily from the positivity of XM that

the centralizer S, lies in M, and in fact equals SM, the centralizer of WM(WR) in M. We

set
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6(s,7I) = 6(S,71M) se S, = SM,

for any representation

xI = JP(RCM®XM) ,MEIlOM
in fI. Thus, the functions 6(s,i) can be defined for a nontempered parameter. We can also
define the character

<S,7CI7CI> = 8(S,7;)8(s,7C)-1 , SE S,
on S,, for any pair of representations t and 7n1 in the nontempered packet FII.

However, the distribution

Z fG()>, fE CC (G(R)),
Are r,

is generally not stable. Moreover, even if we could find a point se So such that the correspond-
ing distribution on Hs(R) = H(R) was stable, the distribution fH(nH) would not in general
equal

- 8(S,7c)fG() .

The problem is that Il contains Langlands quotients, the character theory of which requires the

generalized Kazhdan-Lusztig algorithm, and is very complicated. On the other hand, the charac-
ter theory of the standard representations

I) = {IP(IM OM): gME HnM)
is similar to that of the representations in nIM. In particular, the two assertions above would
hold if we replaced the packet nrI by fI,.

To deal with nontempered representations, it is necessary to introduce new parameters. We
define

P(G) = T(G,IR)
to be the set of G-conjugacy classes of maps

W: WRxSL(2,C) LG
such that the restriction

WR e LG LG*
lies in Dtemp(G*). Notice that we do not impose the usual condition that N be relevant. (See
[8, 8.2(ii)].) As a consequence, N will sometime parametrize an empty set of representations.
We have adopted this level of generality with the global role of the parameters in mind, rather
than their possible application to the classification of local representations. For each VeT(G),
we define a parameter (,we D(G*) by setting
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%(w), WEWR,

equal to the image of

rlwl ol1
NI(w, wl Iw,-10 J/lt [w '0 Iwl-^ )

in LG*. As we remarked in [2, p. 10], the Dynkin classification of unipotent elements in G

implies that ) -> O., is an injection from Y(G) into ((G*). In particular, in the case

G = G*, we have embeddings

omp(G*) c P(G*) c O(G*).
Suppose that Wy is an arbitrary parameter in P(G). Set S? equal to the centralizer in G

of the image V(WR x SL(2,C)), and write s -> s for the projection from Sw onto the finite

group

S = S /So = CO(Sv),
of components. We have identified G with LG, so we also have the subgroup So, of G.

It obviously contains S,. The reader can check that the corresponding map

Sw S4)

of component groups is actually subjective. Consequently, there is a dual map

n(s¢ -o n(5s,
of irreducible representations which is injective. Notice that there is a canonical central element

f-1 01
sW = v 0,[o -1J)

in Sa. Since it can be deformed to the identity through the connected subgroup

(VW(1, o z- ): zEC*}

of SO., the image of sw in S is the identity.
For each element s in S. we can define the endoscopic group H = H, as in the tem-

pered case. Again we shall assume for simplicity that there is an isomorphism of LH with H,
and therefore by composition, a parameter VHEt (H). The local conjecture boils down to the
assertion that the theory for tempered parameters can be generalized to the parameters in T(G).
We shall discuss this informally for real groups, leaving a formal statement of the conjecture for

§6, where we shall consider a more general setting.
First and foremost, we postulate for every quasi-split group G1 and every parameter

NVeT(Gi), the existence of a stable distribution
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f f ), flECc(G(R)),
which is a finite linear combination of irreducible characters on G1(R). Now suppose that
VE (G). If

H = Hs, seS ,

we can form the distribution

f fHH), fe C (G(R)),
as in the tempered case from the stable distribution on H(R) attached to NH. It will be a finite
linear combination of irreducible characters on G(R), which we can write in the form

(4.1) fH(fH) = 8(SS, 7C)fG(7)),

for uniquely determined complex numbers 8(ss, R). Let nI- denote the set of 7e II(G(R))
such that 8(s,;) . 0 for some se S,. Then 1-v will be a finite "packet" of representations in

H(G(lR)). Remember that fH is well defined if H = G*, and is otherwise determined up to a
scalar multiple. Therefore, the numbers

(6(s,R): EnlIv}
are uniquely determined if s = s,, and are given up to scalar multiples for general s.

Our second postulate is that 6(,;) is closely related to the character theory of S,. More
precisely, we conjecture the existence of a nonvanishing complex valued function p on S.
with p(s,) = +1, and with the following further property. For each re ILN, the function

(4.2) <s, Ilp> = 5(s,x)p(s)-1, seSE ,,
depends only on the image s of s in S., and is the character of a nonzero finite dimensional
representation of S,. We do not ask that the character be irreducible. However, we shall
assume that its constituents have the same central character under s,. That is,

<s,; lp> = e%(S,, lp)<s,; Ip>,
where e,(,7clp) is a sign character on {ls)}. Thus,

6(sv,7) = ev(:)dv(:),
where

e,(7t) = e,(s,,Cp)p(s) = +1,
while the number

dW(i) = 18(s,,7r)l
equals the degree of the character <.,7 Ip>. Suppose that there is a representation Kl1e I with
dw(71) = 1. Then the function
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(4.3) <SI11> = 8(S,7C)5(,1)-1
can be written as

<S, ><pXS,l p>-1 ,

and is obviously a finite dimensional character on Sv. Therefore, the function 6(s,il) satisfies
the conditions of p.

We shall add a third postulate to the special case that G = G*. In this situation, we are pro-
vided with a second packet nIl of representations in nI(G(R)). We conjecture that li, is a

subset of -1 consisting of representations it1 with 8(s, xtl) = 1. In particular, we can form
the character (4.3) for any such ;t1. We conjecture further that (4.3) is actually an irreducible
character on Sw and that the corresponding diagram

11 TI(SJ i
is commutative.

Taken together, the three postulates provide a mild generalization of the conjecture stated on

page 11 of [2]. In the earlier version, we were too optimistic to think that the characters
<-,x I p> would be distinct. This has been shown to fail in the examples of Adams and Johnson

(see §5). There also seems to be no reason to suppose that the characters <,l p> are irreduci-
ble, but we have retained this assertion in the case that G is quasi-split.

Our conjecture is far from being the whole story. For example, it ought to include a

prescription for characterizing the Langlands parameters E(D.(G) attached to the individual
representations in IN,. As it is stated here, the conjecture does not even determine the objects
fGl(C1), IV and 65(,) uniquely. For we cannot use the inversion argument of [2], which was
based on the incorrect assumption that the map it -> <,,x p> would always be injective. The
formula (4.1) at least determines IwN and S6(,) from the stable distributions. In particular,
everything can be defined for general G in terms of data for quasi-split groups. However,
something more is clearly needed. We could try to make the conjecture rigid by adding some

plausible hypotheses, but it is perhaps better at this point to leave the matter open.
The most difficult case of the conjecture will be when the parameter v is unipotent; that is,

when the projection of V(WR) onto G equals (1). For a start, the definition of a unipotent
representation (as opposed to a unipotent parameter) is not at all obvious. Unipotent representa-
tions have been studied extensively by Barbasch and Vogan. When G is a complex group, they
define [7] packets for many unipotent parameters, and they establish character formulas which

obey (4.2). Their results imply that the conjecture is valid for complex groups, at least for the

parameters they study explicitly. We refer the reader to [50] and [51] for progress in the study of
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unipotent representations for real groups, and how these fit into the general theory of the unitary
dual.

The representations in Il, will all have the same infinitesimal character. The character for-

mulas required to prove the conjecture are easiest to handle when the infinitesimal character is

regular. This is the case in the example of representations with cohomology, which has been stu-

died by Adams and Johnson. We shall discuss their results in §5.
The motivation for the conjecture comes from automorphic forms. The representations in

the packets I, should be the Archimedean constituents of unitary automorphic forms. It is
therefore reasonable to conjecture that the representations in nl, are all unitary.

§5. An example: representations with cohomology.
As an example, we shall look at the results [1] of Adams and Johnson. They have studied a

family of parameters (V) in T(G). The corresponding representations ({I',) are the unitary
representations of G(R) with cohomology, classified first by Vogan and Zuckerman [52], and
later shown to be unitary by Vogan [48].

As in §4, G is a connected reductive group defined over F = R. We shall write g for
the (complex) Lie algebra of G(C). For simplicity we shall also assume that G(IR) has a maxi-
mal torus T(R) which is compact modulo AG(R)0, the split component of the center of G(IR).
We can then fix a Cartan involution of the form

0: g -- togto1, geG(R),
where to is a point in T whose square is central in G. The group

K' = {geG(R): 0(g) = g}
of fixed points contains T(R), and KR/AG(R)° is a maximal compact subgroup of
G(R)/AG(R)°. Let T be a fixed irreducible finite dimensional representation of G(R). We are
interested in unitary representations Te In(G(lR)) whose Lie algebra cohomology

H*(g ,KR; c®) = EHk(g,Kt;z ®)
k

does not vanish.

What are the parameters NEP(G) associated to representations with cohomology? To
answer this question, we begin with the representation '. Fix a Borel subgroup B of G which
contains T, and let

A,: T(R) -- C*
be the highest weight of the contragredient t of T, relative to B. As a one-dimensional char-
acter of T(R), AX corresponds to a map

A: WR LT.
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We shall also fix a Borel subgroup B of G and a maximal torus in B, which we shall denote

by T since the choice of B and B determines an identification of T with the dual torus of
T. As in [40], we shall write a for the nontrivial element in F = Gal(C/R), oT for the action
of o on T and T, and (lxa) for a fixed element in WR which projects onto a and has

square equal to (-1). The values of O on the subgroup C* of WR may be described by a

formula

(5.1()(z)) = z<', <xe , ZC'. X*(T)

where hX is an element in X*(T) ®C such that X - aTp lies in X*(T). We can always
conjugate the image of 41 by an element in T. Since aT maps positive roots to negative
roots, we see easily that O.(lxa) may be assumed to lie in the subgroup Z(G) x WR of LT.

Suppose for a moment that the entire image of WR under 1f lies in Z(G) >X WR. This
means that t is a one-dimensional representation of G(R). The L-action oG of a on G

has the same restriction to Z(G) as aT, SO Z(G) x WR has a canonical embedding as a sub-

group of both LG and LT. In particular, XTr can be regarded as a map of WR into LG. The
centralizer of Z(G) x WR in G contains a principal unipotent element. Therefore, there is a

map

VG: WR x SL(2,C) - LG

whose restriction to WR equals A,, and which maps l 1 to a principal unipotent element

in G. For the packet 11VGO one takes a single representation, namely the one-dimensional char-

acter t. It is the simplest of the representations with cohomology. We note, incidentally, that

xVG can be chosen so that the image of the diagonal elements in SL(2,C) are given by the for-
mula

(5.2) (NG I ) =z <2so> = n] z ZE C . EX*(T),
where G5 equals one half the sum of the roots a of (B,T).

