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Introduction

The general theory of automorphic forms is inl some ways still young. It
is expected eventually to play a fundamental unifying role in a wide array
of arithmetic questions. Much of this can be summarized as Langlands'
functoriality principle. For two reductive groups G and G' over a number
field F, and a map LG' __ LG between their L-groups, there should be
an associated correspondence between their automorphic representations.
The functoriality principle is very deep, and will not be resolved for a long
time.

There is an important special case of functoriality which seems to be more
accessible. It is, roughly speaking, the case that LG' is the group of fixed
points of an automorphism of LG. In order that it be uniquely determined
by its L-group, assume that G' is quasi-split. Then G' is called a (twisted)
endoscopic group for G. Endoscopic groups were introduced by Langlands
and Shelstad to deal with problems that arose originally in connection with
Shimura varieties. Besides being a substantial case of the general question,
a proper understanding of functoriality for endoscopic groups would be
significant in its own right. It would impose an internal structure on the
automorphic representations of G, namely a partition into "L-packets",
which would be a prerequisite to understanding the nature of the general
functoriality correspondence. However, the problem of functoriality for
endoscopic groups appears accessible only in comparison with the general
case. There are still a number of serious difficulties to be overcome.
When the endoscopic group G' equals GL(2), Jacquet and Langlands

[25], and Langlands [30(e)], solved the problem by using the trace formula
for GL(2). In general, it will be necessary to deal simultaneously with
a number of endoscopic groups G', namely the ones associated to those
automorphisms of LGO which differ by an inner automorphism. One would
hope to compare a (twisted) trace formula for G with some combination of
trace formulas for the relevant groups G'. There now exists a (twisted) trace
formula for general groups. The last few years have also seen progress on
other questions, motivated by a comparison of trace formulas. The purpose
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of this book is to test these methods on the simplest case of general rank.
We shall assume that G' equals the general linear group GL(n). A special
feature of this case is that there is essentially only one endoscopic group to
be considered.

There are two basic examples. In the first case, G is the multiplicative
group of a central simple algebra. Then G' is the endoscopic group associ-
ated to the trivial automorphism of LGO GL(n, C). This is the problem
of inner twistings of GL(n). In the second case, G is attached to the gen-
eral linear group of a cyclic extension E of degree f over F. In order to
have uniform notation, it will be convenient to write Go = RE/F(GL(n))
for the underlying group in this case, while reserving the symbol G for the
component Go > 0 in a semidirect product. The trace formula attached to
G is then just the twisted trace formula of G°, relative to the automorphism
0 associated to a generator of Gal(E/F). In this second case, the identity
component of the L-group of Go is isomorphic to e copies of GL(n,C),
and G' comes from the diagonal image of GL(n, C), the fixed point set of
the permutation automorphism. This is the problem of cyclic base change
for GL(n). In both cases we shall compare the trace formula of G with
that of G'. For each term in the trace formula of G, we shall construct
a companion term from the trace formula of G'. One of our main results
(Theorems A and B of Chapter 2) is that these two sets of terms are equal.
This means, more or less, that there is a term by term identification of the
trace formulas of G and G'.
A key constituent in the trace formula of G comes from the right convo-

lution of a function f E C°(G(A)) on the subspace of L2(G0(F)\G0(A)1)
which decomposes discretely. However, this is only one of several such col-
lections of terms, which are parametrized by Levi components M in G.
Together, they form the "discrete part" of the trace formula
(1)

Idisc,t(f) = disc,(f)
II '"I 11o IIW1 det(s - )M tr(M(s,O)pp,t(O,f))
M sEW(aM)reg

in which pp,, is a representation induced from the discrete spectrum of M,
and M(s, 0) is an intertwining operator. (See §2.9 for a fuller description
of the notation, and, in particular, the role of the real number t.) Theorem
B of Chapter 2 implies an identity between the discrete parts of the trace
formulas of G and G'. We shall describe this more precisely.
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Let S be a finite set of valuations of F, which contains all the Archi-
medean and ramified places. For each v E S, let f, be a fixed function in
Cc(G(F,)). We then define a variable function

f =IIfv
v

in C,(G(A)) by choosing functions {f, :v S} which are spherical (i.e.
bi-invariant under the maximal compact subgroup of G°(F,)). For each
valuation v not in S, the Satake transform provides a canonical map fA --

f' from the spherical functions on G(F.) to the spherical functions on

G'(F,). Our results imply that there are fixed functions fv E C'(G'(Fv))
for the valuations v in S, with the property that if

Vf=
then

(2) Idisc,t(f) = t( )
Given the explicit nature (1) of the distribution Id8Ct and the fact that
the spherical functions {fv : v 0 S} may be chosen at will, we can see
that the identity (2) will impose a strong relation between the automorphic
representations ofG and G'. In particular, we shall use it to establish global
base change for GL(n).

Chapter 1 is devoted to the correspondence fv -- fv. We shall also
establish a dual correspondence between the tempered representations of
G(Fv) and G'(Fv). For central simple algebras, the local correspondences
have been established by Deligne, Kazhdan and Vigneras [15]. We can
therefore confine ourselves to the case of base change. The correspondence
is defined by comparing orbital integrals. For a given Af, we shall show
that there exists a function f: E C (G'(Fv)) whose orbital integrals match
those of f, under the image of the norm map from G(Fv) to G'(Fv). At
the p-adic places we shall do this in §1.3 by an argument of descent, which
reduces the problem to the known case of a central simple algebra.
The main new aspect of Chapter 1 is the proof in §1.4 that the matching of

orbital integrals is compatible with the canonical map of spherical functions.
The proof is in two steps. We first define a space of "regular spherical
functions"; if one represents a spherical function as a finite Laurent series,
they are defined by the condition that certain singular exponents do not
occur. For these regular functions, the required identities of orbital integrals
can be proved inductively by simple representation-theoretic arguments.
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An argument of density using the version of the trace formula due to Deligne
and Kazhdan then shows that the identities hold for all spherical functions.
This argument relies in an essential way on a result of Kottwitz, which
proves the identities of orbital integrals for units in the Hecke algebra.
Once the comparison theory of spherical functions has been established, it
will be easy to obtain the local correspondence of tempered representations
(§1.5). It takes the familiar form of a lifting from the representations of
G'(Fv) to the representations of G°(Fv) that are fixed by 0. We shall also
prove identities between local L-functions and c-factors related by lifting
(§1.6). For the Archimedean places, the local lifting of representations is
already known ([32], [11(a)]). We shall establish the matching of orbital
integrals, as well as a Paley-Wiener theorem, in §1.7.

In Chapter 2 we shall compare two trace formulas. The trace formula

IWoMI IWoGI-1 aM(S, Y)IM(y, f)
(3) M YE(M(F))M,s

= EIW i IW -1 / aMIo )IM( r,f)
t M JH(M,t)

for G will be matched with a formula

EIWoMI IWoGI- E aM(S, 7)IM(7,)=
(3) M 7 (M(F))M,s

E
E>

Wo| IW aM(r)I (r f)dIr
t M fl(M,t)

obtained by pulling back the trace formula from G' to G. Theorem A
establishes an identification of the geometric terms on the left-hand sides of
the two formulas, while Theorem B gives parallel identities for the spectral
terms on the right. (It is the identity of global spectral terms aG, (r) and
aG(ir) which gives the equation (2), and leads to the global correspondence
of automorphic represntations.) The two theorems will be proved together
by means of an induction argument. We shall assume that all the identities
hold for groups of strictly lower dimension. This hypothesis will actually
be needed in §2.12 to construct the right-hand side of (3)&. It will also
give us considerable scope for various descent arguments. These arguments
lead to the identity of aM'£(7) and aM(7) in most cases (§2.5), of aM'6('x)
and aM(7r) in most cases (§2.9), and of IM,(7r,f) and IM(r,f) in all
cases (§2.10). They also provide partial information relating IM'(7, f)
and IM(, f) (§2.5, §2.6, §2.7). However, some intractible terms remain in
the end, and these must be handled by different methods. In §2.13 and
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§2.14, we shall show that for suitable f,

7 -(-I(,f) -IM(),f), 7 M(Fs),
is the orbital integral in y of a function on M(Fs). This allows us to apply
the trace formula for M. We obtain a relation between the spectral sides
of (3), of (3)E, and of the trace formula for M. By comparing the resulting
distributions at both the Archimedean and discrete places, we are then able
to deduce vanishing properties for the individual terms (§2.15, §2.16). We
shall finally complete the induction argument, and the proofs of the two

theorems, in §2.17.
As an application of the identity (2), we shall establish base change for

GL(n) in Chapter 3. For GL(2), the complete spectral decomposition of
the space of automorphic forms is known, and this makes it possible to

compare very explicitly the discrete spectra of GL(2, AF) and GL(2, AE).
Such explicit information is not available for n > 3. If it were, and in
particular, if there was a strong enough version of multiplicity one, we
would have no trouble deducing all the results on base change directly from
the formula (2). We must instead restrict the category of automorphic
representations considered to those that are "induced from cuspidal", a

natural notion coming from the theory of Eisenstein series. To prove that
the lifting exists, and preserves this special kind of automorphic forms, we
use (2) in combination with the very precise results obtained by Jacquet
and Shalika about the analytic behavior of L-functions associated to pairs
of automorphic representations.
Assume that EfF is a cyclic extension of number fields, of prime degree

t, with Galois group
{1, a, 2,..., a -1}.

Given the local lifting, we may define the global lifting as follows. Let
9r= ) TV, be an automorphic representation of GL(n, AF), a tensor product
over all places v of F; let 11 = 0) I be an automorphic representation of

GL(n,AE), w denoting a place of E. We say that II is a (strong) base
change lift of ~r if, for any wlv, II, lifts ir,. Our main result is Theorem
3.5.2, and applies to representations induced from cuspidal. Let r, II stand
for such representations of GL(n, AF), GL(n, AE). We prove that

(i) If 1I is (-stable, - i.e., I is equivalent to II o a - it is a base change
lift of finitely many ir.

(ii) Conversely, given r, there is a unique a-stable II lifting Ir.
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In fact, our results are more explicit. In particular, assume that II is a
cuspidal representation of GL(n, AE). We show that

(iii) If II _ IIH, there are exactly E representations ir lifted by II. They
are all twists of one of them by powers of the class field character associated
to ElF.

(iv) Assume II ! IfI. Then the data (II, II,...,IIH ) define, through
the theory of Eisenstein series, an automorphic representation of
GL(nt,AE). This representation is u-stable and lifts exactly one cuspi-
dal representation ir of GL(nt, AF).
Taken together, (iii) and (iv) imply, as shown in §3.6, the existence of

automorphic induction, a functor sending automorphic representations of
GL(n, AE) to those of GL(t, AF). In particular, this theorem contains,
for n = 1, Kazhdan's result about the map which sends idle class group
characters of E to cuspidal representations of GL(e, AF); this in turn gen-
eralized the version given by Labesse and Langlands of the classical con-
struction by Hecke, Maa/3, Weil and Jacquet-Langlands of the forms on
GL(2) associated to characters of a quadratic extension.

In §3.7 we apply these theorems to problems related to representations
of Galois groups. In particular, we prove the existence of the cuspidal
automorphic representation associated to an irreducible representation of
a nilpotent Galois group. However, Artin's conjecture is already known
for nilpotent groups. Indeed, cyclic or solvable base change alone does
not give any new cases of the Artin conjecture. (See §3.7.) Recall that
Langlands' application of base change to the Artin conjecture for GL(2)
already required another tool, either the lifting from GL(2) to GL(3), or
the Deligne-Serre characterization of holomorphic forms of weight 1.

Finally, we observe that our results lead to an interesting property of the
representations obtained by (solvable) automorphic induction from Abelian
characters. The principle of functoriality implies a multiplicative structure
on the set of automorphic representations. If irn and Tr, are automorphic
representations of GL(n, AF) and GL(m, AF), there should exist an asso-
ciated automorphic representation T7rn [ rm of GL(nm, AF). If Tr, comes
from an Abelian character by solvable induction, we can show that this
product exists for arbitrary 7rm.
The base change problem has an interesting history. For GL(2) and

quadratic extensions, it was first studied by Doi and Naganuma in connec-
tion with modular curves ([17(a)], [17(b)]). They relied on Weil's converse
to Hecke theory, as did Jacquet [24(a)] in further work. Saito [34] intro-
duced the use of a twisted form of the trace formula, and treated certain
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examples of Hilbert modular forms in cyclic extensions of prime degree of
totally real fields. His method was cast by Shintani [39] and Langlands
[30(e)] into the mold of automorphic forms on adele groups. They proved
the existence of a lifting from automorphic forms on GL(2, AF) to auto-
morphic forms on GL(2, AE), ElF again being a cyclic extension of prime
degree. Shintani also introduced a local notion of lifting: this makes it
possible to obtain analogous results for an extension E/F of p-adic fields.
The case of GL(3) was later considered by Flicker [19]. We refer the reader
to the beginning of Langlands' book [30(e), §1-3] for a more complete intro-
duction of the base change problem and its history, as well as the famous
applications to Artin's conjecture in dimension 2.
We would like to thank Robert Langlands for his encouragement while

this work was in progress. We are especially indebted to him for suggesting
that we exploit the cancellation of singularities, a technique that comes in
at a crucial stage in §2.14. We would also like to thank Herve Jacquet and
Robert Kottwitz for useful discussions. This work has been supported in
part by NSERC Grant A3483 (J. A.) and a Sloan Fellowship, as well as
NSF Grant DMS-8600003 (L. C.).
NOTATIONAL CONVENTIONS: The notation of the introduction will prevail
in Chapter 2. In Chapters 1 and 3, which are concerned mainly with base
change, we will use a more classical notation. Here we will write G or Gn
for the general linear group GL(n).

If F is a nonArchimedean local field, OF will denote the ring of integers.
We shall index our results by both chapter and paragraph. However,

we shall omit the numbers of the chapters when referring to theorems,
formulas, paragraphs etc., of a current chapter.
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CHAPTER 1

Local Results

1. The norm map and the geometry of a-conjugacy
For this section E/F is a cyclic extension of order e of fields of charac-

teristic 0; we denote by E the Galois group, by a a generator of E. We do
not assume that e is prime.
As we have agreed, G will stand for GL(n) throughout Chapters 1 and

3. Recall that g,h E G(E) are called a-conjugate if g = x-lhzx for an
x E G(E).

If x e G(E), we will write Nz for the element xzx ... x - E G(E); it
is called the norm of x.

LEMMA 1.1:

(i) If x E G(E), Nz is conjugate in G(E) to an element y of G(F); y
is uniquely defined modulo conjugation in G(F).

(ii) If Nx and Ny are conjugate in G(E), then x and y are a-conjugate.
Otherwise stated, the norm map is an injection from the set of

a-conjugacy classes in G(E) into the set of conjugacy classes in G(F). We
will write Nax for the conjugacy class in G(F) so obtained.

Proof. ([30(e)]). Part (i). Let pi(X)lp2(X)'I Ipr(X) be the elementary di-
visors of the matrix Nz; thus pi(X) E E[X]. We have (Nx)- = x-1(Nx)x.
This shows that in fact pi(x) E F[X], so the conjugacy class of Nz is
defined over F.

For Part (ii), we will need the following construction. Let u = Nz. By (i)
we may assume that u E G(F). Let Gu be the centralizer of u, an F-group;
it is the set of invertible elements of gu, where g = Mn = Lie(GL(n)).

Let Gx,,(F) be the a-centralizer of z: it is the set of all g E G(E) such
that g-lxg = x; it is the set of F-points of a group over F, which we
denote by Gx,,. It is easy to check that G:,,(F) C Gu(E); moreover, the
F-structure on G.,, is defined by z -+ xza'x-1. In other terms, G.,, is
an inner form (in fact an E/F-form) of Gu, the cocycle being given by
co = Ad(x) o a.
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The same construction applies to the Lie algebra (which is also naturally
an associative matrix algebra): we define Gx,, and Gu in the same manner,
and Gu is an E/F-form of G,,,. Hilbert's Theorem 90 (cf. [35, Exercise 2,
p. 160]) then gives

H1(,EG, (E)) = 0.

But then an easy cocycle computation gives (ii). |

We will say that z E G(E) is a-semi-simple if the class NAf is semi-
simple. In that case, of course, Gu is a semi-simple algebra, isomorphic to

r

a product fi M, (Fi) where Fi/F are field extensions; Gu is isomorphic to
i=l

n GL(ni, Fi) seen as an F-group, and Gx,a is an inner form of this group
which defines a product of central simple algebras.
Assume now that F is a global field. We will need to extend the definition

of the local norms to the places of F which are not inert in E. This is easy
and we do not give details. Assume for example that v is a place of F which
splits in E. Then E® F, = Fv * * D F, (e factors), E acting by cyclic per-
mutations; we set N(gl,...g9) = (91,... g9)(g2,... gi) * (9(,91.. g9-1) =
(9192 ' gt,92 ' 1,9 ...,g gl''' gt-1) It is conjugate in G(Ev) to an el-
ement of the form (h,h,... h) E G(F,). The general case is an obvious
composite of the split case and the inert case.

LEMMA 1.2: Assume F is a global field. Then, if u E G(F), u = Nx has
a solution in G(E) if and only if it has a solution in G(E,) for any place
v ofF.

Proof. Only the "if" part need be proved. We will first treat the case of a
semi-simple u. We may write u as a diagonal matrix

U'

U1

U2

U2

Uk

Uk
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where ui generates a field extension Fi/F of degree mi, embedded in
GL(mi,F). The centralizer gu is then (if ul y u2 **-.- uk) a prod-
uct of matrix algebras Mki(Fi) C Mk,,,(F), where ui appears ki times. It
is easy to see that the problem actually takes place in H Mimi,(F); thus we

i
may assume that u has only one eigenvalue, say ul E F;. We set k = kl,
m = m1.

Let us first assume that F1 = F. The hypothesis is that for any place
v, u = Nxv, xv E GL(k, E,). Taking determinants, we have detu =

N(det xv) E NE,*. Thus uk E NE* since in F*, an element which is a local
norm everywhere is a global norm. We now use the following lemma:
LEMMA 1.2.1: (J.-J. Sansuc). Let k,e be two integers and ElF an exten-
sion of local or global fields of characteristic 0, cyclic of degree £. Assume
x E F* is such that xk E NE/FE*. Then there exists an tale algebra Fo/F
of degree k such that x E NEI/F,Eo, where Eo is the cyclic tale algebra
E® Fo over Fo.

Proof. Assume first that F is a p-adic field. Then any field extension Fo/F
of degree k has the requested property. Indeed, there is a commutative
diagram (Serre [35, p. 201])

F*/NE/FE* = f0°(E, E*) . H2(E, E*) c, Br F = Q/Z

1 1 1 1 4Fo/NEo/NEo = 1°(Y,qEo)-E H2(Y, EO*) - BrFo = Q/Z
where Br denotes the Brauer group; whence a square

F*/NE/FE* = Z/Z

FO/NE/ooEo ' z/tZ
which implies the result.

If now F = R, the only nontrivial case is when ElF = C/R and k is
even. It suffices to take F0 = Ck/2.
Now assume F is a number field. We may choose a finite set S of places

of F such that, if v $ S, x is a local norm in the extension (E 0 F,)/F,.
For every finite place v E S, set no = k; if v is infinite, set no = 1 if k is
odd or if k is even and F, = C, and n, = 2 otherwise. We now quote the
following theorem (Artin-Tate [3, p. 105]):
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THEOREM 1.2.2: Assume F is a number field, S a finite set of places ofF
and (nv)VEs integers such that n, = 1 or 2 (Fv, R) and n, = 1(F,, - C).
There exists a cyclic extension Fo/F, of degree n = I.c.m.(n,) such that,
for v E S, the extension Fo,,/F, is a field extension, cyclic of degree n,.
We apply the theorem, with the n, fixed before. By the p-adic and

Archimedean cases, we see that for v E S, x E NEo,W/Fo,W(EO,W) for any
place w of Fo above v. If v SS, x is a local norm from E ® Fv and a

fortiori from E0o Fv. Therefore x (considered as an element of Fo) is a
local norm everywhere and thus a global norm. This finishes the proof of
Lemma 1.2.1. 1
We can now prove Lemma 1.2 for u scalar (F1 = F). Since uk E NE*,

Lemma 1.2.1 ensures the existence of a field Fo/F (... in fact cyclic) of
degree k such that ul E NE@FO/Fo(X) for x E (E SFo)*. We can embed
the extension Fo of F into Mk(F); then E 0 Fo is embedded into Mk(E),
and this yields an element of Mk(E) whose norm equals u.
Now let us treat the general case of an element

U )

u = . (k copies),

where u1 E F~ embedded into GL(m, F) and u1 generates F1. The central-
izer of u in Mkm (F) is then isomorphic to Mk(F1) as an F-algebra.
Assume u is a local norm at the place v of F: u = NE,IF,ZV, x, E

GL(mk, E,), where E, = E X F,.Then, since u = u:

XvU = XvU = Xvv *... xv xv = Uxv.

Thus x,, lies in Mk (F1 Ev). If u is a local norm everywhere, we see that it
is a local norm in the F-algebra Mk(Fl). Applying the case already proved
of the lemma to Mk(Fl) and the extension F 0 F1/F1 (this may not be a
field but the extension to cyclic tale algebras is obvious), we see that there
is an x E Mk(E 0 F1) such that NE/FX = u.

This solves the problem in the semi-simple case.
We now treat the general case. Assume u E GL(n, F) is a local norm

everywhere. Let u = sn, s semi-simple, n unipotent, be its Jordan decom-
position.

Notice first that the norm map may be defined by considering the non-
connected group H over F defined by H = (ResE/F GL(n)) >x E, where
E acts on ResE/F GL(n) by F-automorphisms via its action as a Galois
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group: in particular its action on GL(n,E) = (ResE/ GL(n))(F) is its
Galois action on GL(n, E). The norm map is just the t-th power in H(F);
more precisely,

(g, a)' = (Ng, 1)
for g E GL(n, E). The group H is linear, and the Jordan decomposition is
available in it.
Assume now that u is a local norm at the place v of F. We then have

(1.1) (u, 1) =(g,)t gE GL(n,E,).
Using Jordan decomposition in H(Ev) we write:

(1.2) (g, a) = (sl,)(n, 1) = (n, 1)(sl, a)
with ni E GL(n,E) unipotent, si E GL(n,E,) such that (si,a) is semi-
simple. Taking £-th powers in H, we see that this last condition is equivalent
to Nsl being semi-simple. On the "connected component" GL(n, E) of
H(E), equations (1.1) and (1.2) translate as

(1.3) s=Ns1, n= n

(1.4) sni = nisi.

Since n E GL(n, F) we see first, taking logarithms, that nl E GL(nl, F).
We will write X = logn E Mn(F). By (1.4) we see now that sl commutes
with X.
We now finish the proof of Lemma 1.2 under the assumption that

m

is a scalar matrix in GL(n, F). Let

Vo = Fn = KerXk D V1= KerXk-1 D .. D Vi = KerXk-i D ... D {0}
be the flag associated to the nilpotent matrix X. As sl commutes with X, it
acts on V/Vi+l as an endomorphism s1 defined over Ev. Clearly this graded
action commutes with the taking of norms, so we see that NE,/FV(si) is
the diagonal matrix with entries equal to x; the norm is taken, of course,
in GL(ai) where ai = dim Vi/Vi+l. Taking determinants, we conclude that
zai is a norm from E, to F,.
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If a = g.c.d.(ai), this implies that xa is a norm from Ev to F,; as this
applies to all places of F, we see that za E F* is a norm from E*. By the
proof of the lemma in the semi-simple case, we see that the diagonal matrix

z )

(a entries) is the norm of an element t E GL(a, E). By the Jordan canonical
form, nl may be written as a matrix with square blocks of dimension a,
equal to 0 or 1. Such a matrix commutes with the element s2 E GL(n, E)
having diagonal blocks (t .. t) and all its T-conjugates; clearly N(s2nl) =
u.

Finally, in the general case, equation (1.4) shows that nl preserves the
decomposition of n-space according to the eigenvalues of s. Thus, as in
the semi-simple case, we may first assume that s has only one eigenvalue
ul E Fi. Just as in the semi-simple case, we see that the problem actually
takes place in the algebra Mk(F1) where s is identified to a semi-simple
diagonalized element. This reduces to the previously treated case. I
We now study more especially the case of elliptic regular elements. (Re-

call that u E GL(n,F) is regular elliptic if its eigenvalues generate an
extension of F of degree n.)
LEMMA 1.3: Assume u E G(F) is elliptic regular; let F1 - gu(F) be the
field generated by u.

(i) The equation u = Nx has a solution if and only if u E NL/FL*,
where L = E 0 F1; the norm from E 0 F1 to F1 is defined by the structure
of F-algebra on Fl.

(ii) In particular, if F1 is F-isomorphic to E, u = Nx has a solution.

Proof. If u = Nx, x commutes to u, hence z E gu(F) which is isomorphic
to L as an F-algebra. Thus u E NLIF1 L*, and the converse statement in
(i) is clear also. If F1 E, then F1 splits over E and the norm map is onto;
this proves (ii). I
LEMMA 1.4: Assume ElF is a cyclic extension of local fields, and u E
G(F) is elliptic regular. Then u is a norm if and only if det u E NE/FE*.
Proof. If u is a norm, we see, taking determinants, that det u is one. Con-
versely, assume that det u is a norm. We will rely on Lemma 1.3(i). Let us
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first assume that F1 and E are linearly disjoint. Let L be their compositum:
L

/\
F1 E

F

The extension L/F is Abelian, of Galois group E. If K is a local field,
denote by jK the local reciprocity map: K* Gal(Kab/K), where Kab is
an Abelian closure of K. Then u E NL/F L* if and only if jF1 (u) = 1 on L.
On the other hand, det u E F* is naturally identified with NF1/F(U). Then
det u E NE/FE* if and only if jF(det u) = 1 on E. By the compatibility of
the local reciprocity maps (Serre [35, p. 178]):

jF(NF./FU) = Cl/FjFF(U)
where CF1/F is the canonical map: Gal(F1,ab/F1) -- Gal(Fab/F). Assume
then that det u is a norm, i.e., jF(NF/IFU) = 1 on E. Then, by the isomor-
phism Gal(E/F) - Gal(L/F1), we see that jF (u) = 1 on L, which shows
that u is a norm.
We now treat the general case. Let F'/F be a maximum subextension of

E such that F' and F1 are linearly disjoint. By the transitivity of Abelian
norms, we have det u E NF'/F(F')*. Thus u is the norm of an element v

in (F1 0 F')*, by the case already proved. But in the extension EIF', the
field F1 0 F' splits totally: in particular, every element in (F1 0 F')* is
equal to NE/FI, for x E (F1 0 E)*. By composition of (Abelian) norms,
we see that u is a norm. I
We note that Lemma 1.4 is equivalent to the following assertion in Galois

cohomology. Let F* be the multiplicative group regarded as an F-torus. Let
Ft be the F-torus canonically associated to F1: thus F;(E) = (F1 0 E)*
for E an F-algebra. The norm map NF1/F sends F; to F*. Let, for T
an F-torus, Hi(S, T(E)) denote the i-th Tate cohomology group of E =

Gal(E/F) in T(E). Then:
LEMMA 1.5: The norm is an injection:

h°(E, F1(E)) , H°(, F*(E)).NF1/F
We finish with a last definition. We will say that (in the local or global
case) x E G(E) is a-regular if its norm is a regular semi-simple conjugacy
class in G(F).
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2. Harmonic analysis on the non-connected group
2.1. In this section, unless otherwise stated, ElF is a cyclic extension of
local non-archimedean fields of characteristic 0. Let E = (a) be the Galois
group. Let e be the order of E.
We will denote by G(E) the semi-direct product G(E) >4 E, the Galois

group acting by the action on G(E) defined by the F-structure. In an
obvious way, this can be seen as the group of F-points of a non-connected
linear algebraic group H defined over F.t
The standard theory of admissible representations of (connected) reduc-

tive p-adic groups extends to such groups - cf. [ll(e)]. We will be mostly
interested in the following type of admissible representations of G(E). As-
sume that II is an irreducible, admissible representation of G(E) on a space
V. We say that II is a-stable if it is equivalent to the representation IIa
defined by

n(g) = In(g), g E G(E).
By definition, there is then a nonzero intertwining operator I : V -+ V

between II and II. By Schur's lemma, I4, which intertwines II and itself,
must be scalar. We may first normalize I, by assuming I1 = 1. This defines
I, up to an £-th root of unity.
We want to make a canonical choice of I,. This will rely on Whittaker

models.
Assume first that the representation I is generic (cf. [27(a), §1]). By

definition, there is a linear form A ~ 0 on V such that

A(r(n)v) = O(n)A(v), v E V

X1 * \

for any n = in the upper unipotent group;
* Zn-1

0 1

0 is the character n H-4 b (trEIF(Zl + "+-n-1)), where t is a non-
trivial additive character of F. Moreover, the space of such functionals has
dimension one. In that case, we normalize I, by requiring that tIA = A
for the dual action on V*.

tNote the slight abuse of notation: G(E) is not the set of E-points of an algebraic group
over E.
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In general, by the Langlands classification for p-adic groups ([40(a)], [9]),
II can be realized as the unique submodule of an induced representation

R = ind()N(E)(M 1).

Here MN is a parabolic subgroup of G, that we may take to be defined over
F; IIM, a representation of M(E), is essentially tempered, and in particular
generic ([24(b)], [4]). By uniqueness of the Langlands classification, IM
must be r-stable. If IM is the normalized intertwining operator on IM, we
define I,, acting on the space of R, by induction (cf. [ll(b), §6.2]). The
restriction of IG to II is then the normalized intertwining operator on HI.
To check that the definition of I, is independent of the choices involved,

it is enough to check the following lemma, which follows easily from the
transitivity properties of Whittaker vectors; we omit the proof.
LEMMA 2.1: Assume IM is an irreducible, a-stable, generic representa-
tion of a Levi subgroup M(E). Assume IG = ind(IM) is irreducible and
generic. Then the normalized intertwining operator on HG coincides with
the operator induced from the normalized intertwining operator on IIM.

For any irreducible, r-stable II, we now define the canonical extension of
II to G(E) by setting

H(g > ai')= n(g) I.
This is an irreducible, admissible representation of G(E). We define the

twisted character of the representation II as the distribution on G(E) whose
value on q E C (G(E)) is given by

EOn, () = trace(II(q) I).
Thus the twisted character is actually the trace of the canonical extension

of II on the component G(E) x a of G(E).
PROPOSITION 2.2: The twisted character EGn,, is given by a locally inte-
grable function, locally constant in the neighborhood of a-regular elements.

Proof. This results from Theorem 1 of [ll(e)]. The theorem says that the
representation II extended to G(E) has a locally integrable character. We
only have to check that the regular elements of G(E) x a, as defined in
[ll(e)], are just the elements g >x a where g E G(E) is a-regular.
By definition ([ll(e), §1]), g x a is regular if Dd(g > a) 5 0; here Do is

given by

det(T - Ad(g) o a + 1) = TnDd(g x a) + terms of higher degree.
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By Lemma 1 of [ll(e)], this implies that g x a is semi-simple in H(F); so

(g x a) = (Ng, 1) is semi-simple, which implies that g is a-semi-simple. But
then the eigenspace, for the eigenvalue 1, of Ad g o a, is just the Lie algebra
of the set of F-points of the a-centralizer of g: since over E this group is
isomorphic to the centralizer of Ng, we see that Ng must be regular, so g
is r-regular. Conversely, if g is r-regular, it is easy to check by the same

argument that g x a is regular in H(F). I
We will need next the analog, for twisted characters, of a result of Cas-

selman relating characters and Jacquet modules. We briefly recall Cas-
selman's theorem. If g E G(F), there is a canonical way to associate
to g an F-parabolic subgroup Pg = MgNg of G; Pg(F) is the set of
points contracted by Adg ([10(c)]). Assume g E G(F) is regular. Then
g E Mg(F); the Jacquet module IN, associated to an admissible represen-
tation II ([10(a),(b)]) is a representation of Mg(F) and

traceII(g) = traceIIN(g).
Now assume that II is a representation of G(E). If II - II o a and

P = MN is defined over F, the operator I, acts on the Jacquet module lN;
we denote again by Ia the operator so defined. We will write trace(II(g) Ia)
for the character en,,(g).
PROPOSITION 2.3: Assume II o a. Assume g E G(E); we assume that

Ng = h E G(F). Let Ph = MhNh the associated F-parabolic subgroup.
Then, if Ng is regular:

trace(II(g) ,) = trace(IIN (g) I).
The proof is an easy paraphrase of Casselman's ([10(c)]), and is omit-

ted. I
2.2. The next result of harmonic analysis that we will need is the analogue
of a theorem of Kazhdan on the approximation of orbital integrals by char-
acters. Before proving this, however, we need to extend to the twisted case
the form of the trace formula due to Deligne and Kazhdan.
We first state the non-twisted version, in the form in which we will use

it in later proofs.
Assume that E/F is now a cyclic extension of number fields. We write

A for the adeles of F, AE for the adeles of E. Let Z be the diagonal
subgroup of G; let Z1 = N(AE) C Z(A) - A*. We fix a unitary character

X of Z1, such that X = 1 on Z1 n F*.
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Let us choose two finite places v1, v2 of F which split completely in E.
Let f be a smooth function on G(A) such that:

(1) f(zg) X(Z)-1f(g) for z E Z1.
(2) f is a tensor product of local functions f = f f,; at almost all places,

f,(zk) = X(z-1) if z E Z1 n F*, and k E G(0,); f, is zero on all other
elements.

(3) f,, is a coefficient of a supercuspidal representation of G(Fv,).
(4) f,, is supported on the set of regular elliptic elements of G(F,,) whose

image in PGL(n, F,) is regular.
Let r be the representation of G(A), by right translations, on

L2(G(F)Z1\G(A),x), the space of L2 functions on G(F)\G(A) which
transform by X under Z1. Let rcusp the subrepresentation on the space
of cusp forms.

If E G(F,), let, for f, E C,0(G(F,))

^f(Y) = J f(g-17) dg
G.(F, )\G(F,)

denote the corresponding orbital integral, for some choices of dg and dt.

LEMMA 2.4: (Deligne-Kazhdan, cf. [15], [21]). ff is as above, the operator
r(f) sends the space of L2 automorphic forms in the space of cusp forms;
moreover

(I) trace rcusp(f) = vol(G7(F)Z1\G7 (A))$f (7).

The sum ranges over the set of regular elliptic conjugacy classes in G(F);
f (y) is the orbital integral

(Y) =-IIPf.()
The trace is taken for a measure dgA = Idg, on G(A); that measure
enters in the local orbital integrals, and the volume of Gy(F)Zl\Gy(A) is
computed for the product of the local measures on the tori Gy(Fv) figuring
in the local orbital integrals.

Let now XE be a unitary character of Z(AE), trivial on Z(E). We con-
sider the representation of G(AE) on L2(G(E) Z(AE)\G(AE),X,). This
space carries a natural action of E. Write I, for the operator associated to
a. Assume now that the function X on G(AE) satisfies conditions analogous
to (1) and (2) above, and moreover:
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(3') On G(E,,) "G(Ewl) x G(Ew2) x x G(Ew,) (E factors), we have
Ovl = (wl,... wu) where each Owl is a coefficient of the same supercusp-
idal representation xr of G(Ew,) - G(F,,).

(4') Let 4v2 = (,wl, ... ,) be the analogous decomposition at

v2 (wi, ...wt are not the same as in (3)). Let Qt = Supp(wi), where
Supp(f) denotes the support of f.
Then fi1Q2 * Qt is contained in the set of elements of G(Fv2) with reg-

ular elliptic image in PGL(n, FV2).
Let again r denote the right representation, rcusp its cuspidal part.

LEMMA 2.5: Under those assumptions, the operator r()) sends L2 auto-

morphic forms into cusp forms, and

(II) trace(rcusp(O) I4) =E vol(Ga6, (F)Z(AE)\G6,o(AE))4 ,a (6).
{a6}

Here {6} runs over the a-conjugacy classes of elements of G(E) with
elliptic regular norms. The group G6,, is the a-centralizer of 6, an F-torus.

,I(6)=n- /J (s g)ba)
v G6,,(F,)\G(E.)

is the product (over the places of F) of the local twisted orbital integrals.
Normalization of measures is as in Lemma 2.4.
We sketch the proof, following Henniart's article [21]. First, the image

of r(o) is in the space of cusp forms, by Lemma 2.4. It is clear that Ia
preserves the cusp forms. Thus r()) Ia is trace-class - since the cuspidal
part of r(q) is - and

trace(rcup(4) I,) = trace(r() Ia).
As in [21, §4.9] we obtain the trace by integrating along the diagonal the
kernel associated to r(O)Il, whence

trace(r(k) I,) = J { Z (g S')} dg.
G(E)Z(AE)\G(AE) 'EZ(E)\G(E)

At the place v2, we have Eva - Fv2 ' ... Fv3 (£ factors), the Galois
group acting by cyclic permutations.

Let 7 E G(E); the image of 7 in the completion Ev, is of the form
(71, 72, .... ,'7), 7yi E G(FV). If g = (1g,... ,9g)E G(Ev), we have

9-1gQ, = (1r71g2,9217293,...,g 17tg1)-
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Assume then that v,,(g-17g9) $ 0. By assumption 4', we have
g9'1yg+,1 E Qi, whence, taking the product:

91 (1-y.72**T)91 E 12 *fl 2...,

This shows that N7 is regular elliptic at v2, and a fortiori as a global
element. Therefore, in the sum appearing in the expression oftrace(r(k)l,),
only elements with regular elliptic norms appear.
LEMMA 2.6: The function

F(g)= - E 1(g-'Og)l
YEZ(E)\G(E)

N' elliptic regular
is compactly supported on G(E) Z(AE)\G(AE).
Proof. First of all, the sum is finite, uniformly for g in a compact set.
Moreover, S(g-17gI) $ 0 implies g-17g E C = Supp(O), whence 7 E
gCg-. Taking norms, we get

N;E g(CC°7 cOt-)g-,
with CC° . * C°- compact. Henniart ([21, Appendice 3]) shows that the
set of g satisfying this condition for some elliptic regular 6 (in lieu of Ny)
is compact modulo G(E) Z(AE). This proves the lemma. I

This shows that in the expression for the trace, we may now permute
sum and integral; the usual manipulation then yields Lemma 2.5. (Note
that no indices appear in the term multiplying an orbital integral, because
we have assumed that the images of the relevant elements in the projective
group are regular.) |

Let us denote by

¢+o(.)W= |J g(16g91 )dg
Ga,,(F)\G(E)

the local twisted orbital integral; thus E/F is an extension of local fields,
and G6,, is the twisted centralizer. (The convergence of this integral will
be checked in §3. If 6 is o-semi-simple, in particular, the orbit is closed in
G(E) so convergence is obvious.)
PROPOSITION 2.7: Assume that E/F is an extension of local fields (Archi-
medean or not), and that 6 E G(E) is a-regular. Then, if q E C°°(G(E))
is such that

no(-)= 0
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for any tempered, a-stable representation I of G(E), the orbital integral
·o,o(6) vanishes.

Proof. First, an argument of descent reduces to the case of 6 having elliptic
norm. Assume N6 is not elliptic: then 6 E M(E) for a Levi subgroup M
of G defined over F. Let P = MN be an associated parabolic subgroup.
Let KE = G(OE). Then, if

(g) = / (kgk-) dk,
KE

a standard descent formula gives ([40(b), 29(a)])
0(1-)= IAG/M(Nb)I 1iMP (6).

Here the orbital integral on the right is taken in M(E);
IG/MI = I(DGIM)l

is a certain discriminant - see §4; and +(P) is the constant term of X, defined
by:

(P(-)()= N)= p,(m(mn)dn
(E)

(cf. eg. [29(a), §5]). On the other hand, if the representation I is induced
from a r-stable representation IM of M(E), and the intertwining opera-
tors correspond, an easy extension of a theorem of Harish-Chandra [20(d)]
yields:

en,o(X) = en,,,,(,().
Therefore, if we assume the proposition for M, we see that the twisted
orbital integral of 6 must vanish.
Assume now N6 is elliptic regular. We choose a global field k, and an

extension k' of k, such that at the place vo the extension k'o/k,, is isomor-
phic to ElF. We then apply Lemma 2.5. We choose first the supercuspidal
representation II of G(k,,). On elliptic elements close enough to 1, its char-
acter is then equal to the formal degree, and hence # 0. The twisted orbital
integral of ,,v = (¢1»,... . ,,) is the orbital integral of wl, *'"** w; for
correct choices of the functions, it will be a non-zero multiple of the char-
acter of II.

Therefore, if 6* is an element of GL(n, k') approximating 6 at v0, we may
assume, taking 6* close to 1 at vl, that the twisted orbital integral of bV1
does not vanish at 6*. We may also assume, using finite approximation,
that 6* has elliptic norm (with regular image in PGL(n)) at the place
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v2. We may then choose the other functions Xv in such a way that only
one orbital integral appears in the right-hand side of (II), and that it is
of the form c+o,(o) with c $ 0. (This is possible because, for GL(n),
we may separate global (twisted) orbits using only local conditions: indeed,
(twisted) conjugacy classes of semi-simple elements are parametrized by the
coefficients of the characteristic polynomial, and obviously these are known
as soon as they are known at a local place.) We then have an identity:

trace(rcusp(VO ®VO) Io ) =c- oo(V*o).
However, only generic representations occur in the left-hand side [27(a)]; by
the assumption on v,,, then, it vanishes, which shows that ,fO,,G(vo) = 0.
We will see (§3) that the twisted orbital integral is smooth on the a-regular
set. Since 6* can be made close to 6, this proves the proposition. |

2.3. Finally, we will close this section by studying the representations which
play, in the twisted case, the role of the discrete series. We will say that a
representation of G(E) is a-discrete if it is tempered, a-stable, and cannot
be induced from a (tempered) a-stable representation of a standard Levi
subgroup.
LEMMA 2.8: Assume the representation I is a-discrete. Then there exist
min, and a discrete series representation HI of GL(m, E) such that H1 r

Hi and Hni IIL (1 < i < r = m), and such that HI is induced from the
representation (II, 1 O,...II- ) of the Levi subgroup of type (m,...,m).
Conversely, any such representation is a-discrete.

Proof. Since II is tempered, it is induced from a representation
(II1, I2, ..., iHk), HI discrete, of a Levi subgroup of type (m, ... mnk). Since
II HII, we must have, by the standard classification results, (HI,... II) =
(IIl,... IIk) up to permutation. Since II is not induced from a r-stable rep-
resentation of a Levi subgroup, this permutation must be transitive on
(1,.. .k).Thus I is induced from (HII,... flH 1) withIIH II . Finally,
k must be minimal for this property, otherwise II would again be properly
induced. The converse is plain. I
We now state a Paley-Wiener theorem for a-stable representations, due

to Rogawski [33(c)]. It extends to the twisted case the Paley-Wiener the-
orem of Bernstein, Deligne and Kazhdan [6]. We formulate it in a way
slightly different from [33(c)], since the normalized intertwining operators
I, are available to us. Recall from [6] that the set Irr(G(E)) of irreducible
admissible representations of G(E) has a natural decomposition into "com-
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ponents" associated to cuspidal representations of Levi subgroups. More-
over, if M is a Levi subgroup (defined over F), and IM an admissible
representation of M(E) of finite length, we may twist IIM by an unram-
ified one-dimensional character of M(E). Let Irr,(G(E)) be the set of
a-stable representations in Irr(G(E)).
PROPOSITION 2.9: (Rogawski). Assume A is an additive functional, with
values in C, on the Grothendieck group of a-stable representations of G(E)
of finite length. Assume

(i) A : Irr(G(E)) -+ C is supported on a finite number of components.
(ii) For any proper Levi subgroup M/F, and a-stable IIM offinite length,

X A(indN(E)N(E) Hm ® X)
is a regular function of the unramified character X. Then there is 4 E

Cc(G(E)) such that

A(II) = trace(II(o) I), II E Irr(G(E)).
COROLLARY 2.10: Assume that II is a a-discrete representation of G(E),
with central character X. Then there is a function X on G(E), compactly
supported modulo the center Z(E), and such that 4(zg) = X(z)'-l(g), with
the following properties:

(i) trace(ll() I4) = 1.

(ii) trace(T(4) I-) = 0 for any tempered, a-stable T 0 II with central
character X.

(Note that T() = J/ (g)T(g)dg is well-defined)
Z(E)\G(E)

Such a function q will be called a pseudo-coefficient of II x a.

A proof of this can be given, using the Langlands classification, by the
same method as for Proposition 1 of [11(d)], as soon as Proposition 2.9 is
known. I

Finally, we will need the following results:
LEMMA 2.11: Assume that II is irreducible, generic and a-stable. Assume
On,o is not identically 0 on the set of a-elliptic elements. Then II is a-
discrete modulo torsion by a character.

Proof. By a result of Zelevinsky [42, Theorem 9.7], II is a full induced
representation from an essentially square-integrable representation of a Levi
subgroup. Inducing by stages, we may write

I = ind )N(E) (IIM 1)M(E)N(E]
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where IIM is essentially tempered and dominant in the sense of the Lang-
lands classification (cf. [9, XI.2.9]). Then IIf = ind(IIH ® 1). By the
uniqueness of the Langlands classification, this implies that IIM is a-stable.
IfM is proper, the formulas for induced twisted characters ([ll(b), Propo-
sition 6]) show that rn,,7 = 0 on the r-elliptic set. Therefore M = G, and
II is essentially tempered. It is then easy to see (cf. Lemma 6.4) that, up
to torsion by an Abelian character, II is induced from a a-discrete repre-
sentation. Again, the condition on the character implies that II is itself
u-discrete. I

The following lemma is a sort of dual of Lemma 2.11:

LEMMA 2.12: Assume that II is a-discrete.
(i) On11, 0 on the a-elliptic set.

(ii) If b E COO(G(E),X) is a pseudo-coefficient of II, the twisted orbital
integrals of q are 0 on non-a-elliptic elements and do not vanish identically
on the a-elliptic set.

Proof. We may assume the central character X equal to 1 and work on
PGL(n). If 4 is a pseudo-coefficient of II, the descent argument used in the
proof of Proposition 2.7 shows that 4<,(7y) = 0 for N7 non-elliptic: indeed,
trace(II(o) I,) = 0 for any a-stable II properly induced from a-stable. But
now, the identity

1 = trace(II(O) I.) = L/ eQn,(g)q(g) dg
am ell

implies both (i) and the rest of (ii). |
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3. Transfer of orbital integrals of smooth functions

In this section E, F are non-Archimedean fields of characteristic 0; E
is cyclic over F; a, E are as above. We want to compare orbital inte-
grals of functions in Cc (G(F)) and twisted orbital integrals of functions in
Cc(G(E)). We fix, once and for all, Haar measures dg on G(F) and dgE
on G(E).
Assume 6 E G(E) has a regular norm y E G(F). As explained in §1, Ga6,

is an inner form of Gy; since G- is a torus, these two groups are therefore
isomorphic over F. In fact if 7 E G(F), one has G^,,(F) = Gy(F), a

canonical isomorphism.
In particular, in the expression of the twisted orbital integral

·46,°(6) = J ~(g-16g4)dt
G^6,(F)\G(E)

and the orbital integral

f(7) = J f(g-17)dtg
G((F)\G(F)

we will always assume that the choice of measures dt is the same on G. (F)
and G6,,(F).
We will prove:

PROPOSITION 3.1:

(i) Assume 4 E CG°(G(E)). Then there exists f E CG°(G(F)) such that,
for regular 7 E G(F):

0 if 7 is not a norm

( = I, (6) if = N6, 6 E G(E).
(ii) Conversely, given f E CO(G(F)) satisfying (*), there exists 4 E

CG°(G(E)) such that

,o() = f(N( ) for 6 E G(E).
As usual, the study of orbital integrals begins with a compactness lemma:

LEMMA 3.2: Let 6 E G(E); assume N6 = 7 is a semi-simple element of
G(F). Let M = Ga.
Assume that 6 E T(E), where T is a maximal torus of G over F. Then

there is a neighborhood V of 1 in T(F) with the following property:
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For any compact Q C G(E), there is a compact set w C M(F)\G(E)
such that, for g E G(E):

g-lV6Sg n Q 0 implies M(F)g E w.

Note that by I, §1, the group M is reductive, an inner form of G,.
We also remark that, by the properties of the norm map, a-regular ele-

ments are always a-conjugate to elements of T(E) for some maximal torus
T over F. Clearly the twisted orbital integrals of an element 6 E T(E) de-
pend only on its class in T(E)1-°\T(E) where T(E)1- = {tt-7lt E T(E)}.
There is an exact sequence

1 - )T(E)1 - T(E) - T(F)
since, by Hilbert's Theorem 90, H1(E,T(E)) = 1 for any torus of GL(n).
Here N = NE/F, the norm map. Consequently, since the map TF -* TF
given by t i-, tt is an isomorphism in a neighborhood of 1, we see that T(F)
gives, near 1, a parametrization of T(E)1-~\T(E) or of the a-conjugacy
classes in T(E).

Proof of Lemma 3.2 (cf. Shelstad, [38(b), Theorem 4.2.1]). We first re-
duce to the case that 7 is central. Assume that g-ltSgGE Q, for some
t E T(F). Taking norms, we have g-1ttNSg E i1 = o o... Q'- . By the
usual version of this lemma ([20(c), p. 52]), there is a neighborhood U of
N6 in T(E) such that, if x E U, and g-1xg E (1, this implies g E M(E)wi,
with W1 compact in G(E). So if V1, a neighborhood of 1 in T(F), satisfies
Vi' . N6 C U, we have

implies g-'Ug nfQ1 Z 0, whence g E M(E)wl; writing g = mx, x E wi,
m E M(E), we then have x-1m-1V1l7mxa nClQ 0, whence m-1Vl1ym n
Q2 :0, where

02 = M(E) n {xQx° I x E wi}
is compact in M(E). But then, assuming the lemma in M (where 7 is
central) we see that for suitable V1, the relation m-lV17mG n Q2 # 0
implies M(F)m E WM, wM C M(F)\M(E); then g = mx E Wmw1 C
M(F)\G(E). I
We now assume that 7 is central.

LEMMA 3.3: Assume fl1 C G(E) is compact. Then there is a neighborhood
V1 of 1 in T(F), and Q2 compact in G(E) such that the conditions g E
G(E), t E V1, gttg-1 E Q1 imply gtg'1 E Q2.
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Proof. Let gE = Lie G(E). According to Harish-Chandra [20(g), p.330],
there is an open, closed, invariant set gE of gE such that

(i) exp : go -- G(E) is defined, and a diffeomorphism,
(ii) OEgEo = E,
(iii) exp(AdxX) = xexp Xz-1, x E G(E), X E gE.
Let gE - £gE C g0. Take V1 = T(F) n GE, where GE = exp(gl).

Assume t E Vi : t = expH, H E gE. Then, if gttg1 E fi1, we have
exp(Adg(eH)) E Q1 n GE whence Adg(H) E 1 exp-'(Qi nGE), a compact
set. This implies the lemma. |

We may now prove Lemma 3.2. Let Q be as in the lemma, and set Qf =
7-xlffQQ ... Qt-'; define V1 by Lemma 3.3. If t E V1 and g-lt6gO E Q, we
have g-lttg E Q1, whence by Lemma 3.3, g-ltg E Q2, or g-lt-lg E Q-1,
which implies g-16gO = (g-1t-'g)(g-lt6g0) E Qf2Q. However, the map

M(F)\G(E) -. G(E)
given by

-» g-16g
is proper since the orbit of the a-semi-simple element 6 by a-conjugation is
closed: it is just the neutral component of the orbit of (6, a) E G(E) x E, and
the orbit of the semi-simple element (6, a) is closed in G(E) x E by an easy
extension of Borel's results [8(a), III.g]. So the condition g-16gG E Q21Q
implies that g remains in a compact set modulo M(F).
We now return to the proof of Proposition 3.1 (i). Obviously the asser-

tion is local (in the space of conjugacy classes); it is easily reduced to the
following (we assume the function k given):
LEMMA 3.4: Assume bo E G(E) has semi-simple norm. Let {T1,...Tr}
be the F-maximal tori of G, up to conjugacy, such that bo E T(E). Then
we can choose neighborhoods V1,...,Vr of 1 in T1(F),...,Tr(F), and a

function f E C°'(G(F)) such that for regular 7,

{ 0 y not a norm

=, (S=)= Ne, 6 E oVi.

Proof. (cf. Rogawski [33(a)]). Set M = Ga,. For all i, let Vi C Ti(F)
satisfy the conditions of Lemma 3.2 with Q = Supp(o). Then g-'lVioga n
Q = 0 if M(F)g ¢ w = Uwi, where wi is defined by Q and Vi. Thus, if
6 E Vio is a-regular, the function
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g " | (gl-ml 6mgG9) dt
Ti(F)\M(F)

vanishes for M(f)g ¢ w.
We choose a E CO(G(E)) such that &(g) = fM(F) a(mg)dm is equal to

1 if M(F)g E w, and to 0 otherwise. Define

b(m)= /(a)a(g)(g-lm-1l og)dg.
G(E)

The function , is in C, (M(F)): it is obviously smooth since a has com-

pact support, and if b(m) ~ 0, there is g E Supp(a) such that
0(g-lm-16og') 0 O, whence m-1'o E QlgQQt , where Qt = Supp(a),
Q = Supp(<): so m must be in a compact set.

For a-regular 6 E Vibo, we have:

Jdg 9f9 ) dt
Ti(F)\G(E)

|f }d dg fm dt
M(F)\G(E) Ti(F)\M(F)

d= |m{|m1)dSm}dm (1mme'9 dt
= Id IMF) Imi)l(gdm /t(g-Im-UlmJgm)

M(F)\G(E) Ti(F)\M(F)

/y~l c(mlg)O(gl1MOm-l'gdml=

| dm{ F tM(F)J)()t}.
M(F)\G(E) Ti(F)\M(F)

By making the change of variable g H- m1g, and grouping the integrals
along M(F), this can be written:

ra(g)dg J (1m_^mg) d

G(E) dt
Ti(F)\M(F)

Writing now 6 = t6o, t E Vi, whence m-16Sm = m-ltbom-= m-ltm6o,
we have:

/ (g_-1taog) = a(g)d (g lmltmn oga) dmJd"t JG(E) dt
Ti(F)\G(E) Ti(F)\M(F)

(m-ltm)d.
Ti(F)\M(F)
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In other terms,
, o(tbo) = 4qM(F)(t)

where the integral on the right is taken in M(F) and non-twisted.
As recalled in §1, the centralizer G.o of 7o is isomorphic to a product of

groups of the form
ResF,/F(GL(mi, Fi))

where Fi is a field extension and Res denotes restriction of scalars. Since
M is an inner form of G-o, it is a product of groups of the form

ResF,/F(GL(ri, Di))
with Di a division algebra on Fi of degree d,, and diri = mi.
By a theorem of Deligne, Kazhdan and Vigneras [15, Theorem B2c] and

Rogawski [33(b)], we may then associate to t a function fi on G.o(F)
having the following property. (We write M for the group Go. If m E
M(F), denote by mf the conjugacy class in M(F) corresponding to m by
the Skolem-Noether theorem; if mi E M(F) is not so obtained, we say that
it does not originate in M(F).) For regular 6 E M(F),

f()6 0=M if 6 does not originate from M(F)
hfi " M(F),(6) if 6 corresponds to 6.

If we combine this with the equation relating 4 and X, we get

t,(0to) = 4(F)(t), t E Vi.
We want to compare the orbital integral of q at tMo, however, with the

orbital integral of f at N(to6) = tt7o. Since 7o is central in M(F) or M(F),
and the map mi-4 mt is a conjugacy-preserving diffeomorphism from an
invariant neighborhood of 1 in M(F) onto its image (cf. Lemma 3.3), we
may find f2 E C~(M(F)) such that

tM(F)(i)= M (F)(tty0)

(We have used the obvious relation between the correspondence mi-+ m
and the norm map.)

Since M(F) is the centralizer of o7, we may find a function
f E CO(G(F)) such that, for t close to 1:

f (tWTo) = (F)(tt0o).
This results from the fact that the germs on G all come from germs on M
(cf. [41(a), §2.6]) and the independence of germs (cf. 15, Proposition 2b]).
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Tracing back all comparisons, we have

t,4 (t6o) = <p (tSo).
If t E G60o,(F), we have t-'1ot" = o6 whence

N(Sot) = SotSt ...

-
= tt70,

as an easy computation shows. This shows that any semi-simple ele-
ment u7o E M(F), close to 70, which comes from M is a norm. In
particular, $f vanishes near 7o on elements which are not in the image
of the norm map. This finishes the proof of Lemma 3.4. |
To prove part (ii) of Proposition 3.1, we just have to reverse the con-

struction. We start with f on G(F) satisfying the vanishing conditions;
it is enough to construct 4 on G(E) in an invariant neighborhood of any
6o E G(E). We keep the previous notations, thus M is the centralizer of 7o
and M the a-centralizer of 6o.
Given f, we may construct the function f2 on M(F), and then, by the

converse of the theorem of Deligne-Kazhdan-Vigneras and Rogawski, the
function Vb on M(F) associated to fi(m) = f2(iy7o) on M(F). An easy
extension to the twisted case of the results of Vigneras ([41(a), §2.5]) shows
that b can be lifted to a function d on G(E), the a-orbital integrals of
which then correspond to the orbital integrals of f.

Implicit in this argument has been the fact that, if f satisfies the vanish-
ing conditions, the function fi satisfies the vanishing conditions involved in
the comparison between M(F) and M(F). That is implied by the following
result:

LEMMA 3.5: Assume 70 = N60 E T(F), for T a maximal F-torus of G.
Assume that 7ot is a regular norm for some t arbitrarily close to 1 in T(F).
Then T is G(F)-conjugate to an F-torus T1 in M.

Proof. Assume 7ot = (N6o)t = Ng, g E G(E). Then g commutes with 70t,
so g E T(E).
Now let tn be a sequence such that tn -+ 1; write 7otn = N(gn), gn E

T(E). Since the norm: T(E) T(F) is a local fibration by T(E)1-7,
we may assume that the sequence (gn) converges: we then get go E T(E)
with Ngo = 70. Since Ngo = N8o, go is a-conjugate to So. So there is a
r-conjugate of 60 such that Ad(go)at = t for t E T(F), i.e., such that T
embeds in Ggo,, over F. This implies that a G(F)-conjugate of T embeds
in G6o,,. |
With this the proof of Proposition 3.1 is complete. I
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We will say that two functions a and f verifying the relations of Propo-
sition 3.1 are associated. We now want to compare the orbital integrals of
associated functions on singular elements. We start with the semi-simple
ones. We recall a construction of Kottwitz [29(b)]. Let 6 E G(E) have semi-
simple norm. The group G6,, is then a product of multiplicative groups
of central simple algebras. Let e(6) be the sign e(G6,,) defined in [29(b)]:
thus e(6) = (-1)r(G)-r(G6,) where 7 = N6 and r(H) denotes the F-rank
of an F-group H.

LEMMA 3.6: Assume < E Cc(G(E)), f E Cc(G(F)) are associated.
Then, if 7 E G(F) is semi-simple,

0 if 7 is not a norm

e(6)run(6) if - = N6.

Here the measures defining the orbital integrals are as follows. Recall that
we have fixed dgE, dg on G(E) and G(F). We have to fix the measures on
the groups G,, (F) and G,-(F). These groups are products of multiplicative
groups of simple algebras, and we choose compatible measures on them as
in [33(b), §3].

Proof ofLemma 3.6. We first prove the vanishing part. Assume 7 E G(F)
is not a norm. It is enough to show that if 7 E T(F), T being a maximal
torus, then t is not a norm, for regular t E T(F) close enough to 70. (This
will imply that for f associated to b, the regular orbital integrals of f
close to 7 vanish: by standard theory of Shalika germs, we conclude that
if(7) = 0.) Assume then that tn = N(xn) for a sequence of regular tn -+ 7.
Then Xn E T(E); since the norm map T(E) -+ T(F) has compact fibers,
we may extract a convergent subsequence, which implies that r is a norm.
To prove the identity of orbital integrals in Lemma 3.6, we just have to

retrace the proof of Lemma 3.4. Recall that given 4, we had constructed a
function ;b on G6,,(F), then f2 on Gyo(F) and f on G(F); they are related
by

Q1,0(t6) = ¢+O(t) = h(ttf7) = (t7),
t being an element in G6a,(F) such that t6 is a-regular.

In the computation of 4,p and 4bf, we have used measures on Gb,,(F) and
Gy(F), that we take to be compatible measures. We have, by construction
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of t:

G(E)

I= a g /(a(mg)g(g-16gff)dm}dg
M(F)\G(E)

= ,,0(0),
the twisted orbital integral being computed by means of dg/dm, where dm
is the measure on Ga,,(F).

Analogously, the usual computation on the non-twisted side shows that

f2(7) = f (),
the orbital integral being computed by means of dg/dm, where dm is the
measure on Gy(F). We conclude by quoting the following result:

LEMMA 3.7: (Rogawski [33(b), Lemma 3.3]). Assume M(F) is an inner
form of M(F) = GL(m, F). Choose associated measures dm on M(F) and
dm on M(F). Assume the functions f on M(F) and f on M(F) are such
that

ta t 0 t not from M(F)
=f {\ 1O(t) t associated to t E M(F).

(Ift,t are associated, we normalize the measures on the corresponding orbits
by taking the same measure on the corresponding torus.) Then

f(1) = e(M)f(1).
We apply this to i and the translate of f2 by the central element 7; this

implies that f2(7) = e(6)+(1), whence Lemma 3.6. I

Finally, we will now describe the (twisted) orbital integrals on all ele-
ments, by reducing them to semi-simple orbital integrals. This has been
known to a number of people; we rely on unpublished notes of Kottwitz.
We first treat the non-twisted case. Let - = su = us be the Jordan

decomposition of Y E G(F), with s semi-simple and u unipotent. Let
A = u - 1, a nilpotent matrix. We consider the flag of subspaces of Fn:

Vo = Fn D VI = AVo D *.. D Vi = A'Vo D * - D Vk = {0}.
Let P = Pu be the parabolic subgroup stabilizing this flag. If g E G(F)

commutes with u, it is clear that g leaves the flag invariant, whence

G(F)u C P(F).
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Let N(F) be the unipotent radical of P(F), n, p the corresponding Lie
algebras.
LEMMA 3.8:

ad(A)p = n.

The proof is easily supplied by using a matrix representation of P and
noticing that A gives a surjective map: /V/+1 -* Vi+l/Vi+2. (Alterna-
tively, note that a statement equivalent by duality to Lemma 3.8 is proved
by Howe [23, Lemma 2(b)].) I

Since s commutes with u, s E P(F); since it is semi-simple, we may
choose a Levi component M of P over F such that s E M(F). We have
P(F)/N(F) c M(F). Let X C P be the inverse image in P of the orbit of
s in M. Then X is a smooth and irreducible subvariety of P and we have
an isomorphism:

M,(F)\M(F) x N(F) X(F)
(m, n) m-1 smn.

The element 7 lies in X; let Xo be the orbit of y by conjugation under
P:Xo CX.
LEMMA 3.9: Xo(F) = Py(F)\P(F) is open and dense in X(F).
Proof. We compute the tangent space to Xo at y. The differential at 1 of
the map

P(F) -P(F),
p p-l P,

is equal to Ad(7) - 1.
Thus we must check that m + n = (Ad(su) - l)p + m,, where m, is the

Lie algebra of M,(F).
The element 7 = su acts on p by the adjoint action, and Ad =

(Ad s)(Ad u) is its Jordan decomposition; therefore

(Ad(su) - l)p = px, E Im((Adu - 1): P1 -+ i)
A.l

where px denotes the A-eigenspace of s in p. (Here we work on an algebraic
closure of F.) In particular (Ad(su) - l)p contains the image of Adu - 1
acting on p. We show that this contains n. We must show that, if Y E
n, Y = uZ-1 - Z, for some Z E p. Since (for matrix multiplication)
nN(F) = n, it is equivalent to showing that Y = uZ - Zu, or Y = [A, Z]
where A = u- 1. This is true by Lemma 3.8.



Local Results 29

Therefore (Ad(su)- 1)p contains n; it also contains E mx. This proves
that m + n = m, + (Ad(su - l)p. X#1

This implies that the F-map Py\P -- X given by conjugating - is open.
By [8(a), Proposition 6.6], we see that Xo C X is open; since X is con-
nected, Xo(F) is open and dense in X(F). Moreover, since G, C P, we
have Py = G- and therefore H1(F, Py) = 0 (cf. Proof of Lemma 1.1). Hence
Xo(F) = P,(F)\P(F). I

We now choose left-invariant Haar measures dn, dm, dm,, dg, dg. on
N(F), M(F), M,(F), G(F), G,(F). Then dx =- x dn defines a measure
on X(F). Then, under conjugation by P(F), dx is relatively invariant with
factor bp; by restriction we get a measure dzo on Xo(F) with the same
property: thus dxo = dg.\dp for some left-invariant Haar measure dp on
P(F). Since the measure of X(F) - Xo(F) is null, we have

f(P-1P)dg = / / f(m-1smn)dn dm_ »g^ J JN(F) dn
G?(F)\P(F) M,(F)\M(F)

Combining this with the formula

/ f(g)dg = I f(pk)dkdp,
G(F) KF P(F)

with IK = G(OF), we have proved:
PROPOSITION 3.10: For any f E C0(G(F)),

J f( -17g)dg
G,(F)\G(F)

-= f(k-lm-lsmnk)dkdn dm~~~~~J~dm,'
M.(F)\M(F)xN(F)xKF

In particular, if f(k-gk) = f(g), we have

f (sn) = p(s)- 2 p)(s).
Here f(P) is the constant term of f, defined after Proposition 2.7. The
measures are normalized according to: dP = dxo = dm x dn.
We now sketch the proof of the corresponding twisted result. Let 6 E

G(E). Write the Jordan decomposition of 6 > ar:

(6, ) = (s, a)(n, 1) = (n, 1)(s, o),



30 Chapter 1

with (s, a) semi-simple in G(E) >4 E, n unipotent in G(E). Thus

6 = sn = ns,
N6 = a66 ... '

= snSa . . s n

= (Ns)nt, as an easy computation shows.

We will assume, as we may up to u-conjugation, that - = Nb E G(F).
We write 7 = tu, t = Ns, u = nt. Since u is F-rational, we see that
n = u1/t is also. Therefore sn = ns.

Let P be the F-parabolic subgroup defined, as above, by u (or n). We
have s E G,(E) C P(E).

Since t = Ns is semi-simple in Gu(F), there is a Levi subgroup M1 of Gu,
over F, such that t E M1(F). We have Gu - M1 x N1 as F-group, where
N1 is the unipotent radical of Gu. Since t = Ns and s E Gu(F), this implies
that there is an element si E M1(E) such that t = Ns1. Then N(sln) = tu
since sl commutes with n and u. This implies that sin and 6 = sn are
a-conjugate: so up to a-conjugacy, we may assume that s E M1(E) with
M1 a Levi subgroup of Gu over F, and a fortiori s E M(E), M being a

Levi subgroup of P over F. We have P(E)/N(E) - M(E).
Now we define Y, an F-variety in ResE/F P, as the inverse image of the

a-orbit of s in M(E). Then

M,,v(F)\M(E) x N(E) ' Y(F)
(m, n) m- 1 sman.

Let Yo be the orbit of 6 under the twisted action of P(E): thus Yo C Y.

LEMMA 3.11: Yo(F) = P6,,(F)\P(E) is open and dense in Y(F).
Proof. The arguments in the proof of Lemma 3.9 also show that we have
Yo(F) = P6,,(F)\P(E). It is enough to show that the tangent space at 6 to
Yo is the tangent space to Y. Since Yo C Y, we just count dimensions. Let
Xo be the variety associated to 7, as in Lemma 3.9. We denote by dim(V)
the F-dimension of an F-manifold V. Then

dim Yo(F) = dim P(E) - dim P,, (F)
dim Xo(F) = dim P(F) - dim P.(F);

since Pa,, is a form of P,:
dim Yo(F) - dim Xo(F) = dim P(E) - dim P(F).
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On the other hand, by Lemma 3.9:

dimXo(F) = dim N(F) + dim(Mt(F)\M(F)).
From the two last equations, using the decomposition P = MN, and

recalling that Mt is an F-form of M,,,, one easily derives:

dim Yo(F) = dim P(E) - dim MA,,(F)
= dim N(E) + dim(M,,,(F)\M(E)).

This proves the lemma. I
Proceeding as in the proof of Proposition 3.10, we then obtain, writing

KE for G(OE):
PROPOSITION 3.12:

(i) If q E C'(G(E)), we have

I dh

G6,S(F)\G(E)
dm

=| 0(k- m-lsm nk)dk dnd .

J dm,
M,,,(F)\M(E)XN(E)XKE

In particular, if q(k-lgk") = q(g) for k E KE:

,,((sn) = p(Ns) 2 (p),(s).
(ii) In particular, the twisted orbital integral converges.
Here 6p is the module of P(F); we have 6p(Ns) = 6P(E)(S), 6P(E) the

module of P(E). The measures are related by d = dyo = dm x dn.
COROLLARY3.13: Assume 4 on G(E), f on G(F) are associated. Then,
7 = s ny, 6 = sana being the Jordan decompositions:

(i) (y) = 0 if s is not a norm,
(ii) $f(^) = e(s^)$.f(6) if7 = N6.

This is clear: we may replace f, 4 by their averages under K(F) or
K(E) conjugation, and then use Proposition 3.10 and Proposition 3.12.
(The measures must be normalized so as to make Lemma 3.6 correct for
the semi-simple orbital integrals.) I
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4. Orbital integrals of Hecke functions

Let ElF be an unramified extension of local non-Archimedean fields. Let
J(F be the Hecke algebra of compactly supported functions on G(F), bi-
invariant by KF = G(OF); let HE be the analogue for E. In this section,
we show that if X E 'HE and f = bq is its base change image in tHF,,
and f are associated in the sense of §3. This is the so-called "Fundamental
Lemma" for Hecke functions.

If G is any unramified group, Kottwitz has shown that the analogous re-
sult holds for stable orbital integrals of the units of the Hecke algebras.
When the stabilization of the twisted trace formula is understood, the
method presented here should extend to prove base change for stable or-
bital integrals in the unramified situation. That is why we have worked in
more generality than is required for GL(n).

4.1. A subspace of the Hecke algebra
Let G be any connected split reductive group over F. Then G is a

Chevalley group, and we will take it to be defined over Z.
We write 'U for the Hecke algebra of G(F) with respect to the maximal

compact subgroup K = G(OF).
Let H be a maximal split torus in G; let W = W(G, H) be the Weyl

group. We fix a minimal parabolic subgroup Po = HNo. All these groups
are taken over Z. Let KH = H(OF). We write 7H for the Hecke algebra
C, (H(F), KH). The Satake isomorphism

S:t `(XH)w
associates to f the function

Sf(h) = 6po(h) /o f(hn)dn.

Here as below, we will, when convenient, write X instead of X(F) for
the F-points of a group X.
More generally, if P = MN is a parabolic subgroup of G, we have the

constant term along P (cf. §2)

f(P)(m) = 6p(m) /N f(mn)dn (m E M).
N
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For relevant facts about these notions see [20(d)], [40(b)]. Thus Sf =
f(Po). If SM denotes the Satake transform for the group M - we assume
that P contains Po - we have, with obvious notations:

SM(f()) = Sf.
We will use the customary notations concerning the L-group of G over

F ([8(b)]), except that the split reference torus in G is taken to be H; its
dual is LHO C LGO.
There exists a canonical isomorphism between iHH and C[LHO] ([8(b),

§7]); the composite isomorphism, iG -4 C[LHO]W will be denoted by
f _ fV. A function fV E C[LHO] can be written fv = ZaxzA, where A
runs over X*(LHO).

For P = MN a parabolic subgroup, let A = AM be the split component
of M. Let A(G, A) denote the roots of G with respect to A. If a is such
a root, there is a multiple ma of a which extends to a (unique) rational
character X, of M. For all a, we choose such a character. Then Xa re-
stricts to a character of H; by duality, we obtain a cocharacter of LHO. In
particular, (X, A) is well-defined if A E X*(LHO).
DEFINITION 4.1: The space of regular Hecke functions on G is the space
KCC defined by:

f EKC = fv = Zaxz,
with ax = 0 if there exists M j G, a E A(G, AM) such that (Xoa,A) = 0.

Thus the condition is that only "regular" exponents, for all the parabolic
roots, should occur in the expansion of fv. The basic property of the space
K will be expressed by the following lemma. For P = MN a parabolic
subgroup, let TrN denote the Jacquet module of a representation ir of G
with respect to N. Let W(AM) = W(G,AM), the Weyl group of G with
respect to AM. Let Gell be the set of elliptic regular elements of G. If ir is
an admissible representation of finite length of G, we will write:

(trace r, f)ell = / f(g) trace r(g)dg.
ell

LEMMA 4.2: Let ir be an admissible irreducible representation of G with-
out K-fixed vector. Assume that ir is not a constituent of an unramified
principal series representation of G. Then, if f E IC,

(trace r, fell = 0.
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Proof. Since f is in the Hecke algebra and r has no K-fixed vector,
trace r(f) = fJ f(g)tracer(g)dg = 0. Using Weyl's integration formula,
we may rewrite the elliptic trace of f:

-(trace 7r,f)eii = IW(GT)l l AG(t)2 trace 7r(t)4 (t)dt.
MCG T elliptic CMM.G TmodG

The sum, for each M, ranges over elliptic Cartan subgroups in M, modulo
G-conjugation. The measure dt is used to define 4 .
Assume now that T, T' are two elliptic Cartan subgroups of M which are

G-conjugate. Since A = AM is the common split component of T and T',
one has gAg-1 = A, whence g E NG(A) = W(A) * M. Moreover, W(G,T)
preserves AT = A; this gives rise to an inclusion W(G,T)/W(M,T) C-

W(A), and W(G, T)/W(M, T) is the stabilizer of T in this action of W(A)
on Cartan subgroups of M. Using this fact, and the invariance of
AG(t)2 trace r(t)4f)(t) by G-conjugation, one can easily rewrite the ex-

pression above as

-(trace r,f)ell =

>E W(Am)K-1 IW(MT)I-l AG(t)2trace 7r(t)(4/(t)dt.
MCG TellCM
M G TmodM

We now use the following facts:

(i) A standard integration formula implies that, with obvious notations,
G(t) = AG/M(t)-14lfp)(t) for t E T C M (cf. [29(a), §5]).
(ii) Recall Casselman's Theorem, which to t E T associates a parabolic

subgroup Pt = MtNt C G. Then, for T elliptic in M, the following holds:
if 4G(t) + 0, with f E KC, then Mt = M.

This is seen as follows. First, if t E T C M (T compact modulo AM) is
such that IXa(t)l- 1 for all a E A(G, A), it is easy to check that Mt = M.
So we have only to show that this condition on the X, is satisfied provided
that Gf (t) $ 0. By (i), we then have m4tp)(t) # 0; so we must have

f(P)(m) - 0 for some m E M, conjugate in M to t. Since X, is a character
of M, we then have X,(m) = X,(t).

However, the Satake map IHM --+ iH, which sends g to g(QO), Qo the
minimal parabolic subgroup of M, is injective, and is given by orbital in-
tegrals. In particular, if g(Qo)(h) = 0 for all h E H such that lXa(h)l = 1,
this implies that g(m) = 0 on {m E M : IX,a(m) = 1}. Taking g = f(P),
we notice that this hypothesis is satisfied for g(QO) = f(Po) : it was the
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definition of regular functions. Thus f(P) vanishes on the kernel of IXal in
M. So, if 4 (t) 5 0, we must have IXa(t)l 5 1. This ends the proof of
assertion (ii).

(iii) In the expression for -(trace 7r, f)el, we may now divide each term
indexed by M into a sum over all possible unipotent radicals N of parabolic
subgroups P = MN. The term associated to N is

IW(AM)l- E IW(MT)1- tracte)tract) (t)dt.
TellCM (

{tET:Nt=N}

We now use the facts listed in (i) and (ii). Moreover, we have AG(t) =
AM(t)AG/M(t), where

AG/M(t)2 = det(Ad(1 - t)glm)IF.
If g = m E n ( n- is a triangular decomposition, with n = Lie(N), and if

Nt = N, one may check that all eigenvalues (on some field extension of F,
maybe) of t acting on n have absolute values smaller than 1. Conversely,
the eigenvalues of t acting on n- are larger than 1 in absolute value. This
implies, as is easily seen, that

AG/M(t) = | det(1-t) ,n- I = 6(t)
where 6p is the module of P. Thus the term relative to N is the product
of IW(AM)l-1 with

| |W(M,T)|-lAM(t)2trace(6p,1rN)(t)(,p)(t)dt
TellCM {}

CM{tET:Nt=N}
Let us write M+ for {m E M: Ix,(m)l < 1 if a is a root of (N, AM)},

M+l for M+ n Men. We may then rewrite this term as

(4.1) IW(AM)l-1 trace(6,pTrN)(m)f(P)(m)dm.
Mel

By induction, we may assume Lemma 4.2 to be true for M. (It is clearly
true for H.) Thus, if g E kCM, the analogous space on M, we have

' trace(p 2 xrN)(m)g(m)dm = 0

unless 6p2N is a constituent of an unramified principal series, which
would imply that ir has the same property. This applies to f(P), which
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lies in KCM since the definition of K is clearly transitive. If X+ is the char-
acteristic function of M+, X+ is clearly bi-invariant by KM; moreover,
g E KC =. X+ E KM. Applying the induction hypothesis to g = X+f(P),
we see that the term (4.1) vanishes. This proves Lemma 4.2. |

We note that we have used only Casselman's Theorem and very simple
properties of the integral formulas, orbital integrals, and the Jacquet mod-
ules. The theorems necessary to extend this proof to twisted characters
are proved in §2 (local integrability: Proposition 2.2; Casselman's Theo-
rem: Proposition 2.3).The descent property for orbital integrals is proved
in [29(a), Lemma 8.5]. We just record the result for G = GL(n). Let E/F
be a cyclic extension. We now write G(E) for GL(n, E). The Weyl integra-
tion formula (for a-conjugation, where a is a generator of Gal(E/F)) now
reads:

/ (g)dgEW=IW(G(F),T(F))I|-1 / A(Nt)4,(t)dt.
JG(E) T T(ET(E) -_\T(E)

Here T runs over the conjugacy classes of maximal tori over F in G(F); N
is the norm map, <0,, is the twisted orbital integral of 4. Since, for Nt
regular, T(F) can be identified to the a-centralizer of t, 4i,a is associated
to measures dgE on G(E) and dt on T(F). The measure on T(E)1-0\T(E)
is then defined by dt via the exact sequence

1 -T(E)1 -° T(E) T(F).
We then define G(E)ell as the set of regular elements of G(E) with elliptic

norms.

Let B(E) D H(E) be the standard Borel subgroup and split torus in
G(E); H(E) _ (E*)n; if X is any character of H(E), let H(X) be the
associated (unitarily induced) principal series representation of G(E).

If 1 is a a-invariant representation of G(E) (§2), we extend it to a

representation of G(E) : E where E is the cyclic group generated by a.

If q is a function on G(E), we will then write

(trace II, >:c)ell-) = j (g) trace II(g, a)dg.
G(E).u

It makes sense by the local integrability theorem (§2). Let KE = G(OE).
LEMMA 4.3: Let II Ho a an irreducible a-stable representation of G(E);
extend it to G(E) x E. Assume that II has no KE-fixed vector, and is not a
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constituent of a principal series representation II(X), with X an unramified,
a-invariant character of(E*)n. Then, if 4 E ICE

(trace II, x a)ell = 0.

Here of course ICE is the space defined by Definition 4.1 in HlE. The proof
is the same as for Lemma 4.2. I

4.2. The base change identities
From now on G is GL(n); we assume that ElF is an unramified extension

of local fields. Via the Satake isomorphism, we have (cf. Kottwitz [29(a)])
'HE -C[Z1, Z Z2 Z-1 .Z

C[,1Z2,z ,...z···,zlZn ;

the same holds for 7IF.
We will denote an element fv of HE or 7iF by fv = ZaxzA; the sum

runs over all multi-indices A = (A1,...An) E Zn and z = (i, ...zn) E
LHO (C*)n. There is a natural homomorphism b: 'HE -- 7F which
corresponds to the diagonal imbedding of the L-group of G over F into
the L-group over F of ResE/F G. In terms of the Satake transforms, it
associates to qV(z) = Eaxz the function fV(z) = qV(zt) = ZEaxzt;
here £ = dimF(E).

In terms of the Satake transform, IC C ti is identified with

{f = axz : ax = O if Ai + Ai++-+-- Aj-
j-i

A=l+ *+Ak-1 for some < < k
k-j

Note that, with obvious notations, b(KE) C IC.F
Let Po = HNo be the standard minimal parabolic subgroup of G com-

posed of upper triangular matrices. An unramified character of H(F) is
canonically identified with an element z of LTO. In particular, the module

P , regarded as a character of H, is then identified with

ILn1 n-3 (n-1)z = (q 1,q 92 ...,q 2L , where q = IWF
Let X be an unramified character of F*, which we identify with the

complex number ( = X(WF). Let St(x) be the Steinberg representation of
G(F) such that Wp6 St(X)No is the character (X,..., X) of H - (F*)n.
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Let Io denote the interval of integers [1,2,... n]. A partition of Io is a

disjoint decomposition Io = I U ... U Ik with

I1= [1, ...ni],
I2 = [nl + 1,...n2],

.. Ik = [nk-1+ 1,... n].
A family of nested partitions (Iji) of Io is a family of partitions Io = I,i U
·* U Iki,i(i = 1,... N) where each new partition is finer than the previous
one. It is complete if the last partition is given by Io = {1}U. * U{n}. If A =
(A1,... An) E Z", we say that A is positive for (Iji) if the following property
is satisfied. If I = [i, i+ l,.. j] is an interval, let Ill be its cardinality and
A(I) = Ai + Ai+, + * * - + Aj. Then, if Ij,i = Ijl,i+l U *. U Ijk,i+l is given by
refining the partition I.,i into I*,i+l, A satisfies:

A(Ijli+l) < A(Ijl+,i,) < < A(Ijki+l.)
jlii+l I Vij +li+il IIjki+11

LEMMA 4.4: There exist constants cZ, where I = (Iij) runs over the set
of complete families of nested partitions of Io, such that for f E 1CF, f =
Eaxz) :

(trace St(x),f)el= Zcz j a,(Cs6).
z AEZn'

A>0 for I

Here

2( ( (-( ))E(C*)n o LHO.PO q¢q ,..-¢q-A(-)E
The proof of this ugly lemma is simpler than its formulation. The proof

of Lemma 4.2 gives an expression of (trace St(x), f)ell as a sum over M, N
(notations of Lemma 4.2) of terms of the form

c / trace(6P2 St(x)N)(m)f(P)(m)dm.
MellnM+

We may assume, by using the invariance of the character trace St(x), that
M is the diagonal block Levi subgroup associated to a partition
n = nl + n2 + * + n,, and that M+ is defined by

Idetgl1-i < Idetg921 < *- < det gJr|,
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where g E M is written

91
92

9=°

gr

By a result of Casselman and Zelevinsky [42, Prop. 3.4],
6p St(x)N = 6p St(M, x)

where St(M, X) is the tensor product of the St(Mi, X) (M = M1 x * x Mr,
Mi - GL(ni, F)). Hence, by induction, this term may be written, using
Lemma 4.4 on M:

cEC Ea>((for)'
I A>0 for X'

A>0 for M

The sum now runs over all I' = (1,.....Z) where 1+i is a nested sequence
in [nj +1,... nj+1]. The condition "A > 0 for M" is forced by the fact that
we integrate on M+, and can be written

A(I1) A(I) A(Ir)
IIl 1 I121

'

IrI
with Ij+l = [n1 + * * + nij . +1,..., + nj+l]. These two conditions
imply that the Z. group together to give a nested sequence I for GL(n),
and the sum is over the A positive for Z.
We have denoted by Qo the minimal parabolic subgroup Po n M of M;

it is easy to check that 6Qo6p = 6po. This proves Lemma 4.4. 1
We remark that, by the same proof, the formula in Lemma 4.4 also holds

for the twisted character of a representation St(X) of GL(n, E), X being
an unramified character of E*. (Note that since ElF is unramified, the
character X is then u-invariant, hence also the representation St(X).) The
constants c1 will be the same. We will use this without further comment.
We are now ready to prove:

THEOREM 4.5: Let b E 'HE, f = b-E UpF. Then, if E G(F) is regular
semi-simple,

I (7)e f 0 if 7 is not a norm
\ ,o(6) if = N6, 6E G(E).

Here the definitions of 4I and 4by require choices of measures on G(F)-
and G(E)6a, - we take them equal after the identification of these two
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groups, as in §3 - and on G(E) and G(F): on these groups, the measures
give mass 1 to G(OE) and G(OF).
We may now begin the proof. We will often work in fact with G =

PGL(n) rather than G. The homomorphism of Hecke algebras, and the
previous results of this paragraph extend in obvious ways to G.
Assume first that y is not elliptic. Thus 7 E M(F), where MN is a

proper parabolic subgroup of G. Up to a-conjugation we may assume that
6 E M(E) if 7 is the norm of 6. There is a commutative diagram ([29(a)])

HE -- 3 HF
b

the vertical maps being given by f '-4 f(P). By induction we may assume
the identities of Theorem 4.5 known for M. Using formula (i) in the proof
of Lemma 4.2 and the analogous twisted formula ([29(a), Lemma 8.5])

cG(6) = AG(F)/M(F)(N6)-1 M,(),
we see that the theorem for M implies the identities of orbital integrals
between 6 and y.
Thus the comparison is reduced to the case of elliptic orbital integrals. If

X is an unramified character such that Xn = 1, let St(x) be the associated
Steinberg representation of G(F). Write KE, KF for the regular Hecke
functions on G(E), G(F).
LEMMA 4.6: Let f E CF be such that

(trace St(X), f)el = 0

for any Steinberg representation of G(F). Then all elliptic orbital integrals
of f vanish.
Note that Lemma 4.4 states explicitly what the conditions in Lemma 4.6

mean in terms of fv.
Proof. The only discrete series representations of PGL(n, F) that are con-
stituents of unramified principal series are the Steinberg representations
([42]). Thus, by Lemma 4.2, we have (trace r, f)ei for any discrete ir.
Moreover, let T be a non-elliptic Cartan subgroup of G(F). Then assertion
(ii) in the proof of Lemma 4.2 shows that the orbital integrals of f vanish
on the maximal compact subgroup of T. These two facts, and Kazhdan's
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density theorem for orbital integrals - the non-twisted analog of Propo-
sition 2.7, cf. [28, Theorem 1], imply that the elliptic orbital integrals of
f vanish. Indeed, let p be a faithful rational representation of G. Let

N

P(p(g),X) = E ai(g)Xi be the characteristic polynomial of p(g). The
i=1

map I : g - (ai(g)) sends G into the affine N-space. The image of G(F)ell
has a compact closure w. If Q is a compact-open neighborhood ofw in FN,
V = t-'(Q) is open and closed in G(F); for Q small enough, V n T is
contained in the maximal compact subgroup of T for any T. Proceeding
as in [11(c)], we set g = xvf, where Xv is the characteristic function of V;
then g E Cc (G(F)) and all the non-elliptic orbital integrals of g vanish.
It is now clear that (trace ~r, g) = 0 for any tempered representation of G
(recall that all tempered representations of G are unitarily induced from
discrete series). By Kazhdan's theorem, all orbital integrals of g vanish.
By construction of g, its elliptic orbital integrals are the same as those of
f. Whence the result. I
The same argument can be used (using the "twisted" extension of Kazh-

dan's theorem) with the twisted elliptic orbital integrals.
Recall from §2.3 the notion of a-discrete representation of G(E). If

4E KE, Lemma 4.3 shows that (trace II, > a)ell = 0 for any a-discrete
II, unless H is a constituent of an unramified principal series. At this point
let us revert to GL(n) rather than PGL(n) for an instant. A tempered
representation is of the form II = indMN(IIM ® 1) (unitary induction), IM
a unitary discrete series for M. It will be a constituent of an unramified
principal series only if IIM is, i.e., if IM is a Steinberg representation with
unramified inducing character. Thus, writing

M = GL(n, E) x ... x GL(n, E),
we have IM = St(Xi) ® * * * St(Xr) where Xi are unramified characters of
E*. But then each St(Xi) is a-stable (ElF is unramified!). Thus II can be
a-discrete only if r = 1 and II = St(X) for unramified X. Applying this,
now, to PGL(n,E), we see that for 4 E KE such that (traceSt(X),4 x

)ell = 0 for all unramified X with Xt = 1, we have (trace II, XaX)ell = 0
for any a-discrete II.
The argument of Lemma 4.6 then carries through to give:

LEMMA 4.7: Let 4 E KE be such that

(trace St(X), >x ar)ell = O, X unramified, X' = 1.
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Then all a-elliptic orbital integrals of 4 vanish.
We note now that iF may be identified with functions on G(F), bi-

invariant by G(OF), compactly supported modulo Z(F), where Z is the
center of GL(m), and such that f(gz) = f(g) for z E Z(F). The same, of
course, holds for iE. Moreover, we could have proved the analog of Lem-
mas 4.6 and 4.7 for the space tHx of functions satisfying f(gz) = X(z)f(g),
X an unramified character of Z(F) (or Z(E).) Lastly, if f E HF (say) and
X is such a character, we get a function transforming under X by setting
fx() = fz(F) f(gz)x(z)dz. Using these (trivial) facts, one sees that the
identities of Theorem 4.5 for the spaces X7 can be deduced from the analo-
gous identities for all the spaces tx; here the characters XF of Z(F) and
XE of Z(E) must be related by XF ° NE/F = XE. Note that for unramified
characters this relation is bijective.

For more details, cf. Langlands [30(e), p. 76 ff.].
So let XF be unramified, XE = X o NE/F. We will just write /tFrx and

tHEx for the corresponding subspaces, and CF,x and KE,x for the regular
Hecke functions inside. Combining Lemmas 4.6 and 4.7, we get:
COROLLARY 4.8: The relations of Theorem 4.5 hold for 4 E6 KE,X such
that (traceSt(r/1l), x a)el = 0 for all unramified T7E such that rlt = XE.

Indeed, all non-elliptic orbital integrals correspond by the descent argu-
ment, and the other ones vanish. I
We will now need a result of Kottwitz:

PROPOSITION 4.9: ([29(c), Lemma 8.8]). The identity of Theorem 4.5 is
true when 4, f are the units of the Hecke algebras.

Obviously Proposition 4.9 again extends, in an obvious manner, to the
spaces Hx.
We will now get Theorem 4.5 for the other functions by an approximation

argument using the trace formula. So let k be now a number field, vo a

place of k such that k0o ~ F. We assume chosen a cyclic extension k' of k
of degree £ such that k' k,,o E; we also assume k totally imaginary.
We now choose a character Xk of Nk'/kZ(Ak') mod Nk,/kZ(k') such that

the restriction of Xk to NE/FZ(E) is XF; let Xk' = Xk o NE/F, a character
of Z(Ak'). Write Z1 = Nk'/kZ(Ak') and Z1(k) = Z1 n Z(k) = Nk,/kZ(k').
We will write A for Ak. Let C°°(G(A),Xk-) be the space of smooth,
compactly supported mod Z1, functions on G(A), transforming under Z1
by X1; it acts on the space L2usp(Z1G(k)\G(A),Xk). In the same man-
ner, Cc (G(Ak,),Xk1) acts on L2p(Z(At,)G(k')\G(Ak),Xk,); we have
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denoted by Lusp the parabolic spectrum in the L2-functions transforming
according to a given character. Let us write r for the first representa-
tion, R for the second; in the case of k', we also have an obvious operator
ib(g) -+ p(go), denoted by I,.
We may choose two finite places V1, v2, of k, different from vo, which split

in k'.
Let fi be a coefficient of a supercuspidal representation of G(k,,) such

that fl(1) = 1. On G(kl) 5 G(kv)t, we set b,, = (fi,...,fi). We set
fA = fi * * * * *i. These two functions are associated in the sense of ([30(e),
§8]) - see §5.