More generally, suppose that L D T is the Levi component of a parabolic subgroup Q of
G which is standard with respect to B. Then L is defined over IR. We can identify the dual

group L with the corresponding Levi component in G which contains T and is standard with

respect to B. The L-action aL of o on L can be determined directly by its restriction to T.
This is just the composition aT o ad nL, where nL is a fixed element in the derived group of L

which maps the positive roots of (L,T) to negative roots. Now, suppose that ¢X maps WR
into Z(L) x WR. The groups L with this property are in bijective correspondence with the
subsets of

{aeEy: X(c) = 01 .
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These are just the subsets of the simple co-roots A which lie in the kernel of the highest weight
A~. We can clearly define the one-dimensional parameter

NL: WR x SL(2,C) LL
as above. In a moment we shall see how to extend the injection L c G to a canonical embed-
ding SGL: LL LG of L-groups. The composition

(5.3) V = G,L o IL:W.R X SL(2,C) -> LG
is then a parameter for unitary representations with cohomology. Conversely, any such parameter
will be of this form.

To describe the embedding G,L, we first recall how T c L can be extended to an embed-

ding of L-groups. There is a homomorphism

L,T: WIR - LL,
which maps C* into T in such a way that

(LT()) = Z 'Z , zeC*, XeX.(T),
and such that

LT(1XG) = nL x> (Ix) .

This follows from [40, Proposition 1.3.5], which is in turn based on [27, Lemma 3.2]. (See the
remark in [40] following the proof of the proposition.) As in §1 of [40], the map

L,T: t >4 w tL,T(W), te T, w WR,
then gives an embedding of LT into LL. Observe that we had no use for LT in the construc-
tion above. We simply extended the co-domain of (r to LL through the natural injections of
Z(L) x WR into LT and LL. However, an identical argument to that of [40, Proposition 1.3.5]
and [27, Lemma 3.2] gives the embedding ,GL.- One simply replaces SL by 6Q = 5G - 5L,
and nL by nQ = nonl1. Once we have defined ,G,L, we see immediately from (5.1) and the
definition (5.3) that

(5.4)V
Z

VXv(5.4)(z)) = z<SQ+X>4Q<-T,'> Ae X*(T)
for any ze C* c WR.

For another perspective on what we have discussed so far, let L* be any group over IR
whose L-group is the given group LL. One can of course parametrize the one-dimensional
representations of L*(R) by certain elements *eOP(L*), according to the Langlands
classification. For any such 4*, the packet fI1. contains a single one-dimensional representa-
tion. However, one can also parametrize the one-dimensional representations of L*(R) by
different maps 0: WR LL. Indeed, the tensor product with a fixed one-dimensional represen-
tation defines a bijection on Il(L*(R)). The corresponding bijection on <D(L*) is given by the
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product of a parameter in D(L*) with a fixed map ): WR LL whose image lies in

Z(L) > WR. For the given L*, we thus have a bijection ) -> 0* between the two different
kinds of one-dimensional parameters. In the case at hand, we already have a parameter 4T

whose image lies in Z(L) x WR. For any L* there will be an associated parameter
O*E,, (L*). For example, if L* is anisotropic modulo the center, then O * equals the composi-
tion of O , regarded now as an element in ((T), with the embedding jL,T. If L* is a

quasi-split group, f * equals OjL', the parameter in D(L*) obtained from VL-

We shall now discuss the objects attached to the parameter (5.3). Consider first the central-
izer S,,. If , belongs to X*(T) and ze C, we have

vv v f(zz)- 0
(¢(z)) = x(v(z))X(v 0 (z_-' )

v v

= <65Q+,;, -<-5Q+oTX,; >()<S, >

by (5.4) and (5.2). Suppose that v lies in the span of the co-roots of (G,T) and that z is

purely imaginary. Then

X (4,(z)) = Z<689'>z--'Q >
= 2<6Q+,X >

Since hX is dominant with respect to B c Q, we can choose z so that the centralizer of

·w,(z) in G equals L. If z is a positive real number,

(¢(z)) = z2<6'f>
and the centralizer of .((z) in L equals T. It follows that

S,,c S,, c T.
1 1

Now, any point in T which commutes with the principal unipotent element ,( 1) of L

must lie in the center Z(L). Moreover, V(WR) acts by conjugation on Z(L) through the
action of the Galois group F = Gal(C/R) on L. It follows that S, is contained in Z(L)r. On
the other hand, the elements in Z(L)r obviously commute with those in the image of W. It fol-
lows that

S, = Z(Lr.
The Galois action on L is such that the connected component of 1 in Z(L)r is identical to
that in Z(G)r. Therefore, the parameter xV is elliptic, in the sense that its image does not lie in

any proper parabolic subgroup of LG. We see also that

S (()) =o( Z(L)r/(Z(G)r) .
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The packet YI, constructed by Adams and Johnson takes the following form. Let W(G,T)
and W(L,T) be the Weyl groups of G and L. Let WR(G,T) be the real Weyl group of G,
or equivalently, the Weyl group of KR. The representations in nI, are parametrized by the
double cosets

I = W(L,T)\W(G,T)/WR(G,T).
For any weG , the group

Lw = w-Lw
is also defined over R, and is a Levi subgroup of the 0-stable parabolic Qw = w-lQw. The

map ad(w) from Lw to L is an inner twist [1, Lemma 2.5], and can be used to identify LL
with the L-group of Lw. The representations in I-, are the derived functor modules

7 =AQ(w-w = RAQ(w-i), = R ( -lweS,
where

i(w) = (KRn Lw\K').

(See [47, p. 344].) They have also been characterized in terms of the Langlands parameters [49,
Theorem 6.16]. One can in fact show that nw is a certain representation in the ordinary L-

packet now, where Owe )(G) is the composition SG,Lo X,w. Here, p(,we(Lw) is the one-

dimensional parameter corresponding to OX in the manner described above.

Before describing the pairing on S vxII,, we need to recall that there is a bijective map
from W(G,T)/WR(G,T) onto the set of elements in H1(R,T) whose image in H1(R,G) is
trivial. Composed with the Tate-Nakayama map, this yields an injection w -- t(w) from
W(G,T)/WR(G,T) into the quotient

X*(T,)/X*(Tsc) n ({ --WTX :X eX*(T)) .

Here X*(Ts) is the submodule of X*(T) generated by the co-roots of (G,T). The map t is
the starting point for the theory of endoscopy ([30, p. 702], [39, §2]). It is uniquely determined
by the cocycle condition

(5.5) t(wlw2) = t(wl)Wl(t(w2)), wl,w2e W(G,T)/WR(G,T),
and the formula

P , P is noncompact,
(5.6) t(wf)= O , is compact,
for its value on the reflection about a simple root P of (G,T) ([39, Propositions 2.1 and 3.1]).

Now, the natural map from H1(IR,T) to H1(IR,L) is surjective ([22, Lemma 10.2]). If two
elements in W(G,T)/WR(G,T) differ by left translation by an element in W(L,T), they have
the same image in HI(R,L). Moreover, Kottwitz has established a generalization of the Tate-
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Nakayama isomorphism which provides a canonical map from HI(R,L) to so(Z(L)r)*, the uni-

tary dual of the finite group of connected components of Z(L)r [22, Theorem 2.1]. The classes
which are trivial in H1(R,G) map to characters on Ks(Z(L)r) which are actually trivial on the

subgroup rc(Z(G)r). Since S. = so(Z(L)r), we shall interpret w->t(w) as a map from I into
the group of characters of the finite abelian group S, which are trivial on the subgroup
%o(Z(G)r). We can take the representation l1= AQ(X) as our base point. Then if x = Iw is

any representation in l,, define

(5.7) <x, 7l l1> = <x,t(w)>, xe Sw,
the character on Sy determined by the element we . This is the coefficient which occurs in
the character formula of Adams and Johnson.

We can now see why several representations ie IIN might give the same character on S,.
According to [22, Theorem 1.2], the set of classes in H1(R,L) which map to the identity charac-
ter on Ko(Z(L)r) is just the image of Hl(R,Lc) in H1(R,L). Here, Ls is the simply con-

nected cover of the derived group of L. The representations neTI, for which the character

<,r l> is trivial are precisely the ones whose corresponding element we maps to the

image of H1(R, Ls) in H1(R,L). There is a similar description of the other fibres of the map

X e <.,x\Ir1>, te ,.

Adams and Johnson state their character identities in terms of a certain sign

~(_i )~~w,) we ,

where

y(w) = -dim(L/LwnKR) = q(Lw).

They first show that the distribution

(5.8) f --> fG() = £ (-1)(W)'fGo(r), fe Cc(G(R)),
weY

is stable, even when G is not quasi-split [1, Theorem 2.13]. They then establish the character
formula

(5.9) H(WVH) = Es £ (-1)(w)<St(w)>fG(tw)
we.

for H = Hs, se S,4, as in (4.1) [1, Theorem 2.21]. Here, es is a certain constant which came

out of Shelstad's earlier definition of the transfer factors for real groups [41]. Since fH is
defined only up to a scalar when H . G*, s is significant for us only when s = 1, in which
case it equals 1. To deal with the signs (-1)w), we need a lemma.

Lemma 5.1. (_-1)w) = (-1)q(L)<s,t(w)>, we z .
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Proof. The lemma is easily reduced to a special case of a construction [20] of Kottwitz. For the
convenience of the reader, we shall give a direct proof.

Recall that K' is the centralizer in G(1R) of an element toe T whose square is central in
G. It follows that if P is any root of (G,T),

-1 , if P is noncompact,
3(to) = 1 , if p is compact.

Since y(w) equals the number of positive noncompact roots of (Lw,T), we see that

(-l)l'w) = nI (wla)(to),
a

the product being extended over the roots a of (LnB,T). On the other hand, we recall that

s4 = 0 -1 . It follows from (5.2) that

V V v
(5.10) (S ,) = l(-1)<^ ,> eX*(T),

a

with the product taken over the same set of roots.

Each side of the required formula makes sense for any element we W(G,T), but each side
depends only on the image of w in 1. We shall prove the lemma by induction on I(w), the
length of w. If w is the identity, <s,, t(w)> = 1 and 7(w) = q(L), so there is nothing to
prove. Suppose then that w = waw1, where wp is the reflection about a simple root P of
(G,T), and l(wl) is less than 1(w). If a is a root of (LnBT),

(w-a)(to) = (wl-lwla)(to)
= [wf(a - <a,p>3)](to)

(w-1a)(to) (l(tO))<ap >,
where PB = wifl. Therefore,

(_l)(w) = (-l)Kw()e(wl,p)
where

JJ(-1)<a' >, if p1 is noncompact,
a

e(w1, [) = 1, if Pi is compact.

On the other hand,

<st, t(w)> = <¥s, t(wlwp,)>
= <¥S, t(wl)><Sw, wl(t(wpl))>

by (5.5), while
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[3 (sw) , if Pi is noncompact,
<s .wl(t(w1))> = { i, if i1 is compact,

by (5.6). Applying (5.10), we obtain

<-, t(w)> = < S,t(wl)>e(wl,P).
The lemma then follows by induction. 0

If we apply the lemma to (5.9), we obtain

f(XH) = s(-1)q(L) £ <vS, t(w)>fG(7w)
WE.

= s(_l)q(L) <S,i1x7l>fG(x).

Therefore, the required formula (4.1) holds with

(sws,x) = s(-l)q(L)< S,Sxl l> .

§6. Some generalizations.
The theory of endoscopy was motivated by the trace formula. One would like an extended

theory to provide for applications of the twisted trace formula as well. Anticipating future work
of Kottwitz and Shelstad, let us describe the likely form of some of the twisted analogues of the

objects in §3 and §4.
One can get away with minimal changes in the notation if one takes G to be a connected

component of a (nonconnected) reductive group over F. We shall assume this from now on.

We shall write G+ for the reductive group generated by G, and G° for the identity com-

ponent of G+. We shall also assume that we have an inner twist

qr: G G*
where G* is a component such that (G*)° is quasi-split, and such that G*(F) contains an ele-
ment which preserves some F-splitting of (G*)o under conjugation. Then rI extends to an iso-
morphism of G+ onto (G*)+ such that for any ao Gal(F/F), the map

T-3(q-1): G* -4 G*
is an inner automorphism by an element in (G*)°. One can attach an L-group

LG+ = +G > WF
[5, §1], which is a finite extension of the usual L-group

LGO = G°0 WF
of the connected component G°. Corresponding to G, we then have the "L-coset"
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LG = Gi WF,
a coset of LGO in LG. Observe that G is a coset of the complex connected group G0 in G+.

Endoscopic data (Hl,s,4) can be defined as before. The semisimple element s lies in
G, which is now just a coset. Again H is a connected quasi-split group, and 5(H) is the con-
nected centralizer of s in G°. Equivalence of endoscopic data can also be defined as before,
the element g lying in the connected component G°. Finally, the endoscopic datum will be
called elliptic if the set

4(H)s
is not contained in any proper parabolic subset of LG. (A parabolic subset of LG is any
nonempty set which is the normalizer in LG of a parabolic subgroup of LGO.) As before, we

shall make the simplifying assumption that there is an isomorphism of LH with H.

Suppose that F is local. We shall assume that the transfer factors A(yH,y) and the func-
tions

fH(YH) = ZA(yH,y)fG(y)

have been defined as in the connected case. Here y stands for a strongly regular G°(F)-orbit in

G(F), YH is a stable conjugacy class in H(F) obtained from y by a norm mapping, and

fG(Y) = J f(x-yx)dx.
G(F)NG°(F)

Again, we shall assume that fH is actually the stable orbital integral of a function on H(F).
One would like to be able to define parameter sets Dtemp(G), D(G) and P(G). However,

if F is nonarchimedean, we must replace the local Weil group WF by something larger. We
shall use the Langlands group

WF x SU(2,R), F nonarchimedean,
LF WF, F archimedean,

which is the variant of the Weil-Deligne group suggested on p. 647 of [21]. (See also [29, p.
209].) The group SU(2,1R) here is to account for the discrete series which are not supercuspidal,
and should not be confused with the group used to define the P-parameters. For the W param-
eters, it is necessary to add another factor, namely SL(2,C), to LF. We are also dealing now
with the possibility that G . G+, and we would like the representations of GO(F) in the packets
to have a chance of extending to G+(F). This is accomplished by asking that the image of a
parameter centralize some element in the set G.

We shall thus define

'(G) = W(G,F)
to be the set of G°-orbits of maps
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xV: LF x SL(2,C) LG
such that the projection of the image of LF onto G0 is bounded, and such that the set

Sv = S,(G) = Cent(v(LFxSL(2,C)),G)
is nonempty. We also ask that the restriction of W to LF have the usual reasonable behaviour,
it should satisfy conditions similar to (1)-(4) on p. 57 of [32], although not the relevance condi-
tion (5). Observe that S. is a coset of the subgroup

S,(G°) = Cent(f(LFxSL(2,C)), G°)
in

S = S(G+) = Cent(x(LFxSL(2,C)), G+).
We shall write S° for the connected component of 1 in S,(G°). Then

S, = S,(G) = S,(G)/So
is a coset of the finite group

S,()S(G°) / =(G°)/S = (S,(G°))
in

S = S(G+) = Sy(G+)/SW = o(S ).

One defines the sets ¢(G) and (temp(G) of maps {: LF -> LOG in a similar fashion, but
with a condition of relevance when G is not quasi-split. The image of 4 is not allowed to lie
in a parabolic subgroup of LG° unless the corresponding parabolic subgroup of Go is defined
over F. Suppose that VET(G). Then the restriction of v to LF belongs to (temp(G*).
Similarly, as in §4, we can define the objects ,E()(G*) and se S,(G°). There is a subjective
map

SM - Sv ,

and a dual injective map

n(s) -on(s-),
in which Fl(S,) denotes the subset of representation in II(S$) whose restriction to S,(G°)
remains irreducible.

For the component G, one is interested in the irreducible representations of GO(F) which
extend to G+(F). Let I(G(F)) denote the set of (equivalence classes of) irreducible representa-
tions of G+(F) whose restrictions to GO(F) are irreducible. The dual

/o(G+)* = Hom(G+/GO, C*)
of the component group acts freely on I(G(F)) by
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(;t)(x) = (z)ix(x), xeG+(F), 0eo(G+)* ,

where x denotes the image of x in ro(G+). It is clear that there is a bijection between the set

(II(G(F))} of orbits of ;o(G+)* in II(G(F)) and the representations in II(G°(F)) which are
fixed under conjugation by G(F). More generally, suppose that G' is an arbitrary connected

component in G+. Then io((G')+) is a subgroup of 0o(G+). If X is a representation in
fI(G(F)), the restriction ac' of n to (G')+(F) belongs to FI(G'(F)). The map n --> t' is a

bijection from the orbits of (To(G+)/Io((G')+)) in n(G(F)) to the set of representations in
I(G'(F)) which are fixed under conjugation by G(F).

As in §4, we are going to postulate the existence of a finite subset fIL of JI(G(F)) for

every Wfe T(G). This includes the question of defining the tempered packets

{I4: Oe Otemp(G) ,

which is itself far from being known. (See the hypothesis in [32, §IV.2].) It is conceivable that
such a packet could be empty; perhaps none of the representations in the corresponding packet for
G° extend to G+(F). We would at least like this problem not to occur in the quasi-split case. In
particular, for each VE (G), we would always like to be able to choose a representation
leIH0, to serve as a base point. The theory of Whitaker models suggests that this is always

possible.
Suppose that (B*, T*, {xa) is an F-splitting for (G*)°. Here, xa denotes the additive one

parameter subgroup of G* attached to a simple root a of (B*,T*). Any element in the unipo-
tent radical NB.(F) of B*(F) is therefore of the form

u = (I Xa(ta))u', ta F,
a

where u' lies in the derived subgroup of NB.(F). If NF is a nontrivial additive character on
F,

X(u) = HNVF(ta)
a

is a nondegenerate character on NB.(F). For any representation nle FI((G*)°(F)), the space
Vx(il) of X-Whitaker functionals

(A: A(nl(u)v) = X(u)A(v), UeNB.(F)},
is known to have dimension at most 1. Moreover, each tempered packet

{TIN: OrItemp((G*)O)}
is expected to contain precisely one representation tl such that VX(il) * (0). Assume that this
is so. We claim that if 0 actually belongs to Itemp(G*), that is, if S,(G*) . 0, then x1
should extend to (G*)+(F). Indeed, our assumption on G* implies that there is an element
nG G*(F) which preserves the splitting. Consequently,
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X(nGunG1) = x(u), uE NB-(F).
The condition S,(G*) * 0 should translate to the dual property that nG acts as a permutation
on 11. In particular, nG must transform it1 to some representation in the packet Hn, so by
uniqueness, nl is fixed by nG. This establishes the claim.

Now, suppose that i belongs to T(G). Regarding 0, for a moment as an element in

(((G*)o) (rather than (((G*)), we take ienI((G*)°(F)) to be the representation in the packet
nIv whose associated standard representation fti has a X-Whitaker model. Then ft1 will

extend to a representation of (G*)+(F). From this, it is not hard to see that n1 also extends to a

representation xt of (G*)+(F). Thus, the packet

nI = HIe(G*) c H(G*(F))
should be nonempty. For each nondegenerate character X there should be a representation
xrTI-L,, whose restriction 7t° to (G*)°(F) is uniquely determined.

We shall now state the general local conjecture. It is just an extrapolation of the limited
information now available, and should be treated as such. Our purpose is simply to suggest that
the general theory for tempered parameters, whatever its ultimate form, will have a natural exten-

sion to the nontempered parameters in P(G). As in the special case described in §4 , the conjec-
ture postulates the existence of three objects. The first is attached to any parameter xVIeW(G1)
in which G1 is a connected quasi-split group over F, while the second and third are attached to

parameters NfE (G) where G is an arbitrary component.

Conjecture 6.1. For each |lp there is a stable distribution fl -> fl '(Al) on Cc(GI(F)),
while for each ti there is a finite subset l. = I,,(G) of n(G(F)) and a function 6 on

SpxTI,, such that the following properties hold.

(i) 8(s,.x) = r(G)-1(s,t) , se Sv, e to(G+)*

(ii) fH(H) = 6S(ss,7)fG(X), feCc (G(F)),
nE (nr,

where H = Hs, for a given semisimple element se S,.

(iii) There is a nonvanishing normalizing function p on S+, with p(sv) = 1, such that
for any Tie 1,, the function

<s;, lp> = 6(s,X)p(s)-1, se S ,

is a positive definite class function on S1. Furthermore,

<SvS,;tlp> = e,(sV,xlp)<s,7tlp>,
where e,,(, I p) is a sign character on l,s,).
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(iv) In the special case that G = G*, there is a commutative diagram
ri--> H(SW)

J J
A. - ;>n(s0

in which the vertical arrows stand for the maps
x -> < ,l7l17X> = <.,><., >CX 1 ,

and xe FIx c FI, is the representation described above. In particular, ;xr is such that

dw(;x) = (sv,7a) = 1

(v) If G' is any connected component of G+, write /' for the parameter W, regarded as

an element in P(G'). Then the restriction map n --> A' sends I, onto the set of

representations in fH, which are fixed under conjugation by G(F), and 8(,,') is the
restriction of (',A) to S. EJ

Remarks. 1. By the first condition,

5(ss, Cx)fG(CX) = 8(sVs, X)fG(t),
for any e xo(G+)* and xeIIN. Therefore, the sum in (ii) really can be taken over the
orbits {IIl} of xo(G+)* in Il,.