In G(k')2 G(kv)t, we choose an element 6 = (51,.... ) such that
N6 = i ...S is regular elliptic; we may even assume that the image of
N6 in PGL(n, kV2) is strongly regular, i.e., its centralizer is a torus. This
implies that in G(kv2) the relation xN6x-1 = z N6, z E Z(k,,) im-
plies xN6x-1 = N6. Then, if fi E C((G(k,2),X,2) has support close
enough to bi, ,v = (fi,... ft) has support on the a-regular elements and
A2 = fi * ..* ft has support on the strongly regular elliptic elements; bV2
and fv2 are associated. We assume, of course, that these functions have the
right invariance by the center.
We now construct functions k and f on G(Ak,) and G(Ak) as follows. Let

S be a finite (non-empty) set of finite places of k, disjoint from {v0, v1, v2}
and containing all places where k' ramifies. We choose, at all these places,
smooth associated functions 0v and fv (e.g., with regular support). At
all infinite places (which split), we take associated functions of the form
qv = (fi, .. . ft), fv = fi * " * ft with fi smooth of compact support. At
all other places, including v0, we take ov either to be a function in KCklI,
which satisfies the condition of Corollary 4.8 or a unit in 'Hk',x, and we
take f, = bbv. Thus v, and fv are associated. To avoid using in a non-
obvious way the base change identities in the "intermediary case" (§5), we
take ov, f, to be units at all places that are neither split nor inert. We
assume, of course, that qv is the unit in 7/v for almost all v. Then we set
4 = 04v, f = fv .
With these assumptions, the Deligne-Kazhdan form of the trace formula

applies and yields:

(4.4) trace(Rcusp(O)Iq)) = meas(Ga, (k)Z(Ak)\Ga,,(A))O,, (6).
({6}

The sum ranges over r-conjugacy classes of elements 6 E G(k') such that N6
is elliptic regular, and in fact has strongly regular image in PGL(n); t,,~
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is the product of local twisted orbital integrals, defined with the Tamagawa
measures.

In the same way, and with analogous notation, we get:

(4.5) trace(rcusp(f)) = meas(G (k)Z \G7(A))f (y).
{y}

As seen in §1, the map N gives a bijection between the two sets indexing
the sums. The assertion of Theorem 4.5 applies to our local functions;
moreover, an element of G(k) is a global norm if and only if it is a local
norm everywhere (Lemma 1.2). Since k*\Zlk* has index e in k*\Z(A), we
have

meas(ZiG(k)\G- (A)) = I meas(Z(A)G- (k)\Gy (A))
= meas(Z(A)G6, (k)\Ga, (A))

since Ga,, and Gy are isomorphic. Thus, for such functions

(4.6) e trace(Rcusp(q)Il) = trace rcsp(f).
We may regard this as an identity of linear forms on the functions

Xv = (fi,...,ft) and fv = fi * *" * ft, where v is an infinite place.
A representation of G(kv) = G(kv)t contributes only if it is of the form
IIV- = 7rv ® * ® rv. Then traceIIv(v)I, = Ctrace7rv(fv), with C an £-th
root of unity. Grouping the terms in (4.6) on one side, and putting together
the representations equal to 7rv or rv 0® ... 0 rv at the place v, we obtain
on identity of the form:

E ar, trace r (fv) = 0
ranging over unitary representations of G(kv). By a lemma of Jacquet-
Langlands (cf. [25, Theorem 5.2]) all a,, must be 0. Applying this to all
infinite places, we then see that (4.6) can be rewritten as

eE trace(IIs (0si)Io1,s) 1 XV (tn)
(4.7) V

= Ztrace(7rs,(fsl)) Hn fv(tv).
X voS'

Both sums range over representations in the cuspidal spectra such that
their infinite components are equal to ttroo and too respectively, where
7roo is a fixed representation of G(koo). The set S' is the union of S, vl, v2
and the infinite places, and I,,s,, tensored with the operator equal to 1 on
spherical vectors outside S', is the restriction of I, on II. By the funda-
mental theorem on the finite-dimensionality of spaces of automorphic forms
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(cf. [20(b), Theorem 1]), the number of cuspidal representations of G(A)
which have a vector fixed by a given compact-open subgroup of G(Af), the
group of points with values in the finite adeles, and have a given infinitesi-
mal character, is finite. In particular, if fs' and qs, are fixed, only a finite
number of representations appear on both sides of (4.7), independently of
the choice of qS for v 4 S'. At this point, we apply the following remark:

LEMMA 4.10: Let K = kF. Let ti(i = 1,...,N) be a finite number of
elements of LH'O = {z = (z1,..., Zn) : HzI = 1}, different modulo W = e.
Assume that the complex numbers ci(i 1,..., N) satisfy

N

Ecifv(ti) =
i=1

for all f E K such that the conditions of Lemma 4.6 are satisfied. Then
ci = O(i= 1, . .., N).
Proof. By elementary linear algebra, the condition in Lemma 4.10 means
that there exist constants cx (for X an unramified character such that
Xn = 1) such that

(4.8) cifv(ti) +Ec trace(St(x), f)ell = 0
x

for all f E K. If A E Zn, let fA (z) = C zWA be the symmetric monomial
wEW

associated to A. Then fX E KI if A does not belong to a finite union of
hyperplanes. We will assume that A is so chosen that A1 < A2 < *** < An.
Using Lemma 4.4, we may rewrite (4.8) as

(4.9) 0= ci E t + EcxEcz E (Cx6 o)v;
wEW X I VSW\v>x for Z

(x is the n-th root of unity associated to X.
Given I and s E W, the set of A such that the term indexed by I and

v = sA appears is determined by the positivity of certain linear forms.
Consequently, for A in a certain hyperplane cone C C Zn, that we can take
contained in the set A1 < A2 < ..* < An, this equality may be written

(4.10) 0 = Ec, Et' +EcC Ecz E((Xo)
i X I s

where the set of s depends only on I and C, and not on A E C. The
identity (4.10) is then a linear dependence relation between characters of
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X*(LH°) - Z"/Z, satisfied for A E C. Therefore it is true for all A E
X*(Lf0).

Let us fix w E W. Assume ci A 0. Since the character A l t'A does
not appear elsewhere in the sum indexed by i, the ti being distinct modulo
W, it must then appear in the second sum, by the linear independence of
characters. Thus:

t -= ((X Po)
for some (I, s) such that sA is positive for I if A E C. If C is contained
in (A1 < A2 < * < An), this obviously implies s j: wo, where w0 is the
order-reversing permutation. So we have shown that if ci $ 0, then, for all
w E W : t = ((X6Ao)' with s wo. This is clearly impossible: if it were
true, then

ts~-o = (x )c)2woXPo

But (Cx6o)"o cannot be equal to ((x6o) with s wo, since (x6O is
regular. This contradiction proves the lemma. I
Applying Lemma 4.10, we now see that the identity of traces (4.7) is

true when 0,o is any function in HE. We may now take the sum of all such
identities over the representations at the infinite places, to get an identity
of trace formulas:

(4.11) E -v(6) ,O(6) = v()Il (7)'
The volumes v(6) and v(z) are the ones which figure in (4.4) and (4.5).

But now, if 6 is an element of G(k') whose norm y in G(k) is regular
elliptic, we may, by choosing the functions q and f at the places in S,
insure that only $>,A(6) and If(7) appear in (4.9). We may also assume
that the orbital integrals at v vo are non-zero at ', and that all Hecke
functions (except at vo) are units. If 6,, and 7vo are the elements 6 and
7 considered as elements of G(E) and G(F) respectively, formula (4.11)
implies, for X E /HE and f = b :

t,o (Eo ) =-f (7o).
By density of the elements of G(k'), this implies the last assertion of
Theorem 4.5. The first one is implied by
LEMMA 4.11: Assume f E 7HF is in the image of the base change map.
Then

If(7) = 0 if 7 E G(F)reg is elliptic and not a norm.
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Proof. Since 7 is elliptic regular, 7 is a norm if and only if

det7 E NE/F(E*).
Let r be a discrete series representation of G(F). Weyl's formula gives:

0 = trace(f) = > W(GT)j-1 A()2 trace lr(t)f (t)dt.
T (F)

The sum runs over F-maximal tori of G up to conjugacy. If T is non-

elliptic, Theorem 4.5, applied inductively, implies that the integral runs

only over N(T(E)) C T(F).
Let now X be a character of F*/NE/F(E*). We may replace ?r by ir ®

x(det). The sum over the non-elliptic tori remains unchanged. Taking the
difference yields:

0 =E IW(G,T)-1- A(t)2 trace ir(t)f(t)(1 - (det t))dt.
Tell (F)

Since the characters of discrete series form an orthogonal basis on the
elliptic set (cf. [33(b)], [15]), this implies that (1 - X o det)4f is zero on
the elliptic set. Thus 4f(t) = 0 unless det(t) E NEIFE*, i.e., t is a norm
(Lemma 1.4). This proves Lemma 4.11 and completes the proof of Theorem
4.5. |
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5. Orbital integrals: non-inert primes
In this section we extend the results of §3-4 about orbital integrals to

the case where a place of the small global field is not inert in the field
extension. The case of split places was treated by Langlands [30(e), Ch. 8].
We quickly hint at the more general results needed when the degree is not
a prime.
We assume that E is an F-algebra of the form k' 0 F, where k is global,

F a completion of k - Archimedean or not - and k'/k cyclic of order £.
Then E -E1 x .. x E1 (m factors), with E1 a cyclic extension of order
k, and £ = km. If a is a generator of Gal(k'/k), then r = am generates
Gal(E1/F); we may write the action of a on E as

: (x1, X2 .. .. m) (X2 X3** Xm-1 X1).
The action of a on G(E) - G(E1) x .* x G(E1) is described by the

same formula; the fixed points of a compose the group G(F), diagonally
embedded into G(E).
The norm NE/F 'G(E) -- G(E) is the composite of

NE/E1: (Xi, Xm) (2Xi X Xm X2X3* *XmXX... XmX***m1 X )
and NE1/F which operates componentwise by xi I-+ NE1/FXi.
Note that if x = (x,.... xm), then all components of NE/Ez are

r-conjugate to xl... Xm E G(E1). We will consider xl...xm as the norm
(from E to El) of z. We write x1x2 ...m = N1x.

Let 6 = (51,... m) E G(E). An easy computation shows that the a-
centralizer G6,a(F) = {x : x-16x = 6) is given by the equations

xX511z2 = 61
X2-162z3 = 62

(5.1)

Xm16maX = m.

In particular, setting N= N16, we obtain xj1-x' =- , so G6,,(F) is de-
scribed by xl E Ger(F) and the (m- 1) first equations giving the xi(i > 1)
in terms of xl.

Let = 01®02 ® *.. 0 m be a function in C° (G(E)) which is a tensor
product. Then

/ +(x-ax6)dx- = / 1(xl1blx2)2(x212)'' m(xm1m )dx
G6,..(F)\G(E)
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where di is the quotient measure. Let us define the new variables yl,... y,m
by

Y1 = Xi

Y2 = x216263 · mx

(5.2)
rm-1 = Zm-1 mi-lmi

Ym = 1mlm.;X
Using (5.1), the integral may be rewritten as

J ^(Yi1.Y'Y2).2( 1)( .).._m-l(ym-,ly'l)qm(ym)dy.
G6,f(F)\G(E)
In the y-variables, G6,,(F) is defined by the equation yl E G,,r(F); the

values of Y2,... Ym are then fixed. Thus the integral can actually be written,
up to a change of variable, as

l(YlY l.Y1''"y Y1)02(Y2) * * 'm(Ym)dlldY2 * * dym
G,,r(F)\G(E)

where GE,r is embedded into G(E) through the first component, and
dyi(i > 2) is the Haar measure on G(E1). This is in turn equal to

If ~(yl yl)d1i
G.,,r(F)\G(E )

where -b = 1 * b2 * * * * * <m the convolution product on G(E1).
Thus the a-twisted orbital integrals of 1 0 * ** X® Om on G(E) coincide

with the r-twisted orbital integrals of b on G(E1); if f E C (G(F)) is
associated to Vb in the sense of Proposition 3.1, we see that the a-twisted
orbital integrals of q coincide with the orbital integrals of f. The quotient
measures must be normalized in obvious ways.
Assume now that the extension ElF of non-Archimedean fields comes as

indicated above from an extension c'/k of global fields, and is unramified.
Let l"E, E1, HF be the Hecke algebras of G(E), G(E1), G(F) with respect
to the standard compact groups. The homomorphism of L-groups given by
base change then yields, as is easily checked, the homomorphism

b :HE~+ 'IF
given on decomposed functions in HE - 'HE, * * * HE1 by

1 0 * * * ( <mm- bE//F((1 * 02 * ,* m),
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bE./F being the base change homomorphism W7E1 -* HF described on the
Satake transform by f(z) -+ f(zk) (§4). Consequently, the previous com-

putation and the results of §4 show that q and bq have associated (twisted)
orbital integals.
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6. Base change lifting of local representations
6.1. In this section we will obtain the lifting, by base change, of admissible
representations of local linear groups by a cyclic extension. Thus E/F is
an extension of local non-Archimedean fields of degree t; E = Gal(E/F) is
generated by a.
DEFINITION 6.1: (Shintani). Let xr,II be irreducible, admissible represen-
tations of G(F), G(E) respectively. Assume that II II o a. We say that
II is a (base change) lift of or if, for g E G(E) such that Kfg is regular:

trace(II(g)I)) = trace 7r(Ag).
Here I, is the canonical intertwining operator of §2. The values of the

characters are well defined (cf. Proposition 2.2).
The basic results concerning local base change are contained in the fol-

lowing theorem. We first consider tempered representations only; for the
general case, see §6.4. We denote by Z the center of G. Note that the
central character w, : Z(F) - C* of a tempered representation is unitary.
THEOREM 6.2: Let r,II denote irreducible tempered representations of
G(F), G(E) respectively.

(a) Any tempered irreducible representation ir of G(F) has a unique lift
_H to G(E). The representation II is tempered.

(b) Conversely, assume I II o a is an irreducible tempered represen-
tation of G(E). Then there is at least one representation xr of G(F) such
that II lifts 7r; ir is tempered.

(c) The notion of local lifting does not depend on the choice of a.
(d) Let w,,wn be the central characters of ir and H. Then if I lifts or,

they satisfy
Wn(z) = ww(NE/FZ) z E Z(E) E*.

(e) If E,F are Galois extensions of a subfield L, and r E Gal(E/L),
then, if II lifts Ir, IIT lifts xt where Gal(E/L) acts on G(E),G(F) in the
obvious manner.

6.2. Reduction to the discrete case

We start the proof of Theorem 6.2 by reducing it to the case of ?r belong-
ing to the discrete series of G(F) and a-discrete representations II of G(E)
(§2).
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We first remark that the uniqueness in part (a) of the theorem is obvious.
LEMMA 6.3: If two a-stable representations II and II are irreducible and
non-isomorphic, their twisted characters are linearly independent.
Proof. We may choose a compact-open subgroup K C G(E), stable by
o, small enough that II and II' have non-zero vectors fixed by K. If
UK = C2c(K\G(E)/K), 'K acts on the space of K-fixed vectors in II
(resp. II) and this finite-dimensional representation is irreducible and de-
termines II (resp. II') ([7(a)]). Since non-isomorphic, finite-dimensional
representations of X7K have linearly independent coefficients, the functions
on 'K defined by X - trace(II()I7,) and Xb - trace(II'(q)I') are indepen-
dent. |

LEMMA 6.4: Assume II II o a is tempered and irreducible. Then there
is a parabolic F-subgroup P = MN of G, and a a-discrete representation
IXM of M(E) such that

II = ind )N(E) (M 1)n M(E)N(E) (IM ).
Remark. It follows from the orthogonality relations between a-discrete
characters (Proposition 6.6) that M is then unique up to conjugacy and II
well defined up to W(M, AM).
Proof. Any tempered II can be written as induced from a standard parabolic
subgroup P = MN (thus P defined over F), with

M GL(ni) xGL(n)xx (nr),
of a discrete unitary representation 6 = 61 0 * )0 6r of M(E).

If II II o a, we must have, by standard results:

(6.1) ( ,... ) = s ,..., )
where s E W(G, AM) can be seen as a permutation of (1,..., r) which pre-
serves the ranks ni. Moreover, if s leaves stable a subpartition of (1,..., r),
II may be induced from a tempered, a-stable representation of a smaller
group, and II is not a-discrete.

Considering the orbits of the group generated by s in (1,..., r), we may
write, in the obvious way II as induced from an induced, a-stable represen-
tation of a Levi subgroup; the inducing representation is then a-discrete
(cf. Lemma 2.8). I

We now assume Theorem 6.2 in the discrete case and deduce it for other
representations. For (a), assume that 7r = indM )N(F) 7rM, where 7rM
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belongs to the discrete series of M(F) and is unitary. We may assume that
rM has a base change lift IM, a a-stable representation of G(E). Moreover,
we will see (§6.3) that IM is a-discrete and unitary.
By the proof of Lemma 6.4, we may write TIM as a tensor product

II1 0) * ® IIr (where M = GL(nl) x *.. x GL(nr)), each IIi being of
the form ind(6®6 ® ... 6-) with 6' _ 6 and 65i t 6 (i < s).
The central character of II is then w6wa w'w* ; since II is unitary, this
implies that wa, the central character of S, is unitary. Thus II is induced
from a unitary discrete series representation, i.e., II, and therefore 1M, is
tempered.
By a well-known result of Bernstein [4] this implies that

n = indG((IM 0 1)
is irreducible and tempered. But then the Atiyah-Bott Theorem [11(b),
Theorem 2] shows that, if we define I, the intertwining operator in the
space of II, by inducing the operator I,,M for IIM, we have

trace ir(.^g) = trace(II(g)I<).
By Lemma 2.1, I is the normalized operator for I. This proves (a).
Likewise, assume given II II o a, irreducible and tempered. If II is

not a-discrete, write II = indp()(IIM ® 1) with HM a-discrete. Then
MI lifts at least one representation TM of M(F). Moreover, Lemma 2.12
implies that 7rM belongs to the discrete series and is unitary. This implies
that 7r = indp() rM is irreducible and tempered; again, the Atiyah-Bott
Theorem shows that ir is a lift of H. This proves (b).

Notice that (d) is an obvious consequence of the character identities since
trace r(zg) = w((z) trace 7r(g), z E Z(F), the analog holds for G(E), and
.(zg) = (NAz)Mg for z E Z(E). If (c) is true for the inducing representa-
tions, it is true for Xr and II.
As for (e), assume that

trace(I(g)I) = trace 7r(.g).
Replacing g by r(g), we obtain

trace((n o r(g))I,,) = trace 7r(.(rg)).
Now

A(,rg) = rga(rg)((g) ...'-(rg) = ( g),
where

Klg = gal(g)'- anl-(g)
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and 1a = r-lar is a new generator of E. On the other hand, Ia satisfies

nI(g)I = I (II 'g)
from which we infer

(II o r(g))I, = I((n o T)(r-lor g).
This shows that I, intertwines (II o r) and (H o r) o al. The equation

trace((n o r)(g)I) = trace(r o r)(Jflg)
then shows that II o lifts Ir o r. This proves (e).

6.3. Discrete case
We still have to treat the case of ir discrete, or II a-discrete. We will

use the following result, to be proved in Chapter 3. We fix a global field k,
and a cyclic extension k' of k of degree e. Notations are as in §2. If v is a

prime of k, let t,,, E (C*)" be the element associated to a representation
ir of G(Ak) unramified at v : thus t,,v is defined up to permutation of the
coordinates.

THEOREM III.3.1: Let ir,ir' be cuspidal automorphic representations of
G(Ak). If v is a finite prime of k, let fv be the residual degree of k' over
v. Let S be a finite set of primes of k, containing the infinite primes and
the places where k', r or ir' is ramified. Assume that, for v $S:

(6.1) (tl,v)f' = (tr',v).
Then ir' 7-r 0 X, for some character X of k*N(A*,)\A*.
We now prove Theorem 6.2(a) in the discrete case. We assume k'/k so

chosen that, for a place vo, kvo0 F and the extension ko is isomorphic to
E. Let vi v2 be two places where k' splits and V3 Z vo be an inert place
of k. Let 7r0 be a discrete series representation of G(F); without restricting
generality, we will assume that its central character is 1.

LEMMA 6.5: There is a cuspidal representation vr of G(A) such that

Tvo - 7ro

Trv is a given supercuspidal representation of G(kvl),
r,,vis a Steinberg representation,

and such that rv is unramified for any finite place v V{vo, v1, 2,2 3}.
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Proof. This follows easily from the Deligne-Kazhdan trace formula (Lemma
2.4): by [26, Theorem K], there are compactly supported functions f,,, fv,
such that trace rv,(fv,,) = l(i = 0, 3) and that their trace is 0 in any other
tempered (or generic) representation. We take for f,, a coefficient of wr,,.
We take f, unramified for other finite places v $ v2. The choice of the
Archimedean factors is arbitary. Taking f,2 as in Lemma 2.4, we obtain a
formula

E trace 7r(f) = v(7) (7)
r cuspidal {7}

By [26, Theorem K], the elliptic orbital integrals of fv,(i = 0, 1,3) are

equal to the character. In particular, they do not identically vanish, and

using f,, and the f, for v infinite, we may arrange to have exactly one
non-zero term in the right-hand side. Since cuspidal representations have
generic components [37], this proves the existence of ir as in Lemma 6.5. I

We will assume now that all infinite places of k split in k'. Assume that
the function f on G(A) satisfies the conditions in the proof of Lemma 6.5,
except that f,, is now arbitrary, and f satisfies the vanishing conditions of
Prop. 3.1; and let $ on G(Ak') be associated to f. By formula (4.6), we
have:

trace(Rcusp(O)Ia) = trace rcusp(f).
(We assume, as we may, that q satisfies the conditions of Lemma 2.5; at the
finite places w above v f {vo, v, v2, v3}, qtw is unramified.) Separating the
representations, as in §4, by using their components at infinity and their
Hecke eigenvalues, we obtain the identity

(6.2) etrace(II(O)I) = Ztracer'(f),

a finite sum for b, f given. The left-hand side of (6.2) is composed of the
unique cuspidal representation of G(Ak') determined by the Hecke eigen-
values of ir, composed with the norm maps for Hecke algebras. The right-
hand side contains all representations of G(A) verifying conditions (6.1) at
the finite places v 4 {voV,1,2,v3}.
By Theorem III.3.1, the representations 7r' are of the form lr®X. Since ,,3

is a Steinberg representation, the relation r,,3 0 X3 - r, X3 a character of
k*3, implies X3 = 1. (Consider the Jacquet module for the Borel subgroup!)
Thus the condition ir S ir ( X implies Xv3 = 1, whence X = 1 since V3 is
inert. So the representations wr' are all the distinct representations 7r X, X
ranging over the Abelian class field characters of A associated to k'. Since
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then trace r'(f) = trace r(f) for any f in the image of the base change
correspondence, we may rewrite (6.2) as

(6.3) trace(II(J)I,) = trace r(f).
This proves that IIo lifts r0o, except for the value of the normalizing

constant. This is provided by the theory of Whittaker models. By [37],
[31], there is, up to a scalar, a unique linear form A on the space of II such
that, for w in the space of II :

(6.4) A(II(n)w) = 0(n)A(w), n E N(Ak').
It is given, on the function w by

A(w) = / w(n)O(n)dn.
N(k')\N(Ak,)

Here 0 is a a-invariant character of N(Ak') defined, as in §2, by a
u-invariant character t of k'\Aki. It is clear that A(IJw) = A(w).

This implies that we can write A and I, as tensor products:
A = ()AV, I, = I0 v

v v

over the places of k, in such a fashion that at each v, I,,,vA = Av. In other
terms, I, is the tensor product of the normalized intertwining operators.
(We let the reader fill the gaps at the non-inert places.) We now remark
that the Shintani identities (with the right constant) are obviously true at
the split places; obviously also, they hold for unramified representations
by §6.2; finally, it is easy to check, using the construction of the Steinberg
representation given by Casselman ([10(b)], see also [9]) that they hold for
the Steinberg representation. Since the normalization, then, is correct at
all places except vo, it is also correct at vo. This proves Theorem 6.2(a).
Note that the elliptic character of IIo x a is non-zero, and then Lemma 2.11
implies that II is a-discrete.
Assume now that IIo - Io o a is a-discrete. (Again, we will assume all

central characters trivial.) Let k'/k be as above; let ovo E C,°(G(E),X)
be a pseudo-coefficient of Ho >X a (Corollary 2.10). Recall that the a-elliptic
twisted orbital integrals of vo, then, are not identically 0 (Lemma 2.12).
As in the proof of (a), we may construct a function j on G(Ak') such that
q is unramified for any finite place w above a place v $ {vo, Vl, v2, v3}, and
such that

trace(Rcusp()Ia) + 0.
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Therefore, there is a representation H of G(Ak,) in the space of cusp
forms, such that II,,o Ioo, HII, (rv,)® is supercuspidal, II,,, (T)t
(since II,, is a-stable), and H,, is a Steinberg representation. (Here we
have used the fact that a Steinberg representation stable by a is r-discrete
and admits a twisted pseudo-coefficient.) Again, the comparison of traces
yields an identity of the form:

(6.5) Etrace(II()IO,) = trace r'(f).

By Theorem III.3.1, there are at most £ representations on the right-hand
side; they are all of the form X 0® r, for a unique cuspidal ir. On the image
of the norm, their local characters coincide. Consequently, we have an
equality at the place v3 of the form:

trace r,3 oN = c trace(I,3I)
for some constant c. Thus the character of rv,3 is equal to a Steinberg
character on the image of N; it is easy to show that rT3 is then a Steinberg
representation. But then t,,3 Xv3 t 3v,, where XV3 is the class field
character associated to the extension k'./kv3. This implies that xr ® X t r

unless X = 1. So there are i terms in the right-hand side of (6.5). Repeating
the arguments used to prove (a), we then obtain part (b) of Theorem 6.2.
Also note that all representations trv lifting Io are obtained from one of
them by twisting by some power of the local class field character.
We now remark that (c) follows from the fact that the local lifting has

been constructed globally. Indeed, given the local representation r0 of G(F)
(to discrete), we have constructed a global representation Xr of G(k); then
iX lifts to II, which restricts at v0 to Ho lifting ir0. Since the notion of global
lifting is independent of the choice of a, the local lifting is also. Given (c),
(e) has been proved in §6.2; (d) is clear. Theorem 6.2 is complete.

6.4. Properties of local base change
We now list some properties of local base change deduced from Theorem

6.2 and its proof. The proofs are easy and are only sketched. The first result
concerns the orthogonality relations for a-discrete representations. Fix a
unitary character X of Z(E), with X X o a. If 01,02 are two functions
on G(E), invariant by a-conjugation, and such that Oi(zg) = X(z)Ei(g),
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set

(6.6)
(e1, 2)o-ell = | W(G(F), T(F))1 J AG(Nt)l(t). e2(t)dt

Tell Z(E)T(E)l'-\T(E)

(cf. the Weyl integration formula in §4.1).
Here dt denotes the Haar measure on Z(E)T(E)'1-\T(E) - NZ(E)\T(F)

of total mass 1.
Let us denote by C the character of F* associated to the extension E/F:

thus Ct = 1. Let E Z/ez be the group generated by : it acts on
representations by r i- r ®X(ir o det), 77 E.
The proof of Proposition 6.6 uses a global result from Chapter 3. This

proposition will not be used in the rest of the paper.
PROPOSITION 6.6: Let r, II denote discrete series (resp. a-discrete) repre-
sentations of G(F), G(E).

(i) Assume that I lifts 7r. Write

II = ind (E)N( )((HM 0 n 0..* * HI') 1)
with g minimal such thatHII J- IIM, and IIM a discrete series representa-
tion of GL(n/g, E).

Then g is equal to the order of the stabilizer of 7r in E. In particular, H
belongs to the discrete series if and only if Ir 0 t ir. We write g = g(1).

(ii) If H1,II2 are a-discrete, we have, writing ei,a for their twisted char-
acters (i = 1,2) :

=~'0 if IIH12~H2(la< i 2, )ag-ell (I ) if IIH I2

Moreover, the a-discrete characters form an orthogonal basis for the invari-
ant functions on G(E)<-ell with the scalar product (6.6).
Proof. Assume that I lifts ir and Xr ir 0 r) with r = i' and i is minimal.
We may imbed 7r in a cusp form 7rA such that irA rAa r/A, where TlA
is analogously defined; r7A is then minimal. Under these assumptions, we
will see in Lemma III.6.6 that 7rA lifts to a representation induced from
cuspidal: HA = ind(IIA,M * *' AM), g = T, HA,M cuspidal. The local
component of HA at vo is then as stated in (i); IIHo,M has to be discrete,
since otherwise one easily checks that the induced representation is not
a-discrete. This proves (i). As for (ii), we may use the lifting identities
to rewrite the scalar product in terms of 7r1 and r2, assumed to lift II1
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and 112. Using Lemma 1.4, the computation is then easily reduced to the
orthogonality relations on the group G(F)i = {x E G(F) : o det(x) = 1}
(cf. e.g. [19, Lemma 1.9]). I

Using computations of Jacquet modules, we will show (Lemma 6.10) that
in Proposition 6.6, ir is supercuspidal if and only if IIM is. Thus base change
preserves representations unitarily induced from supercuspidal.
PROPOSITION 6.7: (r,II tempered). Assume II lifts 7r. Write

r = ind(rl ®-.. 7Tr),
lrr belonging to the discrete series of GL(nr, F). Then the other represen-
tations lifting to II are those of the form

' = ind((7rl ® i) ®..** (rr )®tr) with t1i E .

Proof. It is obvious that these representations are lifted by I; conversely,
assume 7r' is lifted by II : ' then has the same character as r on the image
of the norm map. Using the formulas for induced characters [11(b)] it is
then easy to show that Xr is induced from a discrete series representation
al 0 * * * oar of the same parabolic subgroup, and that o-1 ® - * * oar and
a Weyl conjugate of ir1 *0 * ,rr have the same character on the norms.
The orthogonality relations then imply the result.
We now record the obvious property of lifting:

PROPOSITION 6.8: (Ir,II tempered). Let *, II denote the contragredient
representations.

(i) If 7r lifts to II, # lifts to II.
(ii) If X lifts to HI, r 0 w lifts to 11 (w o NE/F), w being a character of

F*
Lastly, we will relate the L-functions of representations associated by

base change.
We first remark that at this point we have obtained the base change

correspondence between all representations, tempered or not, of G(E) and
G(F). Indeed, by the Langlands classification, any representation ir of
G(F) can be realized as the unique quotient of a representation

ind ()N(F)(TM ® 1)

with lrM essentially tempered and dominant ([24(c), §3.3]). Then rM has
a unique lift I1M to M(E) - the previous results obviously extend to essen-
tially tempered representations; IM is again dominant, thus
ind(IIM 1) has a unique quotient H; II is the base change lift of r (it
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is clearly r-stable). Conversely, given II II o a, we may realize it as the
Langlands quotient of ind(IIM 0 1). The uniqueness of the Langlands da-
tum then shows that IIM is a-stable; if rM is any representation of M(F)
lifted by IIM, its Langlands quotient Xr has as base change lift I. With
these definitions, Proposition 6.8 and the obvious adaptation of Proposi-
tion 6.7 still hold. In general, of course, the base change correspondence is
not given by character identities.

Let us now recall the notion of L-function of pairs of representations.
Let Gn denote GL(n). If r, r are irreducible representations of Gn(F) and
Gm(F) respectively, Jacquet, Piatetskii-Shapiro and Shalika [26(b)] define
a local L-function, denoted by L(s,r x r). To conform to our general
notations, we will denote it by L(s, r®r). It can be expressed as P(q-')-',
where P is a polynomial with constant coefficient 1, and q the cardinality
of the residue field.
There is an associated e-factor ([26(b), §2.7]) e(s, r 0 ,r,), where i is

an additive character of F; e is a monomial in q-S. We will also need
the A-constants of Langlands. Let E/F be an extension of local fields, OF
an additive character of F, 1E = OF o trE/F. In [14, p. 549] are defined
numbers A(E/F, OF, dxE, dXF) where dxE and dxF are Haar measures on
E and F. If we take dxE and dXF to be the self-dual measures associated
to 1E and OF, we obtain Langlands' factor A(E/F, OF).

It has the following property, which we could take in our case for defi-
nition. Assume now that E/F is cyclic of order £. Let XF be a character
of F*, XE = XF o NE/F. Let E be, as in the beginning of 6.4, the group
of characters of F* vanishing on NE*. Then, with OE and OF related as
above:

(6.7) e(xF77, OF) = A(E/F, kF)e(XE, FE)-

This is an immediate consequence of the behavior of A-factors under
induction ([14, 5.6.2]), and the fact that, if we identify characters of a local
field K* and 1-dimensional representations of the Weil group WF, we have

indWF (XE) = XF'-WE
EE

PROPOSITION 6.9: Assume ElF is cyclic of order £. Let or, r be irre-
ducible representations of Gn(F),Gm(F) and II,T their base change lifts
to Gn(E),Gm(E). Then

(i) L(s, l®T)= n L(s,7r0r 47·).
»7ES
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(ii) E(s, II T, ;bE) = A(E/F, OF)-mn -e(s, r ® r ( , F).
In the right-hand sides of (i) and (ii), L(s, r 0 ®7 ) may be interpreted

as L(s, r 0 (r 0® i)) where r 0® 7 denotes r twisted by the character 7 of
the determinant, or as L(s, (ir ® 7r) 0 r). These two L-functions coincide,
as can be extracted from [26(b)]. The same applies to the e-factors.

Proof. First notice that it is enough to consider generic representations
Xr, r. If xr, for example, is any irreducible representation, it may be realized
as the Langlands quotient of some representation r, and *r is induced from
an essentially square integrable representation of a Levi subgroup. Write
r = i1 x ... x 7rs, where 7ri is an essentially square integrable representation
of Gni(F), if T is induced from the representation rl ® *.-® 7r, of the
corresponding Levi subgroup. We may write, analogously, -= Tr x * * x s.
We then have (26(b), §9])

L(s, 70r ) = nL(s,,s ®,).
i,j

Analogous considerations apply to II, r. Since, as we observed after Propo-
sition 6.8, this construction is compatible in an obvious way with base
change, we may deduce the identity (i) for 7r, r from the analogous identity
for the factors L(s, 7ri 0 j) and their lifts. (One also has to observe that, Tri
being essentially square-integrable, its lift II is essentially tempered and,
therefore, generic.)
The same argument applies to the e-factors. Therefore, we may assume

that 7r, r are essentially square-integrable. Twisting by a character of the
determinant, we may even assume that 7r, are square-integrable (i.e., in
addition, unitary). We first make the following simple remarks:

(6.8) The identity of L-functions (6.9(i)) is true for 7r, unramified and
the extension E/F unramified. This is clear by the expression of the L-
functions in that case, cf. [27(a), §2].

(6.9) It is enough to consider the case of E/F cyclic of prime order £.
Indeed, (1) and (2) in Proposition 6.9 can be obtained by repeated lifting.

According to Bernstein and Zelevinsky [7b, 42], the square-integrable
representations of Gn(F) are obtained as follows. Let n = ar, a, r E N. If
w is a unitary supercuspidal representation of Gr(F), let St(w,a) denote
the unique submodule of

ind(a/| 1 ,WI1 | ^,...,WI1 | L),
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where MN is the parabolic subgroup of type (r,..., r). Then all square-
integrable representations are of this type, and St(w,a) is isomorphic to
St(w', b) if and only if a = b, w - w'.
We will now need the following lemma, which is of interest in itself.

Let w be a supercuspidal representation of Gr(F). Its lift Q to Gr(E)
(Thm. 6.2) is a-discrete, and therefore f is square-integrable or equal to
the induced representation F x rF x . x Ft1, where F is a square-integrable
representation of Gt(E) (t = r) and r rFa (Lemma 2.8).
LEMMA 6.10: Let w be a supercuspidal representation of Gr(F).

(i) Assume the lift Q ofw is discrete. Then it is supercuspidal.
(ii) Assume w lifts to Q2 = rF x .* x Fr , F discrete, F . Fr. Then F

is supercuspidal.
Proof.

(i) Assume £ is not supercuspidal. Then Q2 = St(A,c), for cIr, c $ 1,
and A a supercuspidal representation of Gr/c(E). By the uniqueness of
the Bernstein-Zelevinsky classification, Aa A. Let N be the unipotent
radical of the standard parabolic subgroup of Gr of type (r/c,..., r/c).
Then, as is well-known [42], the (unnormalized) Jacquet module of f2 for
N is

2N = A IcC-1 ® I Ic-2 ®... G II1-.
As the twisted character ofA is not identically zero on the a-elliptic set, the
twisted Casselman theorem (Prop. 2.3) implies that the twisted character
of Q£ does not vanish on points g E Gr(E) such that 9(g) = h E Gr(F)
and Nh = N. This contradicts the fact that the lift w of 2 is cuspidal.

(ii) Assume r is not supercuspidal, and write r = St(A,c) for cl(r/f),
c 5 1, and A supercuspidal. Since r 0 Fr, A 0 A". Set r = ced: thus A
is a representation of Gd(E). We have:

Q = indGl (St(A, c)( *. ® St(A/- , c))
where M1 is the standard Levi subgroup of type (dc,..., dc). We consider
the Jacquet module fN2, where P2 = M2N2 is of type (d£,... de). Note
that M2 and M1 both contain the Levi subgroup Ms of type (d,..., d),
and the representation II = Fr ® r0OF of M1 is a submodule of a
representation induced to M1 from a supercuspidal representation of M3.
An easy extension of a theorem of Bernstein-Zelevinsky ([7b]; see also

[42]) and Casselman [10 a] then gives the following description of fN2. Let
W = W(G,A3) ~ Gct be the Weyl group of (G,A3), where As is the
split component of Ms; then IIN2, a representation of M2, is isomorphic (in
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the Grothendieck group of representations of M2) to a sum indexed by the
subset W1,2 of W determined by the following conditions:

(a) wi < wj for all i,j E Ik= [kc+1,...,(k + )c],
k=0,...,£- 1

(b) w-fli<w-lj for all i,j Jr = [rt + , ...,(r+ l)£],
r= 0,...,c-1.

These conditions are equivalent to

(A) w. Ni C N3
(B) w i.N2 C N3

where w. denotes the action of w by conjugation.
For w E W1,2, the corresponding constituent V, of QfN2 is equal to

nd nM2(w * IIw-1.N nM))
(here w-1. N2 n M1 C N3 n M1 is the unipotent radical of a parabolic
subgroup of M1, and we take the corresponding Jacquet module, a repre-
sentation of w-1 . M n M1; composing this with Ad(w) yields a represen-
tation of M2 n w. M1, a Levi subgroup of M2 n w. P1; finally, we induce
this representation to M2 by unitary induction). Set Nw = w-1N2 n M1.

Recall that II = St(A, c)® . * St(A^-1, c); A is a representation of Gd,
and the unipotent radical Nw has blocks of length divisible by d. Using the
known formulas for the Jacquet modules of Steinberg representation [42],
we see that IINw is a tensor product of representation of the blocks Gdai of
type St(A , y) for some integers x, y-at least up to an unramified twist
by some half integral power of |detl. Therefore Vw is induced to M2 of a
representation of this type.
We are going to consider the twisted trace of QNN2 and, therefore, we are

only interested in the Vw that have a-stable subquotients. Consider a block
Gad of M2. Let £ =£e + .. + be a partition of £, and assume that

ind(St(Axl, yi) 0 ... ® St(Ax*, y))
tHere the reader must beware of the following fact. In Casselman's theorem (cf. Prop. 2.3),
unnormalized Jacquet modules are used; the Jacquet modules used in [42, 7(b)] are nor-
malized Jacquet modules, deduced form the unnormalized ones by a twist by 6p 2 where
P is the parabolic subgroup in question. The Jacquet module occurring here is normal-
ized. In the arguments that follow this distinction will be unimportant.
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where St(A7' ,yi) is a representation of Gdt,(E), has a u-stable subquo-
tient. The fundamental disjointness theorem for representations induced
from supercuspidal ([7b, Thm. 2.0]; [10a]) easily implies that all conjugates
of A by the Galois group must be involved: therefore £i = 1, and the rep-
resentation must be equal to E = ind(A 0 A"0 .. 0 A- ) (in fact, the
factors St(Aa',yi) may be twisted by half-integral powers of Idetl: this
does not change the argument).

Finally, considering M2 = Gd x .. x GdI, we see that any a-stable
subquotient of fN2 must occur in E 1 xl 0 .* * X E xc where the xi are
half-integers (note that E is irreducible since, up to a twist, it is induced
from a unitary representation).
We now notice that this can occur only for one element w E W1,2. Indeed,

by the preceding arguments, we see that w must send distinct elements of
Ik into distinct intervals Jr; by (a), we must have w(kc+ i) E Ji; by (b) we
have therefore Ji = {wi, w(c+ i),..., w((£- l)c+ i)}. But these conditions
completely determine w.
We have shown that the twisted trace of fQN2 coincides with

the twisted trace-for the action of a canonically defined on the Jac-
quet module-of a unique representation El xl ... 0 EI xc, where
E = ind(A 0 - 0 A'a ). Since E is a-discrete (A ; AO), we know that
its twisted character does not vanish identically on the set of elements with
elliptic norms. We can now argue as in the proof of case (a) to show that
the twisted character of Q does not vanish identically on elements whose
norm does not belong to the compact part of Gr(F), which contradicts the
cuspidality of w. Lemma 6.10 is proved. I

We will now give the proof of Proposition 6.9 (i) using the following facts
about global L-functions. Let ir, r be cuspidal representation of Gn(Ak),
Gm(Ak) where k is a number field. For v an infinite place of k, define
L(s, r, r7,) as the L-function of the tensor product representation of the
Weil group: it is a product of F-factors. Set

L(s,r, 0r) = I L(s,r, 0 )

Let i, T be the contragredient representations. Then the L-functions extend
meromorphically to the whole plane and satisfy a functional equation:

(6.10) L(s, 7r 0 r) = c(s, r 0 r) L(1- s, i 0 T).
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Here c(s, ir ® r) = n c(s,rTv ® rT), the c-factors being defined above for
finite places and via the Langlands classification for infinite places; the
c-factor is 1 for almost all v.

This function equation is announced, but not completely proven, in
[26(a),(b)]. Let us assume it for the moment.
Now let k'/k be an extension of global fields, chosen as in §4. Specifically,

we assume that, at some place vo of k, k'o/kvo is isomorphic to E/F, that
some finite places v1, v2 split in k' while another finite place V3 remains
inert.
By the arguments for Lemma 6.5, we may choose cuspidal representations

Trk, rk of Gn(Ak), Gm(Ak) such that lrk,vo (resp. rk,,o) is isomorphic to vr
(resp. r). We will first consider the case where r, r are supercuspidal. We
assume that 7rk (resp. rk) is unramified at any place v ¢ {vo, l, v2, )3}USIo,
where S~o is the set of places v of F dividing po, the prime divisor of vo,
and different from vo; we assume that v1, v2, v3 do not divide po. We may
further assume that all places in Sp, split in E. Finally, for v E Spo, we
assume that 7ro is supercuspidal. By the arguments in §6.3, Ik and Tk then
lift to two cuspidal representations Ilk, and Tk, of the adelic groups over
k'. Consider the two L-functions:

Li(s) = L(s, nk' Tk')
and

L2(s) = n L(s, TXk (®r 71),
qEE

which we consider as Euler products over the rational primes. By (6.8),
their Euler factors coincide at almost all primes. They both satisfy func-
tional equations of the usual type. We now apply the following well-known
principle, a precise version of which is given in Vigneras [41(b)]:
LEMMA 6.11: Assume given four L-functions L1, Li, L2, L2 given by Euler
products over the rational primes, including the real prime. Assume they
admit a meromorphic continuation to C and verify functional equations
Li(s) = ci(s)Li(1 - s) (i = 1,2) with ci(s) = ciebi, c,bi E C.
Assume that (a) the Euler factor of Li (resp. L1) is equal to that of L2

(resp. L2) at almost all primes.
(b) At a prime p we have

1 - 1
Lp(s)I ll , j; te se al()IIest L d

with la|[l plb|J for all i, j; the same applies to L2,p and L2,p.
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Then the Euler factors of Li and L2 coincide at p.
We apply this to Ll(s) and L2(s), the functions L1(s) and L2(s) being

the ones figuring in equation (6.11) for L1 and L2. We need only check
condition (b). By Lemma 6.10, and our assertions on xr, for ivpo, the L-
functions occurring for all places of F or E over po are associated to pairs of
representations that are (unitary) supercuspidal, or unitarily induced from
such. By the results of Jacquet, Piatetski-Shapiro, Shalika [26(b)] (see
formula (6.11) below), the associated Euler factors are products of terms
(1 - X(&)q-8)-1, where q is a power of po and IX(w)l = 1. In particular,
the reciprocal roots of the po-factor have absolute value one, whence (b).
By Lemma 6.11, we see that the po-Euler factor of L1 and L2 coincide.
Since Ll,o(s) = L2,o(s), trivially, for v E Spo, we deduce that L1,o = L2,vo,
proving Proposition 6.9(i) in the supercuspidal case.
To treat general discrete series representations, we will need to know how

generalized Steinberg representations behave under base change:
LEMMA 6.12: Let Xr = St(w, a) be a generalized Steinberg representation of
Gn(F), n = ar.

(i) Assume w lifts to a supercuspidal representation Q of Gr(E). Then
x lifts to II = St(f, a).

(ii) Assume w lifts to Fo x *. x F- , with F i FU supercuspidal. Then
7r lifts to

st(r, a) xt(, a)x x St(r-' a).
Of course, Lemma 6.10 implies that the assumptions (i), (ii) are the only

two possibilities.

Proof. Consider first the case (i). We know that xr lifts to a a-discrete
representation II. We first show that II is discrete (note that we can-
not use Proposition 6.6, which relies on the global results of Chapter III,
which will require Proposition 6.9!). Assume that II is not discrete, whence
II = St(A,c) x ... x St(a -',c) for n = cfd, A j Aa a supercuspidal
representation of Gd(E). Consider the parabolic subgroup P2 = M2N2 of
type de,..., de). The Jacquet module IIN has been described in the proof
of Lemma 6.10(ii): its a-stable part is equal to El I rl x ... x El c, where
S = A x A' x x Aa1 . In particular, its twisted trace is non-zero on
elliptic elements: the character identities then imply that lrN2 $ 0, whence
ride. Moreover, irN is then, up to unramified twists, a tensor product of
representations of the blocks Gdt(F) of type St(w, t) ([42]) and therefore
St(w, dt) would (again up to twists) lift to E. However, E has clearly nor I ·U~ ULLlU VU·VI~1UV I·LL1ICUL~LI 1
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a-stable Jacquet modules. Therefore we must have de = r, and E lifts w.
But this contradicts our assumption on w: therefore II is discrete.

Write, then, II = St(A,b) for n = bt, A supercuspidal. We must have
A - AO. If N is the unipotent radical of the parabolic subgroup P of type
(t,...,t), we have

UN Al I b-1 Ali -2 ®...

(uninormalized Jacquet module).Clearly this is a-stable, so by Proposi-
tion 2.3, A being a-discrete, the twisted character of II does not vanish iden-
tically on elements g E Gn(E) such that KNg E Gn(F) satisfies Pg, = P.
By the identities of characters and Casselman's theorem for ir, we see

that TrN 0. This implies that bla. If b < a, N is strictly contained in the
unipotent radical N1 of type (r,... ,r). Since A is supercuspidal, IIN1 = 0
while 7rNl f 0; this contradicts again the identity of traces. Therefore a = b.
But now the identity of traces, and the twisted and non-twisted Casselman
theorems, are easily seen to imply that eN o0 A = cOnN,O, at least on
elliptic elements, c being a (non-zero) constant coming from the action on
the space of IIN of the normalized intertwining operator for II. Therefore
A lifts w, at least up to a constant and if we consider characters on elliptic
elements. If A is a (discrete) representation lifted by A, the orthogonality
relations (cf. proof of Prop. 6.6) imply that A ~ w 0® r for some r7 E 5,
whence the result.
We now consider case (ii). We first show that II, the lift of x, is not

discrete. Assume it were. Write II = St(A,b) with A a supercuspidal
representation of Gt(E), n = bt, A _ As. Then, if N is the unipotent
radical of type (t,..., t), we have UN = A | 6-1 Al b-2 -* * * ® A. The
identity of characters then implies that ?rNv 0, whence bla. Moreover (up
to a twist) A lifts the Jacquet module St(w, ). Since the Jacquet modules
of A are null, this implies that a = b, and A lifts w. But this contradicts
our assumption on w.

Therefore 7r lifts to HI x IIH x ... x I~"1 with II1 discrete, HI II .H
Set HI = St(A,b) with A supercuspidal, A j AO. Let P = MN be
the parabolic subgroup of type (t,...,t) where n = bt. In the proof of
Lemma 6.10(ii) we showed that the only a-stable subquotient of UN is the
module

EI I b-1 -El I b-2 ...®

where E = A x A" x *- x A" (in fact, we did not compute the precise
unramified twists of E that occur: but this is easily deduced from Frobenius
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reciprocity). Now the identity of characters implies, in the usual manner,
that IrN $ 0, whence bla.
Now we show that b = a. Indeed, A x Al x ... x A-' has no o-stable

(non-trivial) Jacquet modules. Assume b < a, whence r < t, and consider
the unipotent radical N1 of type (r,..., r) in Gt. Then IIN, has a vanishing
twisted trace, whereas the corresponding Jacquet module for ir is non-zero,
and in fact square-integrable. This contradicts again the equality of traces.

Therefore, b = a, II1 = St(A, a). We must show that A _r. Considering
the r-stable part El b-1®0 * * * of IIN, we easily deduce that the twisted
character of E = A x .. x A"'- is equal, on the elliptic norms, to the
character of w composed with X, up to a non-zero constant. We finish the
proof as in (i). I
We now finish the proof of Proposition 6.9(i). We assume that 7r, r

are square-integrable. Write vr = St(w,a) for w supercuspidal, n = ar.
Similarly, let r = St(6, b), m = bt.
Under these assumptions, the local L-function L(s, Ir®r) has been com-

puted by Jacquet, Piatetski-Shapiro and Shalika. Their result is as follows
([26(b), Prop. 8.1 and Thm. 8.2]):

(i) Consider the supercuspidal representations w, 6 of Gr(F), Gt(F).
Then

(6.11) L(s,w 0 6) = (1 -()q-
x

where the product ranges over all unramified characters X of FX such that
Tr X - 6, 6 being the contragredient of 6. In particular, if L(s, w ® 6) $ 1,
we have r = t.

(ii) Let r = St(w, a) and r = St(, b). Then

(6.12) L(s, x r) = 1 unless r = t.

(iii) If r = t, assume m < n. Then

b a+b
(6.13) L(s, r r) =nL(s+ 2- --i

i=1

In proving Proposition 6.9(i), we now distinguish between cases (i) and
(ii) occurring in Lema 6.10. The identity to be proved is

(6.14) L(s, n x T)= H L(s, T 0 r 0 r).
?_E
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Using Lemmas 6.10 and 6.12, Proposition 6.9(i) for ir and r can now
be deduced from the supercuspidal case. For instance, assume that w, 6
lift to supercuspidal Q, A (case (i) of Lemma 6.10). Then xr, r lift to
St(Q,a) and St(A,b) and (6.12) and (6.13) reduce the identity (6.14) to
the supercuspidal case. The two other cases are analogous.
To avoid using the unpublished results announced in [26(a),(b)], we rely

on Shahidi's work. Let S be a finite set of places of k containing all the
ramified places for k'/k, 7rk, rk and the Archimedian places. If lb denotes
a non-trivial character of k, (v E S), Shahidi defines in [36(b)] local coeffi-
cients C(s, v, 7rk,v x rk,v) (... denoted there by Cx,(s,Trk, x rk,v) where
Xv is the non-degenerate character of the upper nilpotent group defined by
1,). Now assume ;b is a character of Ak; choose S so that 0b is unramified
for v S. Then, writing Ls for the Euler product outside S:

(6.15) LS (s, rk 0 k) = (i C(S, , rk,v x k,)) LS(1- s,ik X0 k)

([36(b), Thm. 4.1]). Moreover, it is shown in [36(d),(e)] that these local
coefficients at the p-adic and real places of S are equal to the corresponding
7-factors. Therefore, equation (6.15) implies the functional equation 6.10.
The proof of Proposition 6.9(1) is complete.
To prove the identity of c-factors, we choose a global extension k'/k of

number fields as in §4. Specifically, we assume that, at some place vo of
k, k'/k is isomorphic to E/F, and that some places vl, v2 split in k'. We
assume moreover that k'/k splits at all infinite places. As in Lemma 6.5, we
may find a cuspidal representation rk of Gn(Ak) such that 7rk,Vl is a given
supercuspidal representation of Gn(kuv), 7rk,vo ' xr, and 7rk,v is unramified
for finite v {VO,v1, 2}-. The identity of traces then yields a cuspidal
representation Trk, of Gn(Ak/) verifying the identity (6.2):

£ trace(7rk, (Y)I,) = trace (f)

for associated functions Ap, f. The sum on the right runs over all 7r' twisted
from ir by a power of the class field character associated to k'/k.

This identity implies that each local component of Trk lifts to the corre-
sponding component of rk'--a priori up to a scalar, but this scalar must
be equal to 1 since the local lifting has already been proven for generic
representations, and twisted characters are linearly independent (note that
this implies that there are £ terms on the right: this will also follow from
the global results of Chapter III).
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The same construction can be applied to r = rk,o. Let t = ®kv be
v

a non-degenerate character of Ak, and tk' = t o tracek,/k the associated
character of Ak,. We may assume that v,,o is the non-degenerate character
PF we consider. We now have equations
(6.15) ]I L(s, r® r ® rl) = Hie(s, r ® r ®X )L(1- s, T ® r ® r)]

where for simplicity we write ir for Irk, r for rk ... (the representation of
local groups we consider are then r0 = -rvo and r0 = rvo). Analogously,
(6.16) L(s, I ® T) = c(s, H® T)L(1- s, ®T).
By Proposition 6.9(i), we know that the L-functions figuring on the two
sides of (6.15) and (6.16) are equal at all places (at the Archimedian primes,
it is clear since the extension splits). Therefore

(6.17) I e(s, Tr T ) r) = e(s, II T).

We now write the c-factors as products; for example,
(S, Xi r) = -JJ(s, r )®r,, v).

v

We now remark:
LEMMA 6.13: Assume v = vo.

(i) If v is inert,
c(s, Vl 0T,,iv4) = A(/kvI,)-mn c(s rv,, ®R rv, ,

(ii) If v is split,
c(s,Hn ®T ,/,) = c(s,rv 0 rv, )'.

Proof. Part (ii) is trivial. For (i), note that v is non-archimedian and all
representations are unramified. Therefore the c-factors are just products of
c-factors associated to characters; the identity in that case is just (6.7). |
We now use the obvious product formula for the A-factors:

f A(k'/kv, V)=
v inert

which again follows directly from their definition (6.7). Now dividing
the right-hand side by fl inert A(k'/kv, V v)mn and using the equations of
Lemma 6.13 at the places v :- vo, we are left with the identity of Proposi-
tion 6.9(ii). I
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7. Archimedean case

In this paragraph, we will rapidly treat the case of Archimedean fields:
thus the only interesting case is the extension C/R, further extensions
being treated by the methods of §5. The local base change results have
been proved in that case by Shintani and Repka [30]; we will only refer
to them, and also to [ll(a)] when necessary. We want here to prove the
results about the Paley-Wiener Theorem and orbital integrals which will
be needed for the trace formula. Let a be the generator of Gal(C/R).

Recall the parametrization of the generalized principal series of GL(n, R)
([30(b)], [10(d)]). Set n = 2n2 + nl; let Xi(i = 1,... n2) be ramified char-
acters of C* (so that Xi(z) 9 Xi(z)) and let (j(j = 1,... nl) be characters
of R*. By the Langlands classification, Xi defines a discrete series repre-
sentation 7r(xi) of GL(2, R); we havelr(Xi) = 7r(x) where X',(z) = Xi(Z).
Let P = MN be the standard parabolic subgroup with n2 2-blocks and nl
1-blocks. We write 7r(X, X2, ... l,...(nJ) for the representation induced
from 7r(X1) ...* * r(Xn2) (01 0 * * * 'n, : it is a generalized principal
series representation of GL(n, R). All generalized principal series are of
this form, and the isomorphisms between them are the obvious ones.

It will be convenient to parametrize them by "discrete" and "continuous"
parameters: we may write

Xi(Z) = zP(Z)q, p-q E Z-{0}, p+ q = Si E C

j (Z) = (sgn x)ci -.xj i, Sj E C.
Then (s1,... sn2+n) E C"n+n"' a*7. The Weyl group of M, WM, acts

on aM as Gn2 x 6n,.
The u-stable lifts of these representations are the representations induced

from the Borel subgroup B(C) :

II(Xl, X2, .. I,.. n) =ind ()(X1,X, X2,X ,... ,oN, ... n o N)
where N = NC/R. (They are obviously a-stable.) The lifting thus ob-
tained coincides, via the Langlands classification, with restriction on the
Weil group side [11(a)]. We remark that the base change identities extend
to all values (tempered or not) of the parameters provided we consider the
full induced representations and not their Langlands quotients.
We wish to remark on the normalization of intertwining operators. In

[ll(a)], operators A, are defined, using Vogan's theory; they introduce a

sign e(M), equal with our data to (-l)n2, in the Shintani formulas. On
the other hand, we may define I, as in §2; using the trace formula as in §6,
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one can see that the Shintani formulas hold without a sign for the I,. In
what follows we use the operators I.
We will call a-stable data the data parametrizing the v-stable generalized

principal series. Since i oN does not depend on the sign of Hi, we will write
r-stable data in the form (Xi,...Xn2, i, ,..n) where Xi is a ramified
character and (i is now just an element of C. Thus (i(z) = INzlJ', si E C.
We will first prove, for twisted representations, the analogue of the Paley-

Wiener Theorem of [12(a)]. We assume familiarity with the results of this
paper. The proof in our case is analogous and will only be sketched. Let Kc
be a maximal compact subgroup of G(C), stable by a - e.g. Kc = U(n);
let C.*(G(C), Kc) denote the smooth functions, Kc-finite on both sides.

Again, the a-stable representations are parametrized by "discrete" and
"continuous" parameters, the latter being parametrized by the spaces aM
for cuspidal parabolic subgroups.
PROPOSITION 7.1: Assume given scalar-valued functions on the set of a-
stable data:

(X,0)= (Xi,X2,... Xn3 ,6,2....,nJl F(X,) E c.

Then there is a function E C(c(G(C), Kc) such that

F(X,) = trace(II(X, )I,)
for all X,. if and only if

(i) F(x, ) has finite support in the discrete data.
(ii) The function on aM :

(S1,. ..Sn+nl)= F(Xl C ,... ni +n )
is of Paley-Wiener type on aM.

(iii) For w E WM = en2 X n, :
F(w(x, ))= F(X, ).

Proof. The fact that the traces of 4 E Cg'(G(C), Kc) satisfy (i)-(iii) is
straightforward ([12(a), §2]). We prove the converse. The same argument as
in [12(a), §2] reduces the proof to an assertion concerning only one "series"
of representations at a time, the analogue of Proposition 1 in [12(a)]. The
"discrete" part of Xi is expressed by pi - qi = ri. We may assume that
ri > 0. Let X° be the character of (C*) :

L.(Li ..) .
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For s E a*, we may then consider the character X° 0 s defined in the
obvious manner. It yields, by induction, a r-stable representation.
LEMMA 7.2: Let p be the minimal Kc-type in the induced representation
II(° ® s) = ind(c)(0 o s). Let F(s) be a function of Paley-Wiener type
on a*. Assume F(s) is invariant by (WM)XO, the stabilizer of x° in WM.
Then there exists X E C,°(G(C),Kc), transforming under p on the right
and left, such that F(s) = trace(II(X° ® s)(q)I,).
Here WM "©n x Gnl acts in the obvious way on the discrete parameters.
Proof. Note that I, preserves the space of p; since p has multiplicity 1, a

function 4 of type (p, p) acts there as a scalar, and therefore the twisted
trace coincides with the ordinary trace.
Now let ao be the vector space associated to B(C) : thus ao S Cn. The

stabilizer of the character X° of the compact part of (C*)n in W = W(ao) =
Gn is then isomorphic to

(6m)2 X (Gm2)2 X ... X (Gmk)2 X en,,

with mi + m2 + ** + mk = n2, and mi is the multiplicity of a given
ramified character (zi/zi)r'/2 in the ramified part of X°. (Note that the
ramified characters occur by pairs.) By Proposition 1 of [12(a)], we know
that any Paley-Wiener function on a*, invariant by Wxo, is the value on
the minimal Kc-type of a function b. Thus, to prove Lemma 7.2, it suffices
(using Lemmas 7 and 8 of [12(a)]) to check that the restriction map:

S(a*)wxo -- S(a )(Wm)x0
is onto. In our case this is easily checked (see also [12(b), Theorem 2.2]). |

With this the proof of Proposition 7.1 is complete. I
We can now use the Paley-Wiener Theorem to compare orbital inte-

grals. Recall from §3 the definition of associated functions: they satisfy the
conditions of Proposition 3.1(i). Let KR be maximal compact in G(R).
LEMMA 7.3:

(i) Assume q E Cc(G(C),Kc). Then there is f e Cc°(G(R),KR)
associated to 4.

(ii) Conversely, if f E Cc (G(R), KR) has vanishing orbital integrals on
the regular elements not in the image ofX, there is 4 associated to f.

Proof. We use the methods of [12(a), Appendix]. Assume 4 given. Then
its twisted traces satisfy the conditions of Proposition 7.1. Therefore there
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is (by the ordinary Paley-Wiener Theorem for GL(n, R)) f E C° (G(R)),
KR-finite, such that

trace(IIn()I,) = trace r(f)
when II lifts r and both are generalized principal series.
By a theorem of Shelstad ([38(b), Corollary 4.5.2]) we know that there is

a function f* in the Schwartz space of G(R) with orbital integrals matching
those of q. But then, by the Weyl integration formula and the identities of
characters,

trace(II())I,) = trace r(f*)
for tempered 7r. Thus f and f* have the same traces in tempered repre-
sentations, and therefore the same orbital integrals. This proves (i).

Conversely, assume f given. The vanishing condition on the orbital inte-
grals implies that trace 7r(f) = trace r'(f) if 7r, ' lift to the same II, since
then trace r and trace 7r' differ only on elements not in NG(C). Then the
assignment II - 7r(II) H (trace 7r(H), f) defines a family of functions on
r-stable II as in Proposition 7.1; thus there is a X such that

trace(II()I4) = trace r(f)
for ir associated to II. By part (i) of the lemma, there is a function f* E
C,°(G(R), KR) associated to 4; then we have

trace 7r(f) = trace 7r(f*)
for any 7r, so f and f* have the same orbital integrals. This proves (ii). |



CHAPTER 2

The Global Comparison

1. Preliminary remarks

The goal of Chapter 2 is a full comparison of trace formulas. The imme-
diate purpose of this is to extract global information about automorphic
representations. Along the way, we shall also gain some insight into the
rather mysterious local objects which appear in the general trace formula.
We shall treat the problems of base change and inner twisting simultane-

ously. For this reason it will be convenient to revert to the notation of the
introduction, which is more streamlined for dealing with the general trace
formula. For example, we will be letting G stand for a connected com-
ponent of an algebraic group, while G' will denote the endoscopic group
GL(n). The norm map and the local correspondence of functions will be
written - -- 7' and f f' respectively, instead of 6 -- 7 and b -* f as

in Chapter 1. It will also be useful to make the distinction between a well-
defined function, such as f, and a function such as f' which is determined
only by its characters or orbital integrals. In this paragraph we outline our

assumptions and notation for G in some detail. We shall also recapitulate
the local results, established for base change in Chapter 1 and for inner

twistings in [15].
Let G be a connected component of a reductive algebraic group. We

assume that G is defined over a number field F, and that G(F) is not

empty. We shall write G+ for the reductive group generated by G, and
G° for the identity component of G+. Let M0 be a fixed minimal Levi
subgroup of G°, defined over F, and let C denote the finite collection of
Levi subsets M of G such that M° contains Mo. We shall routinely adopt
the notation of Sections 1 and 2 of [l(e)]. In particular, for any M E £, we
have the lattice X(M)F of rational characters of M+, and the real vector
space

aM = Hom(X(M)F, R).
We also have various other objects, such as LM,C£(M),P(M) and AM,
which were defined in §1 of [l(e)].
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As always, GL(n) stands for the general linear group of rank n over F.
Fix a positive integer £. As a simple example, consider the component

G*=(GL(n)x .x GL(n)) x*,

where 0* is the permutation

(1,...,) (2,..., , 1).
Then (G*)+ is the semi-direct product of £ copies of GL(n) with the cyclic
group of order £ generated by 0*. Our fundamental assumption on G is
that it is an inner twist of G*. In other words, there is a morphism

,?: G - G*

which extends to an isomorphism from G+ onto (G*)+, such that for every
a E Gal(F/F), r-7r equals a conjugation by an element in G+. We
shall let E denote the smallest extension of F over which the image of this
cocycle in G+/GO splits. Then E is a cyclic extension of F whose degree
is a divisor of £. We can choose rj so that r/(Mo) contains the standard
minimal Levi subgroup of (G*)O, and so that the restriction of iq to AMo is
defined over F. Fix such an r7, and set 0 = 17-(0*). Then

G = G° > 0.

Set
G' = GL(n)

and embed G' diagonally in (G*)°. We shall write C' for the set of Levi
subgroups of G' which contain the group of diagonal matrices. The map

M -- M' = {m' E 7(M°) : (0*)-m'0* = m'}, M E C,
is then an injection of C into £'. If y is any element in G, the centralizer of
7 in GO is connected. As in §2 of [l(e)], we shall denote it by G,. Observe
that in this notation,

T7: G -+ G' = G*.

is an inner twist.
The norm map may be described as follows. If {7} is a G°(F)-orbit in

G(F), the intersection of {7q(7)t} with G'(F) is a G'(F)-conjugacy class. We
shall write 7' to denote this G'(F)-conjugacy class, or by abuse of notation,
for an element in the class. Suppose that a is a semisimple element in G.
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The centralizer Go of a in Go is the group of units in a product of central
simple algebras over F. Given q and a, there is a canonical inner twist

ra : G -G-,,

which is uniquely determined up to G'(F)-conjugacy. We shall let p -Yo
denote the associated map from conjugacy classes in Ga(F) to conjugacy
classes in G, (F). One checks easily that

(1.1) (p)' = a'tl4,, p E G,(F).
Suppose that S is a finite set of valuations of F. Then similar remarks
apply if y and a are points in

G(Fs)= Gi (Fv)
UES

The local results of Chapter 1 could probably be established for the
group G+(F,). However, they are more limited as they stand, and we must
impose an additional condition on G. We shall assume that the image of
the cocycle 7-lr17 is contained in either (G*)° or the group generated by
0*. In the first instance

G(F) - (A*(F) x .. x A*(F)) >*,

where A is a central simple algebra of degree n over F. This is essentially
the case of inner twisting of GL(n), studied in [15]. In the second case,

G(F) c (GL(n, E) x .. x GL(n, E)) >0E,

where if a is a generator of Gal(E/F), 0E is the cyclic permutation of order

£1 = deg(E/F)-1
given by

(9, ... *, 9tg ) -* (92,...,* ,, t g ).
This is the base change situation considered in Chapter 1. (The cyclic
permutations 0* and 0* here are of no consequence. The reader, if so
inclined, could eliminate them by making the further assumption that
deg(E/F) = t.) In what follows, we will generally not refer explicitly to
the additional condition on G. Indeed, most of the techniques of Chapter
2 apply to the more general setting.
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Suppose that S is a finite set of valuations of F. In §1.2 we used the
theory of Whittaker models to extend any irreducible, ad(O)-invariant rep-
resentation r° of G°(Fs) in a canonical way to an irreducible representation
7r of G+(Fs). Let H+(G(Fs)) be the set of (equivalence classes of) irre-
ducible representations of G+(Fs) obtained in this way. Let I+mp(G(Fs))
and II+it(G(Fs)) be the subsets of II+(G(Fs)) which are respectively tem-
pered and unitary. The local correspondence of representations can be
described as an injection r I'(Ir) from H+(G(Fs)) onto a collection of
finite disjoint subsets of I(G'(Fs)) which is dual to the map 7 - y'. (We
suppress the superscript + in denoting sets of representations of G'(Fs).)
To describe the associated character identity, set

es = nle,
vES

where e, = ev(Ge) is the sign associated to the group Ge by Kottwitz
[29(b)]. (Recall that if v is nonArchimedean,

e,(Ge) = (_1)r'(G)-r(G') = (_l)rd(Ge)-n,
where rv(Ge) is the Fv-split rank of Ge; if v is Archimedean,

e (Go) = (-1)1(q.(G*)-q.(G'))
where q,(Ge) is the dimension of the symmetric space associated to Ge(Fv).
It is clear that es remains unchanged if it is defined with respect to an
element M E C instead of G.) The character et of any representation
T E IlI+mp(G(Fs)) then satisfies

(1.2) E,(y) = esOr,(y')
for any ?r' E II'(r) and any 7 E Greg(Fs), the set of regular elements in
G(Fs). For if G = G°, the sets II'(r) each contain one element. The
correspondence is just the injection from the representations of a central
simple algebra to those of GL(n). (See [15].) In the base change situation,
the sets II'(r) consist of the representations of G'(Fs) which lift to a given
representation i. (See §1.6.) In this case es equals 1, and II(G'(Fs)) is the
disjoint union of the sets II'(r).
We can also introduce the set S+(G(Fs)) of standard representations.

Recall first that if M E £ and r II+E(M(Fs)), we can form the induced
representation

Ip(7T) = ZG(T) = Zp(T), PP p(M).
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It is often denoted simply by rG. More generally, for each valuation v,
let Cv D £ be the finite collection of Levi subsets defined over F, which
contain a chosen minimal one, and consider representations of the form

)7rV?,G r E II+(M,(F,)), M, E Lv.
VES

Then E+(G(Fs)) is the set of all such representations for which each rv is
tempered modulo AMV(Fv). By analytic continuation from the tempered
case, we obtain an injection p -+ V'(p) from E+(G(Fs)) to a collection of
finite disjoint subsets of E(G'(Fs)) for which the character identity above
holds. The reader is reminded, however, that the character identity does
not hold for arbitary representations 7r E II+(G(Fs)). We will look at this
difficulty more closely in §8, where we will introduce a substitute for the
character identity (Proposition 8.2) that applies in general.
As always, A = AF denotes the adele ring of F. Let K = I Kv and

v

K'= 11 K' be maximal compact subgroups of G°(A) and G'(A), endowed
v

with the usual properties. In particular, it is understood that K' is the
standard maximal compact subgroup of G'(A) = GL(n, A), that K is 0-
stable, and that K' is the fixed point set of 0* in q/(KV) for any unramified
place v. Having chosen K, we can form the Hecke space lt(G(Fs)) of
smooth, compactly supported functions on G(Fs) which are finite under
Ks = K,.

vES
For any f E tH(G(Fs)) and M E , we set

fM(r) = tr(r(f)) = tr(Zp(r, f)), r E n+emp(M(Fs)), P E P(M).
Consider the case that M = G. The trace Paley-Wiener Theorem (Propo-
sition 1.7.1, [12(a)], [33(c)], [6]) holds in all cases under consideration, and
this allows us to characterize the image space

Z(G(Fs)) = {f : f E }(G(Fs))}
of functions on HI+ (G(Fs)). (See §1 of [l(g)].) Now, suppose that 0 is a
continuous linear map from lt(G(Fs)) to another topological vector space
V. Recall that 0 is supported on characters if it vanishes on any function f
with fG = 0. For example, the map f -+ fM from 7t(G(Fs)) to I(M(Fs))
has this property. It factors through a map -+ OM from I(G(Fs)) to
I(M(Fs)). In general, if 0 is supported on characters, there is a unique
continuous map

0: Z(G(Fs)) --V
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such that

O(fG) = O(f), f E 7I(G(Fs)).
In the papers [l(g)] and [l(h)], it was established that the various invariant
distributions and maps obtained from the trace formula for G were all
supported on characters. We shall use this fact repeatedly throughout
Chapter 2.
The basic invariant distributions are of course the (invariant) orbital

integrals. In this chapter it will be convenient to follow the conventions of
[l(e)], and to normalize them with the discriminant

D(7) = DG(7) = det(l - Ad(7))g/g, 7 e G.

Here, a is the semisimple component of 7 while g and t, are the Lie algebras
of GO and G,
LEMMA 1.1: Suppose that 7 E G is semisimple. Then

DG(,() = edim GYDG'(yi).
Proof. The function DG(7) depends only on the conjugacy class of Ad(7)
in the general linear group of g. We may therefore assume that

G = G* = (GL(n) x.. . x GL(n)) >4 0*,
and that the isomorphism r is the identity. Replacing 7 by a GO-conjugate
if necessary, we may also assume that

= (6,1...,1) >x , 7 E GL(n),
and

7' =(6,. ..,).
Then gy equals gI,. If 06 denotes the Lie algebra of GL(n)6, each of these
will equal the diagonal subalgbra of

07/, = @-" ^.

In particular, we can write

DG(7) = det(l - Ad(7))g/g?, det(1 - Ad(0*))0g,/g.
It is a simple exercise in linear algebra, which we leave to the reader, to
show that

det(1- Ad(7))g/,, = det(1 - Ad(7')),/g/,-= DG'(7')
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and

det(1- Ad(O*))./,9g. = edimG,
The lemma follows. I

Suppose that 7 = [ Yv is an arbitrary point in G(Fs), with Jordan
vES

decomposition
7= OU= 'v UV.

vES

Since G<^ is the multiplicative group of a product of central simple algebras,
the unipotent element uv E Ga, is contained in the Richardson orbit of a

parabolic subgroup
Paw = Ma, N,.

of G,,. We shall write A,, for the FV-split component of M.,. It is a

simple consequence of the definition of Pa, that

dim(G,,) = dim(Mv).
Define

A (7) = h ()= ( l(dimGO eG(y))_ eG(_))
VES yES

where, as in Chapter 1,

eG(v) = e(G,) = e(M,,)
is the sign introduced by Kottwitz [29(b)]. In the special case that 7 is
semisimple, we set

IG(7, f) = IDG(Y)l f(x-'x)dx, f E H(G(Fs)),
Gy(Fs)\Go(Fs)

where ID(7)I = HI ID(7v)lv and G (Fs) = n G,-(Fv). Once defined for
yES yES

semisimple 7, the distribution is determined in the general case by a limit

(1.3) IG(7,f) = lim IG(oa,f), a E IIA,(F).
vES

Observe that if a is a small regular point in r Aa (Fv), then
v

Ga(Fs)= II Ma(F).
yES
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The distribution IG(7) depends implicitly on a choice of Haar measure on
this group as well as one on G°(Fs). We use the inner twist r7, to transfer
the former to a Haar measure on

GI,)a) (FS)= J M (Fv).
vES

Combined with a fixed Haar measure on G'(Fs), it allows us to define the
distribution IG,(7') on G'(Fs).
We shall write

f --fG =

for the map from 7i(G(Fs)) to I(G'(Fs)) constructed in [15] and Chapter
1 by transferring orbital integrals. We claim that

(1.4) IG(7, f) = AG() Ga, (?,',f), 7 E G(Fs).
If y is semisimple, this follows from Lemma 1.1 and Lemma 1.3.6. If 7 is
arbitrary, the formula follows from the semisimple case, the formula (1.3)
and the definition of AG(7). (See Corollary 1.3.13.) Consider the special
case that 7 is G-regular. Then the sign eG(7) equals 1, and (1.4) becomes

IG(7,f)= (l1̂/e2)IG-^y,\ )

We combine this formula with the character identity (1.2) and the Weyl
integration formula. In stating the Weyl integation formula in 1.4, we used
a Haar measure on the torus

G;,(Fv), veS,
distinct from that obtained from Gy,(Fv) under r77. The discrepancy be-
tween the two measures is just the factor eIn/2. It follows that

(1.5) tr 7r(f) = esf'(r), r E I+emp(G(Fs)), r' e II'(r),
for any f E 7(G(Fs)).

Bear in mind that (1.4) and (1.5) both come with supplementary van-
ishing properties. If ( is an element in G'(Fs) which is not of the form 7',
7 E G(Fs), then IG,(C, f') = 0. If r is a representation in ntemp(G'(Fs))
which does not belong to one of the image sets II'(r), then f'(ir') = 0. In
particular, the map f -+ f' is supported on characters. It follows that if

0': H(G'(Fs)) -+ V'
is any map which is supported on characters, then the map f - '(f')
from 7'(G(Fs)) to V' is also supported on characters. We will apply this
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later, without further comment, to the invariant distributions in the trace
formula for G'.

There is a related point on measures that we should address. Fix a Eu-
clidean norm 11 *I on the space aMo which is invariant under
Wo = WOG, the Weyl group of (G°,AMo). We then take the associated
Euclidean measures on each of the spaces aM, M E C. The measure on
aM together with a given invariant measure on M(A) then provides an
invariant measure on the space M(A)1. (Recall that M(A)1 is the kernel
of the usual map

HM: M(A) - aM.)
Observe that the map which sends any X E X(M)F to the rational character

m'-) x(h-1(m')), m' EM',

gives an injection of X(M)F into X(M')F. The dual map
aM, = Hom(X(M')F,R) -. Hom(X(M)F, R) = aM

is an isomorphism, and we use it to identify the real vector spaces aM and
aM,. With this identification, we transfer the Euclidean measure from aM
to one on aM,. Since M'(A)1 is the kernel of the map

HM': M'(A) - aM',
we can then associate a Haar measure on M'(A)1 to one on M'(A).

For each M E £, we have just identified the spaces aM, and aM in a
certain way. The norm provides a second natural isomorphism between the
two spaces. Consider the map from aM to aM,' aM defined by

H - H' =H, HE aM.

Then one can check that

(1.6) HM(m)' = HM,(m'), m E M(Fs).
Let

A- ',=-1, A E a*c,
be the adjoint map. If r E H+(M(Fs)) and A E a* c, the representation

,rx(m) = r(m)e(HM(m)), m E M+(Fs),
also belongs to II+(M(Fs)). Suppose that r' is a representation in II'(T).
It is then a direct consequence of (1.6) that the representation tr, belongs
to n'(r.).



84 Chapter 2

We shall say that a finite set S of valuations of F has the closure property
if for each M E £,

aM,S = {HM(m): m E M+(Fs)}
is a closed subgroup of aM. If S contains any Archimedean place, it au-

tomatically has the closure property. If not, S has the closure property if
and only if it contains only valuations which divide a fixed rational prime.
Assume that S does have the closure property. We define

ia,s = ia*/i Hom(aM,s, Z).
This abelian group has a natural measure dA, which is obtained from the
Euclidean measure on ia* dual to our measure on aM. It is convenient to

identify any q E I(M(Fs)) with the function

(ir,X)= / (,r)eA-(X)dA, 7r E II+mp(M(Fs)),X E aM,.
iaMS

In a similar way, we identify I(M'(Fs)) with a space of functions on

nemp(M'(Fs)) x aM,s. If d belongs to I(M(Fs)), define

(1-.7) '(7r/,X'I) =t-(dimAM)es (r,X),
E nII+p(M(Fs)),X E aM,s, r E '(r).

By defining q' to be zero on the remaining points in Iltemp(M'(Fs)) x aM,s,
we obtain a function in I(M'(Fs)). This is compatible with our earlier
definition. For suppose that -= hM for some function h E 7'(M(Fs)).
Then

'(Tr',XX) =- -(dimAM)e5s(7t, X)
= c-(dimAM)es tr(rx(h))e-(x)dA

iaM,S
= -(dimAM)e f h((r)')e-xxid

M,S

= £-(dimAM) J h'(7r,)e-A'(X')dA.
iM,Sia*',s

Since £-(dimAM)dA equals dA', we obtain

'(~r',X') = J/ h'(.r,)e '(X')dA'.
ia*M'
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In other words, b' is the function on HItemp(M'(Fs)) x aM,S which is iden-
tified with h'.

It is clear that we can define the spaces H(G(A)), I(G(A)) and the sets
II+(G(A)), II+(G(A)1), etc., as above. If ir belongs to H+mp(G(A)), the
obvious analogue of (1.5) holds. However, if Ir belongs to II+mp(G(A)1),
the right-hand side of (1.5) must be multiplied by e. This is because of our
choice of Haar measure on G'(A)1. On the other hand, our Haar measures
are compatible with various earlier formulas of descent. (See for example
Remark 1 following Theorem 8.2 of [l(d)].) As an exercise in such things,
the reader could try comparing the Poisson summation formula for the
F-ideles of norm 1 with its twisted analogue for E.
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2. Normalization factors and the trace formula
Our tool for the global comparison is the full trace formula, for which

the main references are [l(g)] and [l(h)]. The trace formula is in invariant
form, and its terms depend on a normalization of the intertwining operators
between induced representations. Since we are going to compare the trace
formulas for G and G', we shall want to choose the normalization for these
two groups in a compatible way.

Let S be a finite set of valuations with the closure property. Fix an
element M E C and a representation Wr = (0 T, in I+(M(Fs)). Associated

yES
to parabolic subsets P and Q in P(M) there are intertwining operators

JqIp(rx), A aM,C,
between the induced representations Ip(rx) and IQ(lrA). Each of these
is defined by an integral over NQ(Fs) n Np(Fs), and so depends upon a
choice of Haar measure on this group. In order to put the trace formula
into invariant form, it is necessary to define meromorphic scalar valued
functions

(2.1) rQip(rx)=- r,(?r, (aV)), X E aMc,
aE EQnA

so that the normalized operators

Rqlp(xr,) = rQIp(Tr)-JQlp(rX)
satisfy the conditions of Theorem 2.1 of [l(f)]. Here Ep denotes the set of
roots a of (P, AM), and for each a,

ra(r, s) = fJ ra(v, s), s E C,
yES

is a meromorphic function of one complex variable. In [l(f)] we saw that
such normalizing factors could be chosen for any group. However, to show
that this can be done in a compatible way for G and G', we must use the
more precise results of Shahidi.
The intertwining operators and the normalizing factors are given by prod-

ucts over v E S, so we can work with a given valuation. For the moment,
then, we shall suppose that S consists of a single valuation v. Let Xv be a
fixed nontrivial additive character on Fv. We shall consider first the spe-
cial case that G = G' = GL(n). To define the normalizing factors, it is
enough to define the function ra(vr,s) for any root a of (G, AM) and any
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ir E II(M(FV)). There is an isomorphism
r

M Z iGL(ni),
i=l

where (nl,..., n,) is a partition of n. The root a is associated to an ordered
pair (p,q) of distinct integers between 1 and r, and r corresponds to a

representation
T x X...x , Ti E (GL(ni, F)).

If ir is tempered, define

(2.2) ra(,s) = L(s, p ® *q)e(s, Vp 0® q, v)-L(s + 1, 7rp tqg)-1.
Then ra(r, s) is a meromorphic function of s with the the property that

ra(rA, s) = ra(r, A(xv) + s), A E iaM.
By meromorphic continuation in A the definition can then be extended to
standard representations. Finally, if Xr is an arbitrary representation in
II+(M(F,)), let p be the standard representation of which ir is the Lang-
lands quotient, and set

ra(r,, S) = ra(p,s).
It follows from the results of Shahidi [36(d)] that there are Haar measures on
the groups NQ(F,) n N-(FV), depending on v, such that the normalizing
factors (2.1) have all the right properties. (See also §4 of [l(f)].)
We return to the general case, with G as in §1. For G' = GL(n), we

fix the normalizing factors as above. We shall show that the normalizing
factors for G can be defined in terms of those for G'. Suppose that a is a
root of (G, AM). Then a' is a root of (G', AM). There is an isomorphism

r

M' H GL(ni)
i=1

and as above, a' corresponds to a pair (p, q). Set

AOu = A(Ev/F,, v)n"n,.
We shall also write

Ca(m') = ?7E/F(det mp)/7E/F(det mq)-1,
if

m'- (ml,...,IMr), mi E GL(n,,7Fv);



88 Chapter 2

is any point in M'(Fv) and TIE/F is a primitive Grossencharacter associated
to ElF by class field theory. Then (a is a character on M'(Fv) which
depends on our choice of TiE/F. Given the representation Xr E II+(M(FV)),
we set

(2.3) r,(7T, ) = At,v l r'(Cr,), s E C,
j=1

where ir' is any representation in II'(r) and

(CJr')(m') = (C(m')Ji7'(m'), m' E M'(F).
Then r s(~r,s) is a meromorphic function of s which is independent of our
choice of 7r' and TrE/F-
LEMMA 2.1: The normalizing factors rQlp(rAx) defined by (2.1) and (2.3)
satisfy all the properties of Theorem 2.1 of [1(f)].
Proof. Many of the required properties follow from standard properties of
the operators JqiP(xr) and the general form (2.1) of the normalizing factors.
There is, in fact, only one condition to verify. We must show that

(2.4) rplp(r)r-lp(7rA) = PM(TrA)- P E P(M), E aMc,

for any r E IIemp(M(Fv)). Here pM(rx) denotes Harish-Chandra's
p-function. As explained in [l(f)], all of the required properties of the
normalized operators will follow from (2.4).
There are two cases to consider. Suppose first that E = F. Then G is

obtained from a central simple algebra. We may as well assume that £ = 1
and G = GO. The definition (2.3) then simplifies to

ra(7, s) = r,(t, s),
where ir' is the unique representation in '(ir). Therefore

rQ|p(rA) = rQlp(7'(')
by (2.1). Since (2.4) is true for G', we have only to show that

(2.5) PM(r) = pM'(a')
for any r E Iltemp(M(Fv)). Let HIdisc(M(Fv)) be the subset of repre-
sentations in Iltemp(M(Fv)) which are square integrable modulo AM(Fv).
Any r E lltemp(M(Fv)) is obtained by induction from a representation
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rl E IIdisc(Ml(F,)), where M1 is a Levi component of parabolic subgroup
of M over Fv. By definition

PM(r) = M1 (T1i).
Therefore, if we are willing to assume that M is defined only over Fv, we
need only prove (2.5) for Ir E IIdisc(M(Fv)). We shall do so by comparing
the Plancherel formulas for G and G'.

Let f be a function in 7'(G(F,)) whose character vanishes on any irre-
ducible tempered representation which is not equivalent to some

Ip(r), P E P(M), ir E Idisc(M(F,)).
The Plancherel formula for G ([20(e)], [20(f)]) provides a constant 7M such
that

f(1) = M J dM(,x)pM(,)fM(,)d.
Ildi.c(M(F,))

Here dM(ir) is the formal degree of ir, and is not to be confused with d7r.
The latter stands for the measure on IIdiSc(M(F,)) which is obtained from
our Haar measure on iav and the free action

BT -yTr, AEia*M,V.
By (1.4),

f(l) = IG(1,f) = e,IGi(1,f').
Moreover, f' vanishes for any tempered representation of G'(Fv) which is
not equivalent to one of the form

II = ip,(n'), P e P(M), r E ndisc(M(F,)).
But by (1.5),

f'(') =f-M(i') = ev-fM(ir).
Combined with the Plancherel formula for G', these observations tell us
that

f(1) = 7M J dM'(n)pM',(r')fM(ir)dr.
nldi.c(M(F,))

We choose Haar measures on the groups NQ(F,) n N-(Fv) to match those
on NQI(F,)nN-p(Fv) under the isomorphism r. The constants 7M and 7M'
are defined in terms of certain integrals on these groups, and are therefore
equal. By varying f, and taking note of the trace Paley-Wiener theorems
([6], [12(a)]) we see that

dM' (r')pM,(' ) = dM('r)pM(r), ir E Indisc(M(F,)).
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In the special case that M equals G, the functions pG and PG' both equal 1.
It follows that dG (r') equals dG(Tr). The same formula of course holds for
arbitrary M. We therefore obtain the formula (2.5) for any representation
r in IIdisc(M(FV)). This establishes the lemma when G = G°.
The second case is that E 7 F. Then we are in the base change setting.

The intertwining operators for G depend only on the connected component
G°. But

G°(Fv ) GL(n, Ev)t/t,
where

v = deg(E,/F,).
We could therefore define the functions

r (Or, s), 7r E II+(M(F)),
in terms of the formula (2.2), with Ov replaced by

.}E, = bv o trE,/F, -

It is an immediate consequence of Proposition 1.6.9 that the same functions
also satisfy (2.3). Since we are dealing with the general linear group, we
know that the resulting normalizing factors have all the right properties.
This completes the proof of the lemma. I
Remarks 1. The proof of the lemma in case E # F is somewhat unsat-

isfactory. It would be preferable to have a proof based on local harmonic
analysis.

2. If the valuation v is Archimedean, Lemma 2.1 is essentially a special
case of the general results of [l(f),§3].
We have thus defined the local normalizing factors for G. They depend on

the additive characters v,. We assume that each v, is the local component
of a fixed additive character p of A/F. This allows us to build global
normalizing factors from infinite products of local ones. We shall return to
the study of normalizing factors, both local and global, in §11.
Having chosen normalizations for the intertwining operations, we can

then write down the full trace formula for G ([l(h), §3,4,7]). It may be
regarded as an identity

I(f)= E iWolWoGI-1 E a(S.7)IM(r f)
MEL 7E(M(F))M,s

= E E IWomIIWGI1 amM(7r)IM(r,f)dr,
t MEL n(M,t)
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in which a certain linear functional I on 7'(G(A)) is expressed in two
different ways. Both sides break up into constituents which are of either a
local or a global nature. We shall discuss these separately in Paragraphs 3,
5, 8 and 9.
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3. The distributions IM(7) and If(7y)
For the next few sections we shall study the geometric side of the trace

formula. It is a sum of terms which are indexed by orbits, and which can be
separated naturally into local and global constituents. We shall look first
at the local constituents.
As will always be the case in what follows, M denotes an element in

£ and S is a finite set of valuations of F with the closure property. The
local terms on the geometric side of the trace formula of G are invariant
distributions

IM(7, f), ? E M(Fs),f E 7(G(Fs)),
which depend only on the M°(Fs)-orbit of 7. If My = G7, they can be
defined fairly directly in terms of weighted orbital integrals. In general,
however, they must be defined by a formula

(3.1)~_, CTMr aIa(31) IM(7,f) = lim E r(7,a)I(, f)
LEL(M)

in which a takes small regular values in AM(Fs). (This is formula (2.2) of
[l(g)]. The functions r (7y, a) are obtained from a certain (G, M) family,
which is defined in §5 of [l(e)].) We shall recall some properties of these
distributions.
The first property relates the distributions to orbital integrals on M.