2. As in §4, the conjecture is not rigid. However, the conditions do determine everything
uniquely once the stable distributions fl (W1) have been defined. One would like to

strengthen condition (iv) in a way that would characterize the distributions f (1i)
uniquely, at least modulo their analogues for tempered parameters.

3. The third condition asserts that there are nonnegative real numbers

<,xlp>, X e H(S), n nHF,
such that

<s, 'lp> = Z <X,,xlp>tr(Xs)), -s eS
XEn(S )

The usual case should be that of (iv), in which

:0 x==.ip<X, lp> = , ~. ¢ Xlp
for some XlHpe H(S,). However, the weaker assertion is already required by the exam-
ples in [24] for p-adic quaternion algebras.
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4. Suppose that H = Hs and H1 = Hst-, for a semisimple element se S,(G) and

te S,(G°). The transfer of functions will be such that fH(VH) equals fHl(NHl). It follows

from condition (ii) that

8(tst-1, I) = 8(s,) , x I .

In other words, 6(,x) is a class function.

5. Condition (ii) should also imply that

6(sts-1, 0) = 8(t,7R), te S,(G°), t ,(G0),
where se S,(G) and 4e G(F), and where

(°0)(g) = nx°(-lg), ge G0(F).
This is compatible with condition (v).

Conjecture 6.2. For every parameter Ve (G), the representations in HI are unitary. 0

§7. Intertwining operators and R-groups.
Intertwining operators play an important role in the discussion. They occur naturally in the

trace formula and provide part of the global motivation for the conjectures. We shall discuss this
in the next paper [5]. Closely tied to the global considerations are a number of local questions.
These questions are interesting even for tempered parameters, where they have been studied by
Shahidi [36], [37] and Keys and Shahidi [18]. For the nontempered parameters WeT(G), the

implication of the conjectures is that much of the tempered theory carries over. It is therefore
reasonable to propose a nontempered analogue of the R-group.

Recall that G is now a connected component of a reductive group over F. In this para-
graph, F will be a local field (of characteristic 0). We shall say that a parameter We (G) is

elliptic if the image of v in LG° is contained in no proper parabolic subgroup. This is

equivalent to saying that S, is finite modulo the center, or more precisely, that S° is contained
in Z(G°)r. We would like to deduce information about arbitrary parameters from information on

elliptic parameters. In particular, we would like a method of constructing the packet YlN and

the function 8(x,nt), for arbitrary W, from the corresponding objects for elliptic parameters.
Fix a parameter 'We (G). There are several finite groups associated with the centralizer

S.,. For simplicity, we shall describe them first in the case that G = G°. Then S. is a complex
reductive group. Fix a maximal torus T, in S°, and let N, be the normalizer of TV in So.
The quotient

Nv = Nv/Tv = o(Nv)
is a finite group. Notice that there is a surjective map from N, to the group Sv = S,/S° of
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components. The kernel is just the Weyl group W0 of (S, Tw). Every element of N, may
be regarded as an automorphism of T,, so we also have a subjective map of N, onto the
Weyl group W. of (S,, T,). The kernel of this second map consists of the elements in N,
which centralize T.. Since every such element belongs to a unique coset in S,, the kernel is
canonically isomorphic to the subgroup S5 of cosets in SN, which act on SO by inner auto-

morphisms. Notice that S1 is also a normal subgroup of Sy. The quotient

RV = S- /S

is the R-group of y. It can be regarded as a finite group of outer automorphisms of S0, and
can also be identified with the quotient of WN by W O.We can summarize these remarks in a
commutative diagram of finite groups

1 1

WO = Wo

(7.1) 1 -o S. -o Na > WV -o1

II $ 4

definitions above still make sense if interpreted in the obvious way. For example, Ndis nowdefinitions above still make sense if interpreted in the obvious way. For example, Nv, is now
only a set of cosets in G. However, S will consist of components in S5n 0°, and will
remain a group. The groups W, and S5 operate freely on N,, and 5S and W, become
the sets of orbits. The R-set R, is the set of orbits ofSr in Sw and, at the same time, the
set of orbits of W. in W,. If it is necessary to indicate the dependence on the component G,
we can always write Nw(G) = Nv, R,(G) = RN, etc., as we did earlier for 5w. Thus, N,(G)
is a coset of N,(G°) in a finite group Nw(G+).

Consider the centralizer of T, in LGO. Since it meets every coset of G0 in LGO, it is of
the form

LM M > WF .

This group is a Levi component of a parabolic subgroup Lp of LGO. It is also the L-group of a
Levi component M of a parabolic subgroup P of GO which is defined over F. There may be
no element in G which normalizes P, so P may not be attached to a parabolic subset [3, §1]
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of G. At any rate, the image of v lies in LM. Therefore, 4r can be regarded as an element
in Y(M), which is determined up to conjugation by the normalizer of M in G. Obviously T.
equals the identity component of

S,(M) = Cent(w(LF x SL(2,C)), M),
and the group

S,(M) = SV(M)/Tv = 7Co(S,(M))
is just equal to S,. In particular, as an element in W(M), N is elliptic.

According to Conjecture 6.1, Wf determines a finite packet ITI(M) c nI(M(F)). It is not
hard to guess how we might obtain the packet Hn(G) c I(G(F)) from n,(M). For each
_en,(M), we shall let Ip(o) denote the representation G+(F) obtained from o by induction
from P(F). It acts on a Hilbert space Hp(a). Observe that P is connected while G+ is gen-
erally not connected; this simply enhances the reducibility of Ip(a). Let Tl,(G) denote the set
of representations in I(G(F)) which occur as irreducible constituents of Ip(a). Then I-,(G)
should be the union over all oG nI,(M) of the sets F,(G).

It is more delicate to construct the function

6(xt) , xE S(G), 7enH,(G).
The first ingredients will be the interwining operators. For any representation oeH (M(F)), we
can define the unnormalized intertwining operators

Jp Ip(a): HP(a) -> Hj(a), P'eP(M), Xea
as, for example, in [4, §1]. Langlands has proposed normalizing these operators by a certain quo-
tient of L-functions [28, Appendix 2]. This can be established for real groups [4, Theorem 2.1],
and in certain cases for p-adic groups [35], [18]. In the present context, Langlands' normalizing
factors are the functions

(7.2) rp p(fx) = L(0,pp po°¾,l)(£(0, PP IPp ovx, VF)L(1, PPIPO(I V,~))- ,

where

, : LF LM
is the twist of b, by the element x in

aMC = X*(M)F@C X*(T,)®C,
and PIP i is the contragredient of the adjoint representation of LM on

Lnp/Ln p, ) Lntp ,

a quotient of the Lie algebra of the unipotent radical of Lp'. (We refer the reader to [46] for the
definition of the L and e-factors. At the risk of some confusion, we have used WF to denote a

fixed nontrivial additive character of F.) We shall assume in what follows that the operators
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Rp, p(aOX,) = J p(O()rp,' p(V)-1, oE 1-I4(M),
have the properties one expects of normalized intertwining operators. (See for example the con-

ditions in [4, Theorem 2.1]. Langlands' original suggestion applies here only to the case that o

belongs to fI,(M). However, Proposition 5.2 of [4] and the part of Lemma 11.2.1 of [6] that
deals with inner twisting suggest how one could deal with arbitrary representations o in

f,(M).)
The choice of groups LpEp(LM) and PeP(M) allows us to identify Ww with a subset

of

W(G,AM) = {geG: gAMg-1 = AMl/M.
(As usual, AM denotes the split component of the center of M.) Regarding a given weW as

an element in W(G,AM), we can form the component

Mw = Mw

of a nonconnected reductive group. Let Mw be the image of Mw under our inner twist rl.
We may assume that the group

M* = r(M) = (Mw)°
is quasi-split, and that the restriction of T1 to Mw is an inner twist.

We would like to know that M,(F) contains an element which preserves a splitting of M*.
Suppose that (B*, T*, xa)) is an F-splitting of (G*)o. It is convenient to assume that T* is
contained in M*, and that the opposite Borel subgroup B is contained in P* =r(P). The
element ll(w) lies in the Weyl set W(G*, AM.). It has a unique representative wl in the Weyl
set of (G*,T*) which maps the simple roots of (B* M*,T*) to simple roots. By the

hypothesis on G, there is an element nGeG*(F) such that ad(nG) preserves our splitting.
Then the element

w0 = ad(nG)-lwl
belongs to the Weyl group of ((G*)o, T*), and maps the simple roots of (B*M*, T*) to simple
roots. Now the choice of a splitting also determines a canonical function

w* -> n(w*)
from the Weyl group of ((G*)°, T*) into (G*)o(F) ([43], [33, p. 228]). Define

(7.3) nw = nGn(wo).
It is a consequence of [43, Proposition 11.2.11] that

nwxa(l)nw1 = wa(l) ,
for any simple root a of (B*nM*, T*). In other words, nw preserves the splitting of M*. We
have shown that the component Mw satisfies the same conditions as G, so we shall assume
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that it also satisfies Conjecture 6.1.

The Weyl set W(G,AM) operates in the usual way,

(wo)(m) = (w-lmw) , weW(G,AM), aeII(M(F)), meM(F),
on n(M(F)). The image of W. will be identified with the subset of elements in W(G,AM)
which map lN,(M) to itself. For any ae F,(M), set

Wvo = weWvc W(G,AM): w = a) .