Suppose that a is a semisimple element in M(Fs). Consider two functions
q1 and X2 which are defined on an open subset E of oaM (Fs) whose closure
contains an Mq(Fs)-invariant neighborhood of a. We write

0 (7) (M ) 2(7), 7 E E,
if the difference is an orbital integral on M(Fs) for y near a. That is, if
there is a function h E C°(M(Fs)) and a neighborhood U of a in M(Fs)
such that

1(7)- 2(7Y) = IM (7, h), 7 E n u.
Now, suppose that G, equals M<. Then according to ([l(g)], (2.3)), we
have

(3.2) IM(7,f) (Ma) , E Me (Fs),
for any f E 7i(G(Fs)). The next property is one of descent. Suppose that
M1 is a Levi subset in /, with M1 C M, and that y is an element in Mi(Fs)
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such that M1, = Ma. Then

(3.3) IM(7,f) dGE (M, L)ifam(7, fL),
LEC(M1)

where dG1 (M, L) is a constant which vanishes unless the map
M L G
aM1 3 aMl aM1

is an isomorphism ([l(g)], Corollary 8.3). There is also a splitting property.
Suppose that S is a disjoint union of S1 and S2, and that f = fif2 and
7 = 7172 are corresponding decompositions. Then by ([l(g)], Proposition
9.1),

(3.4) IM(7, ) = E d(L1, L2)IMl (71 f,LJ (72, 2,L2)
L1,L2EC(M)

We shall also make use of properties that apply to particular fields. To
state them assume that S = {v}, so that Fs = Fv is a local field. First take
the case that Fv is Archimedean. Then for every element z E Z(G(Fv)), the
center of the universal enveloping algebra of the complexified Lie algebra
of G(F,), we have

(3.5) IM(7,Zf)= E aj(7,ZL)IL(,f), 7E M(F,) nGreg.
LE (M)

Here ZL is the image of z under the natural map from Z(G(F,)) to
Z(L(F,)), and Om(7, ZL) is a linear differential operator on

M(F,) n Lreg
which is invariant under conjugation by M°(Fv). (See formula (2.6) of
[l(g)].) Next, suppose that F, is non-Archimedean. Then for every semi-
simple element a E M(F,) there is a germ expansion

(3.6) IM(7O ) ^(M E E M )L ),
LE¢£(M) 6E7(UL.(F,))

for 7 E aM,(F,) n Greg. Here (UL (F,)) is the set of conjugacy classes of
unipotent elements in L,(F,), and gL (7,6) is a certain (M, o)-equivalence
class of functions defined on the L-regular elements 7 . aoM,,(F,). (See
formula (2.5) of [l(g)].)
Now, consider the group G'. There are of course similar distributions

on 1i(G'(Fs)). They possess a key vanishing property that we should re-
call. We have the injection M -- M' of £ into £'. For each v E S, let
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M'(Fv)M denote the subgroup of elements m E M'(Fv) such that for every
X E X(M)F,, x(m) belongs to NormE,/F. (E£). Then

M'(Fs)M = M'(Fv)M
yES

is a subgroup of finite index in M'(Fs). Suppose that f is a function in
ti(G(Fs)). The vanishing property is then

(3.7) IM,(, f') = 0, 6 E M'(Fs)M\' : E M(Fs)}.
That is, IM,(6, ') vanishes for any element 6 E M'(Fs)M which does not
come from M(Fs). (See [l(g)], Proposition 10.3.)
Our overall strategy will be to pull objects on G' back to G, where

they can be compared with the corresponding objects on G. We shall
systematically denote objects on G which have been obtained from G' by a

superscript £. (£ stands for "endoscopic.") In particular, if 7 is an element
in M(Fs) such that My = G., we define

(3.8) I (y, f) = AM(y)i'(7', f'), f E t(G(Fs)).
Any y is of course of this form in the special case that M = G, and formula
(1.4) becomes

(3.9) IJ(7, f) = IG(7, ).
More generally, suppose that 7 is an arbitary element in M(Fs). For any
small regular point a E AM(Fs) we have Ma = Gay. Consequently, for
any L E £(M), the distribution IE(a7, f) is defined.
LEMMA 3.1: The expression

C rL(ra)IL'(a, f
LEZ£(M)

extends to a continuous function of a E AM(Fs) is a neighborhood of the
identity.
Proof. Let 7 = au be the Jordan decomposition of 7. Then by (1.1) we
have

(a7)'= 'u,a, = 7a1.
(Remember, that p -. pA, denotes the map from the conjugacy classes of
M, to the conjugacy classes of its quasi-split form M',.) By the definition
(3.8) we have

IL(a7, f) = AL(a7)IL((aTy)', f') = AM(7)I,(7'a,, f').
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We shall relate r (y, a) with the functions ri (y', al).
Suppose that a = Io,, u = , and a = I a. Then

vES VES yES
Ma= MA,. The function rL(7, a) is obtained from the (G, M) family

vES

rp(V^, 7, a)= n-HnL f u'av I) P E P(M), vE iaM,
yES 3

where the inside product is taken over the roots of (P,, AM, ) and for each
such /,

r (V, ua.)= lap-aalP(P,'-)v("V)
(See (3.4) and (5.1) of [l(e)]. For the basic properties of (G, M) families,
we refer the reader to §6 of [l(b)].) The real number p(/3, u,) was defined
in §3 of [l(e)]. It depends only on the geometric conjugacy class of u, in
MG,. In particular,

p(/,, u, ) = p(', (uV)G) = p(/', (u,)Vl),
where B' is the root of G' associated to /3. It follows without difficulty that

L-;,' L: L M.r(7',a,) = r,(7, a), L3L1, M.

On the other hand, it is not hard to relate rm(7, a) to the function rLL (7, at).
For

rp(v, , a) = cp(v, , e, a)rp(^,7, at),
where

cp(V,7ea) = JIIII(a-')' + (ah3)' +... + (a (t-))-U
v 8

is another (G, M)-family. By Lemma 6.5 of [l(b)],
rL(7-,a) = : cl(7,ea)rL (7,at).

LiECL(M)
Observe that cp((v, 7, , a) is continuous at a = 1, and that

cp(v, 7,X, 1) = II 2lV("'"'v)v)
v P

In particular, cL, (7, £, a) is continuous at a = 1.¢M
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Combining these observations, we have

E rl(, a)IL (at, f)
LEC(M)

- AM7() E E c (7X, a)rL(7, a')IL(a ,, f')
LEL(M) L1E£L(M)

LaM~r,C·L1 C rL' t= AM (), a) Ia , ' '))
LiEL(M) LE (L )

By formula (2.2*) of [l(g)], the function

Z rLf (, a')IL' (IT a,
LEC(L1)

defined for regular elements a' in AM'(Fs), extends to a continuous function
around a' = 1. Its value at a' = 1 is just IL (7y, f'), where 71 = -L1 is the
induced orbit. (For the definition of 7L, see §6 of [l(e)].) Therefore, the
original expression extends to a continuous function around a = 1. Observe
that its value at a = 1 is just

AM (7) E cM(T, 1)1 (?l,if).L1EC(M)
The lemma is proved. I

If y is any element in M(Fs), we define

(3.1)£ I('7( ) = lim E rML(7 a)IL(a'f, )
LEC(M)

Then I (7) is an invariant distribution on 7H(G(Fs)). Much of our effort
will go towards comparing Im (7) with IM()-

In the lemma we used the (G, M) family

cP(v,y7,) = cp(v,7,f, 1) = I II P('U)v(V) PE P1(M).
vES f

In the proof of the lemma we established

COROLLARY 3.2: For any 7 E M(Fs), we have

Im (7f)=AM(7) Z c('e)iL'((L) f ),' 7eM(Fs).
LEI(M)

Consider the special case that £ = 1. Then G = G°. Each function
cp(v, 7, ) equals 1. It follows from the basic properties of (G, M) families
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that
cL(7,£)- 1, L=M
CM(1)= {0, otherwise.

Since AM(y) = eM(7) in this case, the last corollary reduces to

COROLLARY 3.3: If = 1 we have

Im(7, ) = eM(7)IM (71, f), 7 E M(Fs). I

COROLLARY 3.4: Suppose that S contains all the Archimedean and ramified
places, and that 7 E M(Fs). Then

Im(7,f) = IM(7',f).
Proof. By the nature of S and 7, eM(7) = 1. Moreover, the rationality of
7 = au implies that My, = MA for each v in S. Since

les = i lel = 1,
yES

we have
AM(y) = eM(y)HII 1dim M _ ll[ dimM, = 1.

V

Observe also that the numbers

p(?, uv) = p(, u)
are independent of v. Therefore

cp(v,7 t) = I el p(,U)V(V =1, P e 7P(M).

Therefore,
L(,{ 1, L=M

( {) t0, otherwise.

Corollary 3.4 then follows from Corollary3.2. I
Before going on, we make note of a property of the numbers c (7,e).

Suppose that v is a valuation of F and that a is a semisimple element in
M(Fv). The centralizer M, is of course a reductive group defined over Fv.
Letting F, play the role of F, we define the real vector space aM, as in §1.
LEMMA 3.5: Assume that aM, = aM, and let 7 be any element in M(Fv)
with Jordan decomposition au. Then cL(7, t) equals cM (u, t) if aL = aLo
and is 0 otherwise.
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Proof. The proof is an exercise in (G, M) families. It is identical to the
proof of Lemma 8.2 of [l(e)], so we shall not reproduce it. I

Our ultimate goal is to prove that Im(7, f) equals IM(7, f). For a start,
we shall list those properties that IM(7y, f) evidently shares with IM(7, f).
Suppose that a is a semisimple element in M(Fs) such that Go = MO.

Then

(3.2)E IM(7, f) (Ma) 0, E M(Fs).
This follows from the characterization (Proposition 1.3.1) of orbital integrals
on M(Fs), the vanishing property (3.7), and the property (3.2) applied to
G'. We also have the descent property

(3.3) IM(7, )= E M (M, L)I (7L f),
LEC(M,)

for elements 7 E M (Fs) with Ml,- = My, and the splitting property

(3.4)E IM4(7, f) = E dM(L1,L2)iM' (71, f,, )iL2E (72, f2,L),
L1,L2EL(M)

for 7 = 7172 and f = fif2 as in (3.4). If 7 is regular, these two properties
follow directly from the analogous properties for G' and the fact that

dM1(M,L) dG (M',L').
For general 7, the argument is slightly more complicated, requiring Corol-
lary 3.2 and the formula [l(g), (7.1)]. (For a similar argument, see the last
stage of the proof of Theorem 8.1 of [l(g)].) The analogues of the differen-
tial equation (3.5) and the germ expansion (3.6) are more difficult. They
will have to be established later.
LEMMA 3.6: Suppose that f is a function in t'(G(Fs)) such that

IM(7,f) =Im (,f/)
for every element 7 E M(Fs) which is G-regular (and semisimple). Then
the same formula holds for any element 7 E M(Fs).
Proof. Suppose that 6 is an element in M(Fs), with semisimple component
a, such that Ga = M,. The orbital integral at 6 of any function on M(Fs)
is completely determined by its orbital integrals at elements 7 E aMa(Fs)
which are in general position and near to a. It follows from (3.2) and (3.2)e
that

IM(6,f)= IM(6, f).
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Now, suppose that 7 is an arbitrary element in M(Fs). If a is a small point
in general position in AM(Fs), 6 = -a is as above, so that

IM(ya, f) = I(7ya, ).
It follows from (3.1) and (3.1)E that

IM(7, f) Im(7,f) = lim E r(7, a)(IL(7a,f) - I(7a, f)) 0,
LE£(M)

as required. |
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4. Convolution and the differential equation
We shall pause to look more closely at a special case. Suppose that S

consists of one valuation v and for the moment assume that G splits at v.
Then we can identify G°(Fs) with

G'(Fv) x x G'(F),
t

and the automorphism 0 acts by the permutation

(x1,i 2, .. ., )-) (x2, ..., t, i) ,i E G'(Fv).
The group G'(F,) is embedded diagonally in G°(F,). Suppose that

7 = (1,...,7t) 4 0, Yi e G'(Fv).
Then if

- = (1,72 '-7t,73 " 't,7, t),
we have

-17= (1''..' , ,..., 1) > .

It follows that the norm y' equals the conjugacy class of 7172"'yt in

G'(Fv). We shall simply write

7 7172 *'''
Suppose that f is a function in XH(G(Fv)) of the form

(x1,... ,t) 4 0 - fi(X)... ft(xt), fi E t(G'(Fv)),xi E G'(F).
Then the function

f *f * ft
also belongs to 7i(G'(F,)). We will denote it by f', since its image in
I(G'(FV)) coincides with the function we denoted above by f'. (See §1.5.)

Suppose that M E L. Then

M(Fv) = (M'(F) x ... x M'(F)) 0.

Let 7' be a semisimple element in M'(Fv) such that M1, equals G',, and
set

7 (7', 1,. .. 1) >4 0.

Then Gy equals the group My,, embedded diagonally. In particular, G,
equals My. We shall investigate the distributions IM(7, f) with f as above.
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We must first look at the weighted orbital integral JM(7, f). By definition
([l(e)], §2),

JM('T,) = If)DG() ( x)vM(x)dx,
G-(F,)\GO(F,)

where vM(x) is the number obtained from the (G, M) family
e^(Hp(x)), P E P(M), v E iaM.

Consider the integral

(4.1) J f(-17x)vM(x)dx.
G?(F.)\Go(F,)

This is just the integral over (Xi,... , xt) in the space of cosets of the group
G',(F,), embedded diagonally in (G'(F,))t, of

(lX' 2)f2(X2-X3) ' ft(ZXtll)VM(l,.. , Xt).
In this integral, introduce new variables by

Y1 = -1, Y2 = z21xl1y3 =3X1*l,...,y =Xl X1.

We find that (4.1) equals the integral, over y1 E GI,(Fv)\G'(Fv) and
(Y2, ...,t) in (G'(FV))'-, of

(4.2) f1(y ly'ylyY ')f2(Y2Y3'1)... ft(Y)vM(Yl 1, Y1Y2* *... Yly )
We intend to extract two applications of the equality of (4.1) with the in-

tegral of (4.2). The first applies to nonArchimedean fields.Suppose that v is
nonArchimedean and that fi is invariant under an open compact subgroup
ec of G'(Fv). Choose each of the functions f2,..., ft to be the characteristic
function of ic divided by the volume of c. Then the integral of (4.2) equals

fh(y17'Y1)vM(Y,... ,yi)dyl.
G', (F)\G'(F,)

Since G' = Ge, Lemma 8.3 of [l(e)] tells us that

VM (yi,...,y) = M'(Y,)
But

f fl *f2 * *ft = fl,
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so that (4.1) equals

I/ f(Y'7'y)vM'(y)dy.
G' (F)\G'(F,)

By definition, JM'(7', f') is the product of this expression with IDG' (y7)l.
By Lemma 1.1, we have

IDG(7)I = lI dim GIDG'(7')l|.
It follows that for f of the special form described above,

(4.3) JM(7,f) = II£ dim G, JM (' f')
It is really the invariant distribution ImM(,f) that we want to study.

However, the following lemma is an easy consequence of the definitions. It
was established as Lemma 2.1 in [l(g)].
LEMMA 4.1: Suppose that v is an unramified (finite) place for G, and that
f E 7i(G(Fv)) is Kv-bi-invariant. Then

IM(7,f) =JM(7,f), 7 E M(Fv). |

LEMMA 4.2: Suppose that v is an unramified (finite) place at which G
splits, and that f E H(G(Fv)) is Kv-bi-invariant. Then

IM(,f) = IM(7,f) 7 EM(F,).
Proof. As above, we embed G' diagonally in G°. The dependence of
IM(7, f) and IE (7, f) on f is only through the function tr r(f), with

T0 =r'T . i, I' E Iltemp(G'(Fv)).
We can therefore assume that

f '(fi,X,., X),
where fi is a K'~-bi-invariant function in 'i(G'(Fv)), and X equals the char-
acteristic function of K'. We can also assume that

=-(7',1,..., 1), 7' M'(F).
Suppose that 7' is G'-regular. Then

IM(, f) = JM(7,f) = I'n/2JM'( f) =leinf'/2IM(7, f),
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by Lemma 4.1, applied to both G and G', and (4.3) with rc = K'. Since

elIn/2IM,(7,f') = Im(, f)
if Y' is G-regular, the lemma holds in this case. It then follows from Lemma
3.6 that the formula

IM(7,f) = Im(7,f)
holds for any 7 E M(F,). I
While we are at it, we shall record a weaker version of Lemma 4.2 that

holds if v is assumed only to be unramified. It is not related to convolution,
but follows directly from a recent result of Kottwitz.

LEMMA 4.3: Suppose that v is an unramified (finite) place for G, and that
f is the characteristic function of the subset K, x 0 of G(Fv). Then

IM(7, f) =I (7, ), 7 E M(F,).
Proof. Let f' be the characteristic function 6f K' in G'(F,). Its image in
I(G'(F,)) coincides with that of f. Suppose that 7 E M(F,) is G-regular.
In [29(c)] Kottwitz has shown that

/ f(z-7x)vM(x)dx = / f'(x-1')vM'(x)dx.
G,(F.)\GO(F.) G',(F.)\G'(F.)

Since IDG(7)I equals tlv/2IDG (1')I2 this implies that

JM(, f) = IelI/2JM,((', f').
Lemma 4.1, applied to both G and G', then tells us that

IM(7,f) -=tl/2IM,(7', f').
Since 7 is G-regular, we have

tlen/2IM, (7, f) = IM(7, f),
so the lemma holds in this case. It then follows from Lemma 3.6 that the
formula

IM(, f) = Im(y,f)
holds for any 7 E M(F,). I

Next, we will take v to be Archimedean. We shall show that IM(7)
satisfies the same differential equations as IM(7).
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LEMMA 4.4: Suppose that v is any Archimedean place ofF. Then

(3.5)e IM(7Yf)=- E aM(7,ZL)IL(Tf)
LEC(M)

for z E Z(G(Fv)), f E i(G(Fv)) and 7 E M(F) n Greg.
Proof. Let H° be any 6-stable maximal torus in M° which is defined over
Fv, and set

T = To > 0,
where To is the centralizer of 8 in H°. Notice that To contains AM. It is
actually enough to prove the lemma with 7 in Treg(Fv) = T(F) n Greg. To
see this, note that for general 7, the distribution IM(^, f) depends only on
the M°(F,)-orbit of 7. The differential operators L (7, ZL) are obtained
from the differential equation (3.5). They too depend only on the M°(FV)-
orbit of 7. But any regular M°(F,)-orbit contains an element of the form
70 >4 6, where 70 is a regular element in G°(Fv) which commutes with 0
([ll(a)], Proposition 2.10). Letting H° be the centralizer of 70 in G°, we
see that it is indeed enough to take 7 E Treg(Fv).
We shall regard G°(Fv) as a real Lie group. Let g, be the complexification

of its Lie algebra. Then 0 defines a linear automorphism of g,, which we
shall also denote by 0. Its fixed point set is g,, the complexified Lie algebra
of the real Lie group G'(Fv). Since gv and gv are complex rather than real
Lie algebras, there is a canonical isomorphism

w Erit

in which 0 acts on the right by the standard permutation. (See for example
§2 of [ll(a)].) Moreover,

T(F,) = {(t, ...,t) a9: t E T(Fv)},
where T'(F.) is a Cartan subgroup of G'(Fv) which contains AM,(FV).
Thus, the triple (gI,T(FV),AM(Fv)) is no different in general than it is
in the special case that G splits at v. But according to Corollary 12.3 of
[l(e)], the differential operators AL(7,z) depend only on this triple. It is
therefore enough to prove the lemma under the assumption that G splits
at v.

Assuming that G splits at v, we adopt the earlier notation of this section.
Let Zv and Z, be the centers of universal enveloping algebras of gv and g'l
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respectively. Then
2u = v 0 * * * ( Z .

~I~~~~~f~~
If

Z = Zi ®... ® Z, zi E 2,
set

Z = Z1 ''Zl.

Then

(zfY) = z'f', f E 7(G(Fv)).
Take

f -- (fi,., ft), fi E (G'(Fv)),

(4.4) 7 =(7', 1,... ,1) x, 7E Teg(F),
and

(4.5) ZIE Zv'(4.5) z=(-z'1,...,1), Zve .

Exploiting the equality of (4.1) with the integral of (4.2), we find that

JM(, zf) equals the product of IDG(7)l2 with the integral over
Y E T'(Fv)\G'(Fv) and (Y2, ...,Yt) in (G'(F,))-1 of

('f )(yl1Y'lY1Y)f2(y2Y31)*. . ft(Yt)VM (Yl, Yly1I. Y1 Yt 1).
Let f2,...,fe all approach the Dirac distribution at 1 on G'(Fv). Then
JM(7, zf) approaches

= e/2DG (y) ('fJ)(y z'fy1)M(Y1),.v..yl)dylT'(F.)\G'(F.)

jj2G_ 2(Z'h)(Y'17'yl)VM' (yl)dy1

= Itle/2JM'(', Z'fl).
The differential equation (3.5) actually arose from a similar equation

JM(7,zf)= E OM(7,zL)JL(7,f)
LEC(M)

for the weighted orbital integrals (Proposition 11.1 of [l(e)]). Consider
each side of this equation with f being as above. Then the left-hand side
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approaches the product of l1I1/2 with

JMI(7,z'fi)= E Oa,(7y',z,)JLI(7', i),
LEe(M)

while the right-hand side approaches the product of |IL'/2 with

Ea9M(Y, ZL)JLI(7, fi)M
LE:(M)

Assume inductively that aO,(7', z,) equals ai(7,z) for any L £(M)
with L 9 G. Then

a(,(7', z')JG (L', fl) = OM(Y, )JG'(Y', f).
It follows that AL'(7z, L') = a(7, zL) for L = G and hence for all L.
Now, suppose that f is an arbitrary element in Ji(G(F,)). Since y is

G-regular, we have

£I(Y,zf) -elIn/2'IM,(7l,(zf)')
= el£n/2IM,(t,z'f')

LE a(7tZ')ll/L ')
LE£(M)

= aM(T,zfL)IL(7,f).
LE£(M)

This is the required differential equation. We have proved it only for 7 and
z of the form (4.4) and (4.5). However, this suffices, since for general 7 and
z each side of the equation depends only on y' and z'. I
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5. Statement of Theorem A

We shall first discuss the global implications of the definitions in §3. Let
Sram be the finite set of all valuations of F which are either Archimedean
or ramified for G. Suppose that S is a finite set which contains Sram. By
multiplying any function f E 7H(G(Fs)) by the characteristic function of

(n K)K ,

we obtain an embedding oft(G(Fs)) into W7(G(A)). The geometric side
of the trace formula for G is an expansion

(5.1) I(f) = IWollWo-1 E aM(S, 7)IM(7, f),
MEZ 7E(M(F))M,s

in terms of the distributions discussed in §3. Here, (M(F))M,s consists of
what in general were called (M, S)-equivalence classes in M(F), but which
in the present case are just the M°(F)-orbits in M(F). Also, aM(S, 7) is a
certain constant whose dependence on 7 is essentially through the unipotent
part. More precisely, suppose that 7 = ru is the Jordan decomposition of
7. Set iM(S, a) equal to 1 if a is F-elliptic in M, and if in addition, the
M°(Fv)-orbit of a meets (K, n M°(F,)) > 0 for every valuation v outside
of S. Otherwise, set iM(S, a) equal to 0. Given the special nature of G, it
follows without difficulty from (3.2) of [l(h)] that

(5.2) aM(S,7) = iM(S,u)aM (S, u).
Define

(5.3) IE(f) = (f'), f E (G(A)).
If 7 = au is an element in M(F), and S is a large finite set, define

(5.4) aMe(S,7) = aM'(S, 7').
By comparing the characteristic polynomials of a and a', it is easy to see
that iM(S, a) equals iM'(S, a'). Applying (5.2) to M', we obtain

(5.2)e aM, (S, 7) = iM (S, X)aM, (S,).

PROPOSITION 5.1: We have

(5.1)( IE(f) = E IW IlW 1 E aM (S,7)I (7, f).
MEL 7E(M(F))M,s
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Proof. Applying (5.1) to G', we see that

I (f)= IWoLIW||O 1 E a(S,o)iL((cf ).
LE£' CE(L(F))L,S

The distribution
IL((,f), LE ', CE L(F),

has a global vanishing property. According to Proposition 8.1 of [l(h)], it
equals 0 unless L = M' and C = 7' for some M E £ and y E M(F). Since
7 -- 7' is an injection of (M(F))M,s into (M'(F))M',s, we obtain

i(f) = aEiWMlGI-1 E aM (S, ')iM,(7',f').
MEL 7E(M(F))M,s

Applying Corollary 3.4 and the definition (5.4), we see that this equals

E WoMl||Wol- E aM (S, 7)I(7, ),
MEL 7E(M(F))M,s

as required. I
We have not actually described the role in (5.1) and (5.1)c of the finite set

S of valuations of F. If f is a given function in /'(G(A)), let V = V(f) be
the smallest set of valuations which contains Sram and such that f belongs
to 7l(G(Fv)). A precise assertion is that (5.1) and (5.1)e hold for any S
which is suitably large in a sense that depends only on supp(f) and V(f).
(As usual, supp(f) denotes the support of f.) In addition, the sums over 7
in (5.1) and (5.1)E can both be taken over a finite set, that again depends
only on supp(f) and V(f). This follows from Theorem 3.3 of [l(h)], applied
to both G and G'.

THEOREM A: (i) Suppose that S is any finite set of valuations which con-
tains Sram. Then

IM(7, f) = IM(7, f) 7 E M(Fs), f E H(G(Fs)).
(ii) Suppose that 7 is an element in M(F). Then

a, (S, 7) = a (S, )
for any suitably large finite set S.

This theorem, which consists of a local assertion and a global assertion,
is one of the two main results of Chapter 2. It implies a term by term
identification of the geometric sides of the trace formulas of G and G'. The
correspondence between automorphic representations will come from the
resulting equality of spectral sides.
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Theorem A will be proved together with a dual result (Theorem B) which
we will announce presently. The process will take up the remainder of
Chapter 2. We begin by making an induction hypothesis that will remain
in force until the end of Chapter 2. We assume that Theorem A holds
if G is replaced by any G1 with dimG1 < dimG, where G1 is a product
of varieties each satisfying the same conditions as G. In particular, the
theorem holds if G is replaced by any Levi subset L E £ with L # G. More
generally, suppose that M E £ and that a is a semisimple element in M(F).
Then MOsatisfies the same assumptions as G. Moreover, dimMa< dimG
unless M = G, i = 1, and a belongs to AG(F).
The induction hypothesis has some immediate consequences. Let S be

a finite set of valuations which contains Sram, and consider a Levi subset
M1 E £ with M1 C M. If y belongs to Mi(F) n Greg, we have

I'(7,f)- IM(7,f) = 1(ML)(I (Y, fL) -i , ))
LE(M1)

by (3.3) and (3.3)E. Remember that the constant dG (M, L) vanishes unless
the map

M L G
aMi ( aml --+ ami

is an isomorphism. Since M1 C M, the constant will vanish if L = G.
However, if L 5 G, the local part of the induction hypothesis tells us that

'L,£M i(7,fL) - (T, fL)= 0.

We conclude that

(5.5) I1(7,) - IM(7, f) = 0, 7 E M(Fs)n Greg.
Next, take S to be a disjoint union of So and S1, where So contains Sram

and S1 consists of one unramified valuation. Suppose that f = fofi and
7 = 7071 are corresponding decompositions. Then the difference between
Im(7, f) and IM(7, f) equals

Z dM(LoL1)(IM'o (0o,fo,Lo)IL (71fl,L')
Lo,L EC(M)

- °(70o, fOLo)IV (71, fl,Lj),
by (3.4) and (3.4)E. We shall see in a moment that the local assertion
(i) of Theorem A implies the equality of I (71,fl) and IM(71, f). Our
induction hypothesis then allows us to write

IV°' (70Xfo,L)I1X (71,XfL -)- (0of-o (,fi.,L1) = 0,
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if neither Lo nor L1 equals G. On the other hand, if one of the Levi subsets
Lo or L1 equals G, the constant dG(Lo,L1) will vanish unless the other
one equals M. According to the definitions in §7 of [l(g)],

dG(G,M) = dG(M, G) = 1.
We conclude that

I (7fJ)-M-M(7, f)
(5.6) - (IM(Yi, Ai) - M(Yi, f)) II iM , fj,M)

jsi

(Of course there is only one factor in the product on the right.) Notice that
Theorem A(i) implies the vanishing of the left-hand side of (5.6) as well as
the summand with i = 0 on the right. It therefore also implies the equality
of I J(7i, l) and IM(y1, fl), as we claimed above.
The induction hypothesis also has a global consequence. Given M E £,

take an element 7 = au in M(F). In the case that M = G, assume that
a does not belong to AG(F). Then dimM < dimG, so we can apply the
global part of the induction hypothesis to Ma. If S is a suitably large finite
set of valuations, we conclude from (5.2) and (5.2)e that

aM0 (S, 7) = aM (S, ).
Thus the global assertion of the theorem follows in most cases from the
induction hypothesis. From (5.1), (5.1)e and (3.9) we obtain the following
lemma.

LEMMA 5.2: The distribution

If(f)- (f), f e H(G(Fs)),
is the sum of

E IWMIIWGIWo- E aM (S,)(IM(7,f)-IM(. If))
MEC 7.E(M(F))M,s

and

E E (aG,(S, U) - aG(S, ))IG(~U, f).
(EAG(F) uE(Ua(F))a,s

(By definition, UG is empty unless I = 1. In other words, the second term
vanishes unless G = GO.) |
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6. Comparison of I (7, f) and IM(7, f)
In this paragraph we shall derive some consequences of the local assertion

(i) of Theorem A. The assertion applies only if every valuation outside S
is unramified for G. It would be natural to consider more general finite
sets S. For example, if v is any valuation of F, we could ask whether the
distributions I(E yv) and IM(yv) are equal. The next theorem provides a

partial answer.

THEOREM 6.1: Fix an element M E £ and a finite set S of valuations with
the closure property. In the special case that S D Sram, we suppose that

I(7, f) = IL(Y, f), 7 E L(Fs), f E H(G(Fs)),
for any L E C(M). Then there are unique constants

CL(S) = EL(S), L EI(M),
such that

(6.1) I (7, f)= E I(7, L(S)fL), 7 E M(Fs), f E 7t(G(Fs)).
LEC(M)

The constants have the descent property
(6.2) eM(S) = Z d1(M,L)e1(S), M1 C M,

LEC(M1)
and the splitting property
(6.3) CM(S)= dG(L1, L2)E(S)E2(S), S = S, US2.

LI,L2EC(M)
Proof. If M = G, the theorem holds with

CG(S) = 1.
Fix M $ G, and assume inductively that the theorem is valid whenever
M is replaced by any element L E C(M) with L $ M. In particular, we
assume that the constants

CL(S), L D M,
have all been defined. The main step is the following lemma.

LEMMA 6.2: The function

EM(T, f) = M(7, f) - LI(,,T L(S)fL), 7 E M(Fs), f E W(G(Fs)),
LzM

has descent and splitting properties which are identical to (3.3) and (3.4).
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Proof. These properties will hold for eM(7, f) essentially because they hold
for Im(y ,f),I(7, fL) and EL(S). Let us verify the descent property. Take
M1 and 7 as in (3.3). By (3.3) and (3.3)E we may express eM(, f) as the
difference between

E dM, (M,L)f(7, L)
LEL(M1)

and

(6.4) d1 (M, L1)i^(7,, fLj)L(S).
LAM LiECL(M1)

Consider the expression (6.4). Since we need only consider terms for which
dM (M, L1) # 0, we may write (6.4) as

E dL (M, L)i^ (7, )fL)jL(S).
L1DM1 LELC(LI)

The element L in the sum will be strictly larger than M. Therefore our
induction assumption implies that eL(S) satisfies the descent property (6.2)
of the theorem. Combining this with a formal property ([l(g)], formula
(7.1)) of the constants dl, (,.) we obtain

E dLI (M, L1)L(S)= dm (M, L)EL (S).
LE.(L1) LEC(L1)

Consequently, (6.4) equals

£ E ~d,(M, L)I (Y EL (S)f~ )
LiDMi LEC(L1)

We have shown that EM(7, f) equals

z dM(ML)(M (7, L)- E I^1(7 e(S)fL).
LEC(Mi) {L1:M LI CL}

We obtain

(6.2*) eM(7,f)= E dM,(M,L)^ (7,f L),
LEI(M1)

the required descent property.
For the splitting property, we take 7 = 7172 and f = flf2 as in (3.4). It

is proved in much the same way. One applies the splitting properties (3.4),
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(3.4)E and (6.3) (with M replaced by L D M) to the formula for eM(7, f).
We shall skip the details. The final result is

(6.3*) eM(7,f)= E dM(L1,L2)^M(71,l,L),)mf(2,2,). I
L1,L2EZ(M)

Remark. Lemma 6.2 is proved under the given assumption of Theorem
6.1 This is actually slightly stronger than what we used to prove the lemma.
The formulas (6.2*) and (6.3*) hold if we only assume that

ILf(, f) = IL(y,),f, E L(Fs), f E W7(G(Fs)), S D Sram,
for elements L E£C(M) with L 5 M.
We can now prove Theorem 6.1. It is obvious that the constant eM(S)

is uniquely determined by the required condition, so we have only to prove
its existence. We shall do so by decreasing induction on the number of
valuations in S. If S contains Srm,, the theorem holds with CM(S) = 0, by
hypothesis. Assume inductively that the theorem holds for a given set S.
In particular, we assume that EM(S) is defined. The required condition is
just

cM(7, f) = cM(S)I (7, ), 7 E M(Fs).
Now, suppose that S is a disjoint union of S1 and S2. We shall show that
the theorem holds for S1 and S2.

If z = 7-172 and f = fif2, the splitting property (6.3*) allows us to
express cM(, f) as

CM(71, fl)fM (72, f2,M) + IM (71, fl,M)EM(72, f2)
+ COIM(71, fl,M)IM (722,2,M),

where

Co= dG(Ll1L2)El,(Sl)CL2(S2).
L1,L2E£(M)Li,L2.4G

Fix 72 and f2 so that IMM(72, f2,M) 0. Let 71 be any element such that
ifM(7,, f,M) vanishes. Then

eM(7, f) = (M(S)M (71, fl,M)IM(72, f2,M) = 0

This implies that
M (71, fl)M (72,2,2M) = 0,

and that EM(71, fi) vanishes. It then follows for any 71 that

EM(7Y,f1) = cM(Sl,7i)IM(7,fi,M),
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for some function eM(S1,71). Similarly,
eM(72, f2) = M(S2,72)IMM(72, f2,M),

for some function eM(S2,72). Substituting back into the original expres-
sion, we see that

EM(S1,71) + EM(S2,72) + CO = CM(S).
It follows that EM(S,y1) and CM(S, 72) do not depend on 71 and 72. We
have shown that if i = 1, 2, there is a constant EM(Si) such that

CM(7i fi) = cM(Si)M(7i, fi,M).
This completes the inductive definition of the constants eM(S).
We have the two supplementary properties to check. However, these

follow immediately from (6.2*) and (6.3*). The proof of the theorem is
therefore complete. I
COROLLARY 6.3: Suppose that S either contains Sram or consists of one
unramified valuation. Then

1, M=G
cM(S)= 0O MGG.I

It seems likely that Corollary 6.3 is true for arbitrary S. We shall inves-
tigate this question only in the case that i = 1.

PROPOSITION 6.4: Suppose that e = 1. As in Theorem 6.1, assume that

IL(7, f) = IL(7r,7), E L(Fs),f E 1i(G(Fs)),
if L E (M) and S D Sram. Then

(S)= 1, M=G

(s)-lo, MU G

for any finite set S of valuations with the closure property.
Proof. By Theorem 6.1, we know that the constants EL(S) exist. The
proposition is trivial if M = G, so we shall fix M C G. We may assume

inductively that L (S) = 0 if M C L C G. It follows from the descent
property (6.2) that EM(S) = 0 unless M is minimal. Moreover, from the
splitting property (6.3), we see that

EM(S) = -M(v).
vES

It is therefore enough to show that each number eM(v) vanishes.
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We are assuming that I = 1. Consequently,
G(F)= A*(F),

where A is a simple algebra of degree n over F. For each v, A has an
invariant i, which is an element in Q/Z whose order dv divides n. The
constant eM(v) depends only on the pair (G(F,), M(Fv)). We may as well
fix n and assume that M is minimal over Fv. Then

e(iv) = EM(V)
is a complex number which depends only on the element iv E Z/nZ. There
is a (unique) simple algebra A over F attached to any finite set

{iv E Z/nZ : v E S}
such that

EiV = 0.
We know that

ZE(iv) = e(S) = 0,
yES

if S D Sram. It follows easily from this that all of the constants e(iv)
vanish. I
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7. Comparison of germs
Our induction assumption of the last section leads us to define a certain

subspace of W7(G(Fs)). If i = 1, G is just the group of units of a central
simple algebra. In this case, let SG denote the set of finite places at which
G does not split. If I 1, simply take SG to be empty. Define 'H(G(Fs))°
to be the subspace of 7I(G(Fs)) spanned by functions

f= IIfV, fv E '(G(Fv)),
vES

which satisfy the following condition. For each v E SG n S, the orbital
integral of f, vanishes at any element

v = v v, v E AG(Fv),Uv E UG(Fv),
such that u, - 1. Orbital integrals are of course invariant, and they define
distributions on the space I(G(Fs)). We can therefore define a subspace
I(G(Fs))° of (G(Fs)) in the same way. It is clear that we can also define
further spaces J(G(A))° and Z(G(A))°.

Suppose that v is a nonArchimedean valuation of F. The purpose of
this section is to show that if f belongs to ?i(G(Fv))°, then I(7y, f) and
ZM(y, f) have the same germ expansions. In order to exploit our induction
hypothesis, we shall first show that Theorem A implies an identity of germs.
The germs for G(Fv) and G'(Fv) belong to different equivalence classes,

but it turns out that they can be compared directly. Choose a semisimple
element a in M(Fv), and consider the germ expansion about r = a' for

M'(Cn,f'), eE(G(Fv)).
Any Levi subgroup in C(M') equals L', for a unique element L E £(M).
Consequently

IM,( f) (M',) E E gm,(C(X )iL,(r/, f'),
LEC(M) qTE(UL, (F,))

for ( E rM'(Fv) n G'g. The vanishing formula (3.7) tells us that
IL(r, f') = 0 unless rj = 6' for some 6 E a(UL,(F,)). Therefore

IM'(C, f') ', Z E gEm9'(¢,b6)I,L'(X f ).
LEC(M) 6Eo(UL. (F,))

But by (3.7), the function IM,(Cf') vanishes unless C = 7' for some
7 E M(F,) n Greg. We claim that for each L and 6, there is a function
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gM,(C 6) within the (M', r)-equivalence class which has the same prop-
erty. We can certainly assume inductively that this is true if L -f G. Fix
61 E or(UG(Fv)), and choose fi E '(G(Fv)) so that

I /(d, f{AG(61) = 61,
G f0 , otherwise.

Then by (1.4),
I,', f,/) 0,

IG(,fi 0, otherwise.

Substituting fi into the expansion above, we justify the claim. Now the
orbital integral of a function on M'(FV) which vanishes if C 7y' is equal to
an orbital integral in 7 of a function on M(FV) (Proposition 1.3.1). Each
germ

(7 ', 7 E M0,(F,)n Greg,
may therefore be regarded as an (M, a)-equivalence class. It is in this sense
that we can compare the germs for G and G'. The expansion above becomes

iM(',f')(M O) E E 9M( IL
LEC(M) 6Ea(UL,(F,))

for 7 E oM,(Fv) n Greg. If we apply (3.8) to the left-hand side, we can
rewrite this as

(7.1) Imf(7, f) (M%7) n/2 gE E M'(7y )IL'(, f).
LEE(M) .E O(UL (F,))

PROPOSITION 7.1: Suppose that I = 1 and that Theorem A holds for G.
Then for each nonArchimedean valuation v of F, and each u E (UG(FV)),

gM(7' u') (1) eG(U)g(7,U), 7 MEM(F,) n Greg.
Proof. By hypothesis G and M satisfy the conditions of Proposition 6.4.
Combining this proposition with Theorem 6.1, we obtain

Im(7,f) = M(7,),, E M(F), f E W(G(Fv)).
Moreover, by Corollary 3.3,

IL'(U, f') = e (U)-I LE (U,f) = eL(u)-L(u, f).
It follows from (7.1) that

M(, f'LE (M) u)eL( U)L(Uf).
LE.(M) uE(UL(FV))
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On the other hand, applying the original expansion (3.6), we have

IM(r,) ( E E g(7,U)IL(u,f).
LEIC(M) UE(UL(F.))

We may assume inductively that

~L(U))- M ( ,U,) (M) gL (, ),
if L G. It follows that

E (eG(u)1g,^(7)-I M(7') - g( U))IG(U, )I 0.
uE(Ua(F,))

This is a formula in the space of (M, 1)-equivalence classes of germs of
functions. Since it is valid for any f, we obtain

eG(u)-gG,(', ') _-gG(^,u,) (%l) O, ue (Ua(F)).
This is the required formula. I
We are carrying the induction hypothesis that Theorem A holds if G

is replaced by a proper Levi subset. In Proposition 7.3 we shall combine
this with the last lemma to deduce the equality of most of the germs.
However, there is one pair of germs which we can compare without recourse
to Theorem A (and the global methods its proof entails).
LEMMA 7.2: Suppose that e = 1 and that v is a nonArchimedean valuation
of F. Then

g,(7', 1) 1) e(g, 1), E M(Fv) n Greg.
Proof. Since I = 1, G is the multiplicative group of a central simple
algebra. In this case the local correspondence is an injection 7r - r' from

IItemp(G(Fv)) into IItemp(G'(Fv)) such that

tr r(f) = evf'(r'), f E i(G(Fv)),
and

e.(7) = evry(7'), 7 E G(Fv)reg.
Any supercuspidal representation in II(G'(F)) is of the form yr', for a

(unique) supercuspidal representation ir in II(G(Fv)). This follows from
the character identity above and an easy argument based on Casselman's
theorem [10(c)]. Fix such a pair r and ~r'.
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Let f be a matrix coefficient of the contragredient X such that tr ir(f) 0.
Since ir is supercuspidal, f belongs to 7i(G(F,)). The main result of [l(i)]
asserts that for 7 in M(F,) l Greg,

IM(, f) =
(_-1)dim(AM/A°) . vol(G(Fv)/AM(Fv))-1 * tr 7r(f) [ID'(7) (7).

Notice that if 7 is not Fv-elliptic in M, the Fv-split component of Gy is
larger than AM, and the right-hand side vanishes. The function f' is a

priori only an element in Z(G'(Fv)), but we can clearly represent it as a

matrix coefficient of ir'. Since

( l)dim(AM/A°) .vol(G ,(Fv)/AM,(F))- . tr7r(f) ID () ,()
equals

(_1)dim(AM'/Aa) . vol(G',(Fv)/AM,(FV))-1 trWr'(f').ID'(7')1 0,'('),
for any G-regular element 7 E M(Fv), we see that

IMr(7, f) = IM'(7',f').

But for any such 7, IM(7', f') equals I (7, f). It follows from Lemma 3.6
that IM(7,f) equals I^(7,f) for any element 7 in M(Fv). We shall use
this fact with 7 = 1. In this case we obtain

IM(l,f) = I (1,f) = evIM'(1 f'),
from Corollary 3.3.
We shall also need to know that if u is a unipotent element in M(Fv)

which is not equal to 1, then IM(u, f) = 0. Since G comes from a central
simple algebra, u can be represented as an induced unipotent conjugacy
class

UM , U1 E (UM1(F)),
where M1 is a proper Levi subgroup of M. (We can in fact assume that
ul = 1.) The descent formula in Corollary 8.2 of [l(g)] then applies. We
obtain

IM(Uf) = (1,f) E dM,1(M, L)M(Ul, fL).
LE£(Mi)

But f is a supercusp form on G(Fv), so that fL = 0 for any proper Levi
subgroup L of G. If L = G, the constant dM (M, L) is equal to 0. Conse-
quently, IM(u, f) vanishes, as required. An identical argument applied to
G' leads to the vanishing of IM,(u', f').
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Take 7 to be a G-regular element in M(Fv) which is close to 1. Then

( f,/) (M) E E gM(,,u)IL(u,/).
LEL(M) UE(UL(F,))

But from (7.1) we also have

jIM 00,f)N E E gm,(Ty ,WU I(U'IL)
LE£(M) uE(UL(F.))

We have seen that the left-hand sides are equal. Substituting the formulas
we have proved into the resulting equality of right-hand sides, we obtain

LEC(M) LEC(M)
Assume inductively that

eL (7 1)(M,1 , )

if L $ G. It then follows that

eg~(71)Ia,(1f') W(M, 1) G'
evg (7,l) (l, gM, (7',l)IG(l, f')

Since IG,(1, f') 0, this gives the lemma. I

PROPOSITION 7.3: Suppose that v is a nonArchimedean place of F, and
that a is a semisimple element in M(Fv). Assume that aM, = aM. Then

(3.6)£ IM(yf)( E ]E g9(7,6)f(,gm),
LEC(M) 6EO(UL, (F.))

for 7 E aM,(F,) n Greg and f Ei(G(F,))°.
Proof. It is known that the germs depend only on the unipotent part of 6.
More precisely, suppose that

6= au, u EUL(Fv),
and

7 = a, .E Mo,(F).
Then by Lemma 9.2 of [l(e)],

~(7.2) Lff (, U) if aL = aL,~g(7.2,) -;(M.,)=1(, )
(72) 0 , otherwise.

This formula will allow us to limit our consideration to varieties of dimen-
sion smaller than G, where we can apply the induction hypothesis of §5.
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According to (7.1), IM(7, f) is (M,ar)-equivalent to the sum over
L E £(M) of

(7.3) len/2 E M(7',6)L'(,
6EG(UL,(FV))

Set r = a'. Applying (7.2) to (G',r), and taking account of (1.1), we see
that

LM'(76= gA,(rrt) = 4fL gM/ (,(UT4) , if aL-= aL,gI (7' r' -gM(;
L
)

'1 0 ,otherwise,
for 7 and S as in (7.2). In particular, we need only sum (7.3) over elements
L E £(M) with aL, = aL. Take such an L, and suppose in addition that
L<, # G. Then by our induction hypothesis, Theorem A holds for L,.
Applying Lemma 7.1 to LO, we see that

4(u/,t4) (MO1) eL)(L (L,U,).
There is a homogeneity property of germs (Proposition 10.2 of [l(e)]) which
allows us to express gjM (pt, U) in terms of a certain sum over Lo (M4).But
any group in this set equals Lla, for a unique L1 E CL(M). The homo-
geneity property then asserts the equality of gLf (1p, u') with

eItd E E Li.gM.(pt,a)C , t) w[ULIel E Z t)[ 4-..]L1£LL(M) Ui6(ULl(Fl))
where cL,, (ul,e) follows the notation of §3,

d = -(dim L, - n),
and [uf: u] equals 0 or 1, depending on whether the induced conjugacy
class ufL equals u or not. Suppose that [ufL: ] = 1, and set

S1 = OUt1.

Then
1 1

d= dimLl, - n.
2 2

Since u and ut represent the same unipotent conjugacy class in (UL,(Fv)),
we have

eL (Ut) = eLo(u) = eL1 (ul) = eL,(6i),
so that

Ien/2 tleeLo (U) = AL (61).
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Moreover, Lemma 3.5 tells us that

(L1(l,e) = CL,(ai,) = C1(6,e)
Finally, by (7.2) we have

9Mj,(, ul)= g (y, 61).
Gathering these facts together, we see that (7.3) equals the expression

(7.4) E E ALl(61)gM(761)cL (61,')IL'((6 )'f ').
LiECL(M) 61E (ULt (F,))

The equality of (7.3) and (7.4) was established for any L E C(M) with
aLo = aL and L<, ~ G. Suppose L is such that aL, aL. It follows from
(7.2) and Lemma 3.5 that

9gM'(' b) = 0,
and

gj (-, 61)c1 (61,e) = 0.

Consequently, (7.3) and (7.4) both vanish, and in particular remain equal
to each other. The only other case is when La equals G. Assume this is
so. Then L = G and a is central. This implies t = 1 and G = G°. The
expression (7.3) then equals

(7.3*) E M,(y 6)iG'(6f)
6Eo(UG(F.))

Since e = 1, c1 (61, ) comes from a constant (G, M) family, and vanishes
unless L1 = L = G. Consequently (7.4) equals

(7.4') E eG()^ )G f).
6Ea(Ua(F,,))

We are assuming that f belongs to 7i(G(F,))°. If G splits at v, this poses
no restriction on f. But then G = G' and (7.3*) and (7.4*) are certainly
equal. If G does not split at v,

IG(', f') =
unless 6 = a. Since we are assuming a is central,

g'(6', a') = gM'(', 1) evg(7,1) = eG(o)g(7Y, ),
by Lemma 7.2. It follows that (7.3*) equals (7.4*) in this case as well.
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We have shown that (7.3) equals (7.4) for any L E £(M). In other words,
Im(7, f) is (M, r)-equivalent to the sum over L E £(M) of (7.4). Inter-
change the sums over L and L1 in the resulting expression. By Corollary
3.2,

AL(61) E Cl(6l,),LI((6 y)',f') = (,)
LEZ(L1)

Therefore (7.1) becomes

(7, ) (M') E E gM (7 )i , (l6, f),
L1E£i(M) 6LEa(UL,,(F,))

which is the required formula. I
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8. The distributions IM(7r,X) and Im('r,X)
We shall now direct our attention to the other side of the trace formula.

The spectral side is similar to the geometric side, in that its terms can

be separated into local and global constituents. We shall discuss the local
properties in this paragraph.
As usual, S denotes a finite set of valuations of F with the closure prop-

erty and M is an element in C. The local constituents of the spectral side
are related to the distributions

IM(r,Xf), 7r E II+(M(Fs)), X E aM,s,f E i(G(Fs)),
introduced in [l(g), §3]. These distributions are also defined for standard
representations p E E+(M(Fs)). The two are connected by an expansion
formula

IM(Tr,X,f)=
(8.1) HapE E / r (rpA)IL(px,hL(X),f)e- (X)dA,

P L p p+ias/ia
where P, L and p are summed over P(M), C(M) and E+(M(Fs)) respec-
tively ([l(g), (3.2)]). For each P, ep is a small point in (aU)+, and

wp = vol{X E a+: IlXi < 1} vol{X E ap IIXI| < 1}-,
while for any L, hL(X) denotes the projection of X onto aL. The function
rL (rXA,p) was introduced in §6 of [l(f)]. It is obtained from a certain
(G, M) family built out of the local normalizing factors. It is a rational
function of the variables

(8.2) {A(a),qU (v')},
in which a ranges over the roots of (G, AM), and v ranges over the discrete
valuations in S with residue degree q,. In the special case that ir is unitary,
the formula (8.1) simplifies somewhat to

IM(7,X,f) =

EE|/ rL(P,p)ILphL(),Xf)C- (X)dA,
L p eM+ia, S/ial,

where cM is a small regular point in aM.
The lattice X(M')F has a quotient

CM = X(M')F/eX(M')F
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of order edim A . Note that there are natural embeddings
CL C CM

for the elements L E £(M). We shall fix a primitive Gr6ssencharacter r/E/F
associated to ElF by class field theory. Then for each .E CM,

r7E/F((m')), m' E M'(Fs),
is a character of M'(Fs). There is an action

(Cp')(m') = r7E/F(~(m'))p'(m'), E CM, P' E (M'(Fs))
of CM on E(M'(Fs)). There is a similar action on II(M'(Fs)) and also an
adjoint action of CM on I(M'(Fs)). If C belongs to the subgroup CG of CM,
it follows easily from (1.5) that

IM,(p, X', f') = IM'(',X', ) = IM'(P X', f),

for any (p',X') in E(M'(Fs)) x aM,,s.
As we noted in §1, the local correspondence gives us a map p --+ ('(p)

from E+(M(Fs)) onto a collection of finite disjoint subsets of E(M'(Fs))
such that

trp(h) = esh'(p') p E E+(M(Fs)), p' E '(p),
for any function h E 7i(M(Fs)). We also have a map r --+ II'(r) from
l+(M(Fs)) onto a collection of finite disjoint subsets of I(M'(Fs)). How-
ever, for nontempered r this map does not give a simple character identity
unless h is in the unramified Hecke algebra. Suppose that p E E+(M(Fs)).
Take any p' E E'(p) and define

IM(p,X,)= eSiE IM(PX
WECM

LEMMA 8.1: As the notation suggests, I4M(p,X,f) depends only on p, and
not on the element p' E E'(p).
Proof. The distribution IM (p', X', f') is left unchanged if p' is transformed
by an element in CG. It will be convenient to write

IM6(p,X,f) = esedimAo Z IM'(P',X,f').
.ECM/CG

We can use a splitting formula (Proposition 9.4 of [l(g)]) to reduce the
lemma to the case that S contains one element v. For suppose that S is a
disjoint union of two sets S1 and S2 which both have the closure property,
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and that p = pi ® P2 and f = fif2 are corresponding decompositions.
Suppose that p' = P 0 p'2 is any representation in '(p). For a given point

(X1, X2) E (aM,s, ( aM,s,),
the splitting formula expresses the Fourier transform

|E IM'(l(PA, X1 + X,fl)e-A(XX)dA/'
e CM/CG

with
A E (iasl @ iaM,s2)/ia*M,s,

as the sum over L1, L2 E L:(M) of the product of d(Z(L1, L2) with

.ECM/CG
A given summand will vanish unless the map

aL1 L2 a_GaM ® aM M

is an isomorphism. For any such L1 and L2, the natural map
CM/CG - (CM/CL ) (CM/CL )

is an isomorphism. This is a consequence of Lemma 10.1 of [l(h)]. There-
fore, the lemma will follow for S if it can be established for S1 and S2.
We may therefore assume that S = {v}. Choose a minimal element

M1 E LM for which p is induced from a representation pi E E+(MI(F,)).
Then p' will be induced from a representation pi E (M1(Fv)). Suppose
that X1 is a point in aM1,s whose projection onto aM,S equals X. A formula
of descent (Corollary 8.5 of [l(g)]) expresses the Fourier transform

I z IM',(,PA,,X,f')e-'(X)dA
ia,s/ ia;, sECM/CO

as the sum over L E £(M) of the product of dC1 (M, L) with the function

(8.3) I( 1,/ ).
tECM/CG

A given summand will vanish unless the map
M L G
aMi aM,1 aMl

is an isomorphism. For any such L, the natural map

CM/CG -* CM1/CL
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is an isomorphism. Therefore the function (8.3) equals

E 1ro (&p XX, £A,).
eECM1 /CL

Given our choice of M1, the theory of the local lifting (Proposition 1.6.7)
tells us that

S (Pl1) = {(Pl( E CM.}I
It follows that (8.3) depends only on Pi. Consequently, the original function
depends only on p, as required. I

For each L E C(M), p E.+(M(Fs)) and A E alMc, there is an in-
duced representation pL of L(Fs). If A is in general position, pL belongs
to E+(L(Fs)). As in (8.1), we will often drop the superscript L, so that

I(pA,X,f) = I ,(pL,Xf).
If r E nI+(M(Fs)), we define

If(X, , f) =
(8.4) EjwpE E | r (7rA,pI)IL(pA,hL(X),f)e-(X)dA.

P L Pp+ia ,/ias
To describe the local constituents of the trace formula one changes nota-

tion slightly. If ir stands for a representation in 1I+(M(Fs)l), let us agree to
identify ~r with an orbit {rA: A E aMC} of a* in Il+(M(Fs)). Usually
r will be unitary, in which case we will identify it with the smaller orbit
{r, A E iaM} of iam in II+it(M(Fs)). We shall also adopt these con-
ventions, sometimes without comment, for representations in nI+(M(A)1)
and I+it(M(A)1). If r belongs to I+t(M(Fs)1), we set

IM()r,f)= IM(,0, f)
and

IE (r,f) =L (rxT,0,f).
These expressions are independent of A. The former describes the local
spectral terms of the trace formula of G. The latter is closely related to
the analogous terms for G'. Both expressions are independent of S if S is
suitably large, and so may be defined for ir E I+nit(M(A)').
As in [l(f), §5], let A(7r, p) and r(p, ir) be the constants which describe

the transformation formulas between standard characters and irreducible
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characters. That is,

tr(p) = E (p, r) tr(7r), p E E+(M(Fs)),
TrEH+(M(Fs))

and

tr(r) = E A(7r,p)tr(p), E II+(M(Fs)).
pE +(M(Fs))

Now suppose that r E II(M'(Fs)) and p E E+(M(Fs)). The constants
above are not immediately defined, since the representations are for two

separate groups. However, we shall set

A(r,p) = es E A(r,p').
p'E'(p)

For each ir E I+(M(Fs)) we then define

6(rT,) = E A(r,p)r(p,7).
pE +(M(Fs))

If G = G', we have

1, r= 7r

0, otherwise,

but in general the situation is more complicated. Observe that

(8.5) 6(r,7r)= f 6(T,7r,)
VES

if r = rv and 7r = < :v.
vES yES

PROPOSITION 8.2: We have

h'(r) = E 6(r, r) tr7r(h)
xEnl+(M(Fs))

for any h e H(M(Fs)) and r E II(M'(Fs)).
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Proof. The sets S'(p) are all disjoint. Recall that h'(p') equals es tr p(h) if
p' belongs to '(p), and vanishes if p' belongs to no such set. Therefore

h'(r) = E (r,p')h'(p')
p' E.(M'(Fs))
= E A(Tr,p)trp(h)
pE +(M(Fs))

= E E A(r, p)(p, r) tr r(h)
pE S+(M(Fs)) vrEn+(M(Fs))

= 6(Tr, r)tr r(h),
as required. |
COROLLARY 8.3: Suppose that S consists of one unramified place v and
that ir E II+(M(FV)) is unramified. Then for any r E H(M'(Fs)),

a){,r E n'(i),
(,) ={ O0, otherwise.

Proof. Take h to be an arbitary function in 7H(M(Fv)) which is bi-invariant
under K, n M°(Fv). Since v is unramified, e, = 1. The fundamental
lemma (Theorem 1.4.5) tells us that h'(r) = tr r(h) for any r E l'(r). The
corollary then follows from the proposition. I
Now suppose that r = ()r, and r = )r,are representations in I(M'(A))

v v

and l+(M(A)) respectively. Define

6(T, r) = nJ6((, TV).

By the corollary, almost all the terms in the product are either 0 or 1, so the
product can be taken over a finite set. The adelic formulation is therefore
included in the previous definitions, and satisfies all the formulas above. In
particular,

h'(r)= E 6(r,7)tr r(h), h E W(M(A)), rE I(M'(A)).
iErH(M(A))

Suppose instead that we take r and ~r to be representations in I(M'(A)1)
and I+(M(A)1) respectively. As we have agreed, we may identify these
representations with orbits {r,} and {rx>} in I(M'(A)) and I+(M(A)).
Then in this situation, we define

6(,1) = E 6(r,)7>).
AEa'MC
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There can be at most one nonzero summand on the right, and its value is
independent of rq.
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9. Statement of Theorem B

In this paragraph we shall describe the global constituents aM (r) of the
spectral side. We shall then state Theorem B which, together with the dual
Theorem A, is the main result of Chapter 2.

Let I be the distribution defined by (5.1). The spectral side of the trace
formula is a sum

I(f)= Et(f)
t>O

where

(9.1) It(f) = E IWMlIWG1 / aM(TM((',f)dr.
MEZI n(M,t)

In particular, it is an expansion of I(f) in terms of the distributions

IM()r,f)= IM(rx,,Of)
discussed in §8. The variable t, which ranges over the nonnegative real
numbers, is required for convergence. We shall recall in a moment how it is
used to keep track of the size of Archimedean infinitesimal characters. We
shall then briefly review the definitions of aM(Tr) and II(M,t) from [l(h)].

Let So denote the set of Archimedean valuations of F, and set
Fo- = Fs,. Then GL(n, Foo) can be regarded as a real Lie group. Let

hc denote the standard Cartan subalgebra of its complex Lie algebra.
Let b' C V be the real form of lc associated to the split real form of

GL(n, Fo). Then 5' is invariant under the complex Weyl group W' of

GL(n, Fo). Set
D= ..**EV

By means of the inner twist i7, we can identify )c with a Cartan subalgebra
of the complex Lie algebra of the real Lie group G°(Foo). Then I[ is invariant
under the complex Weyl group W of G°(Foo). It contains each of the real
vector spaces aM. It is convenient to fix a Euclidean norm 11 o11 on [ which
is invariant under W. We shall also write 11 11 for the dual Hermitian norm
on f). To any representation 7r E II+(M(A)), M E £, we can associate the
induced representation rG of G+(A). Let v, be the infinitesimal character
of its Archimedean constituent. It is a W-orbit inl)c which meets (f')c.
We shall be more concerned with the case that vr is a representation in

n+(M(A)1). Then v, is a priori determined only as an orbit of a*C in
f)c. However, this orbit has a unique point of smallest norm in f) (up to



132 Chapter 2

translation by W), and it is this point which we will denote by v,. If t > 0,
define II+(M(A)',t) to be the set of representations r E II+(M(A)1) such
that

II Im(v,)l| = t,
where Im(v,) is the imaginary part of v, relative to the real form 4* of c.
The global constituents of (9.1) are defined in terms of a function

adisc() = ac( r E I+(G(A), t).
It in turn is defined by rewriting the expression

Idisc,t(f) =
(9.2) |WoI lWLl- |det(s - 1L 1 tr(M(s,O)pQ,t(O, ))

LE£ sEW(az)reg
as

(9.3) adsc (Tr)fG(),
'rEn+(G(A) ,t)

a linear combination of characters. The terms in (9.2) are as in [l(h),
§4]. In particular, Q is any element in P(L), and pQ,t is the induced
representation of G+(A)l obtained from the subrepresentation of M+(A)1
on L2(M0(F)\M0(A)1) which decomposes into a discrete sum of elements
in n+(M(A)',t). Moreover, M(s,O) is the global intertwining operator
associated to an element in

W(aL)eg = {s E W(aL) :det(s - 1)a + 0}.
(Here W(aL) denotes the Weyl group of aL.) For any function
f E 71(G(A)), the sum in (9.3) can be taken over a finite subset of
l.+nit(G(A)l,t), and it is understood that

fG(T) = IG(r, f) = IG(TX,O, f).
Suppose that M1 E L. As in [l(h)], we write Idisc(Ml, t) for the subset

of I+nit(Ml(A)1,t) consisting of irreducible constituents of induced repre-
sentations

aMl, L +LM', e nit(L(A)l t), E ial/ia*l
in which ax satisfies the following two conditions.

(i) adisc(O) # 0-
(ii) There is an element s E WM (aL)reg such that sax = ax.

Then for any M, II(M, t) is the disjoint union over M1 E OMof the sets

lM. (M,t) = {tr = rl,A: rI E l disc(Ml, t),A E ia;/ia./i
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The global datum in (9.1) is the function

aM(r) = ac() rM(Tr), Ir E HM(M,t),
also introduced in [l(h), §4]. It can be defined for any representation

= it,, il E I+(M (A) ), X E iaia,/ia
but it vanishes unless 7r belongs to 1HM (M,t) for some t. The function
rMj (l,^x) is obtained from a (G, M1) family which is built out of the global
normalizing factors. We shall discuss it in more detail in §11. Finally, the
measure in (9.1) is given by

di = ddl,x =-WoIIWoMI- dA, r E IIMl(M,t).
In our notation {rI,x} stands for the orbit of ia 1/ia* in

II+nit(Mi(A) n M(A)1)
associated to a given irl E ldisc(Ml,t), but we shall often identify
= T7r,\ with the induced representation army in II+ni(M(A)l). It is in this

sense that the distribution IM(ir, f) in (9.1) is defined. We should perhaps
emphasize that the function

IM(r, f) = IM(7rMf) A iaM*/iaM,
is rapidly decreasing. It in fact extends to a meromorphic function in
the complex domain which is rapidly decreasing on cylinders, as one sees
directly from the definition [l(g)] of the distribution. This property is
implicit in the formula (9.1) (as well as (8.1)), and will be used later without
comment.
The integral over I(M,t) in (9.1) converges absolutely. So does the sum
t It(f). However, it is not known that the two converge together as a

double integral over (t, ir). It is because of this difficulty that we introduced
the sum over t in the first place. However, it does not seem unreasonable
from an aesthetic standpoint that we should be forced to keep track of
Archimedean infinitesimal characters.
A similar expansion of course holds for G'. However, we would like to

define functions which we can compare directly with aM(r).
LEMMA 9.1: If 7rl is any representation in I+(M1(A)l), the series

E adi(rse(l)(Tfl, 1)
can be sum(M(A)teset.

can be summed over a finite set,
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Proof. Lift tl to a representation in II+(Mi (A)), and choose a finite set S
of valuations outside of which G and rl are unramified. Let rl = 7rl,s 7rfs
be the decomposition of 1rl corresponding to

Mi(A) = Mi(Fs)(JI Ml(Fv))-
Consider the representations r1 = rl,s 0 rj in II(M1(A)) such that the
number

6(71, 71) = 6(r,S, 7riS) H6(Tl,v, Tl,v)
vfS

does not vanish. By Corollary 8.3, rS is unramified, and it is clear that there
are only finitely many choices for r1,s. It follows from Lemma 4.2 of [l(h)]
that there are only finitely many such rT with aMc(ri) ~ 0. Therefore,
there are only finitely many nonzero summands in the series. |

Define

(9.4) amCr) = -dim A a (r)6( )
riEn(M (A)1)

Then if

iT= iri,, 71 E I+(Mi(A)i), A E aMcC/aMC,
we define

amni (X) = adi'E(isc )r)r (Ti,)
The function rMl(l,x) is obtained from global normalizing factors, and is
well behaved only when rl is automorphic. Therefore, it is not a priori
clear that the definition of aM,£(r) makes sense. This will follow from the
induction hypothesis introduced below.

THEOREM B: (i) Suppose that S is a finite set of valuations which contains
Sram. Then

IM(',f) = IM(7r,A), E I+n(M(A)l),f E H(G(Fs)).
(ii) For any given

ir = IrlA, n1 E I+(M1(A)1), A E aMc/aMC,
we have

aM (7r) =a) (7).
This theorem, which consists of a local assertion and a global assertion,

is the second main result of Chapter 2. It will imply a term by term
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identification of the spectral sides of the trace formulas of G and G'. It is
the second assertion (ii) which will allow us to deduce the correspondence
between automorphic representations.
Theorem B will be proved in conjunction with Theorem A. As we shall

see in the next section, the local assertion (i) can be proved from our induc-
tion assumption of §5. However, the global assertion (ii) requires its own
induction assumption. We assume that for any M1 E C, with M1 0 G,
that

amilc (1r) = ac(ir), Ei (M(A)1).
Then adic(r,) vanishes unless rl belongs to IIdisc(Ml,t) for some t. This
means, in particular, that xr1 must be unitary. But if r1 is unitary, and
M M1,

X= 1,, A E ia/Mlia*,
is well defined. Moreover, if rl belongs to IIdisc(M1,t), the function
rm (rl,x) is defined. It follows that the function aME(r) is well defined
and that

aM (7r) = aM (r)
whenever M1 0 G.
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10. Comparison of IM (r,X,f) and IM(r,X, f)
We shall establish the local assertion (i) of Theorem B. We are actually

going to show that Theorem A(i) implies the equality of the distributions
IM(r, X, f) and I (Or, X, f) described in §8. We will use the constructions
of [l(g)], which were designed for this purpose.

Fix a finite set S of valuations of F with the closure property. In [l(f),
§11] and [l(g),§4], we defined function spaces

Hac(G(Fs)) D'ac(G(Fs)) D L(G(Fs))
and

iac(G(Fs)) D Zac(G(Fs)) D I(G(Fs)).
The definitions were set up so that the spaces in the second row become
the images under invariant Fourier transform of the corresponding spaces
in the first row. We shall not describe them further, except to say that
those of the second row consist of functions O(ir,X) on HItemp(G(Fs)) x

aG,s with different conditions on the second variable. The conditions on

I(G(Fs)) require that k(7r,X) be smooth and compactly supported in X.
For Iac(G(Fs)) the compactness of support is relaxed, and for Iac(G(Fs))
the smoothness condition is also weakened. All the invariant distributions
on li(G(Fs)) that we have described extend naturally to linear forms on
'Hac(G(Fs)). Their Fourier transforms therefore extend to Iac(G(Fs)).

In [l(g), §4] we also defined maps at and ca from '7ac(L(Fs)) to
Iac(M(Fs)), for every pair M C L of Levi subsets in C. These maps
satisfy

(10.1) _ L (COL(f)) = Z coM(OL(f)) = 0,
LEC(M) LEI(M)

(10.2) IM(7,f)= E cL (, OL(f)),
LE£(M)

and

(10.3) CIM(7, f)= E I (7,CL(f)),
LE (M)

for - E M(Fs) and f E 7ac(G(Fs)). Here CI(() is an invariant distri-
bution on i7ac(L(Fs)) which depends only on the M°(Fs)-orbit of 7. (As
usual, we have suppressed the superscript if it is G.) The key feature of
CIM is a property of compact support. If f actually belongs to X7(G(Fs))
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then CIM(7, f) is compactly supported as a function of 7 in the space of
M°(Fs)-orbits in M(Fs) ([l(g), Lemma 4.4]).
We have similar objects for G', of course, and we can pull these back to

G. Define

CM (7, f) -= le/2 cIM(7', f), f E tac(G(Fs)),
for any G-regular element 7 E M(Fs). If f E iiac(G(Fs)), 7r E II+mp(M(Fs))
and X E aMS, we also set

oi (f, , X) =s Ef OM,(f',', x')
.ECM

and
coE (fr ) = eCsZ IM(f', 'I,XI),

¢ECM
where 7r' is any representation in II'(7r).
LEMMA 10.1: As the notation suggests, 0 (f, 7r,X) and Ce (f, 7r,X) are
independent of the choice of r' E II'(T). The functions Oe(f) and cO (f)
of (r, X) defined by these expressions both belong to ac(M(Fs)). Moreover,
we have

(10.1)eE Oe(cOf(f)) = E cLE((fa)) = 0,
LE£(M) LE£(M)

(10.2)E IM(7,f) E c

^L e (f))
LE,£(M)

and

(10.3) CIe(yf)= E i^M(-.1C^ (i)).
LEC(M)

Proof. According to Lemma 4.7 of [l(g)],
OM(f', r, XI) = C Wp(X)e-P(X')IM,(r, X, f'),

PE'P(M)
for anylr E II+mp(M'(Fs)). Here

wp(X) = vol(a+ n B)vol(B)-1,
where B is a small ball in ap centered at the origin, while vp stands for
any point in the chamber (a*,)+ which is far from the walls. It follows
from Lemma 8.1 that 9O(f, r, X) is independent of r' E II'(r). Moreover,
Proposition 10.3 of [l(g)] implies that OM,(f', r', X') vanishes if r' does not
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belong to a set II'(r). It follows from the definitions that O (f) belongs
to Tac(M(Fs)). We have thus established the two required properties of
O8(f). To see that they also hold for c'O (f), we must first make an
observation.

For any function f E Hiac(G(Fs)), we have

O-(f)/(rt, XI) = est-dim(AG)o0(f X, X)
=

- dim(AG) E OG'(f 7 XI)
EECG

= OG'(f',7,X),
by (1.7) and the definitions above. In other words

G (f) = OG'(f ).
This formula is rather trivial, for the maps are defined in [l(g)] so that

GG(f) = G(f) = fG.
If G is replaced by an arbitrary element L E £, the corresponding formula
does not hold. However, suppose that I' is an invariant distribution on
X~ac(L'(Fs)) which is supported on characters, and annihilates any function
which vanishes on the Ks-bi-invariant set L'(Fs)L. Fourier inversion on the
finite abelian group

L'(Fs)/L'(Fs)L
then yields the partial result

i (OL(f)') = i'(OL'( f')).
The distribution

I(h) cECL'(h,', X), h E ac(L'(Fs)),
ECUM

satisfies the two conditions above. Consequently,

E cL,t'(0°(),, X)
LEL(M)

=ZesE cEL'o((f) ,or',X')
L WECM

es E z co (L(f ),r ,XI).
E(CM LEL(M)
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This vanishes by (10.1), applied to G'. Since O#(f) equals fG, we obtain

C0e,(f, r, ) =- LEL(0e(f), T, X).{LE£(M):L.G}
It follows inductively that cO (f, r, X) is independent of ir' E II'(r), and
that 'Oe (f) belongs to Iac(M(Fs)). One half of the required formula
(10.1e) is also an immediate consequence of this identity.
The remaining assertions of the lemma follow by similar arguments. For

if I' is an invariant distribution on iac(L'(Fs)) which satisfies the two
given conditions, we can also establish a formula

i("(f)')-Y= I'(CL,(f/))

as above. This holds in particular if

'(h), h E ac(L'(Fs)),
is one of the distributions E O ,(h, -r', X') or I,,(7, h). The other half

WEM
of (10.1)e, as well as (10.2)e and (10.3)E, follows without difficulty. I
THEOREM 10.2: Fix an element M E £ and a finite set S of valuations
with the closure property. In the special case that S D Sram, assume that

I(, f) - IL (T, f), f E/W(G(Fs)),
for each L E £(M) and 7 E L(Fs). Then for any f E 17ac(G(Fs)) and
X E aM,S, we have

(a) OM(f) = M(f),
(b) Co(f) = M(f),
(c) I (p,X, f) = IM(p,X, f), p E E+(M(Fs)),
and

(d) IE(Or, X, f) = IM(r, X, ), Ir EI+(M(Fs)).
Proof. According to the induction assumption of §5,

IL (-) = I(7), e L(Fs),
if L C L1 C G and S D Sram. We may therefore assume inductively that
the four required formulas of this theorem hold ifG is replaced by any such
L1. We shall also assume inductively that the four formulas hold for G,
but with M replaced by any Levi subset L D M.
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It suffices to prove the theorem for a fixed function f E 7i(G(Fs)). For
the restriction of a given function in tHac(G(Fs)) to any fixed set

G(Fs)z = {x E G(Fs) HG(Z) = Z}, Z E aG,S,
coincides with that ofsome function in 7i(G(Fs)). Suppose that 7 E M(Fs)
is G-regular. The given hypothesis permits us to use Theorem 6.1, and in
particular the expansion (6.1). Combined with the descent properties (3.3)
and (6.2), this becomes

(10.4) IM(7,f)= -E E(S)IL(7, f).
L1EL(M)

Anticipating a similar formula for cIM^(7, f), let us consider the expression

(10.5) CIM(7y,f)- E e1(S) Il(7,f).
L1EiC(M)

By (10.3) and (10.3)E, we can write this as the sum of

(10.6) IM(7 CM(f)-- COM(f))
and

{If (7, ) E eJ1()L (7,L()) }
LDM L1iELL(M)

Now if L ~ M, we have

E L(s)1 (,L(7,C L(i))= (7 CL())=f (7, (L)),
L1ELL(M)

by our induction hypothesis and (10.4) (with G replaced by L). Therefore
the second expression vanishes, and (10.5) equals (10.6). Since f belongs
to 7((G(Fs)), the expression (10.5) has bounded support as a function of
y in the space of M°(Fs)-orbits in M(Fs). The same is therefore true of
(10.6). For a given X E aM,S, (10.6) is the orbital integral in

{T E M(Fs): HM(7)= X)
of a function defined on

M(Fs)x = {x E M(Fs): HM(X) = X}.
The tempered characters of this function are just

C0E (f, 7rX) M(f,, X), r E IItemp(M(Fs)).
It follows that the difference is compactly supported in X.
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In [l(g), §5] we defined a meromorphic function

cOM(f,',) = f cOM(fX,X)e'(X)dX A E ac,
aMS

for each 7 E II+mp(M(Fs)). The definition extends readily to standard
representations p E E+(M(Fs)) by analytic continuation. Define

CIM(p,X,I) = E i(P, X,c°L(f)), PE +(M(Fs)).
LEC(M)

Then Proposition 5.4 of [l(g)] asserts that

(10.7) IM(p,Xf)=lim E wp f| B()eOM(f, p)e-A(X)dA,
PEP(M) ep+ia*S

where , stands for a test function in Cc (aM,s) which approaches the Dirac
measure at the origin, and X E aM,S is any point at which the left-hand side
is smooth. (If aM,s is discrete, X can be any point and / may be removed
from the formula.) Thus, IM(p,X, f) may be computed inductively from
the function COM(f, p).

In a similar fashion, we define

CoM(f, ) = cO (f, x,X)e(X)dX, A aM,C,
aM,s

for each ir E H+emp(M(Fs)). If 7r' is any representation in l'(7r),

OM(f, =) / es OM(f,(7rlX)eA(X)dX
aMs ECM

= t-dimAM /EeS OM(f , 'rX')eA'(X')dX'
aMt,S

= -dimAME cf^I= dimAm esCdM(f',Trll,),
since dX equals t-dimAMdXI. These formulas again extend by analytic
continuation to representations p E S+(M(Fs)). We can also define

CI((p,X f) = ~E -iL(PX, (f)).
LEC(M)
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Then
cI(p,X,f) = E esif,(lpX',CB (f)')

LEL(M) (ECM

= es ZE IPL',( X'CL(f/))
ECM LEC(M)

= escMi((plX',f').
eECM

(See the proof of Lemma 10.1.) To this last expression we apply (10.7),
(with f, p, and X replaced by f', Ip' and X'). We obtain

lim E wp / (A') E esOM(f P',)e-'(')dA.
PEP(M) cp+ia ,s

ECM

Finally, we substitute the formula above for c0 (f, pA). Remembering that
dA' equals e-dim(AM)dA, we see that

(10.7) CIM(p,X, f))=lim E wpwp ()C (f(p,)e-A(X)dA
PEP(M) ,p+ial,

for any smooth point X.
We shall apply (10.7) with p = r,, where r E II+mp(M(Fs)) and p E

aM. We may as well take p to be in general position. Then the contours of
integration on the right-hand side of (10.7) can all be deformed to ia*M .

Consequently,

IM(7, X,f) = lim J f(A)'OM(f, r,+A)e-(X)dA
iaM,S

eP(X) lim (A - p)cOM(f, r)e (X)d.

Remember that / is to approach the Dirac measure at the origin. But

A - 3(A - )
is the Fourier-Laplace transform of a function

X e-(X)P(X)
which also approaches the Dirac measure at the origin. We may therefore
replace /(A - p) by /i(A). We obtain

e- X)ClM(r,X,f) = lim / /(A)OM(f, 7r)e-X(X)dA.
18

M+ialM'
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A similar formula arises from (10.7)E. Taking the difference of the two, we
see that

(10.8) e- (X)(CIe((r, ,Xf) - CIM(7rp, X, f))
equals

lim J/ (A)(O (f, 7r) -cOM(f, ir))e-(X)dA.
t+ia, ,s

Now
A - C{(f,,x) - C'OM(f,IA)

is the Fourier transform of the compactly supported function

X - ,Ce(f, r, X)- e8M(f, , X),
and is therefore entire. Consequently, the integral over p + ia ,s can be
deformed to any other translate of ia ,s. The outcome of this discussion is
that (10.8) is independent of p. At least this is the case for almost all p and
X. But there are formulas in [l(g), §4] which allow us to express the value
of (10.8) at any p and X in terms of its values at nearby points in general
position. It follows that (10.8) is independent of p without restriction.
According to Lemma 4.5 of [l(g)],

E wp(X)e-^P(x) IM(vrp,X,f) = .

PEP(M)

(The notation wp(X) and vp was described at the beginning of the proof
of Lemma 10.1.) Applying the same formula to G', we obtain

E wp(X)6e-P(X) CE( , X, f) = 0.
PEP(M)

Since (10.8) is independent of/ , we can express its value at any p as the sum
over P E P(M) of the product ofwp(X) with its value at Vp. Consequently,
(10.8) vanishes for any p. We have therefore established that

cIg(Tr.X, f) = CI (tr X, f),
for any r E II+emp(M(Fs)) and p E a*. The next step is to set p = 0. For
there is another result (Lemma 4.7 of [l(g)]) which asserts that

CIM(7r,X,f) = COM(f, r,X), r E ntemp(M(Fs)).
The same result applied to G' yields

CI (r, Xf) =f -(f/f, X).
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Combining the three formulas, we seee at last that c (f) equals COM(f).
This is the second assertion of the theorem. The first assertion is the
equality of Ot(f) and OM(f). This follows from the second assertion, our
induction hypothesis, and the formulas (10.1) and (10.1)6.
The third assertion of the theorem will follow from a comparison of (10.7)

with (10.7)e. Our definitions, together with the second assertion of the
theorem (which we have already proved), imply that

coG (f,7) = caM(f, X), 7r E Itemp(M(Fs)), A E aMc.
But by analytic continuation, this formula remains valid if ~r is replaced
by the standard representation p. Therefore, the right-hand sides of (10.7)
and (10.7)E are equal. Consider, then, the resulting equality

CI ,(pX,f) = IM(,X,f)
of left-hand sides. By our induction assumption and the second assertion
of the theorem, we have

IL(p, x, CIf)) = IM(p, , cL(f))
for any L E £(M) with L $ G. We therefore obtain

IM(p,X,f) = IM(p,X, f),
the third assertion of the theorem.

Finally, suppose that xr is any representation in H+(M(Fs)). We defined
I (Tr, X, f) by (8.4), an expansion in the distributions

IL(pA,hL(X),f), p E E+(M(Fs)), A E Ep + ia, s, L E £(M).
We also noted that IM(7r, X, f) satisfies (8.1), an identical expansion in the
distributions

IL(Px, hL(X), f).
The fourth and final assertion of the theorem then follows from the third
assertion, with M replaced by L. I

COROLLARY 10.3: Under the assumptions of the theorem, we have

cIM(,7f) = E M(S)cIL(7), f E iac(G(Fs)),
LE L(M)

for any G-regular element 7 E M(Fs).
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Proof. In the proof of the theorem we established the equality of (10.5)
with (10.6). But by the second assertion of the theorem, (10.6) vanishes.
The corollary follows. I
We shall now use Theorem 10.2 to prove the local assertion (i) of The-

orem B. We are not at liberty to assume the equality of IL(y) and IL(7).
However, we are carrying our original induction assumption from §5. Con-
sequently, if L C L1 C G, we may assume that IL 'e(7) and ILf(7) are

equal.
Now, suppose that II+nit(M(Fs)). We must show that

IM(r0, f) = IM(r, , f), f E 7(G(Fs)).
As we noted near the end of the proof above, these distributions have
identical expansions in terms of the distributions associated to the standard
representations p E ]+(M(Fs)). Moreover, only those p with A(7r,p) 0
can occur in the expansions. Since ir is unitary, any such p must have a
unitary central character. It is therefore sufficient to establish the formula

(10.9) If(px,hL(X),f) = IL(p, hL(X),f), L E (M), X aM,
for any such p and any point A E a* c with small real part.
We will use the splitting and descent formulas for IL(px, hL(X), f) and

If(p,, hL(X), f). (See the proof of Lemma 8.1.) By the splitting property,
we need only establish (10.9) under the assumption that S contains one
valuation v. Suppose that this is the case. Since the central character is
unitary, p is either tempered or induced from a proper parabolic subset. If
p is tempered, we have

If(pA hL(X), f) = IL(p ,hL(X),f) fG ,hG(X)) , L G
fG(PG\G(X)) , L = G,

as may be seen from the proof of [l(g), Lemma 3.1]. In the other case

p =pM,M M, i E (M ))
and we can make use of the descent property of each side of (10.9). We find
that we need only establish the formula

I1' (p1,A,Xil,fL) = I^1(p1,,X1,fL1), L1 E£ (M1), Xi E aM1,
with L1 $ G. Since we are assuming the equality of ILf'e(y) and IL" (y),
the formula follows from Theorem 10.2, with (G, M) replaced by (L1, Mi).

This completes the verification of (10.9) and therefore of Theorem B(i).
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11. More on normalizing factors

This section is a digression. We shall discuss some further questions
related to the comparison of normalizing factors.

Suppose that r E IIdisc(M,t). Then ir can be identified with an orbit
{rrA} of ia* in II+nit(M(A)). The global normalizing factors are functions

rP1|P (XA)= 17 r.(l rA(aQ)), P1,P2EP(M),
asE p,n2

which are meromorphic in A E a* , and which are regular for imaginary
A. They satisfy

(11.1) rpljp3(rA) = rpllp2(TrX) rp21p3(T,).
(See [l(h), §4].) The global factors ra( ) can be obtained from the local
normalizing factors defined in §2. In fact, if 7r is identified with a unitary
representation ) 7rv of M(A), they are related by an infinite product

V

v

rc(7rA(a'V))= rnra(lrv,IA(aV)),
V

which converges in some right half plane. Suppose that ir' = 0 r is a
V

representation in II'(r). The formula (2.3) for the local normalizing factors
can be written

ra(7v,s) = A,v T ri'(r', s).
EECM/CM.

Here Ma D M is the Levi subset such that

aM, {H E aM · (H)= 0}.
Since

H Aa, = 1,

we obtain

(11.2) r,(r,s)=I- rT, (Tr',) ).
eECM/CMC

In particular, the expression on the right depends only on ir and not 7r'.
Observe that if the representation 7r' E II'(7r) is not automorphic, the con-
stituents r,,a((r', s) may not be defined for all s. They are defined in general
only for s in some right half plane.
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The functions which occur in the trace formula are built out of the (G, M)
family
(11.3) rp(v,lrx, Po) = rplpo(7rA)-1 rPlpo(TrX+,), P E P(M), v iaM.
The associated functions rL (rx), L E £(M), are analytic in A E ian, and
are independent of Po.
LEMMA 11.1: . For each L E C(M) we have

rL(7r) = £-dim(AM/AL) Z rM' ((r'x)
WECM/CL

where o' is any representation in II'(r).
Proof. Since the (G, M) family (11.3) is defined as a product of functions
indexed by roots, we can apply Lemma 7.1 of [l(c)]. We obtain

rL (rA) = Zvol(aL /Z(4)) II r,(r, A(av))- r(l)(Tr, A(aV)),
aEO

where $ is taken over all subsets of the roots of (G, AM) for which

v={av : aE }

is a basis of aM, and r() denotes the derivative with respect to the second
variable. Observe that the map X -- X' from at to aL, sends any "co-
root" aV to the corresponding "co-root" (c')V. Since the map expands
volume by a factor tim(AM/AL) relative to our fixed measure on aL - at,,
we have

vol(aL /Z(4V)) = e-dim(AM/AL) vol(aL/Z((')v))
for any $. Notice also that there is a canonical isomorphism

CM/CL E$CM/CM,m
aE.

Combined with (11.2) and the fact A(av) = A'((a')v), this gives
II r(r A(av)) 1 r(1) ,)(av ))
aEl

= E ra' ((r', A'((t')v))-1 rl',)((7T A'(a')(t)))
eECM/CL a'E'1

Applying Lemma 7.1 of [l(c)] to the function

we obtain the required formula. I
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It is actually a slight variant of Lemma 11.1 that we will need to use. If
T is any representation in IIdisc(M', t), set

rpjlp(I ) = fi JJ r,(rT AI((Oa)V))
aE Ep1ns;- [ECM /CM,

and let

rp(v, ',Po) = rppo0(r)-lrppo0(rA+), P E P(M), v E iaM,
be the associated (G, M) family. The proof of the lemma gives
COROLLARY 11.2: .

rL ) = t-dim(AM/AL) rM ((r'),
eECMICL

for each L E £(M). I

Suppose that Xr is as above, and that

TA =®VER, E nu+it(M(Fv)).
v

We can write
rp Ip2(XA) = n] rpl I1p (Tv,),

v

the right hand side being defined by analytic continuation. The local factors
do not satisfy the product formula (11.1). However, it is important to
consider certain quotients of local factors which do satisfy this formula.
The functions r(L(r,pA) discussed in §8 arise from examples of this sort.
More examples are provided by coupling representations of G and G'.
Suppose that r = (,r and r = 7rv are arbitrary representations in

v v

I(M'(A)) and II+(M(A)) respectively. Assume that the number

6(T, i) = I 6(v, r)
v

defined in §8 does not vanish. For each root a of (G, AM) and each v, set

Fa(Tv,7rV,s) = ( Jvr[ ((TV, )) ra(1rv,s).
eECM/CMk

This function is constructed out of local L-functions. If rT and Irv are
unramified, the representation rT must belong to II'(^). It follows from
the product formula above that in this case

rFa(Tvrv,s) = 1.
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We can therefore define
- Iv\ T. /vra(Yr,7,s) = rira(vWV,,s)

V

as a product over a finite set S. We can then set

rPJP3(v, r)= II r7(rx7( )).
aE pp, n;

Now for any given v,

6(Tv,T)= - E ev^(rV,p/)r(PPv, ) °0,
p,EC+(M(F,)) p EV'(P,)

so we may choose p, and p,so that A(rv,P,)r(pv, rV) does not vanish.
Since

ra(pv,s) = Aa,v E r '(p',s),
(ECM/CMO,

u

we can write r (r, ,V, s) as the product of
11-1

iI-I r, (V, s) rt p,(sP,s)
(W/CM/CM,,,

and

r(pv, s)-' ra(r, s).
By Lemma 5.2 of [l(f)], these are rational functions of s if v is Archimedean,
and of qJ' if v is non-Archimedean of residual order qv. The same is
therefore true of ri(r,,vr,,s). Another consequence of the lemma is the
formula

. v va(v, V, S)r-a(,V, T, S) =1.
In other words,

ra(v 7r, s)ra(, rs) = 1.

From this we see easily that

rPlIP3(rA, ) = 'PlIP2(A,'TA) rP2lP3 (7A, A),
for any P1, P2 and P3 in P(M).
We define a (G, M) family
-r (M

V

Wx, PO) Po p. ^ ), PE P(M), v E ia*.
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LEMMA 11.3: . (a) Take r and r as above. Then for each L E £(M),
rM(rx, 7rx) is a rational function of the variables (8.2) which is independent
of Po. (In (8.2) S is understood to be any finite set of valuations outside
of which r and ar are unramified.)

(b) Suppose in addition that r E Hdisc(M',t) and 7 E Hdisc(M,t). Then

, -lIPi(^ 7 )7 P=rplp2-(1A) rpl I2(rA).

In particular, for each L E £(M) the function rM(r,,Ax) is regular for
A E ia*. Moreover,

riL(rx)= ZE V( ( ).
L1ErL(M)

(As we have done before, we have written 7r and 7r, when in the last formula
L '

we really mean the induced representations rX 1 and rxL.)
Proof. Everything but the last assertion of the lemma follows from the
discussion above. Notice that under the conditions of (b) we have a decom-
position

V Vrp(vr,rA, o),Po) = p(V, Prp(V, TA, Po)
into a product of (G, M) families. The last assertion therefore follows from
Lemma 6.5 of [l(b)]. I

It is clear that there are other (G, M) families which are similar to those
just discussed. For example, suppose that p = 0)pv is a standard repre-

v

sentation in E+(M(A)) such that the number

(rp) = A(vPv)
v

does not vanish. Then by replacing ir by p in the discussion above, we can
define a (G, M) family

rp(L, XA,pA,Po) = rpIpo PIPo(T A+v,pA+,).
For another example, let a and r be representations in II(M'(A)) such that
for some ir E II(M(A)), the numbers 6(a, 7r) and 6(r, Ir) are nonzero. Then

Fp(V, A, , Po) = rp(V, a., A, Po) rp(V A, 7TA,Po

is a (G, M) family which is independent of 7r. It satisfies an obvious ana-
logue of Lemma 11.3. Notice that Lemma 6.5 of [l(b)] provides additional
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expansion formulas

(11.4) r(,PA) =P (,rA)rl(APA)
L1ECL(M)

and

(11.5) M(0a, A)= E))
LiECL(M)

Finally, suppose that r, p and ir are arbitrary representations in II(M'(A))
S+(M(A)) and H+(M(A)) respectively. The functions r (lrx, px) used in
§8 are obtained from the (G, M) family

rp(V, r, A,Pox,) = A(7, p)rp(V, r, p, Po), Pe P(M), VE ia; .

In a similar fashion, we define
¥ ¥

rp(v, Tr ,X, P) = 6(T, 7r)rp(v, rT, TX, Po)
and

V ¥rp(v (̂,pA, Po) = (r, p)rp(V, A, pA, Po)
for P E P(M) and v E ia*M. These two new (G, M) families (as well as the
earlier ones) satisfy versions of Lemma 11.1. We shall comment explicitly
only on the case of the latter one.
LEMMA 11.4: . For each L E C(M) we have

(,pA) = e-dim(AM/AL) E rzM ,(,,P ,).
WECM/CL p'EE'(p)

Proof. By definition,
rL(TA, PA) = A(,r,P) r(APA)

Arguing as in Lemma 11.1, we see that

r A,PA) = £-dim(AM/AL) Z L IAlp),
eECM/CL

for any p' E '(p) with A(, p') 7 O. In particular, the expression on the
right is independent of p'. Moreover,

A(r,p)= S A(, p),
P'E'(p)

since es = 1 for any large finite set S of valuations. Therefore

rM(T,P) = e-dim(AM/AL) M,(EC rp'CL ,(P E,pP)WeCM/CL P'EY''(p)
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Since A(r,p') equals A(/r,p'), this becomes

C P'

as required. I
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12. A formula for If (f)
We return to our discussion of Theorem B. We established the local

assertion (i) in §10, so we can concentrate on the global assertion (ii). Our
goal for this section is to obtain an expansion for IE (f) which is dual to that
of Proposition 5.1. However, we must first establish an inversion formula
for Im(Tr,f).
LEMMA 12.1: . Suppose that r E Hunit(M'(A)1). Then the distribution

(T, ) = E ^IM'(T, f )
WECM

equals

(12.1) E E | (,rx,x)IJ(7x,f)dA,
LEC(M) irEn+(M(A)I) M+iM/iL

where CM is a small point in general position in a*.