We then obtain an embedding

1 - W,, - 4W,, RV 0 1

1 - W0 - WW,, R, -4 1

of short exact sequences. If G = GO and v is tempered, RN,o will be the usual R-group [19,
§2-3], [41, §5], [17, §2]. In general, it should be closely tied to the reducibility of the induced

representation Ip(o).
Fix a representation oe n,(M) and an element we W,,y. Then Mw is a component of a

reductive group such that MO = M. Since wo is equivalent to a, there is a representation
owe n(Mw(F)) whose restriction to M°(F) equals a. The extension aw is of course not

unique, for it can be replaced by Cow, for any element Cexo(M+)*. Nevertheless, we can

define an isomorphism

A(ow): H+-ipw(a) - H (a)

by setting

(A(ow)O')(x) = ao(m)C'(m-x), . ¢ Hw-pw((), xeG(F),
for any element meMw(F). This map is an intertwining operator from Iw-ipw(c) to Ip(o)
which is independent of the representative m. In particular,

(7.4) Rp(aw,N) = lim (A(ow)Rw-iPw p(OaXIV))
is an operator on Hp+(o) which intertwines Ip(c). Conjecture 6.1 implies that a is unitary.
Combined with [4, Theorem 2.1 (R4) and Proposition 5.2], this would imply the unitarity of

Rp(Cw,Nf) and the existence of the limit in (7.4). One would like a nice formula for

(7.5) tr(Rp(o,W)lIp(<T,f)) , fe Cc(G(F)).
However, it is clear that

Rp(Cow,V) = C(Mw)Rp(o,,v), e7Co(M+)
so the trace will depend on the extension aw.
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Since w belongs to WV,, there is a point in the coset

(Mw^ = Mw
which centralizes the image of V. In other words, v may also be regarded as a parameter in
W(Mw). By Conjecture 6.1(5), the representation Cw belongs to the packet In(Mw). Notice,
however, that

Sv(Mw) = SV(M)w = Sw .

The conjecture thus associates to the component Mw and the representations aw, a character

<u,w Ilp> = 8(s,aw)p(s)- , ueS w,

where u is the image of a point se S,(MW). Since

<u, Cw p> = (MW)-1<u,cIp>, ea 7to(Mw)*,
the product of <u, w I p> with (7.5) will be independent of the extension aw of the represen-
tation o. It is for this product that we should seek a formula. We shall describe a candidate.

The splitting (B*,T*,{xa}) described above provides elements nweMw(F) and noGG*(F).
Combined with the additive character WF, the splitting also determines a nondegenerate charac-
ter % on NB.(F), as in §6. The elements nw and nG preserve X, regarded as a nondegen-
erate character on NB.(F)nM*(F) and NB.(F) respectively. Let oz be a representation in

IIn(Mw) whose associated standard representation ix has a X-Whitaker model. Then there is
a nonzero complex number c(ox, nw) such that

(7.6) A(iX(nw)v) = c(x, nw)A(v),
for any A in the one dimensional space Vz(8x) of X-Whitaker functionals, and any v in the
underlying space of 6X. Similarly, let nx be a representation in fIV(G*) such that ftr has a

X-Whitaker model. Then there is a nonzero complex number c(nx, nG) such that

(7.7) A(x^(nG)v) = c(rn, nG)A(v),
for any A in Vx(cx) and any v in the underlying space of tx.

The work of Shahidi suggests one final ingredient for our conjectural formula. If E is any
finite extension of F, let X(E/F, F) be the complex number defined in [26] to describe the
behaviour of the e-factors under induction. Now, let AB. c T* be the split component of B*,
regarded as a parabolic subgroup of (G*)° over F. Let Er(B*; M*) be the set of reduced roots
of (B*, AB.) whose restriction to AM. is nonzero. Any root P in this set gives rise to a Levi
subgroup Gp of (G*)° of semisimple rank one. Let Gp,sc be the simply connected covering
of the derived group of Gp. Then there are two possibilities. Either GoSc = RespFF(SL2), or
Gpsc = ResFdF(SU(2,1)), for a finite extension FP of F. In the first case, set

X3(VF) = X(Fp/F, F) .
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In the second case, set

3(NfF) = )(Ep/F, fFF)2X(F/F, fF)- ,

where Ep is the smallest extension of Fp over which G[sc splits. For any element w in

W(G,AM), set

(7.8) w(fF) = In (vP),
{(:wil<O}

where P ranges over the roots in r(B*; M*), and w1 is the representative of w described
earlier.

The formula we seek is supposed to depend on an element u in S,(Mw) = S w. Recall
that the coset Sw is a subset of N, and that N, in turn maps onto S,. Let u denote the

image of u in S,. We want an expansion for the product of (7.5) and <u, ow p> in terms of

the characters <u, 7 lp>, rIen1(G). The expansion should be accompanied by a prescription
for determining the normalizing function p for G from the normalizing function p for Mw.

We shall first assume that G = G* is quasi-split. Here we have the theory of Whitaker

models, and we can take

p(s) = 6(s,ox).
The normalizing function for G should then be

p(s) = 6(s,xx).

Conjecture 7.1 (Special case). Suppose that G = G* is quasi-split. Then the expression

C({YX, nw)-l<u, ow ox> tr(Rp(ow, v)lp(ao,f))
equals

x(VF)c(xx,nG)-1 < u, x>fG(),
ne Io(G)

for any ueS w and any feCC (G(F)). 0

The conjectural formula agrees with the results of [36], [37] and [18]. Moreover, the two
sides are balanced in their dependence on the various objects, ow, ox, rx, nG, NF, the splitting,
etc. which are not uniquely defined. Beyond these aesthetic considerations, however, there is a

shortage of evidence even in the quasi-split case, and the formula should perhaps be regarded as

simply a working hypothesis.
We return to the case that G is arbitrary. Here it is necessary to normalize the ratio of the

transfer factors for G and Mw in a way that is compatible with the corresponding ratio for G*.
We shall sketch a variant of an argument of Kottwitz and Shelstad, which was in turn motivated

by an idea of Vogan. The argument relies heavily on the techniques of [33], or rather their
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anticipated extension to nonconnected groups.
Let Gs* be the simply connected cover of the derived group of (G*)O, and let Ms be the

preimage of rl(M) in GC. We can assume that

rlo(q()-1 = ad(u(a)), Go Gal( F/F),
where u(o) is an element in Ms. Suppose that s is a semisimple element in Mw. Let
(HH,s,S) and (HwHw,s,w) be compatible (twisted) endoscopic data for G and Mw. These
can also serve as endoscopic data for G* and Mw. Suppose that yH is a strongly G-regular
stable conjugacy class in H(F) which is the image of elements yeG(F) and *E G*(F) [33,
§(1.3)]. Let h be a point in Gs(F) such that hl(y)h-1 =y*. Then the elements

v(o) = hu(ao)(h)-1, oc Gal( F/F),
belong to

T* = {teGs: t-*t =* ,

a group which is connected [44, Theorem 8.1], and hence a torus. Similarly, if YHw is a strongly
Mw-regular stable conjugacy class in Hw(F) which is the image of elements yweMw(F) and
ye= Mw(F), we can define points

Vw(a) = hwu(o)a(hw)- , o Gal(F/F),
in

= {teMs: t-lwt = }

The pair

(v-1,V,): o - (v(a)-1,vW()), ceGal(F/F),
defines an element in H1(F,U), where U is the torus

T*x Tw/((z-l,z): ze Z(G*))
On the other hand, attached to s there is a character sue t0(r) on the component group of
the dual torus. (See [33, p. 246] in the untwisted case.) The Tate-Nakayama pairing then gives a
function

.H(Y,Y*; Yw,*) = <u, (v-l,Vw)>.
Suppose that the transfer factors A(yH,y*), A(yHw,y) and A(yH,yw) for (G*,H), (M*,Hw)

and (MW,Hw) have all be defined. Set

(7.9) A(YHy) = XH(YY; Ywy)A(yH,,yw)A(YHw, w- lA(yH,*
The local hypothesis [33, Lemma 4.2A], or rather its extension to nonconnected groups, presum-
ably implies that A(yH,y) is the transfer factor for (G,H). Remember that the transfer factors

49



J. ARTHUR

are uniquely determined up to a scalar multiple. The point here is that (7.9) normalizes this
scalar in terms of the other three transfer factors.

Now, suppose that IeP(G) is as above. According to the Conjecture 6.1, there is a nor-

malizing function p(s) on S,,(Mw) such that

<u,alp> = 8(s,aw)p(s)-1, uE S w,

is a character in S1w. We can expect that

(7.10) pz(s) = p(s)8(s,ox)-18(s,cx) , se SV(Mw),
is the restriction to SW,(Mw) of a normalizing function on S,(G) for G. In particular, each
function

<U, Ilpx> = 8(s,7)px(s)-
should be the restriction of a character on Sy.

Conjecture 7.1 (General case). Suppose that the transfer factors and normalizing functions for
G are given in terms of the corresponding objects for Mw by (7.9) and (7.10). Then the

expression
c(X,nw)-<u, aw I p>tr(Rp(aw,,V)Ip(a,f))

equals

,W(VF)c(cX,nG)- <u,IlppX>foG()
le ,(G)

for any ucS w and any fe Cc(G(F)). D

Remarks. 1. We have assumed that the parameter \ is elliptic for M. This is clearly not

necessary. One could make the same conjecture if M is any Levi subgroup of Go such that Nf
factors through LM.

2. If iv is tempered, which is to say \ is trivial on SL(2,C), the sets Inc(G),
oe II,(M), are disjoint. We have assumed implicitly in the conjecture that this holds for any W.
However, there is no particular reason for this to be so. If it fails, it will mean that the character
<u,x7lp> is a sum of several characters, corresponding to the representations a such that X
is contained in n1i(G). The conjectured formula would become an identity between the sum

over a of the first expression, and the second expression, but with rIo(G) replaced by the full
set In,(G).
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§8. Conjectures for automorphic forms.
The local conjectures we have stated were motivated by global considerations. The basic

global question of course concerns the multiplicities of representations in spaces of automorphic
forms. The global version of the conjectures will give a formula for the multiplicity of an irredu-
cible representation of an adele group in the discrete spectrum. For tempered representations, the
global conjecture is implicit in the paper [24] of Labesse and Langlands. The formula we shall
state could be regarded as a procedure for determining the multiplicity of an arbitrary representa-
tion in terms of the corresponding multiplicities for tempered representations.

From now on, F will be a number field. We continue to allow G to be an arbitrary con-

nected component of a reductive group over F. Notice that the group G(AF)+ generated by
G(AF) is usually a proper subgroup of G+(AF). We shall write H(G(AF)) (resp.
rinit(G(AF))) for the set of equivalence classes of representations (resp. unitary representations)
of G(AF)+ whose restriction to G°(AF) is irreducible. There is a canonical extension of the
regular representation of G°(AF) to G(AF)+ which is given by

(R(y)))(x) = 0(4-lxy), e L2(G0(F)\0(AF)),
for xeG°(AF), yeG(AF)+, and for any point 4eG+(F) such that -l1y belongs to GO(AF).
We are interested in how often a given representation Ie lunit(G(AF)) occurs in R.

In the paper [25], Langlands conjectured that there would be automorphic representations
attached to maps WF LGO of the global Weil group into the L-group. Tempered auto-

morphic representations would correspond to maps with bounded image in G°. However, it was
clear that unlike the local situation, the set of representations obtained in this way would be rather
small. In the later article [29], Langlands pointed out that if the tempered automorphic represen-
tations of GL(n) had certain properties, they could be parametrized by the n-dimensional
representations of a group which is larger than WF. This could either take the form of a com-
plex, reductive pro-algebraic group, as was suggested in [29], or a locally compact group LF
proposed in [21, §12]. We shall adopt the latter point of view.

We thus assume the existence of the hypothetical group LF. It is to be an extension of WF
by a compact group. For each valuation v of F, there should be a homomorphism

LF -e LF,
where

WFV v archimedean,
LFv =

WF xSU(2,]R), v nonarchimedean,

as in §6. According to Hypothesis 1.1, the cuspidal automorphic representations of GL(n,AF)
should all be tempered. These should be in natural bijection with the irreducible n-dimensional
representations of LF. More generally, the cuspidal tempered automorphic representations of
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G°(AF) should occur in packets parametrized by elliptic maps of LF to LG°. (See [21, §12].)
Our goal is to try to enlarge this point of view so that it will account for the entire discrete spec-
trum.

As in the local situation, we must replace LF by its product with SL(2,C). We shall be
interested in admissible maps

: LFx SL(2,C) LG°
such that the image of LF in G° is bounded. In this context, admissible shall mean that each

of the elements

V(w), we LF,

in ILG is semisimple, and also that WN is globally relevant. Its image is not allowed to lie in a

parabolic subgroup of LGO unless the corresponding parabolic subgroup of GO is defined over

the global field F. Motivated by [21, §10], we define

Dv = Da(G)
to be the set of s in G such that the point

sus(x)s-l¥(x)-l
belongs to Z(G°), for every x LF x SL(2,C). This set could of course be empty if G * G°.
However, if s is an element in D,, the cocycle

zw = SVl(w)s-llt(w)-, WE LF

defines an element in H(LF, Z(G0)). Let S, = S,(G) be the subset of elements seD, for
which the corresponding class z, is locally trivial, that is to say, zw belongs to the kernel of
the map

H'(LF,Z(G)) - H1(LF, Z(G°)) .
v

We can define the group S' = S,(G+) in a similar fashion, and Sv becomes a coset of S,(G°)
in S'. We can also define the coset

S, = S,(G) = Sv/S°Z(G°)
of Sv(G°) in the finite group

S' = Sv(G+) = Sv(G+)/SZ(G0) .

(Notice that, unlike in the local case, we have divided out by the center Z(G°).) We shall say that
two maps

Vi: LFxSL(2,C) -> LG, i = 1,2,

are equivalent if there is an element ge G° such that
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g-lW(wu)g = V2(W,U)Zw, (w,u)e LF X SL(2,C),
where zw is a 1-cocycle of LF in Z(G°) whose class in H1(LF, Z(G)) is locally trivial.

Define

T(G) = P(G,F)
to be the set of equivalence classes of admissible maps

F: LFxSL(2,C) - LGO
such that the image of LF in 6° is bounded, and such that the set S. is nonempty. Since
WF is a quotient of LF, we can copy other definitions from the local case. In particular, we
can define the global parameter sets D(G) and Dtemp(G), and the map W ~- , of P(G)
into Od(G*). For each Nef (G), we can also define the element s.eSW(G°) and the surjective
map

Sv -* So.

Suppose that N is a parameter in P(G). Then for every valuation v we have the res-

tricted map Nfv in P(G,FV). It follows from the definitions that there is an injection s sv
from S+ to S Z(G ). Now we are assuming that Conjecture 6.1 holds. In particular, we have
the finite local packets nI,. We define the global packet I, =FI,(G) to be the set of

representations in nf(G(AF)) obtained by restricting the representations

{xt = ®v': rvenv
v

to G(AF)+. For almost all v, the packets FII, will contain unramified representations, and it is
understood that these must be the local constituents of r for almost all v. Thus, f,H is a set
(usually infinite) of representations in fI(G(AF)), which according to Conjecture 6.2 are all uni-
tary.

Our global conjecture will assert that any irreducible representation in nI(G(AF)) which
occurs in L2(G0(F)\G0(AF)) must belong to one of the packets F1,. It also provides a multipli-
city formula, which requires some further description.

The local transfer factors, defined in [33] when G = Go, are determined only up to a scalar
multiple. However, the global transfer factors, which are products of the local ones, are canoni-
cally defined [33, §6]. More precisely, suppose that We(G), and that H = Hs is the endos-
copic datum for G/F corresponding to a given point se S,. Then the map

f fH = , f= =Ifv= C;°(G(AF)),
v v

is canonically defined. We shall assume this to be the case for any component G. Suppose that
7x = nv is any representation in Iw,. The functions 8( , v) on S will be invariant under
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Z(G°)rv, and since

S/ Z(G° S VZ(G°)/ Z(G°),
6( ,X) can be identified with a Z(G°)-invariant function on S Z(G°). We may therefore define

<s, n> = 68(sv, ~C), s E S,.
V

Almost all the terms in the product will be 1, and the product itself will be canonically defined.
We shall also anticipate that the normalizing functions p, on Si, postulated in Conjecture 6.1

(iii), can be extended to S.Z(G°) in such a way that

rHpv(Sv) = 1, s E S,
v

with almost all the terms in the product being equal to 1, and so that the function

<sv, IPv> = 8(sv, )pv(sv)-1, s, E SWZ(G°)/S° ,

remains positive definite. We obtain

(8.1) <s :> = n'I<, Vpv>, se S,.
V

The two formulas, together with Conjecture 6.1 (iii), imply that <s, x> does depend only on the

image s of s in S+, and is a positive definite function on So. It should in fact turn out to be the
character of a nonzero finite dimensional representation of S,. On the other hand, if

fH(H) = n fv v(v,H,) f v,
v v

for H = H, with sE S,, then

(8.2) fH(WlH) = X <SS, ;>fG(x),
RE {rn,)

by Conjecture 6.1(ii). As before, (I{I,} denotes the set of orbits of ;o(G+)* in IT,.

An intriguing aspect of the conjectured multiplicity formula is a connection with global root
numbers. Let g denote the Lie algebra of G0. Then for any fE/ '(G), we can define a finite
dimensional representation

It,: S,(G+) x LF x SL(2,C) GL(g)
by

,,(s,w,u) = Ad(sf(w,u)), (s,w,u)e SV(G+) x LF X SL(2,C).

Decomposing into irreducible constituents, we write

(8.3) = k = (= ~(X lk®vk) ,
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where Xk, gk and vk are irreducible representations of S,(G+), LF and SL(2,C) respec-
tively. Observe that t, preserves the Killing form on g, so that %, is equivalent to its own
contragredient. It follows that the contragredient tk --4 k gives a permutation on the consti-
tuents of It,. The global L-function L(s,Lk) will be defined as a product of local L-functions.
We can expect the functional equation

L(s, tk) = e(s, gk)L(l-s, k)
where e(s, |k) is a finite product of local root numbers. Suppose that tk equals its con-

tragredient tk. Then gk = P-k, and the functional equation implies that

E(/2,0k) = +1

Under this condition, the image of tk must be contained in either the orthogonal group or the

symplectic group. If 9k is orthogonal, it is known [12] that (1/2, k) = 1, provided that gk
comes from a representation of the Galois group of F. This should hold for any orthogonal
representation of LF. On the other hand, if 9k is symplectic, the sign of e(/2, k) is known to
be quite subtle.

Given r, we shall say that a constituent Tk of (8.3) is special if rk = Ik, and if
(1/2, gk) = -1. We define

(8.4) ev(s) = n det Xk(s), se S(G+) .
tk special

It is clear that e, is a one dimensional sign character of the group S$, which factors to a
character of the quotient S,. Now, suppose that X is a representation in nlt(G(AF)). If X

belongs to the packet Ir,, set

(8.5) mw,(t) = IS,I-1 e(x)<x,> .

xES~
Since <-,7> is supposed to be the character of a finite dimensional representation of S+,this
number is a nonnegative integer. It is just the multiplicity of the sign character ea, in <-,r>. If
t does not belong to l,,, we shall simply set m,(n) = 0.

In considering whether nr occurs discretely in R, we are faced with the minor irritation of
the split component of the center of G+. However, the definitions of §1 are easily extended to
the case that G . GO. For example, we can write

G(AF)1 = {xeG(AF): IX(x)I = 1, XEX(G+)F
Let (G(AF)1)+ be the group generated by G(AF)1, and set

G°(AF)1 = GO(AF) n (G(AF)1)+
Then for any 7erunit(G(AF)), we shall write mo(n) for the multiplicity with which the restric-
tion of i to (G(AF)1)+ occurs as a direct summand of L2(G0(F)\G0(AF)). We can also
define
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10o(G) = {ceTunit(G(AF)): mo(o) * 0 .

In addition, we shall write Ro for the subrepresentation of R whose restriction to (G(AF)')+
decomposes discretely. Finally, let 'o(G) be the subset of parameters NE P(G) such that So
is contained in Z(G°).

Conjecture 8.1. The formula

mo(x) = C m(7t)
WE o(G)

holds for any tre lunit(G(AF)). 0

Remarks. 1. The conjecture implies that any irreducible constituent of Ro belongs to a packet
I,, WE0o(G). Actually these packets should usually be disjoint, with the multiplicity formula

reducing simply to

mo(t) = mW(7t), An Hn.

2. Even though R has a continuous spectrum it should be possible to define the multiplicity
m(x) of any n in R. One would first need to define the Schwartz space on G°(F)\G°(AF).
The group G(AF)+ will act on this space, and also on the corresponding space of tempered dis-
tributions. One could then define m(7) as the multiplicity of n in the space of tempered distri-
butions on G°(F)\G°(AF). This incidentally would lead to a formal definition

n(G) = (CIe Ilunit(G(AF)): m(X) 0}

for the set mentioned in §1. Conjecture 8.1 could then be generalized to a multiplicity formula

(8.6) m(X) = I m,(7r), n Hunit(G(AF)).
vE'.(G)

Conjecture 8.1 agrees with the conjectural multiplicity formula for tempered parameters
stated in [21, §12]. This was based on the original multiplicity formulas in [24] for SL(2) and
related groups. However, at the moment there is not a great deal of direct evidence to support
the conjecture. In [2] we discussed some examples for the group PSp(4), due to Piatetski -

Shapiro and Waldspurger, that were compatible with the conjecture. The largest group for which
there are complete results is now U(3). Rogawski's multiplicity formulas [34] for the discrete

spectrum of this group are also compatible with the conjecture.
Suppose that G is the split group of type G2. By examining the residues of Eisenstein

series, Langlands discovered an interesting automorphic representation which occurs in the
discrete spectrum [28, Appendix 3]. Our description of this example in [2] was incorrect. It is
true that there are three equivalence classes of elliptic endoscopic groups

Hi c G, i= 1,2,3,
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with

H1 = G1,
H2 - SL(2,C) x SL(2,C)/{±)},

and

H3 SL(3,C).