Remark. Only those ir with 6(r, 7r) 0 will contribute to (12.1). Since r

is assumed to be unitary, any such ir will have a unitary central character.
Consequently, 7r may be identified with an orbit {r\r} of ia* in H+(M(A)).
Proof. For the proof, it is convenient to re-label the summation index L in
(12.1) by L1. We can then insert the expression

E£WQ~E£~ E£~| ~re (r\+,+,p\+ )ILf(p,/ +X, f)dcZ Q E E J
QEP(L1) LEt(L1) pE++(M(A)l) Q+iaL1/iaL

for If (Irx,f) into the formula. The point eq can be taken to be small
relative to the point CM. Since A belongs to CM + iaM, we can deform the
contours of integration in p from eQ + iaL/ia to iaLl/iaL. Therefore
(12.1) equals the sum over elements L1,L E £(M), with L1 C L, of

~~EE /j ~rm (7Ar,\)r()L(rx,,p,)ILf(p,, f) dA.
rEn+ (M(A)i) pE. +(M(A)1) M+iaM/iaL

We shall take the sums over L1 and nr inside the integral. Their contribution
will be given by

ZE E r ~(A,A,)rL1(rx ,pA).
{L1:MCL1CL}
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This expression comes from a product of two (G, M) families. In fact, by
(11.4), it equals

M(A, PA)( E 6(r,7r)A(7,p)).
xrEH+(M(A)1)

But

Z 6(r,7r)A(Tr,p)= - A(rpi) ~ r(pl, )A(, p) = A(r, p
7rEn+(M(A)i) PiES+(M(A)I) EnH+(M(A)1)

Since the product of this with rM(rx,px) equals rLM(T, pA), (12.1) can be
written as

(12.2) E E [/rA,PA(pA , f)dA.
LE2(M) pES+(M(A)1) +iM/iL

Now, consider the expression

rM(A, PA)IL (PA,!).
pE6S+(M(A)1)

By Lemma 11.4, this equals

;-dim(AM/AL)E E E rM'((,(PA')IL,(p'f)'
p p'EC'(p) ECm/CL

But Lemma 8.1 permits us to write

I(pA,f) = E i(L'(P'A f')Z
(ECL

so the expression equals

-dim(AM/AL)E E rM',(T ,p')' ( ,
p p'EE'(p))ECM

If p' E E(M'(A)1) does not belong to one of the sets E'(p),
IL'(nPAx',f,)= 0,

by Proposition 10.3 of [l(g)]. We may therefore sum over all p' in E(M'(A)1
The expression equals

j-dim(A/AL) E r^(^', ^ (')IL'((P A f )
= e-dim(AM/AL)EErL',(r',,A,p')IL'(p , f')-

P' e



The Global Comparison 155

We substitute this expression into (12.2). Since dA equals tdim(AM/AL)dAI,
we obtain

TE E E
I

L (rxXIL)LI(p'X dA.
(ECM LEL(M) p'ES(M'(A)') tM+ta;/ial

But r is unitary, so we can apply the formula quoted at the beginning of
§8. It follows that (12.2) equals

E fmI
(ECM

as required. I
In §5 we defined IE as the pullback to G of the distribution I on G'.

Applying (9.1) to G', we obtain

IE(f)= l (f)
t>o

where

If(f) = tW(f') = E WL aL()I( f') dr
LE ' (L,t)

According to Proposition 8.2 of [l(h)], iL(r,f') vanishes unless L is the
image of an element in £. Therefore,

(12.3) If(f) = E IWMI Wo1- aM'(r)M(r,f' ) dr.
MEL JZ(M't)

We would like to transform this into a formula involving the functions aMp
and Ij .

For convenience we shall define IIsc(Ml, ) to be the subset of
II+(M (A)1, t) consisting of irreducible constituents of induced representa-
tions

ml, L E 1M1, E II+(L(A)1,t), \ E al/ia1,
in which ax satisfies the following two conditions.
(i) adi'() O.
(ii) There is an element s E WM'(aL)reg such that sax = ox.
But for the superscript £, this definition is identical to that of IIdisc(Ml, t).
It follows from our induction assumption that Il i(Ml, t) equals ldis8(Ml, t)
if M1 $ G. Copying the definition of II(M,t), we take IIH(M,t) to be the
disjoint union over M1 E CM of the sets

IIl(M,t) = {r = 7rl,x: r lE I8(M, t), A E ia /iaM }.
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PROPOSITION 12.2: . Suppose that t > 0 and f E'(G(A)). Then

(9.1)e If(f) E Wo |Wl-| am( r)I f)
MEL JE-(M,t)

Proof. It follows from the formulas above that If(f) equals

E IWOM1 IWG-1 E J aMdc(Tr)r'M(rA')M'(rxf )ddA{M1,MEL :MMi } TrEndi.,(Ml,t) 1Ml /ia
Replace each r by cr, c E CM1, and then sum over c. Since ¢ per-
mutes IIdisc(Mlt), this will still equal If(f) provided that we multiply
by t-dim(AMl). According to Lemma 4.3 of [l(h)],

disc( r)= adisc(-).
Consequently It(f) equals the sum over {M1 C M} of the product of

(12.4) e-dim(AMl)IWoMIWGI-1
with

T' M'eCM
~Ja;4/ia*ia(r)( 5 r(~1X')IMI(SrA', f') dA').m el/OECml,

The expression
rMI (ErAI)IM'((r', f')

6ECM1
can be written as

5E rM4("') IM((A', f,)
E CM1/CM CECM

We observe from a variant of Lemma 8.1 that

E IM'((CA',f ) = ~I((T)X,,f) = IM((A,f).
(ECM

Therefore, by Corollary 11.2, the expression reduces to

edim(AM, /AM)yMl (TA )I£( A, f).
Substituting the expansion from Lemma 12.1, we obtain

£dim(AMl/AM) E E rM+1 ()/
LEC(M) 1 E n+(M1(A)l,t) mi/ia
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(We should actually sum over 7r E II+(M(A)1), but the general position of A
means that this sum reduces to one over II+(M1(A)1). Since IIIm(vT)[I = t,
the summand vanishes unless Irl actually belongs to II+(Mi(A)1,t).) We
insert this expression back into the formula for If(f). Since

dA' = £-dim(AMl/AM) dA,

we may write If(f) as the sum over {M1, L: M1 C L} and irl E II+(M1(A)t)
of the product of 12.4 with

(12.5)
-E- E ^ (^^^Ia)^disc(T)rMl')rM(~', rlX)IL(rl,, f)dA.

{M:M1CMCLI} M+iaM1 /aL rEl disc(M ,t)

The summand in (12.5) corresponding to a given r will vanish unless
6(r, rl) $ 0. Among all such r fix one, say a. Then for any other such r,
we can write

rm()= E r( )(rLa, T).rMMI (7A)= (
{L:MiCL1CM}

Substitute this expression into (12.5), and take the sum over L1 outside
the integral. By a variant of Lemma 11.3, the function ri(M(x,,i) is
slowly increasing and regular for A in a cylinder about the imaginary space
ial. We may therefore deform the contour of integration in (12.5) from
CM + ia* 1/iaL to EL + ia*M/ial, where EL, is a small regular point in
a1 which depends only on L1. This leaves us free to bring the sum over

M in (12.5) inside the integral and the sum over L1 and r. But by (11.5),

rLx, 7 M 7-O'E ^ (a, A)r (A Xr,) = 6(r,7r)LL (,X7,.).
{M:LiCMCL}

Moreover,

E aMl(r)^(r7) = sA (

rE ndisc(M ,t)

since irl belongs to II+(Ml(A)l,t). Therefore (12.5) equals
(12.6)

{Li:M1)CL1CLdsM},Jrerli1/,£f:im(AMl) E |MC\^III disc (T1)'M 1(f)Tl'X(,A' r1L,i ,>X, f)dI.
{(L1 :M1 CC1CLC} L1 +i aM1/iaL
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The expression (12.6) clearly simplifies if M1 = G. The contribution of
all such terms to the final formula for If(f) is just

(12.7) E aeI( if)
EnEic.(Gt)

If M1 $ G, we make use of our induction assumption that aM,(7r)
equals aiMc(iri). In particular, we may assume that 7r1 E lldisc(M1, t). But
Lemma 11.3 then tells us that irl(j(,Arl,) is analytic for A in a cylinder
about the imaginary space ia*. Moreover, we saw in §10 that

IL(x1,A, f) = IL(ri, A, ),
and it is known (Lemma 3.4 of [l(g)]) that the function on the right is
also analytic for A near ia_ . We may therefore deform the contour of
integration in (12.6) from eL1 + iaM/ial to iaM,/iaL. We can then take
the sum over L1 in (12.6) inside the integral, and we obtain

-E rMM (X)F(L,(1, rl,) = rMl (,),,
{L1:M1CL1CL}

from Lemma 11.3. Thus, if M1 $ G, the expression (12.6) equals

fdim(A l ) |/ adisc (rl)rML(Trl,)IL(7rl,,f)dA.

Putting these formulas together, we see finally that If(f) equals the sum
of (12.7) and

E E lIWIWG 1 E J C(t) (X1,>)
L {M1CL:Ml4G} rIlEndi.c(Mlt) ^Mi^

x If(7r,,Af)dA.
By definition this is just

z IWLI IWGI i( L,) (,K)IL6X f) dr,
LEI o -e(L,t)

the required formula. |

LEMMA 12.3: . Suppose that t > 0 and f E U(G(A)). Then

I(f) - (f) = E (adic(r) - adisc(7)) tr7r(/1),
rEn+(G(A)l,t)

where fl is the restriction off to G(A)1.
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Proof. We use the formulas (9.1) and (9.1)e to expand the difference be-
tween If(f) and It(f). Suppose that M1 C M C G, with M1 i G. Then
the induction hypothesis of §9 implies that the setHi (M,t) is the same
as IIM1(M,t), and that

aME () = aM (), r E IIj1(M,t).
In particular, these numbers are both zero unless ?r is unitary. But we saw in
§10 that for unitary r, I~(r, f) was equal to IM(r/, f). Therefore, the only
contribution to the expansion of If(f) - It(f) comes from M1 = M = G.
However, if ir is any representation in II+(G(A)l), we have

IG(r, f) = IG(, f) = tr r(f1).
(The first formula follows, for example, from Theorem 10.2(d).) The corol-
lary follows. I

Chapter II has consisted so far of two parallel discussions. Paragraphs 3-7
have dealt with the geometric sides of the two trace formulas, while Para-
graphs 8-12 have been concerned with the spectral sides. We should be
aware of the similarities between results in these two passages. For exam-
ple, besides the obvious duality of Theorems A and B, there is the paral-
lelism of Propositions 5.1 and 12.2 and also of Lemmas 5.2 and 12.3. In the
next paragraph we shall begin a study of the geometric sides which has no
analogue for the spectral sides. This will eventually allow us to exploit the
two different formulas for

(f) - I(f)
given by Lemmas 5.2 and 12.3.
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13. The map eM

It is known that the trace formula simplifies greatly if the orbital integrals
of f are supported on the elliptic sets at two places. We shall exploit a
similar idea, but with a progressively less stringent restriction on f. For
each M E £, we define 7(G(A), M) to be the subspace of /(G(A)) spanned
by functions

f =n f, fv E W(Fv)),
v

which have the following property. For two unramified finite places v1 and
V2,

vi,L = 0, L E , i= 1,2,
unless L contains a conjugate of M. If S is a finite set of places which
contains Sram (and at least two other places), we define 7i(G(Fs), M) the
same way. It is a subspace of 7H(G(A), M).
At this point, we fix a Levi subset M E £ such that M $- G. We are

already carrying the induction hypotheses that Theorems A and B hold if G
is replaced by any proper Levi subset. We shall now take on the additional
induction assumption that

I(7, f) = IL(7, f), E L(Fs), f E H(G(Fs)),
for any S D Sram and any L E £, with M C L. In §17 we shall show
that this formula also applies to M, thereby completing the proof of The-
orem A(i). Until then, M will be fixed, and the last induction hypothesis
will remain in force. Notice that the induction begins with M maximal
(and proper), where the required formula is just (3.9).
LEMMA 13.1: . For f EH(G(A), M), the distribution

I(f)- I(f)
equals the sum of

IW(aM)l-1 a(SM(,)(I(I , f) - IM(7,f))
yE(M(F))M,s

and

E (a6(S, u)- a(S, u))IG(u, f).
E Aa(F) uE(Ua(F))a,s

(As in §5, S is a finite set of valuations of F that is suitably large in a
sense that depends only on supp(f) and V(f).)
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Proof. Suppose that S is the disjoint union of So, S1 = {v}l and S2 = {v2},
where So contains Sram and vl and v2 are arbitrary unramified valuations.
We can assume that

2

f = Ifi fi E W(G(Fsi)),
i=O

where

fi,L = 0, L E , i = 1,2,
unless L contains a conjugate of M. Applying the formula (5.6) twice, we
see that

iLf(7, f) -IL(, ) = (( )L(7, fi))nII fM i fjL)
i=O jfi

for any L E £ and - E L(F). This expression vanishes unless L contains a

conjugate of M. On the other hand, it is known (formula (2.4*) of [l(g)])
that

IuLW-1(W-w-, f) = IL(, f)
for any w E Wo. A similar assertion holds for I(y, f). It follows from
the latest induction assumption that Ify(, f) equals IL(7, f) unless L is
actually conjugate to M. But the number of L which are conjugate to M
equals

IWM I IW0Gl-1 W(aM)1-1.
Our lemma therefore follows from Lemma 5.2. 1
We would like to be able to assert the equality of IE (f) and I(f). At the

moment, however, this is far from clear. In order to go further, we must
turn to a technique introduced by Langlands in seminars at the Institute
for Advanced Study. (See "Cancellation of singularities" and "Division
algebras," Lecture Notes, I.A.S.). We have defined the spaces H-(G(Fs))°
in §7. We shall show that each function

7 -- I(7, f)-IM(7, f), f E H7(G(Fs))O, S D Sram,
is the orbital integral of a suitable function on M(Fs). This will allow
us to apply the trace formula for M to the corresponding expansion in
Lemma 13.1.

It is best to treat the general situation, in which S is any finite set of
valuations with the closure property. Our latest assumption hypothesis
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means that Theorem 6.1 applies to any L E C(M) with L 7 M. Therefore,
the constants eL(S) are defined, and

IL(,,f) = E I(,L (S)f), 7 E L(Fs), f e W(G(Fs)).
L1iE(L)

PROPOSITION 13.2: . Let S be any finite set of valuations with the closure
property. Then there are unique maps

EL : (G(Fs)) Zac(L(Fs)), L E L(M),
such that
(13.1)

IM(7,f) = If(y,CL(f)), - E M(Fs), f E H(G(Fs))°
LE£(M)

The maps have the descent property

(13.2) EM(f)M, = Ed,(ML),(fL) M1 C M,
L

and the splitting property

(13.3) EM(f) = dM(L1, L2)EML(f1,L)EM (f2,L2)
L!,L2

for f = fif2 as in (34).
Remarks. 1. Since a function in IZa(M(Fs)) is uniquely determined by
its orbital integrals, the uniqueness of the map follows inductively from
(13.1). Notice that (13.1) also implies that the map eM is supported on
characters. Therefore the notation eM(fG) = eM(f), which appears in
(13.2) and (13.3), makes sense.

2. The proposition is to be regarded as a weaker version of Theorem A(i).
For suppose that

IM(Tf) = IM(yf),f E M(Fs), f E W(G(Fs)),
whenever S D Sra. Then Theorem (6.1) holds for M, and

IM(7, f) = E & (7,,L(S)A)
LE C(M)

for any S. Proposition 13.2 follows inductively from this, with

eM(f) = eM(S)fM.
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3. The induction hypothesis at the beginning of this paragraph allows to
apply the last remark to any L M. We may therefore assume that

(13.4) EL(f)= L(S)fL, L D M.

The defining formula (13.1) then takes the form

(13.1*) iM(7,M(f)) = IM(, f)- E IM(EL(S)IL)
L~M

If M1 C M, the formula (13.2) can be written

(13.2*) eM(f)M1 =eM,M (S)fM1,
where

eM,M (S) = d,1 (M, L)E1 (S).
LEC(M1)

Formula (13.3) becomes

(13.3*) eM(f) = eM(fl)f2,M + fl,MeM(f2) + M(S1, S2)fM,
with

dG(S,S2) = > d (L1,L2)E Li(Si)E (S2).
L1 ,L2EC(M)
Ll,L2*M

4. Suppose that S either contains Sram or consists of one unramified val-
uation. Then the constant EL(S) vanishes ifM C L C G. Formula (13.1*)
becomes

(13.1**) Im(T, f) - M ,f) = M (7, M(f)), f E (G(Fs)).
This is the form in which EM(f) will be applied to Lemma 13.1. Also,
ELM (S) vanishes if M1 c L C G, so that (13.2*) simplifies to

(13.2**) EM(f)M1 = 0, MM.

5. Suppose that S is a disjoint union of So and S1 = {v}, where So
contains Sram and v is unramified. If f = fofi, the formula (13.3*) yields
(13.3**) eM(f) = EM(fo)fl,M + fo,MeM(fl).
Suppose that fi is equal to the characteristic function of K, >4 0. Then
Lemma 4.3 combined with (13.1**) implies that

eM(fl) = 0.

Consequently, cM will extend to a map from X'(G(A))° to Iac(M(A)).
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Proof. We now begin the proof of Proposition 13.2. It will consume most
of the next paragraph as well as what remains of this one. Fix S and f.
As in §6, set

EM(7,f) = I(7',) - E IM(7YEL(S)f), 7 E M(Fs).
LDM

This is equal to the right hand side of (13.1*). To prove the existence of
the map eM, we must show that EM(7, f) is an orbital integral in 7 of a

function in 7iac(M(Fs)). We must also check the properties (13.2) and
(13.3). Let us comment on these first.
As we remarked after its proof, Lemma 6.2 is valid under the induction

hypothesis we took on at the beginning of this paragraph. The required
properties (13.2) and (13.3) will then follow immediately from (6.2*) and
(6.3*), once we have established the existence of the map eM(f). Notice
that (6.3*) provides a formula for eM(-, f) in terms of functions defined
for single valuations v E S. It therefore reduces the proof of the existence
of eM(f) to the case that S consists of one valuation. We shall deal with
this in §14, treating the real and p-adic cases separately. We conclude this
section by discussing some preliminary properties of the functions EM(y, f).
Suppose that 7 is a general element in M(Fs). Let us apply the formulas

(3.1) and (3.1)e to M(7, f). We see that eM(,f) equals the limit, as a
approaches 1 through regular values in AM(Fs), of

r(y a)(IL(ayf) - E L(ay,EL()))
L1 M {LEC(L1):L#M}

If L1 $ M, the sum on the right can be taken over all L E £(L1), and the
expression in brackets vanishes. However, when L1 = M, the expression in
the brackets is just equal to eM(ay, f). We have shown that

M(7, f) = lim eM(a7, ).
This formula is consistent with our hope that EM(7, f) be the orbital inte-
gral of a function in M(Fs). In fact, it tells us that we need only consider
points y such that M-= Gy. But properties (3.2) and (3.2)E tell us that
we need only consider points 7 E M(Fs) which are G-regular. Thus, we
have only to show that

7 EM(7, f) 7 E M(Fs) n Greg,
equals the orbital integral in - of a function in iac (M(Fs)). As agreed
above, we may assume that S = {v}.



The Global Comparison 165

We have discussed the distributions CIM(7) and CIM(7) in §10. If 7 E

M(Fs) n Greg, define

eM(O,f) = CIm(7, f) - E (S)cL(7, f)
{LEC(M):L$G}

In some respects, this function is easier to handle than eM(7, f) For
Lemma 4.4 of [l(g)] implies that eM(y, f) has bounded support as a func-
tion of 7 in the space of M°(Fs)-orbits in M(Fs). Happily, there is a simple
formula relating the two functions.

LEMMA 13.3: . Suppose that y belongs to M(Fs) n Greg. Then

EM(, f) -CEM(^,f) =M (7, e(f) - OM(f)) = iM (Y, M(f) - cM(f)).
Proof. The function eM(7, f) was defined to be

I'M(7, )- E (Y7, L(S)L)-
LDM

However, applying the descent properties (3.3) and (6.2) to the sum on the
right, we obtain

EM(7, ) = I (7', f) - (I (-,
{LiE£(M):L1.G}

It follows from (10.2) and (10.2)E that

cM( ,f)- 'EM(7, f)
= (IM(,f) - CIM(,f7)) - M(S)(IL(7,( f)- IL,(, f))

{L1Ei(M):Li5G}

= Z {C(L,G(sf)) - zE (s)ILL ((, OL (f))}.
L.G LiE£L(M)

Consider a summand corresponding to L D M. Given the induction hy-
pothesis at the beginning of this paragraph, we can apply Theorem 10.2
and Corollary 10.3. We obtain

CI^ (7, (f)) = cIM (7 L(f)) = E LJ(s)ILL (Y,L(f)),
L1ELL(M)

and so the summand vanishes. The summand corresponding to L = M is
just

iMM (7, M())-eM())
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The first identity of the theorem follows. The second identity is an imme-
diate consequence of the formula

M(f) O(f) = 'M(f) - (f),
which follows from (10.1), (10.1)6, Theorem 10.2, and our induction hy-
pothesis. I
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14. Cancellation of singularities
We continue with the proof of Proposition 13.2. It remains for us to

establish for any valuation v of F, and any f E 7i(G(F,))°, that the function

7 M(7,f), 7 E M(F,)n Greg,
is the orbital integral of a function in 7iac(M(Fv)).

Suppose first that v is nonArchimedean. Fix a function f E 7(G(Fv))°,
and let a be a semisimple element in M(Fv). We shall show that

(14.1) M(7, f) ( 0)O, 7 E M,(F) n Greg.
Assume first that aM, # aM. Then uaM,(F,) is contained in a proper
Levi subset M1 of M. We have already seen in §13 that if 7 belongs to
M1(Fv) n Greg, then

M(7, f) = EM,M(V),M(7,MfM)
In particular, the function on the right is an orbital integral on M(Fv), and
(14.1) holds in this case.
Next assume that aM, = aM. It follows from (3.6) and (3.6)e that the

function

eM(t, f)= (I7J) E JM(ILl())
L1iM

is (M, a)-equivalent to

ZE E gM(7,6)(^I(6,f)- ESL ( ())*
LE C(M) 6 E a(UL, (Fv)) L1 EC(L)

LijM

We can assume that L D M in this sum, for ifL = M the functions gM (7, 5)
are (M, r)-equivalent to 0. However, if L D M, we can sum L1 over all
elements in C(L) and the expression in the brackets vanishes. It follows
that (14.1) holds in general.
By Lemma 13.3, cM(y, f) equals the sum of ceM(7, f) and the invariant

orbital integral (in 7) of COM(f) - cO (f). The functions COM(f) and
ct0 (f) both belong to Iac(M(Fv)). But v is nonArchimedean, so the spaces
Iac(M(Fv)) and Iac(M(F,)) coincide. (See [l(g), §4].) In particular,

iM(7, oM(f) - CM(/)) (la) 0, y7 oM,(Fv).
It follows from (14.1) that

eM(7l, ) 0(a) 0, 7EOMa(F) n Greg.
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In other words, CEM(7,f) equals the orbital integral of a function in
7i(M(Fv)) for any regular element y E oM,(Fv) which is close to a. But
by Lemma 4.4 of [l(g)], ceM(7, f) has bounded support as a function of
y in the space of M°(Fv)-orbits in M(Fv). Appealing to a partition of
unity argument, we find that only finitely many a need intervene, and
that CeM(7, f) is everywhere an orbital integral. In other words, there is a

function CeM(f) in Z(M(Fv)) such that

M(7, f) = iM(,CeM(f))
Therefore

EM(f) = CeM(f) + COM(f) CM(f)
is the required function.
Now, suppose that v is Archimedean. We adopt the notation of the last

part of §4. In particular, we shall regard G°(Fv) as a real Lie group. Let
f be a fixed function in the space 7'(G(Fv))°, which in this case equals
'H(G(F,)). The main step in proving the existence of eM(f) is to show that
eM(7, f) behaves like the orbital integral of a Schwartz function on M(F,).
Let T = To0X 0 be an arbitrary "maximal torus" in G which is defined over
Fv. This means that T is the centralizer in G of an element y in Greg(Fv).
We are going to prove that the restriction of the function EM(7, f) to T(Fv)
satisfies two conditions. We shall show that any derivative of EM(7, f) is
locally bounded on T(F,), and that the function has appropriate behaviour
across the singular hyperspaces of T(Fv).

Before establishing the first condition, we shall examine the differential
equation satisfied by EM(7, f). Suppose that z is an element in Zv =

Z(G(F,)). By (3.5) and (3.5)E, the function

EM(7, Zf) = IMf(YZf)_- E ^I( (zf)L,)eL1(v)
L1 M

is equal to

E oL(T7,Z)(If(7,f)-- E I(l(7,fLl)ELl(V)).
LEC(M) L1EC(L)

LI$M

If L $ M, we can sum L1 over all elements in C(L), and the expression
in the brackets vanishes. If L = M, the expression in the brackets is just
EM(7, f). Moreover, by Lemma 12.4 of [l(e)],

a (y, zM) = (hT(Z)),
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where 0(hT(z)) is the invariant differential operator on T(Fv) obtained from
z by the Harish-Chandra map. It follows that

(14.2) eM(7, zf) = (hT(Z))eM(7, f), T E Treg(Fv).
This differential equation can be combined with a technique of Harish-
Chandra [20(a)] to establish that the derivatives of eM(7, f) are locally
bounded. The technique is a fairly standard one, and it has been described
clearly in this context in a lecture of Langlands. We shall just sketch the
argument.

Let Q be a compact subset of T(F,), and set Qreg = fnTreg(Fv). If 0(u)
is an invariant differential operator on T(Fv), there are constants c(f) and
q such that

I9(u)IlM(Y7,f) < c(f)lDG(7)1-q, T E Qreg.
(See [l(g)], formula (2.8).) Both constants depend on 0(u), but q is inde-
pendent of f. A similar assertion holds for IM(7, f), and therefore also for
eM(7, f). Suppose that O(ui),... , (un) are generators over a(hT(Zv)) of
the module of differential operators on T(Fv) of constant coefficients. Then
any 0(u) can be written

0(u) = 9(ul)hT(Zl) +... +0(un)hT(Zn), zi E Zv.

Applying the differential equation (14.2), we see that

o(u)eM(, f) = 9(ui)eM(7, zif)
i=l

It follows that

\9(u)EM(7,f)l < c(f)lDG(?)l-q, 7 E Treg(Fv),
where q may now be chosen to be independent of O(u). This inequality will
then lead to the property we want, namely that O(u)eM(y, f) is bounded on
Qreg. The result is an immediate consequence of the following elementary
lemma. (See the notes of Langlands' lecture, "Cancellation of singularities
at the real places," I.A.S., p. 21-22.)
LEMMA 14.1.: Let A1,... ,Ak be a finite set of linear forms on Rm, and
let q be a smooth function on the set

B' ERmI.I n)o
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Suppose for any differential operator A of constant coefficients on Rm that

k -q

i^A(O)l < c A(n )A , E B',

where q is independent of A. Then AO is bounded on B'. |

The second condition concerns the behaviour of EM(Y, f) across the sin-
gular hyperplanes. Recall that a semisimple element a E T(Fv) is called
semiregular if the derived group of Ga is three dimensional. The condition
may be summarized as the requirement that eM(Y, f) be (M, a)-equivalent
to 0, for any such a and for G-regular points 7 in T(Fv) near a. If Ma = G,,
this fact follows from (3.2) and (3.2)E.
Suppose then that a is a semiregular point in T(Fv) with M<, G,.

This means that a lies on a hyperspace in T(Fv) defined by a real root /3
relative to the action of T(Fv) on the Lie algebra of G°(Fv). The co-root
pv belongs to the Lie algebra of To(Fv). Set

,=o=exp(r3), r ER.

It is enough to show for any invariant differential operator 0(u) that the
function O(U)eM(Yr,f) is smooth at r = 0. Associated to To and /, we
have a Cayley transform

C : To - Tol.
This is an inner automorphism on Ga which maps To to a torus Tol in GJ
which is Fv-anisotropic modulo the center of Go. Let M1 E C(M) be the
Levi subset such that

AM1 = AM nTol.
Then Cf3 is a noncompact imaginary root of M1(Fv), and

6, = a exp(sCV), s E R,
is a G-regular point in

T1(F,) = aTol(Fv),
for s small and nonzero. If wp is the reflection about p,

9(u) = 8(Cwou- Cu)
is an invariant differential operator on T1(Fv). By formula (2.7) of [l(g)],

lim ((u)IP (r f)-(U)-I( (7r f)) = n limO(ul)IM(6, f),r-*O+ s--*0
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where

I f(7, f) = IM(7, f) + -11 log(!7 - 7-I)IMi(7, A), 7 E Treg(Fv).
Here n is the cosine of the angle between /3, and aM, and |IIMII denotes
the norm of the projection of 1v onto aM. We shall apply the same formula
to G'. The objects /,, 7t, u, etc. can all be mapped to corresponding objects
/', 7t, u', etc. for G', and it is easily seen that ni, = np. It follows without
difficulty that

lim (O(U)It,(Tr,,f) - O(u)I(tP(7_ f)) = np lim (ul)I (5,, f),r-.O+ m-10 l

where

M(7, f) IM(, f) +l|MI log( - 7- )I (T,f),7 E Treg(Fv).
Now

(14.3) lim (O(u)eM(y,, f) - O(U)EM(7-r, f))r-*0+

equals the jump at r = 0 of

(u)If(7r, )- zE 9(u)Il(7r, EL(f)).
L1DM

If L1 does not contain M1, a will be regular in L1, and the summand will
be smooth at r = 0. We may therefore take the sum over L1 E £(Mi).
Moreover, we have

LE£f(M)
from our induction hypothesis. Therefore, (14.3) equals the jump at r = 0
of the expression

O(u)I ('Yr,f)- ZE 9(u)iM'(P(TreL1 (f))-
L1iDM1

Applying the two formulas above, we can therefore write (14.3) as

n lmO o(u) (I (6, f ) ( (fL)))S-
lim IM,(5,,Zrf)) ·IV

LE£(Mi)
But Ml D M, so the term in the brackets vanishes by our induction hy-
pothesis. Thus, the function

9(u)eM(r, f)
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is smooth at r = 0. This is equivalent to

eM(7, f) (AO) 0, 7E T(F) n Greg,
the required second condition.
We have verified the two conditions. These are two of the three condi-

tions of Shelstad [38(a), Theorem 4.7] that are necessary and sufficient for
EM(7, f) to be the orbital integral of a Schwartz function on M(Fv). To
avoid introducing extraneous questions in invariant harmonic analysis, we
shall not work directly with the Schwartz space. However, the inductive
arguments in [38(a)] do suggest how we should proceed.

Let us first recapitulate how EM(7, f) behaves under descent. The descent
properties (3.3), (3.3)E, (6.2*) and (13.2*) are purely local. If S = {v}, they
are valid if M1 belongs to vC rather than just £, as stated. (Recall that
VC consists of Levi subsets over Fv.) Suppose that M1 is an element in vC
which is properly contained in M. The induction hypothesis taken on at
the beginning of §13 allows us to apply (6.2*). (See the remark following
the proof of Lemma 6.2.) Moreover, we are assuming that

(7X,fL)= -EM(,fM1(fL)) =M1(M, ),
for any L C G. It follows that

EM(7, f) =f M,Ml(V)IM^(7, fMl), 7 E M1(Fv) n Greg,
where

EM,M1(v)= E dG (M, L)E1 (v).
LEC(M1)

We claim that the constant eM,M (v) is independent of M1. It is enough
to show that

EM,M (v) = EM,M1(V)
for any M1 E Cv which is contained in M1. Now

EM,Ml(v) = E E:() E dL,(Mi,L )dI(ML),
L'EC(M[) {LEC(M):LDL'}

since we can assume that e l(v), L C G, satisfies the descent property
(6.2). It follows from [l(g), (7.1)] that this equals

Eri (v)d. (M L ) E=MM(V)
L'EC(M )

as required. Thus
EM(V) = e,Ml(V)



The Global Comparison 173

is independent of M1 C M. We have shown that

eM(7,f) = MM( , fM =MM) M()IM (7, fM),
for any 7 E M1(Fv) n Greg, as above.

If M/Fv is not minimal, we have just seen how to define the number
eM(v), even though we cannot yet apply Theorem 6.1 to M. Set

=(v) f eM(v), if M/Fv is not minimal,
0, if M/F, is minimal,

and define
eM(7, f) = EM(7, f) - eM(v)I (7, fM).

Since IM(7,fM) is just the orbital integral of a function in W(M(F,)),
EM(7, f) satisfies the same two conditions established for CM(7, f). Observe
also that if ' belongs to M1(F,) Greg, for M1 C M as above, then

M(7,f) = 0.

Now suppose that T is an elliptic "maximal torus" of M over F,. That
is, T is not contained in any proper Levi subset M1 of M. Then EM(7, f),
suitably normalized, extends to a smooth function of 7 E T(F,). More
precisely, there is a locally constant function

c : Treg(Fv) {z eC : Izl = 1}
such that the function

£M(7, f) = C(7)eM(7, f), 7 E Treg(Fv),
extends to a smooth function on T(F,) which is skew-symmetric under the
Weyl group

WM(T) = NormT(M°) / CentT(M°).
This follows in a standard fashion from the two conditions and the vanishing
property above.

Observe that for any point X E aM, the set

T(FV)X = M(Fv)x n T(F,) = {x E M(F) : HM(X) = X} n T(F,)
is compact. Let us write II+i,(M(Fv)) for the set of representations in
II+mp(M(F,)) which are not of the form

T1 T1 E IIenmp(Ml(Fv)), Ml e L,v M1 C M.
The function c(7) above has the additional property that the set of functions

(7) = c(7)lDM(y)ll/2(,Y), 7 E T(F,),
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in which ir ranges over a set of representatives of orbits of ia* in
II+,,(M(Ft)), forms an orthogonal basis of a Hilbert space of functions on

T(F,) which includes FM(, f). Indeed, each T is just a fixed multiple of
the skew-symmetrization of a 1-dimensional character on T(Fv). This is
a well known result of Harish-Chandra if G = GO; if G $ G°, it follows
from [11(a), Theorem 8.1] and the corresponding fact for G = G°. (In
fact, the existence of the elliptic torus T means that M° is a product of
several copies of GL(2) and GL(1), so the property actually follows from
local Archimedean base change for GL(2).) Define

(14.4) eM(fr, X) = WM(T)l-1 F 6M(7,f)), (7)d7,
(F.)X

if ir is any representation in II+i(M(Fv)). If Xr belongs to the complement
of HI+i(M(Fv)) in HI+mp(M(F,)), we shall simply set eM(f, r, X) = 0.
We claim that eM(f, ir, X) is a Schwartz function of X. Since the function

is smooth, it suffices to show that for any invariant differential operator A
on aM, the function

AcE(f, r,X), XE aM,

is rapidly decreasing. Observe first that eM(f,,r,X) equals an integral,
over the set of M°(Fv)-orbits in M(FV)X, of the product of 'M(7,f) with
IDM(y)ll/2e0,r(). But Lemma 13.3 tells us that we can write EM(7, f) as

the sum of

CM(7, f -M()- M (Y fM)
and

IM(, COM(f)- (f )),
for any G-regular element y in M(Fv)X. The first function has bounded
support (on the M°(Fv)-orbits in M(F,)X), and vanishes if X lies outside
a compact set. The integral of the product of the second function with
IDM(y)l1/2e,() equals

OCM(f I, X) - CO(f, r, X).
It follows that

EM(f, 7, X) = OM(f, 7, X)- 0M((f , r X),
for any point X E aM outside a fixed compact set. Now Corollary 5.3 of
[l(g)] tells us that AeOM(f, r, X) is a rapidly decreasing function ofX E aM .
A similar assertion applies to A"/ (f, , X). Consequently, the function
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AeM(f, r, X) is rapidly decreasing, and eM(f,x, X) is indeed a Schwartz
function of X.
We would like to show that as a function of (ir, X), eM(f, x, X) belongs

to the space Iac(M(Fv)). There are two further properties to establish. We
must show that the function is (K, n M°(F,))-finite. That is, we need to
find a finite subset rM of II(K, n M°(F,)) such that e(f, x, X) vanishes
unless the restriction of ir to (IK, n M°(F,)) contains a representation in
rM. We must also show that for each X E aM, the function eM((f, r, X)
belongs to the Paley-Wiener space in the natural coordinates (taken modulo
iaM) on II+mp(M(Fv)). This second property poses no problem. For the
Paley-Wiener requirement is trivial unless X is properly induced, in which
case E (fr,X X) = O. To establish the first property, we shall use the
differential equation (14.2). Set

M(f,7)= eE (f, ,X)dX, TE n+mp(M(Fv)).
aM

It follows from the differential equations, the definition (14.4), and the fact
that E'M(f, Xr, X) is a Schwartz function of X, that

e (Zf, 'r) = 7r(zM)eM(f, r, R E enmp(M(Fv)),
where 7r(M) denotes the infinitesimal character of Xr evaluated at ZM. Thus,
as a function of f, eM(f, 7r) is an invariant eigendistribution of Zv. By first
taking ir to be in general position, one sees easily that

cM(f, ir) = c(7r)tr(Zp(r, f)),
where P E P(M) and c(7r) is a smooth function on II+mp(M(Fv)). Since
f is K,-finite, there is a finite subset r of II(K,) such that tr(,p(fr,f))
vanishes unless the Kv-spectrum of Ip(ir) meets r. The first property then
holds if we take rM to be the set of irreducible constituents of restrictions
of elements in r to Kv n M°(Fv). This proves that the function

m(f) :(:, X) EM(f, a, X)
belongs to TIa(M(F,)). In particular, the orbital integral iMM(7-,e(f))
is defined, for any 7 E M(F,). Applying Fourier inversion on T(FV)X to
(14.4), one sees without difficulty that

iMM (7, (M )) = EM (7, f).
We are almost done. Define

EM(f) = eM(f) + EM(v)fM.
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Since fM belongs to I(M(F,)), the function eM(f) belongs to Iac(M(F,)).
The formula

IM (7, eM()) - M(7, f)
follows from the definitions and the analogous formula for eM(f). We have
thus defined the required map CM when S consists of one Archimedean
valuation. This was our final step, so the proof of Proposition 13.2 is at
last complete. I
COROLLARY 14.2: If S is any finite set with the closure property,

CM(f) = CEM(f) + CM(f) cM(f), f E H(G(Fs))°,
where CEc(f) is a function in I(M(Fs)). In particular, for any
i E l+(M(Fs)), EM(f,Lr,X) is a Schwartz function ofX E aM,S.
Proof. By Lemma 13.3,

CeM(f) = EM(f) - COM(f) + CO(f)
is a function in Ic (M(Fs)) whose orbital integral at any 7 E M(Fs) n Greg
equals CM(7Y, f). But it follows inductively from [l(g), Lemma 4.4] that
CE(Y, f) vanishes ifX = HM(y) lies outside a compact set. Since eM(f, 7r, X)
equals the integral of the normalized character of Ir against eM(7, f),
this function also vanishes if X is large. Therefore, CeM(f) belongs to

I(M(Fs)). The second assertion of the corollary follows from [l(g), Corol-
lary 5.3], as we saw above in the special case that S consists of one Archime-
dean prime. I
As we noted in §13, eM extends to a map from 7(G(A))° to Iac(M(A)).

In [l(f), §11] we introduced a space of moderate functions, which lies be-
tween I(M(A)) and Iac(M(A)). (See also the appendix to [l(h)].) There
is no need to repeat the definition here. Let us say only that for a function
X E Zac(M(A)) to be moderate it must satisfy a weak growth condition
and an equally weak support condition.

COROLLARY 14.3: For each f E 7i(G(A))°, eM(f) is a moderate function.
Proof. We can assume that f is of the form [IL f,. By (13.3*),

EM(f) = E M,v(f) + dofM,
V

where do is a constant and

EM,v(f) = EM(f() rI fw,M
w v
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Almost all the functions eM,,(f) vanish. The function fM belongs to
I(M(A)), and is certainly moderate. It is therefore enough to fix a val-
uation v and prove that for a fixed function f E 17(G(F,))0, eM(f) is a

moderate function in Iac(M(Fv)).
There are two conditions to check. They must be established for any

function

X1- EM(f, M, X)e-A(X) dA,
fMl,vliaM,v

in which M1 is is a Levi subset ofM over Fv, 7r belongs to nt+mp(Mi(Fv)),
and X1 is a point in aMi,v whose projection onto aM,V equals X. If M1 C
M, the formula (13.2*) implies that the function is compactly supported. If
M1 = M, Corollary 14.2 asserts that the function belongs to the Schwartz
space. In each case, the required growth and support conditions hold. I

Finally, we shall show that EM behaves nicely under multipliers. Let D1 be
the orthogonal complement of aG in the space I defined in §9. Multipliers
are attached to elements a in £(t1)W, the convolution algebra of compactly
supported, W-invariant distributions on D1. Recall that there is an action
f -+ fa of the algebra £E(1)W on W(G(A)) such that

Zp(7, fa) = &(Vr)Zp(l, f), r E II+(M(A)).
There is also a compatible action 4 -* q of £(41)w on Iac(M(A)) which
for any ir E nIImp(M(A)) and X E aM is given by

,a(r, X) = j (r, Y) J/ a(v + p)e-(X-y) dp dY.

Thereader can check that there is a natural map a a from to
The reader can check that there is a natural map a cc1 from £(41)w to

(1fln 4t)w' such that

(fa)' = fa, f E 'H(G(A)).
COROLLARY 14.4.: eM(f,) = EM(f)a, f E l(G(A))°, a E.£(1)w.
Proof. Let us fix a function

fo= Ii fvef(G(F)),
v finite

with the property that for any foo E 7(G(Fo)), the function f = foofo
belongs to 7t(G(A))0. We shall vary foo. Suppose that 7r = rtoo 0 ro is a

representation in II+mp(M(A)). Using the differential equations (14.2), we
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can argue as above to show that if

EM(f,T) = M(f, , X)dX,
M

then
EM(f, 7r) = c(rT, fo) tr(p(roo, f.)),

where P E P(M) and c(r, fo) is a scalar which is independent of fo. It
follows that for any a E £E(l1)w,

£M(fa, I) = c(r, fo)tr(p( , (foo)a))
= &(v )c(7r, fo) tr(Zp(T0oo, foo))
= 6(^r)cM(f, ~).

We obtain

M(fa, 7, X)= a CM(fa, r)e-(X) dA

= eM(fa, ir,Y) &(v +L)e-(X-Y) ddY,

as required. I
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15. Separation by infinitesimal character

We can now apply the map EM to the formula for IE (f)- I(f) in Lemma
13.1. Let us define J(G(A), M)° to be the space of functions f in

l((G(A), M) n 7(G(A))°
which satisfy one additional condition. We ask that f vanish at any element
in G(A) whose component at each finite place v belongs to AG(F,). This
last condition is of course vacuous unless £ = 1. Combined with the earlier
definition of 1t(G(A))°, it is designed to ensure that the orbital integrals
of f vanish at any element

7 = eU,' E AG(F), u E UG(F).
Notice that f may be modified at the Archimedean places, and the function
will still remain in l7(G(A), M)°.
LEMMA 15.1.: Suppose that f belongs to 7-(G(A),M)°. Then

I(f)- I(f) = IW(aM)lI-iM(eM(f)),
where IM is of course the analogue for M of I.

Proof. Consider the formula for I (f)- I(f) provided by Lemma 13.1. The
conditions on f imply that the second term in the formula vanishes. By
formula (13.1**), the first term equals

IW(aM)l-1 aM(s, Y)iMM(O, EM(f)),
-yE(M(F))M,s

where S is a large finite set of valuations. Now eM(f) is a function in
Iac(M(A)) which is cuspidal at two places. In other words, eM(f) is a

finite sum of functions I,, jv in ac,(M(A)) such that for two unramified
places v1 and v2, and any M1 C M,

vi,M, = O, i = 1,2.

This follows from (13.2*, (13.3) and the fact that f belongs to tH(G(A),M
Applying (3.4) to M, we find that

I'M (7, eM()) = 0, E Mi(F),
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for any such M1. It follows from (5.1), applied to M, that

E aM(S, r)IM(, EM(f))
YE(M(F))M,s

= E iWfTMW I-1 E aM(s,7)IM(7'M(.))
M1EIM YE(M1(F))M1,s

= iM(EM()).
The lemma follows. I
We fix the function f in 1L(G(A), M)°. Combined with the expansions
-I= St If and I = St It, Lemma 15.1 yields the formula

(15.1) E (If(f)-It(f)- IW(aM)'-1(eM(f))) = 0.
t>O

We are going to apply the spectral expansions of the distributions on the
left. We will then try to deduce what remains of Theorem B. As we re-
marked in §9, however, our control over the convergence is very weak. In
this section we shall simply isolate the terms in (15.1) according to their
Archimedean infinitesimal character.
We shall use an argument based on multipliers. Associated to the real

Lie group G°(Foo)1, we have the real vector space '1, defined in §14. It is
convenient to work with a subset of the complex dual space bc/a c of b1
which contains the infinitesimal character of any unitary representation of
G°(Foo)1. Let t* denote the set of points v in tC/iaG such that P = -sv

for some element s E W of order 2. Here i denotes the conjugation on tD
relative to r*. The Archimedean infinitesimal character v, associated to
any ir E H+nit(G(A)1) belongs to the subset

(w4)* = B* n (D' n BU)c
of ft. It is clear that for any nonnegative numbers r and T, the set

t,(r,T) = {v E b: 'Re (v)I < r, IIImvII > T}

is invariant under W. (An element v E j is just a coset of iaG in bc, but
Ijvjj is understood to be the minimum value of the norm on the coset.) The
multipliers enter through an estimate from [l(h)]. The result pertains to
functions X E Iac(G(A)) which are moderate in the sense described at the
end of the last section. Suppose that q is a given moderate function. Then
Corollary 6.3 of [l(h)] provides positive constants C, k, and r such that for
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any T > 0 and any a E CN(l1)W, with N > 0, the inequality

(15.2) E It(,a)I < Ce N sup (&(v)|),
t>T

holds.
We return to our original function f E.i(G(A), M)°. It follows easily

from the definitions that if a E £(bl)w, the function fa also belongs to
1(G(A), M)°. In particular, fa satisfies (15.1). Therefore, for any T > 0,
the expression

(15.3) S (f( ) - It(fa) IW(aM)l tM(eM(fa)))
t<T

is bounded by

E It(fcl)l + IIt (fa)l + IW(aM)II-t(EM(fa))I) .

t>T

We can write
It(fce) =f(fG,),

If(fer) = It((f) ) = ft(a)
and

cM(fa) = M(f)a,
by Corollary 14.4. Consequently, (15.3) is bounded by

E ItG(fG,a)I +E jG'(fa',) + IW(aM)I- E I(M(cM(f)a)j.)
t>T t>T t>T

The functions fG E I(G(A)) and f' E I(G'(A)) are of course both mod-
erate, and by Corollary 14.3, the same is true of the function eM(f) E
Iac(M(A)). We can therefore apply the estimate (15.2) to these three dif-
ferent functions. Observe that (b') (r,T), the set defined above but with
G replaced by G', is actually contained in j,(r,T). It follows that there
are positive constants C, k, and r such that for any a E CN([l1)W, with
N > 0, and for any T > 0, the expression (15.3) is bounded by
(15.4) CekN sup (I&(cv)).

.E ;(r,T)
Let il be an arbitrary but fixed point in Ib. Enlarging the constant r in

(15.4) if necessary, we may assume that v1 belongs to the cylinder
(r) = r 0).
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LEMMA 15.2.: There is a function al E C,0°°(1)W such that a^ maps [uj(r)
to the unit interval, and such that the inverse image of 1 under &l is the
finite set

W(v1) = {s : S E W}.