In each case, the principal unipotent element in Hi gives rise to a parameter

Vi: SL(2,C) -, Hi - G

in P(G) which is trivial on LF. However, the principal unipotent element in H2 lies in a

proper Levi subgroup of G. The parameter xW2 factors through this subgroup, and consequently
does not belong to To(G). It has nothing to do with the discrete spectrum of G. The parame-
ters W1 and W3 do lie in 'o(G). The first one is attached to the principal unipotent, and gives
the trivial one dimensional representation of G(AF). The other one is attached to the unipotent
class with diagram

1 2

The Langlands' representation should belong to the packet L,3. It is in fact the unique element

in nI3.
The notions of semisimple and unipotent in the context of automorphic forms will by now

be clear. Let i be a representation in Iuit(G(AF)). We shall say that 7 is a semisimple
automorphic representation if mn(,() * 0 for some parameter eY¥(G) which is trivial on

SL(2,C). We shall say that n is a unipotent automorphic representation if G = G°, and if
there is a parameter NEP(G), with mwl,() . 0, such that the projection of yN(LF) onto
G = G0 equals 1). Let us also say that an automorphic representation is elliptic if it belongs
to the set 1io(G) defined above. The trivial representation of G(AF) is an elliptic unipotent
automorphic representation. It seems that the only other elliptic unipotent representation which is
known to exist is the Langlands' representation for G2.

Recall that a representation 7en (G(AF)) gives a family o(n) = {ov(K): veS} of sem-
isimple conjugacy classes in LGO. The families associated to two representations in the same
packet Y1, are equal at almost all v. We therefore obtain surjective maps

n(G) -> T(G) -> £(G).
For many G, the second map will actually be a bijection. This is nice, because it would give an
elementary interpretation of the parameters P(G). They would describe the generalization from
GL(n) to G of strong multiplicity one.
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§9. L2-cohomology of Shimura varieties.
We shall conclude with some remarks on the relation of the parameters V to the cohomol-

ogy of Shimura varieties. Suppose that G = GO and F = Q. We shall write A = Aq. Let R

be the real reductive group obtained from GL(1) by restricting scalars from C to R. Then
R (R) = C* and R (C) - C*xC*. A Shimura variety is associated to a G(R)-orbit X of maps
h:R - G which are defined over R and which satisfy some further conditions [29]. For

example, any heX provides a decomposition
g = Ph ®tkh Ph

of the complex Lie algebra of G(C), in which ph and kh and ph- are the subspaces of g
which transform under

Ad(h(z1,z2)) , Z,2e C* ,

according to the characters z1 z2, 1 and zlzj1. Notice that kh is the complex Lie algebra of

the stabilizer Kh of h in G(R), and that X can be identified with G(R)/Kh.
The space X has a natural complex structure. The complex points on the Shimura variety

are of the form

SK(C) = G(Q)\X G(Af)/K,
where K is any open compact subgroup of the group G(Af) of finite adelic points. We take
K to be sufficiently small that SK is nonsingular. Suppose that (O,VA) is an irreducible finite
dimensional representation of G which is defined over Q. Then

Fc(C) = V,(C) x (XG(A^)/K)
G(Q)

is a locally constant sheaf on SK(C). One is interested in the L2-cohomology
H(2)(SK(C),F(C)) = .H(2)(SK(C),F(C))

with coefficients in FI(C).
For any heX, the L2-cohomology has a decomposition in terms of the (g,Kh)-

cohomology of the spectral decomposition of L2(G(Q)\G(A)). Assume Conjecture 8.1. Then
the number

£ mv,(x), erlit(G(A)),
VE 'o(G)

which is given by (8.5), equals the multiplicity with which n occurs discretely in the space of

functions on G(Q)\G(A) with the appropriate central character. The spectral decomposition is

(9.1) H(2)(SK(C), F,(C))
= e @ mN(i)H*(g,Kh; lRST) .® ,

we GP0(G) ren'I,
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where nR and rfin stand for the components of X at R and the finite adeles, and xrK is
the finite dimensional space of K-invariant vectors for xin. When G(Q)\G(A) is compact
modulo the center, this decomposition is given in [10, Chapter VII]. For general G, it is con-
tained in the results of [9]. Observe that the Hecke algebra

HK = Cc(K\G(Afi)/K)
operates on the L2-cohomology through the space ITC.

It will be convenient to fix an element hleX. First of all, fix (T,B) and (T,B) as in §5.
Then choose the element hleX so that its image lies in T and so that the parabolic subalgebra
khi +Phi of g is standard relative to B. We shallwrite kl = khi, p = Ph and K =Kh.
We shall also adopt the notation of §5, with KR the normalizer of K1 in G(R). The restric-
tion of h1 to the first factor in R (C)- C*xC* defines a co-weight in X*(T). Let gllEX*(T)
be the corresponding dual weight. It is a fundamental, minuscule weight for G which is anti-
dominant relative to B. One checks that

(9.2) X(hl(zl,z2)) = zl zz2T , XkeX*(T).

Having fixed hl, one defines a finite dimensional vector space
v = © H*(g,K1; Rxt)ItRE flR,

for each Wre o(G). This space, which depends only on the image VR of W in P(G,IR), is
convenient for working with the decomposition (9.1). If the space is nonzero, NR is one of the
parameters discussed in §5, and the group SNR is abelian. We shall define a representation p,
of SvR on V,. Let Q = LNQ D B be the standard parabolic subgroup associated as in §5 to
NfR, so that ;r1 = AQ(X) is the representation in IIR which served as a base point in §5.
Then for any representation IRE f'VR', we have a one dimensional character

PXR(s) = <S;TR I1l>1(S)), sE SR ,

on S,. The representation p, of SIRa on Vv is given by

p,(s) = E p,,R(s), sC SWRaRE~ riWva
Recall that if n = 7tR@fin is any representation in the packet IL,, it is assumed that

<x,xc> is a canonical finite dimensional character on S$,. That is,

<x,:> = tr(rx(x)), xeS,,
where r, is a representation of Sv on a finite dimensional complex vector space Ux. In this
case, SvR is abelian, so that Ux really depends only on nfin. In fact, we also have the finite
dimensional representation
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r,(s) = p,,R(sR)1-r,), se Sv
of Sy on U,. Here, sR and s stand for the images of s in SRZ(G°) and S,. Set

U = ( .K U),
where xIf ranges over the finite components of representations in nI,. This is a finite dimen-
sional space, equipped with actions of both HK and S,. There is a tensor product action of the

group S, on the finite dimensional space Vv @ U^ which obviously factors to a representation
of the quotient group S,. Recall the formula (8.5) for the conjectured multiplicity. It allows us

to rewrite the spectral decomposition of cohomology as

(9.3) H2)(SK(C),FX(C)) =
V(VEUw),,'E',o(G)

where ( ), denotes the subspace of vectors which transform under S, by the character A,.
The space V,, has some further structure. The Shimura variety is defined over a certain

number field E = E(G,X) which comes with an embedding into C. Let E, be the completion
of E with respect to the associated Archimedean valuation. Then Ev equals R or C, and
we can form the Weil group WE = WC/,. It turns out that p, extends to a representation of

SR x WE, X SL(2,C)

on V,.

The representation of SL(2,C) comes from Lefschetz theory, and in particular, the cup pro-
duct with the Klhler form. Recall [10] that H*(g,K1; xRt®) vanishes unless the Casimir operator
acts by zero on BRMc. In the latter case

H*(g,K1; rR®t) = HomK(A*(g/k1), xR®r)
= HomK(A*(g /kl1) ,i R)
= HomK,(A* A@.p' ®,1 R)
= © HomK1(APp 1 ®AqP-®t, TcR),

P.q

where A* denotes the exterior algebra, and t is the contragredient of t. The last formula

gives a decomposition of the (g,Kl) cohomology, from which one gets the Hodge decomposi-
tion of the L2-cohomology of SK(C). The Killing form

(Xf,X ) -> tr(adadXadX ), Xep ,

is a nondegenerate, Kl-invariant pairing on p xpf. It can be regarded as an element in

HomK(P+ ®p -,C). The wedge product with this element defines an endomorphism X of

H*(g,K1;RR®x) which maps the (p,q) component into the (p+l,q+l) component. It is impli-
cit in the results of [521 that for any i < n = dimc(SK), the map
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Xn-1: Hi(g ,K1; tR®) -> H2ni(g ,K1;XR®)
is an isomorphism. The representation theory of SL(2) then allows us to define an endomor-
phism Y of H*(g,K1;7CR®t), which maps the (p,q) component into the (p-l,q-l) com-

ponent, such that H = XY-YX acts on Hk(g,K1; CRo®t) by multiplication by 1 (k-n). The

endomorphisms X,Y and H span the Lie algebra of SL(2), which therefore acts on

V, = DH*(g.,K1; R). )
'tR

Exponentiating to the group, we obtain a representation of SL(2,C) on V,.
The representation of WE is the one defined by Langlands [29, p. 239] from Hodge theory,

but modified to have (essentially) bounded image. If ze C*, let 1'(z) be the operator on

A*(glkl) = (APp ® Aqp )
p,q

which multiplies a vector in APp ' ®Aqp by
(z/-z-pl2(z/-+q2

We have noted that any element in H*(g,kl;7wR®z) can be represented by a Kl-equivariant
linear map

~: A)*(g/k1) , -, V .R
V, and V^R being the spaces on which t and ;CR act. Define

(pv(z)q)(U®v) = (q'(z)U®~(hl(z,z)-l ),
for UEA*(g/kl) and veVc. Since the image of hi lies in the center of K1, the linear map
pw(z)o is also Kl-equivariant. Therefore, pw gives a representation of C* on H*(g,kl; lR®X)
which commutes with the action of SL(2,C). This takes care of the full Weil group WE if E
is not contained in R. If E is contained in 1R, choose an element (lxa) in WE as in §5,
and set

(p,(lxo)))(U®v) = ;hR(nl)O(Ad(n-l1)U ®t(ni1)V)
as in [29]. Here ), U and v are as above, and n1 is an element in G(IR) such that

nlhl(z,z)n-1 = hi(zz) , zC*
We thus obtain a representation of WE on VV which commutes with action of SL(2,C). Both
of these actions obviously commute with that of Sw,R so P. does indeed extend to a represen-
tation of SRxWE x SL(2,C) on V,.

There is another canonical representation of this group. Let (r°, Vr) be the irreducible
representation of G with extremal weight equal to the element gl X*(T) defined above. The
Shimura field E is the fixed field of the group of elements in Gal(Q/Q), acting on G, which
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fixes !l. There is a unique extension of the representation r° to the group GE= Gx WE
such that WE acts trivially on the weight space of gl. Now, LGE is a subgroup of finite index
in LG, and the restriction yv of /iR to WE c WR takes values in LGE. The groups
NfR(SL(2,C)) and S ,R are contained in G, so we obtain a representation

yr: (s,w,u) -- r°(sVR(w,u)) , (s,w,u)e S xWExSL(2,C),
of SR X WE x SL(2,C) on Vro.

The lemma on p. 240 of [29] suggests that the representations pW and ao are equivalent.
This could be regarded as a reciprocity law for Shimura varieties at the Archimedean place. It is
of course much easier than the expected reciprocity laws at the finite places, which involve tale

cohomology. We shall verify it with WE replaced by the subgroup C* (of index at most 2).

Proposition 9.1. The representations p, and oy of SxC x SL(2,C) are equivalent.
Proof. This will be a straightforward comparison of the definitions in §5 with the results of [52].
Vogan and Zuckerman work with connected groups, but it is easy to adapt their results to G(R).

We fixed the point hleX so that the parabolic subalgebra khl +P h+ = k1 +p is stan-

dard relative to B. We also chose the parabolic subgroup Q = LNQ to be standard. Recall that
there is a bijection w -- itn between the double cosets

£ = W(L,T)\W(G,T)/WR(G,T)
and the packet FI,,. Now, the group K1 = Khl need not meet every connected component of

G(R), and its Weyl group W(K1,T) is only a subgroup of WR(G,T). There is a bijection
w -4 Xw between the double cosets

' = W(L,T)\W(G,T)/W(K1,T)
and the set of irreducible representations of G(R)' = G(R)°K1 which are constituents of restric-
tions to G(R)' of the elements in NlR. Then

Vv = H*(g,Kl; wz)
w~Z

= ) HomK,(A*/(glI)®t,xw)
we

= ( HomK,(A*(g8 I1)e, nw)

We shall represent the double cosets £' by elements weW(G,T) of smallest length. For any
such w, set KN = w-Klw, and represent the cosets W(L,T)/W(LrnK ,T) by elements in

W(L,T) of minimal length. Then any element in W(G,T) can be written uniquely as rwt, with
we2', teW(K1,T) and reW(L,T)/W(LCKIl ,T). Observe that

rw, re W(L,T)/W(L'K',T), we',
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is a set of representatives of W(G,T)/W(K1,T).
It follows from [52, Proposition 6.19] that for each weE', the space

(9.4) HomK(A*(g Ik 1) lt, w) = E HomK,(APp ®A^qp 1 t, 'w)
P,q

has a basis

rrw: reW(L,T)/W(LrnKw,T))

parametrized by the cosets in W(G,T)/W(K1,T) which lie in the double coset of w. Moreover,
if nW is the complex Lie algebra of w-NQw, an element Orw lies in the summand on the

right of (9.4) for which

p = l(r)+dimc(nwnrP+)
and

q = 1(r)+dimc(nwnp-) .

Finally, the Kl-type in T associated to any element in (9.4) is generated by an extremal vector
in V, with weight w1-X. Combining these facts with the formula (9.2), we see that

v,(Z)rw = (z-P/2(zz)q/2(w-lX,)(hl(z,))rw
= 2 (-q) <W1,i>TW4L1> zeC.= (Zf z ' Orw,zCC.

Consider the number

! 1
- (-q) (-imc(nwp ) + dimc(n np 1)).2 2

Observe that if a is any root of (G,T), <a,l.1> equals -1, 0, or 1, according to whether the
root vector of a lies in p , kl or p . Therefore,

(P-q) = <w-l6Q,ll> = <8Q,Wl>,
since 26Q is just the sum of those roots whose root vectors lie in nQ. Notice also that

<oTW-1X,.1> = <w-1OT4,Il1> = <OTX,,Wg1>.
It follows that

(9.5) pN(Z)Orw = z<6Q+WRz>SQTzWI>
On the other hand, r° is an irreducible representation whose extremal weight -1l is minus-

cule. It is well known that the weights of any such representation form one Weyl orbit. Since
W(K1,T) is the stabilizer of gAl in W(G,T), we can choose a basis of VT consisting of weight
vectors

Vrw, we ', re W(L,T)/W(LrnK ,T),
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such that

r°(t)v, = (rwil)(t), teT .

Suppose that zeC*. Then

o,(z)vrw = rO(v(z))vrw
= (rvll)(v(z))Vrw

<6Q+4.Vrwi'<-6Q+jTh" Og>
Z Z TVj

by (5.4). The properties of aT, 6Q and X allow us to remove r from the exponent. We
obtain

(9.6) a((z)vr= z<'Q+Wzv<-Q+TWRl .

We tentatively define an isomorphism of V. with VrO by extending the bijection rw <--vrw
between basis vectors. Formulas (9.5) and (9.6) show that the isomorphism commutes with the
action of C*.

The next step is to show that the isomorphism commutes with the action of S R. The

representation nl mentioned above corresponds to w = 1. It follows from (5.7) that

Pv(s)>rw = <S, ; IJl>gi(s))(rw = <St(w)>gl(s)(rw,
for any basis vector (rw and any SE S\WR On the other hand,

oy(S)vrw = r°(S)Vrw = (rwgl)(s)vw = (wgl)(s)vw,
since SR is contained in the torus T. It is therefore sufficient to show that

wl1 - 11 = t(w).
This follows easily by induction on the length of w, together with the properties (5.6) and (5.7)
of t.

We must finally show that the isomorphism commutes with the action of SL(2,C). First of

all, note that there are decompositions

v -= VW,wwe v

and

Vr =E Vrw,
where

V = c(C.w =( r: ceC = HomKl(A*g l) , 7w),
r

and

Vw = {£crrw: CrEC).
6
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The group S, xC acts on each of the spaces Vv,w and Vr,w by the same scalars, while the
spaces remain invariant under SL(2,C). Since we are free to modify our isomorphism by any
element in

FI GL(Vr°,w)
WEE'

it is enought to show that for a fixed weE', the representations of SL(2,C) on VNIw and

Vro, are equivalent. For this it is sufficient to show that V.,w and Vrow have the same set of
weights under the action of the diagonal element H in the Lie algebra of SL(2,C).

Recall first that

Pv,(H)rw = 2 (p+q-n)(rw

= - (dimc(nwnp,+) + dimc(nwnp ) + 21 (r)-n),^ .

We can write

n = dimc(SK) = dimc(P ')
= dimc(nw nrp ) + dimc(nw npl) + dimc(lwnp ),

where lw and nw are the complex Lie algebras of w-lLw and w-'NQw, the unipotent radi-
cal opposite to w-iNQw. Obviously

dimc(n rnp j) = dimc(nwnP ).
Since t1 is a minuscule weight, and w-1 maps positive roots of (L,T) to positive roots, we
have

dimc(lwrnp ) = -2<w-18L,1l> = -2<§L,w1>> .

Thus

p,(H)Orw = (1(r)+ <8L,Wl>)+.
On the other hand, the map of SL(2,R) into L which corresponds to the principal unipotent
element sends H to the vector 5L. Therefore

o,(H)vrw = r°(/y(H))vw = <8L,rwl>>Vrw
= <rf-lL,W1l>Vr.

Our task then is to show that <r-lL-SL, wtl> equals /(r). It is well known that 6L - r-16L
equals the sum of those positive roots of (L,T) which are mapped to negative roots by r. The
number of these roots equals 1(r). Now r is a representative of shortest length in W(L,T) of a
coset in W(L,T)/W(Ln K ,T), so it maps positive roots of (KwV,T) to positive roots. There-
fore, the positive roots in the sum above have their root spaces in Ad(w)(p j ). The number of
these roots equals

<6L- r-L, Wtl>
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In other words,

I(r) = <rC-lL- L, W1l>,
as required.

We have just established that VVw and Vrow have the same set of weights under H.

This was the last step, so the isomorphism from Vw to Vro can be defined so that it intertwines
the actions of S,, C, and SL(2,C). 0

Most of this section has dealt only with the local conjecture of §4 and the examples of §5.
We shall conclude by posing a question motivated by the global conjecture. In each of the

groups

H(2(SK(C),F,(C)), 0 d < n,

one can take the primitive cohomology. For example, there is the subspace H(SK,T) of the mid-
dle dimensional cohomology corresponding to parameters v which are trivial on SL(2,C). This
is a subspace of the primitive cohomology in HF)(SK(C),FJ(C)). In general, one would like to

attach motives to the primitive cohomology in various dimensions. Is it possible to identify
pieces of primitive cohomology with spaces H(SK', TQ, attached to Shimura varieties of smaller
dimensions?

I have not looked at the question closely, but it should have a reasonable algebraic answer.
For any parameter eT(G), let G. denote the centralizer of N(SL(2,C)) in 43. Then G,
is an extension of WQ by GV = Gnr G, and i provides a map of the Langlands group LQ
into G,,. Leaving aside the question of whether or not G. is an L-group, let us just look at
G , and G,.

Assume that i contributes to the cohomology of SK. Then we have the Levi subgroups
L c G and L c G. The image y(SL(2,C)) is just the principal three dimensional subgroup of

L, associated with the principal unipotent class. In particular, the groups G, and G, depend
only on L. The restriction of v to LQ could be very complicated, but we do know that the

image V(LQ) is a subgroup of G,, whose centralizer in G, is finite modulo Z(G). We can

try to obtain information about y, and its contribution to cohomology, by simply studying the

group Gw. In fact, Proposition 9.1 tells us that we can determine its contribution to the primitive
cohomology from the finite dimensional representations

(o(g,u) = r°(gv(u)), ge6,, uESL(2,C),
of Gw x SL(2,C) on Vro. The question above is essentially that of describing the decomposition

ov = (EDk 8Sk) YkeH (G,,), kefl(SL(2,C)),
of a.w into irreducible constituents. In particular, are the irreducible finite dimensional
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representations Yk of G, minuscule?
The maximal torus of G. is just AL, the split component of the Levi subgroup L of G.

Moreover, the Weyl group of G, with respect to AL equals

W(AL) = Norm6(A)/L.
Finally, the weights of the restriction of oa to G. are the restricted characters

li(w,L): a -> (wtli)(a), aE AL,

parametrized by the elements we W(G,T)/W(K1,T). Our constituents Yk will all be minuscule if
for every pair gl(w,L) and tl((w',L) of nonzero weights, tl1(w',L) lies outside the convex
hull of

(rii(w,L): WEW(AL)) .

To obtain a necessary and sufficient condition, we would have to replace W(AL) by the less
accessible subgroup of elements induced by the identity component G. of Ga. At any rate, it
would be interesting to test the question on some examples.
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