Proof. Consider the space of functions

v (j , aECC oo(t)W,
on t,. It is clear from the definition of 4* that the real and imaginary
parts of any such function also belong to the space. We can therefore find a
function ao E Cc (41)w, with &o(vl) # 0, such that &o is real valued on b,.
Let po = 1, pi,... , Pm be a set of generators of the algebra of W-invariant
polynomials on C/a,c. We can assume that each Pi is real valued on 4.
Since &o is rapidly decreasing at infinity on ,(r), the function

(V) = (Po0(V)o0(),...,Pm(()aO(^))
maps b*,(r)continuously to a compact rectangle [a, b]m+l in Rm+l. Set

S = (SO, ,... ,Sm) = (Yl1).
Then

l-({s}) = W(vi).
For each i, let

qi: [a, b] - [0, 1]
be a real polynomial such thatq-I1({1}) equals {si}. Since so f 0, we can
assume that go has no constant term. Consequently

m

a(v) = Inqi(Pi(v)&o(v))
i=O

is the Fourier-Laplace transform of a function al E C' ([1)W. It clearly
satisfies the requirements of the lemma. I

Fix a1 as in the last lemma. Then ai belongs to CjN (f1)w for some
N1 > 0. If r and k are as in (15.4), choose T > 0 so that

&1(v)| < e-2kNl
for all v E b (r, T). This is certainly possible, since &I is rapidly decreasing
on 4*(r). For each positive integer m, define

aCm = Q**' **al.

m
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Then am belongs to CmN([l)1) and

amn(/) = C1 ()m.
Taking a = am above, we see that the expression

(15.5) E (IT(fa,) - It(fa,)- IW(aM)L-lIM(eM(f)am))
t<T

is bounded in absolute value by
Ce-kNm.

Consequently, (15.5) approaches 0 as m approaches oo. This assertion is
a signficant improvement over the formula (15.1). For the sum in (15.5)
can be taken over a finite set which is independent of m. This will allow
us to take the expansions of the terms in (15.5) and study the limit as m

approaches oo.
Apply Lemma 12.3 to the function fai. Since

tr r((fa),))= tr (r(fl))al(v^)m,
we see that

ZE (It(fai) - It(fam))
t<T

equals

(15-6) (a'.,,,~~~~~~~.(15.6)~di) - adisc(lr))tr(7r(fl))&al(vr)
t<T wEn+(G(A)l,t)

Next, we expand ItM(eM(f)a,,). The function eM(f)a, is a finite sum of
functions which are cuspidal at two places. It follows from Theorem 7.1(a)
of [l(h)] that

t (EM(f)ajm) disc(TOr)ZM(Tr, M( )a )
ElIEndic(M,t)

We require a lemma.

LEMMA 15.3.: Suppose that X E I+nit(M(A)1). Then there is a Schwartz
function

A -- eM(fl,A), A E iaM/iaG,
on ia*/iaG such that for any a e C,0°°(l)W,

m(r, M(/)a) = -/E(f1r,A, A)&(v + A) d.
^MIla~
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Proof. As a function in Iac(M(A)), EM(f)a is a priori defined only on

Itemp(M(A)) x aM, but it may be naturally extended to a function on

II+(M(A)) x aM. (This is a reflection of the fact that a function in
h7ac(M(A)) is compactly supported on any set M(A)X, and can there-
fore be integrated against a nontempered character.) Identify ir with an
orbit {lrA} of iaM in II+nit(M(A)). By definition, IMM(r,eM(f)a) is the
value of eM(f)a at (Irx, 0). It follows from the formula (6.1) of [l(h)] that

im O(. EM()a)= |/a EM(f, TA,Y)aM(7rA,-Y) dY,
M

for any A, where

aM(X7r>,-Y) = / (v( + A +i)e(Y)dp.
iaM/ia*

This last expression is compactly supported as a function of Y E aM, so
the integral over aM above converges. Our lemma will follow from Fourier
inversion if we can show that

EM(f, ,X), X E aM,

is a Schwartz function on aM. This is actually a sensitive point. What
saves us is the unitarity of ir.
We can assume that f is of the form [v fv. By (13.3*),

EM(f) = eM,v(f) + dofM,

where do is a constant and

EM,v(f) = EM(fv) I fw,M.
w.v

Since
fM (XA+,),+ E iaM,

is a Schwartz function of y,

fM(7rA,X)= fM(i7r\A+)e-'(X) dp, X aM,
laM

is a Schwartz function of X. This leaves the functions eM,,(f). Almost all
of them vanish, so we have only to show that for a fixed v, eM,v(f, Irx, X)
is a Schwartz function.

Fix A, and write

7Tr = rTv ( T , v II+ni(M())
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where
= ()Tw,, Tw E II+ it(M(Fw)).

wOv
Then

EM,V (f, rX) = E A(v, Pv)EM, (f, PV ®T ,X),
peE+(M(F,))

where, as we recall,

tr(r) = A(r,pv)tr(pv)
peE+(M(F,))

is the decomposition of vr into standard representations. The unitarity of
T,V implies that any Pv with A(rv,pv) $ 0 is either tempered or induced
from a proper parabolic subset. If Pv is properly induced, it follows easily
from (13.2*) that

EM,v(f,Pv ® r',X) = eM,Ml(V) I fM((pv ® rv),e-(X)d,
ial

for some proper Levi subset M1 C M. This is a Schwartz function of
X E aM. On the other hand, suppose that pv is tempered. Then Corollary
14.2 insures that eM(fv,Pv,Xv) is a Schwartz function of X, E aM,V. It
follows easily that EM,v (f, Pv 0 T7",X) is a Schwartz function of X E aM.
We have thus established that eM,v(f, rx,X) is a Schwartz function. The
lemma follows. I

Apply the lemma to the formula for iM(EM(f),a) above. We see that

_ IW(aM)li (eM(f)m.)
t<T

equals
(15.7)

IW(aM)I adisc() / e(f1,r, A)&(v. + A) dA.
t<T IrEnrdic(M,t) iM/iaa

We have shown that (15.5) equals the difference between (15.6) and
(15.7). Consequently, this difference approaches 0 as m approaches oo.
In each of the expressions (15.6) and (15.7), the sums over t and 7r are
finite. We first apply the dominated convergence theorem to (15.7). Since
eM(f1,r,,A) is a Schwartz function on iaM/ia*, and

(15.8) 0< &l(v,+ A) < 1,
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except possibly at a finite number of A, we see that the expression (15.7)
approaches 0 as m approaches oo. The same is therefore true of (15.6). We
next consider the terms in (15.6). If r does not belong to the set

II+(G(A)') = {ir E II+(G(A)1): vr E W(Vi)},
the inequality (15.8) holds. Consequently, the corresponding term in (15.6)
approaches 0 as m approaches oo. On the other hand, if 7r belongs to
II (G(A)'), the term simply equals

(aisc(r) - adisc(7)) tr 7(f ).
We can certainly assume that IIIm(vi)11 < T. This insures that all such
terms will be included in (15.6). Letting m approach oo, we obtain the
following important result.

LEMMA 15.4.: For each f E Wi(G(A), M)° and v1 E t*, we have

(adisc() - adisc(7r)) tr (fl) = 0.
,rn+ (G(A) )
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16. Elimination of restrictions on f
With Lemma 15.4 we have reached a watershed. For certain functions f

we will be able to prove the equality of IE(f) and I(f). However, for this
to be effective, we must first extend the formula of Lemma 15.4 to a larger
class of functions.
As in the last section, let v1 be an arbitrary but fixed point in [. Let

K1= ]n K1,v
v finite

be an open compact subgroup of GO(Afin). (We are writing Afin for the
finite adeles.) We shall write II+ KL(G(A)l) for the set of representations
?r E I+(G(A)l) such that v, E W(v1), and such that ir contains a K1-
fixed vector. By Lemma 4.2 of [l(h)], there are only finitely many Xr E
nI ,K(G(A)l) such that adisc(r) # 0. Now

a c(-r)= j-dim(AG) Z aG'8(r)6(, r).discW ^-" E adisc r

rEn(G'(A)i)

Using Corollary 8.3, one sees easily that there is an open compact sub-
group K1 of G'(Afin) such that if 6(r, vr) $ 0 for some 7r E I+1,K(G(A)1),
then r belongs to HI+ K (G(A)'). But there are only finitely many r E

II+ K,(G(A)') with adis(r) $ 0, by Lemma 4.2 of [l(h)] again. Conse-
quently, there are only finitely ym r E II+K1 (G(A)1) with atiSC(r) $ 0.

Write 7(G(A), M)K1 for the subspace of functions in 7I(G(A), M) which
are bi-invariant under K1, and set

J(G(A), M)%1 =-H(G(A), M)K, n '(G(A), M)°.
Then Lemma 15.4 tells us that

E (a'isc(Tr) - adisc(r)) tr 7r(f1) = 0,
·rEn+,,l (G(A)i)

for any f E 7-/(G(A), M)1 . The sum can be taken over a finite set which
depends only on (v1, K1). We can write

trr(f) = E A(7r,p)trp(fl),
pE +1,K (G(A)')
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where E+V K1(G(A)1) is the set of representations p E E+(G(A)1) such
that vp E W(vi) and such that p contains a Kl-fixed vector. Then

(16.1) E A(p)trp(f1) = 0, f Et(G(A),M),K
PEl,KI(G(A)i)

where

(16.2) A(p) = (aisc(r) - adisc(r))A(7r, p).
rEnl+ (G(A)')

Our goal in this section is to show that (16.1) holds if f belongs to

7i(G(A),M)K1, rather than just i/(G(A),M)O . In so doing we may as-

sume that e = 1, since the two spaces are otherwise equal. Then G = G°,
and G is the group of units of a central simple algebra. We shall use an
approximation argument. Let v be a fixed valuation from the exceptional
set SG, and write K = KIl,. Then 7t(G(Fv))° is the space of compactly
supported functions fv on G(Fv) which are hi-invariant under KI and such
that

IG(U, fv) = 0

for any J E AG(Fv) and any element u 5 1 in UG(FV). Write AV for the
ring of adeles which are 0 at v.
LEMMA 16.1.: Suppose that fv is a smooth, compactly supported function
on G(AV) such that (16.1) holds for any function f = fVfv with fv,
H(G(FV))°. Then (16.1) also holds for f = fvf, with f, E 7I(G(F,)).
Proof. Let C be a fixed finite subset of the lattice

aG,v = {HG(X) : x E G(F)}.
We shall simply write/, for the subspace of functions in7i(G(F,)), which
are supported on

{ E G(Fv) :HG() E C},
and we shall write

o = Xv nH (G(F,))°.
Let I be the finite set of pairs i = (d, u), in which 5 ranges over the elements
in AG(F,)/AG(Fv) n K such that HG(~) belongs to C, and u ranges over

the nontrivial unipotent conjugacy classes in G(Fv). Set Ji = IG(~u). Then
{Ji : i E I} is a linearly independent set of linear forms on Xiv whose kernel
is t'H. Choose elements {fi : j E I} in 7/v such that

J(fr=-{o' iijJiUV , i-j.
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Then

Af - = -=Ji(fu)f/, fv e V,
iEl

is a projection of 7v' onto '7°. By assumption,

A(p)trp(fv7) = O, fv E Wv.
p

We therefore obtain

(16.3) A(p) trp(fvfv) = E i'Ji(fv), fv E 7v,
P i

where
/' = EA(p) tr p(f ft).

P

We must show that each side of (16.3) vanishes.
There are only finitely many pairs (L, o), in which L is a group in £v

and o is an orbit of the compact group

iaL, = i(al/Hom(aL,v,Z))
in IIdisc(L(Fv)),. (Here IIdisc(L(Fv)), denotes the set of representations
in IItemp(L(Fv)) which are square integrable modulo the center and which
contain a c fn L(Fv)-fixed vector.) For any such orbit, let Wo be the sta-
bilizer of o in W(aL). Let ES be the set of p E E+ K1(G(A)1) which are
restrictions to G(A)1 of representations of the form

P 8®Zp(af),
with pv E E+K1 (G(At)), P E P(L), a E o, and p Eac. The point a, in
o x a* is uniquely determined as a Wo-orbit, modulo translation by iaG v

in o. We shall write Xp = A,. It is clear that two sets So and ESo are
either equal or disjoint, depending on whether o and o' are Wo-conjugate
or not. It is also clear that E+ K1 (G(A)1) is a union of sets Eo. It will
therefore be enough to show that for each o, and fv E 7v, the number

(16.4) E A(p)tr p(fvf,)
PEEo

vanishes.
We shall fix (L, o) and the function fv E l-v. Let Zo be the space of

functions
: o C

which satisfy the following three conditions.
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(i) For each a E o, (aoA) is a finite Fourier series in A E iaL, .
(ii) q(wa) = (a), u E o, w E Wo.
(iii) q(uA) = +(a), A E iaGv.
Notice that the second and third conditions insure that the number )(Xp)
are well defined. For each 4 E Io there is a function f E X7V such that the
number

tr p(fRf), pE +,K1 (G(A)1),
is zero unless p belongs to Eo, in which case

trp(fvfv) = tr p(fvfv)q(Xp).
The existence of f: follows from the trace Paley-Wiener theorem for G(F,)
([6]). We replace fv by f, in (16.3). The left hand side becomes

E CpO(XP),
PE o,

where

P = A(p) tr p(ffv).
To evaluate the right hand side, we use the fact that every unipotent class
in G(Fv) is induced. For any u E (UG(F,)) there is a Wo-orbit C(u) in Cv
such that for each L1 E C2(u) and Q E P(L1), u n NQ is dense in NQ. If
i = (,U),

JM(fO) = jB,(oa)(a)da,-o
where Bi is a smooth function on o. More precisely,

Bi(a) = Xo( )-lp (a) tr(Ip(a, fv)), P E P(L),
where X<(i)is the central character of aat, and p (a) vanishes unless L
is contained in an element L1 E C(u), in which case p./(a) is the Plancherel
density associated to the Levi subgroup L of L1. Notice that since u $ 1,
Bi(a) = 0 if L equals G. The equation (16.3) becomes

(16.5) 5 cP (X,) = (a) (7)da,
pEr.

where

B(a)=sfcBi (a),

a smooth function on o which vanishes if L = G.
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Our final step is to show that each side of (16.5) is zero. This is almost
obvious. We can assume that L 5 G, so that

01 = o/ia* v

is a compact torus of positive dimension. On the right hand side of (16.5)
we have a distribution on ol which is a smooth function, and on the left we
have a finite sum of point distributions on the complexification of ol. Since
the points {Xp} are only defined as W0-orbits anyway, and B is symmetric
under W0, we do not even need to assume that d is symmetric under W0.
It can be any finite Fourier series on ol. Its Fourier transform can be any
compactly supported function on the dual lattice. Consider the Fourier
transform of each side of (16.5) as a distribution on the dual lattice. The
left hand side is a finite sum of exponentials, while the right hand side is a

rapidly decreasing function. It is clear from this that each side vanishes.
Having shown that each side of (16.5) is zero, we take q = 1. We obtain

E CP = 0.
PEEo

The expression on the left is just (16.4), so the proof of the lemma is
complete. I

We apply the lemma to each place in SG. It follows inductively that (16.1)
holds for any function in 7(G(A), M)Kl which vanishes on G(Fo)AG(Afin
It is easy to remove this last restriction. For we are free to modify an
arbitrary function f E 71(G(A), M)K1 outside a finite set S of valuations.
Choose any unramified place w outside of S such that Kl, equals K,,,
the standard maximal compact subgroup. Let h be a variable function in
7i(G(Fw))K., and evaluate the left hand side of (16.1) on the function

fh(x) = f(x)h(x), x E G(A).
The expression vanishes if h is zero on AG(Fw), so as a linear form in h
it may be expressed in terms of the Plancherel density. On one hand, the
Plancherel density is a continuous function on the unramified representa-
tions in IItemp(G(F)), while on the other hand, the sum in (16.1) may be
taken over a finite set. It follows that the linear form vanishes on any h.
Therefore, (16.1) holds for any function f E 't(G(A), M)K1.
We return to the case that i is arbitrary. It is best to translate (16.1) back

into a sum over irreducible representations. Given f E W(G(A), M)K,, we
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substitute (16.2) back into (16.1). We obtain

(16.6) E (a'isc(r) adisc(r)) tr 7r(f1) = 0.
rEH+n.(G(A)')

If ir belongs to the complement of II+ KV(G(A)1) in II^(G(A)1), tr7r(f1)
equals 0, so we can certainly take the sum over the larger set. But any
function in 'H(G(A), M) belongs to H(G(A), M)K1 for some K1. It follows
that
(16.7)

E (aic(r) - adisc(Tr))tr 7r(f1) = 0, f E '(G(A),M).
irEn+l (G(A)')

PROPOSITION 16.2.: For any f E 7i(G(A),M), we have

I(f) = I(f).
Proof. Let t be any nonnegative real number. Then for any f E 7'(G(A) M)

It(f) - It(f) = (aisc() - adisc(r)) trr(f1) = 0,
{V :||Imvl||=t} EnE+ (G(A)i)

by Lemma 12.3 and (16.7). We therefore obtain

IP(f) = Ift(f) = ZIt(f)= I(f),
t t

as required. |
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17. Completion of the proofs of Theorems A and B

Having established Proposition 16.2, we shall return to the geometric
sides of the trace formulas. We are at last ready to deduce the equality of
IJ'(7) and IM(7).
Suppose that f E 7/(G(A), M). Then by Lemma 13.1 and Proposition

16.2, the sum of the expressions

(17.1) IW(aM)L-1 E aM(S,y)(IM(7 f)- IM(7, f))
7E(M(F))M,S

and

(17.2) E E (aE(S,u)-a(S,u))IG(Ju,f)
E Aa(F) uE(UG(F))a,s

vanishes. As usual, S D Sram is a large finite set of valuations depending
only on supp (f) and V(f), and the sums in (17.1) and (17.2) can each be
taken over finite sets that also depend only on supp (f) and V(f).
We can assume that S is the disjoint union of a given finite set So D Sram

with further sets
Si = {v}i, 1 < i < k,

where vl and v2 are fixed valuations at which G splits, and {(3,... , vk} is
a large additional finite set of unramified places. If

k

f = ifi, fi E (G(Fsi)),
i=O

it follows inductively from (5.6) that

(17.3) I(7, f)- IM(7, f) = E(I' /, fi)- IM(7, fi))IfM(7,j,M),
i=0jOi

for any element y E M(F). We shall take 7 to be a regular element in
M(F) which is elliptic at vi and v2. This means that the torus M7/AM
is anisotropic over v1 and v2. We shall use vl and v2 to isolate the con-
tributions from 7 to (17.1). Indeed, for i = 1,2, we can choose fi to be
supported on a very small neighborhood of 7 in G(Fsi), and so that

M (7,. i,M) = IG(7,fi) = 1.

Then fi will be supported on the Fv,-elliptic set in M, and the function
f above will belong to 7H(G(Fs),M). Apply the splitting formula (17.3)
to the terms in (17.1). Shrinking the functions fi and f2 around 7 does
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not increase the support of f or the set V(f). Therefore, the set S may be
chosen independently of fl and f2, and the sums in (17.1) and (17.2) may
be taken over fixed finite sets. It is thus clear that fi and f2 may be chosen
so that (17.2) vanishes and so that the only contributions to (17.1) come
from conjugates of 7. But

I(w7w-1,f) IM(WW-, f) = I(7f)IM(,) f), w E W(aM),
so we actually need consider only the summand in (17.1) corresponding
to y. Moreover, y is semisimple, so if S is large enough (in a sense that
depends only on y), we have

aM(S,) = vol(M,(F)\M,(A)l),
by Theorem 8.2 of [l(d)]. In particular, this constant is not zero. It follows
that

k

(17.4) IM(T i) - I(7, fi)) II ( M) = O
i=O j i

for y, fi and f2 as above.
Suppose now that V is any finite set of valuations of F which either

contains Sram or consists of one unramified valuation v. We can obviously
arrange that V equals one of the sets Si above, with i 1,2. Choose an
element a E M(F) as in (17.4), and let fv be an arbitrary function in
7H(G(Fv)). We suppose first that

IM(7, fVM) = IG(7, f) = 0.

Then the only contribution to (17.4) will be the summand corresponding
to V = Si. For the sets Sj other than S1, S2 and Si, choose fj to by any
function such that

M(T fj,M) O.
The left-hand side of (17.4) becomes a nonzero multiple of

Im (Y, fv) - IM(7,fv).
We conclude that this distribution vanishes for any fv whose orbital inte-
gral vanishes at y. It follows that there is a constant eM(7) such that

(17.5) I (7, fv) - IM(7, fv) = eM(7)IG(7, fv),
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for any function fv E 7'(G(Fv)). Let V+ be the union of V with the
valuations vl and v2 above. Write Uv+(M) for the set of elements

IJ YV,7v EM(Fv,) nGreg
vEV+

such that for i = 1,2, ,vi is Fv,-elliptic in M(Fv,). Then UV+(M) is open
in

M(Fv+)= IJ M(Fv).
vEV+

The set M(F) is dense in M(Fv+), so the intersection of M(F) with
UV+(M) is dense in UV+(M). It follows that we can approximate any
G-regular element yv E M(Fv) by elements 7 which occur in (17.5). Since
I (^v, fv), IM(v, fv) and IG(7v,fv) are smooth on M(Fv) n Greg, we

see that CM extends to a smooth function on this space, and that

(17.6)
IM(7, fv) - IM(7V, fv) = EM(YV)IG(7, fv), Yv E M(Fv) n Greg.
We want to show that EM(YV) = 0.

Consider first the case that V consists of one unramified valuation v.
Take fv = fv to be the characteristic function of Kv > 0. Then by Lemma
4.3, the left hand side of (17.6) vanishes. On the other hand, if 7v belongs
to Kv >x 0, the orbital integral IG(y,, f,) does not vanish. It follows that
eM(7v) = 0 for any such ,,. Suppose in addition to being unramified, that
G splits completely at v. Then by Lemma 4.2, the left hand side of (17.6)
vanishes if f, is any IfK-bi-invariant function in 7H(G(Fv)). For a given 7v
we can always choose such an fv so that IG(v, fv) $ 0. It follows that
M(yv) = 0 in this case for all ,.
Now take V = So to be any arbitrary finite set which contains Sram, and

let
k

S= U Si S U {l,... ,Vk}
i=O

as at the beginning of the argument. Choose 7 E M(F) as in (17.4), and let
yi be the image of 7 in M(Fs,). We then substitute the formula (17.6) (with
V replaced by Si) into (17.4). Choosing the functions fi appropriately, we
find that

k

EM(Ti) = o0.
i=O

We are free to drop any of the terms in this sum corresponding to unramified
valuations at which 7 is integral. This means that we can take 7 to be any
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G-regular element in M(F) which is elliptic at vl and v2, and which is
integral outside S. Suppose that G splits completely at each of the places
v1,... ,vk . Then

M(7i) = 0, 1 < i < k.

It follows that

eM(YO) = 0

for any such 7. But as long as k is large enough, the set of elements
7 E M(F) which are integral outside of S, and which are elliptic at vl and
v2, projects onto a dense subset of M(Fso) = M(Fv). It follows that

EM(YV) = 0, 7v E M(Fv) n Greg.
We have thus established the formula

IM(7,f) = IM(7, f), f E 7(G(Fv)),
where V is any finite set of valuations which contains Sram, and 7 is a

G-regular element in M(Fv). It then follows from Lemma 3.6 that the
formula holds for any element 7 E M(Fv). So we have finally finished the
induction argument begun in §13, where we first fixed M. In other words,
the formula holds for any M E £. This completes the proof of the local
assertion (i) of Theorem A.
We agreed that the global assertion (ii) of Theorem A was a consequence

of the induction hypothesis of §5 unless M = G and

7 = , E AG(F), uE (UG(F))G,S,
for any large finite set S. To deal with this last case, we go back to the
discussion at the beginning of this paragraph, with M a minimal element
in £. Then W(G(A), M) equals 7H(G(A)). Since we have established the
local assertion of Theorem A, the expression (17.1) vanishes. Therefore so
does (17.2). Now G is such that (UG(F))G,S equals (UG(F)), the set of
unipotent classes in G defined over F. It follows that

E: A (a6(S, u)-a(S, u))IG(U, ) = 0,
EEAo(F) UE(UG(F))

for each f E 7I(G(A)). Fix an arbitrary element u1 E (UG(F)), and choose
f E i(G(A)) such that

IG(,U,) = 1, if (,u) = (1,ul),
I(0, otherwise.
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We then see that aC(S, u) equals a(S, ul). This finishes the remaining
case of the global assertion (ii) of Theorem A. The proof of the theorem is
therefore complete. I
We proved the local assertion (i) of Theorem B in §10. The induction

hypothesis of §9 reduces the global assertion (ii) of Theorem B to proving
the equality of adi8(fr) and adi8(7r), for ir E II(G(A)1). Any such Ir belongs
to a set II+,l K(G(A)l) so we shall fix vi and K1. Since we have now
established Theorem A, we are at liberty to apply (16.6) with any M E
,£. Taking M to be minimal, and then noting that Ji(G(A),M)K1 equals
l(G(A))K,, we obtain

E (ad'isc(r) adisc(r)) tr 7r(fl) = 0, f E l'(G(A))K.
,n+1 Kl(G(A)l)

The sum may be taken over a finite set. However, the set of linear forms

f -- trr(f'), f E 'H(G(A))K,,
parametrized by II^+ K(G(A)1), is linearly independent. This follows from
the linear independence of Archimedean characters, and the non-Archime-
dean trace Paley-Wiener theorem ([6], [33(c)]). It follows that

adisc()- adisc(X) =0, r E n+,l(G(A)')
This completes the proof of Theorem B. I

It is of course the global assertion (ii) of Theorem B which is relevant to
the comparison of automorphic representations. It tells us that

adisr) = aGsc(7r), 7r E ln+(G(A)1).
Recall that Idisc,t(f) is the linear combination of characters on G(A)' given
explicitly by the expression (9.2). Then

Idisc,t(f) = E adGsc(r)IG(7r f)
irEn+(G(A)l,t)

-= E Ŵr)radisc(7rIG ).
7rEH+(G(A)l,t)

It follows easily from the definition (9.4) and the trivial case (M = G) of
Lemma 12.1 that this last expression equals

E adiscI(r )'(r,
rEn(G'(A),t)
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This in turn is just equal to Idisc,t(f')- Theorem B therefore provides an
identity
(17.7) Idisc,t(f) = disc,t(f )
between the "discrete parts" of the trace formulas of G and G'.

Instead of using characters on G(A)1 it is sometimes more convenient
to deal with characters on G(A) which are equivariant with respect to a

subgroup of the center. For example, we could take

AG,oo = AG (R)°,
where GQ is obtained from G by restricting scalars from F to Q, and AGQ
is the corresponding Q-split component of the center. Then AG,oo is a

subgroup of ivesoo AG(Fv). The map
HG : AG,oo -+ aG

is an isomorphism, which we use to pull back the Haar measure on aG to a
Haar measure on AG,oo- If p belongs to ia*, define

disc,t,(f)-I=disc,t(fa)e(HG(a))da,
G,oo

where
fa(X) = f(ax), x E G(A), a E AG,,.

This serves to transform the characters on G(A)1 which occur in Idisc,t
to p-equivariant characters on G(A). We can of course repeat the same
construction for G'(A). Since

(fa)= f ,

eh(HG(a))= e (Hl(a'))
and

da' = eda,
we obtain

(17.8) £Idisc,t,.(f) Idisc,t,(fl)
from the identity (17.7).
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Base Change

1. Weak and strong base change: definitions

In this chapter E/F will denote a cyclic extension of degree 1 of number
fields. We write v for the places of F, w for the places of E; other notations
are as in Chapter I. In particular, A = AF, AE = A 0 E, and G again
stands for GL(n).

If ir is an automorphic representation of G(A), we have X = 0 rv where
v

xrv is unramified for almost all v.
For any finite prime v unramified in E, we have the base change homo-

morphism b : HEV --+ F, (cf. §I.5; we use the notation there). By duality,
to an unramified representation xr,, we may associate an unramified repre-
sentation 11- = 0 nII of G(EV) = H G(Ew).

wlv wlv
In terms of Hecke eigenvalues (cf. e.g. §6.3) the correspondence is de-

scribed as follows: if f, is the residual degree of E above an unramified v,
then for any wlv:
(1.1) (t~,U )f' = tn,w.
DEFINITION 1.1.: Let ir, II denote automorphic representations of G(A),
G(AE) respectively. We say that II is a weak base change lift (to G(AE))
of r if the relation (1.1) is satisfied for almost all finite primes v, w.

This definition may be strengthened using the theory of local base change:
DEFINITION 1.2.: We say that II is a strong base change lift of xr if, for
any (finite or infinite) wjv, the component II is a base change lift of tr.

We will use Definition 1.2 only when the components of ir and II are
generic, so that, according to §I.6, base change is expressed by character
identities.
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2. Some results of Jacquet and Shalika

To extract the lifting results from the identity of traces obtained in Chap-
ter II, we will have to use deep facts about L-functions of pairs of represen-
tations proved by Jacquet and Shalika in [27(a),(b)]. We now review those
results.

Let F be a number field, A = AF. Assume ir, a are cuspidal automorphic
representations of GL(n, A) and GL(m, A) respectively. We will assume
that ir, a are unitary.

Let S be a finite set of primes such that ir, a are unramified outside S.
We form the L-function

LS(s,'ra) = I det(1-v ®t,,vqu3)-1.
vis

Here tv, and t,,, denote the Hecke matrices, considered as diagonal endo-
morphisms of Cn, Cm: their tensor product is an endomorphism of Cnm.t
We will use the following properties of these L-functions:

(2.1) The Euler product Ls is absolutely convergent for Res > 1. (cf.
[27(a), Thm. 5.3].)

(2.2) Let X be the set of s on the line Res = 1 such that 0r KS-' is
equivalent to &, the contragredient of a. (Thus X contains at most
one point.) Then the function Ls extends continuously to the line
Re s = 1 with X removed. Moreover, it does not vanish there.

(2.3) If so E X, the limit

lim (s - so)LS(s, r ® a)
Re >l1

exists and is finite and non-zero.
(cf. [27(b), Prop. 3.6]. The non-vanishing part of these results is due to

Shahidi [36(a)]).
More generally, suppose that Ir and a are cuspidal automorphic repre-

sentations of Levi components M C GL(n) and L C GL(m) of parabolic
subgroups. For almost all v we again have the conjugacy classes t,,v C
GL(n, C) and t,,v C GL(m, C). We then have the following consequence
of the facts above ([27(b), Theorem 4.4]).
(2.4) Suppose that m = n and that t,v- = ta,, for almost all v. Then the

pairs (M, r) and (L, a) are conjugate in GL(n).

tJacquet-Shalika write LS(s, X x a). We use the older ® because we will need the symbol
x for something else.



Base Change 201

3. Fibers of global base change
In this paragraph we prove a result which in essence describes the fibers

of the global base change correspondence; we will need to know it, however,
before proving the lifting results, and its statement has nothing to do with
base change. (Note that it has been used already in §I.6.) At this point we
do not assume I prime.
THEOREM 3.1.: Let 7r, ir' be cuspidal automorphic representations of G(A).
Assume that, for almost all v:

(t,)(,v= (t.,,v)f.
Then r' = r0 X, for some character X of F*N(A*)\A*.
Proof. Let q be a character of A* vanishing exactly on F*N(A*). We

compare the products H[ Ls(s, ir r ®i) and I LS(s, r r® i) where
i=l i=l

a denotes the contragredient of a.
If v is a finite place of F, the factor of the first product at v is equal to

the inverse of

I det(l tv 0 tV(q;)
i=l

with t, denoting the adjoint of t = tri,,, and (v = -(zv). We take S so

large that ElF is unramified for v 5 S. Then (v is a root of unity of order
fv. Consequently this product is equal to

det (1- tf' ® (t )ftq0fl)/f
which, by assumption, is equal to the corresponding term in the second
product. We have therefore

J L(s,7tx0 0i i) L (s, T 0 )
i=1 i=l

We may assume xr, 7r' unitary. By (2.2) and (2.3), the product on the right
has a pole at s = 1; so the product on the left must have one also, and
since its terms do not vanish on the line Re (s) = 1, we see using again the
results in §2 that tr' =-r 0 i' for some i. I
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4. Weak lifting
In this section we will prove the results concerning weak lifting. We

must first restrict the class of automorphic representations that we con-
sider: we have to do so because of our ignorance of the residual spectrum
of GL(n). Assuming the conjectural description of the discrete spectrum
given in [24(d)], our results could be extended to all the automorphic forms
appearing in the decomposition of L2(G(F)\G(A)).
DEFINITION 4.1.: We will say that the automorphic representation ·r of
G(A) is induced from cuspidal if there is a cuspidal unitary representation
a of M(A), where P = MN is an F-parabolic subgroup of G, such that

- = ind G(A) (a ® 1).M(A)N(A)
Note that ir is then unitary irreducible ([4]).
We now state in one theorem the main results concerning base change

for cyclic representations of prime degree.
We will denote by ir a representation of G(A), by II a representation of

G(AE). Let 77 be a character of A* vanishing exactly on F*N(A*). Assume
n = ab is a decomposition of n. If II (i = 1,... b) is an automorphic
representation of GL(a, A), we denote by II1 x .. x IIb the representation
of G(A) induced from the representation IIi 0... 0 IIb 0 1 of the parabolic
subgroup of type (a,... a). We will write "II lifts 7r" to say that II is a

weak lifting of ir in the sense of Definition 1.1.

THEOREM 4.2: (WEAK LIFTING). All representations are induced from
cuspidal; ElF is cyclic of prime degree 1.

(a) Assume 7ris cuspidal, ir .7r 0r0. Then there is a unique a-stable
representation II of G(AE) lifting 7r; II is cuspidal.

(b) Assume 7r- 7rl, 'r cuspidal. Then there is a cuspidal representation
Hi of GL(n/l, AE), with Hi j IIy, such that II = ll x x 1 is the
only lift of r.

(c) Assume ir is induced from cuspidal. Then there exists H, induced
from cuspidal, unique, lifting ir.

(d) Assume I is cuspidal, II I o a. Then there is ir cuspidal lifting to
H; all such ir are conjugate by tensor product by a power ofrl; they satisfy
7r X X 7.

(e) Write n = Im; let HII be a cuspidal representation of GL(m, AE),
HI1 HI. Then Hi x HI x.-x IIH = nH is a-stable and lifts some
cuspidal representation ir; ir is unique and 7rX- r ® r7.
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(f) Assume II is induced from cuspidal and a-stable. Then II lifts at least
one ir; ir is then induced from cuspidal.

Before starting the proof, we recall that at the end of Chapter II we
obtained an identity (17.8) of the discrete parts of the trace formulas for
G(AF) and G(AE) x a. Write F& for the subgroup of the Archimedean
ideles

nJFv
vES,

obtained by taking the diagonal image of the group of positive real numbers.
We shall regard F*o as a subgroup of the center of G(AF). Let p be
a unitary character of F~. Then IE = p o N is a unitary character of
E*. In the present context, (17.8) may be stated as the identity of the
expressions
(4.1)
EllWMI IWGI-1 E det(s- 1)a - tr(M(s, 0)pQ,t,,(0,f)),
M sEW(aM)reg

and
(4.2)

1E IWoM I IWc-1 E |det(s-l1)a|-ltr(M(s, O)opQ,tpB(O, )),
M aEW(aM)reg

in which t > 0, and q and f are functions on G(AE) and G(AF) which are
associated in the sense of §1.3. Here

PQ,t,W(O) = DpQ,(0)
is the representation of G(A) induced from the subspace of p-equivariant
automorphic forms on M(A) which decomposes as a direct sum of irre-
ducible representations ir such that the imaginary part of the Archimedean
infinitesimal character of 7r has norm t, while

PQ,/Ap(0) = E PQ,E (0)
VrE

is the analogous representation for G(AE).
We now begin the proof of Theorem 4.2. We start with (a). Assume that

r J xr 0 r/ is cuspidal. We must find II lifting 7r. We assume all statements
of Theorem 4.2 known up to n - 1. We consider the identity of (4.1) with
(4.2). Note that since the imaginary infinitesimal characters have fixed
norm, the expressions (4.1) and (4.2) each contain a fixed finite number of
terms as soon as the KF and KE types of f and q have been fixed.
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Let S be a finite set of places containing all ramified places of 'r. Then,
taking fv unramified for v 4 S, we may write (4.1) as

tr 7rS(fs)n fv (t,v) +...
v¢S

where (if the ramification of f is fixed) the remainder is a finite combina-
tion of independent characters of'H = )'H,. By (2.4), these characters

v¢S
are independent of the character f fv (t,,,) determined by ir. (One
needs to recall that any contribution to (4.1) from the noncuspidal dis-
crete spectrum ofM is obtained by induction from a cuspidal automorphic
representation of a proper Levi subgroup of M.)

Let 7s = 0 (3 70. We have the base change homomorphism b
v S wlv

7S -+ 'S (taking S so large that E/F is unramified outside S). If a

representation 7r' of G(A) yields the same character of 7sE as 7r, we must

have, by Theorem 3.1, ir' = Xr 0 r7i for some i. Thus, if fS = bqS, (4.1)
equals

[ trace (7rs ® )(fs) II boV (t,+) ...

ti uvs

the terms in the remainder being independent homomorphisms of b(7S ).
The term in square brackets is of the form E ni trace ri(fs), with ni > 0,
and can therefore be made 0 for some fs. The identity then shows that
there is a representation II of G(AE), occurring in (4.2), which is a weak
lift of Ir. We want to show that 1 is cuspidal. We will need the following
lemma.

LEMMA 4.3.: Assume II is a weak lift of iri (i = 1, 2) (II, iri automorphic).
Then, for large S:

LS(s, II1012) = ]LS(s,l, 7 2 0 i).
i=l

Of course the product on the left must be taken on places w above v V S.
The proof is an easy computation, left to the reader. I

By the theory of Eisenstein series, we may write II as a subquotient of
a representation II1 x I2 x ... x IIr, where n = nl + .. + nr and Hi
is a cuspidal representation of GL(ni, AE). Then Hl is a subquotient of
II' x * x IEg. Using Theorem 4.4 of [27(b)], we see that since II IH, II



Base Change 205

is a subquotient of a product

(1 X 1I' X *II X *X (Iu X HU X * X II"
X 1HU+l x HU+2 x ...x IIt;

the factors on the first line satisfy HI, j III, the other ones are r-stable.
We want to show that u = 0 and t = 1.

Let us denote by A(IIi) E R the parameter A defined by Iwrn = I I^An
where I IA? is the adele norm on AE, wni is the central character of IIi
and IwIn, its (complex) absolute value. (The same notation applies over

F.)
Up to a reordering, we may assume that A(IIu) or A(IIt) is minimal

amongst the A(IIi). Assume first that A(IIt) is minimal. If nt = n, our

proof is complete. So, we may assume nt < n. Since Ls(II ® II') =

I Ls(IIHi II'), for any automorphic II', we see, using the properties in §2
and the minimality of A(IIt), that

LS(s, II X it) = LS(s, tn, ( fi)_1 LS(s + Ai - At, 1190 f)
i-4t

(where Ai = A(IIi) and II° = IIi ® I -A is unitary) has a pole at s = 1.
However, since nt < n, we may apply Theorem 4.2(d) to IIt: if Ht lifts the
representation rt ® if' (j = 1,... 1) we have by Lemma 4.3:

LS(s, II fit) = ILS(s, r ® t ®0r).
j

Therefore one of the factors on the right should have a pole at s = 1: this is
impossible (§2) since nt $ n, LS(s, r® t hi) = Ls(s- At, r ( (rt)° ® r)
and At < 0 by minimality.
So we are reduced to the case that (u > 0) and A(IIu) is minimal. By

similar arguments, we see that LS(s,I ® (IIu x .. x fi- )) has a pole
of order at least I at s = 1. Assume first that nu < n/l. Using Theorem
4.2(e) inductively we have a representation 7ru of GL(lnu,A) such that
IIH x * * x ru-' lifts 7ru; ru, is cuspidal and 7ru ®iru 0 r. By Lemma 4.3,
I L(s, r ® *u 0 rfj) has a pole of order at least I at s = 1; moreover, we

have again A(ru) < 0. Since Inu < n, we obtain, as above, a contradiction.
We are left with the case when nu = n/l. Then II is a subquotient of

IIH x *. x 11 : since this is induced in the unitary range, and therefore
irreducible, we have

i x ....X Xx n!1.
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But then L(s, I0 ) has a pole of order I at s = 1; since L(s, II II) =
n L(s, rT 0 i0® ), this contradicts the fact that r ir ®0 9i for j f 1. We

have proved part (a) of the Theorem-the uniqueness of I is obvious by
(2.4).
We begin the proof of (b) in the same manner and obtain likewise HI x

· - x II lifting ir. We have assumed r - ir 0 r7 and we must now show that
t = 0 and u = 1. Assume first A(IIt) minimal. If nt < n, the argument
given above still holds. Assume nt = n. We would then have a cuspidal
representation II = IIt of GL(n, AE) lifting vr. In the identity

L(s, n 01) = J L(s, r0 0i ),

the left-hand side has a pole of order 1 and the right-hand side a pole of
order I at s = 1, whence a contradiction.
So we see that A(HI) must be minimal. If Inu < n, we use Theorem

4.2(e) inductively to obtain xru lifted by IIU x .. x HII . Proceeding as for
(a), we obtain a contradiction by comparing L-functions. Thus n, = n/l,
and by irreducibility of the induced representation we must have II = IIu x

· * x H' . This yields (b); again uniqueness follows from (2.4).
To prove (c), we just use (a) or (b) as the case may be, and then induce.

Again, the representation II we obtain is induced from cuspidal. Since
unitary induction produces irreducible representations, the uniqueness of
II comes from (2.4).
We now prove the "going down" part of the theorem, starting with (d).

Assume II 4 IIoa given. The identity of (4.1) with (4.2) shows the existence
of at least one representation ir of G(A) lifted by II. We first show that rt
is cuspidal.
We may write xr as a subquotient of vr x ... x tr, where tri is a cuspidal

representation of GL(ni, AF). We assume A(7Tr) minimal. We must show
that r = 1. Assume not. Using inductively Theorem 4.2(a) or (b) we may
lift 'Tr to IIr or IIr x II x * *- x IIr . In the first case, the identity

LS(s, II fIr) = I Ls(s, 0r(Dir 7)

yields a pole for LS(s, II 0 Ir) at s = 1. Since n nnr and A(IIr) < 0, this
is impossible by §2. In the second case, we obtain likewise a pole for

1-1

ILs(s, IIn® ')
i=O
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at s = 1; this is impossible for the same reasons. So r = 1 and r is cuspidal.
Moreover, the identity

Ls(s, x H) = HLS(s, rx0*® )
j

shows that the product on the right has only a simple pole, whence ir
7r 0 r7. Finally, Theorem 3.1 now shows that the r ® ri' are the only repre-
sentations lifted by II. (Note that we have already shown that any such is
cuspidal, so we can use Theorem 3.1).

For (e), assume II1 II is a cuspidal representation of GL(m,AE).
Then the representation II = II1 x ... x II~- of GL(n,AE) is unitary
irreducible, and a-stable sincell' = ind(II * * * 0 II1 ® 1) is isomorphic
to II by the standard intertwining operator. Therefore, for a suitable choice
of 4, the term

trace (M(s, O)aPQ,,, .(0,))
in formula (4.2), gives a non-zero contribution to the twisted trace formula.
We get a number of terms with the same family of Hecke eigenvalues

from formula (4.2): they will appear for each Levi subgroup M D Mo
conjugate to the standard Levi subgroup of type (,m,m... m); and, M
being fixed, for the 1! representations of M(AE) obtained by permutation
of the components of HI1C X * * * 0® IIf1H .

Because of the obvious symmetries (cf. the remarks in [1(c), p. 1293-94]),
the contributions from the different M are equal; if we write, as usual, WM
for the Weyl group NM(A)/ZM(A) of a special torus A in the Levi group
M, the number of relevant Levi subgroups is equal to

|WG|
IWoM IWA,

A being the split component of M.
Consider now the 1! terms associated to a fixed-say, the standard-

M. In the case of GL(n), Shahidi [36(c)] has shown that the intertwining
operators M(s, A) could be normalized in the way predicted by Langlands
[30(d), Appendix II]. In particular, let rE = Hi ® * * * ® I-; for r E 61,
denote by rTE the representation of M(AE) obtained by permuting the
indices by r. If s is the Coxeter element in W(a) = WG such that SOCRE =
rE--so s is the permutation sending (1,... 1) onto (1,1,... , - 1)-the
Coxeter element s' such that s'l(7rTE) = rrE is clearly rs7-1. Let us write
M(s, O, 4rE) when we want to specify the representation TrE we consider. By
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Shahidi's result we may write:

M(s, 0, RE) = N(s, 0, iE) m(s, 0, rE)
where N(s,0O,'E) is the normalized intertwining operator (denoted by
a(0, rE, s) in [36(c)]) and

I L(0,1Illo")
(4.3) m(s,OE)= n- L(, ( I )

j= L(I,nIII nfI)E(o, II II1n, )
It is easy to infer from [36(c)] that we have also

M(rsr-1,0, r.TE) = N(rsr 1,0, TI )m(s, 0,I) :

the normalizing constant is the same. The normalized operators satisfy the
product relation

N(s1s2, 0, T) = N(si, 0,2Xr)N(S2, )0,)

([36(c), Thm. 3.1]), from which we obtain

(4.4) N(rsrT-1 rE) = N(r, SrE)N(s, 7E)N(- 1,rTrE).
(We have dropped the mention of "0" from the notation.)

Moreover, the operators M(s, A, r) are obtained by integration over sub-
groups which can be taken over F; that operation commutes with the action
of Gal (E/F), and therefore

M(r- 1~, TE) = CrM(- 1,T- 1E).
Since the normalizing factors m are invariant if we conjugate repre-

sentations by a-assuming we take the character ib in (4.3) invariant by
Gal (E/F)-we also have

N(r-1, rrE)- = N(r-1,T-lXE).
Combining this equality with (4.4) yields

N(rsr- ,T rE)r = N(T, IrE)[N(S, rE)oN]N(r-~,~a-1 E).

Using the fact that STE = o--1rE, and the product relation, we obtain

N(T, STE)1 = N(T-1,'ra-E).
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Since the normalizing constants are equal, we have then:
trace (M(rsr-1, TrE)UpQ,7T (O))

=trace (N(r, 5)rE)M(S, rE)UN(r, S7TE)- PQ,.TW (q))
=trace (N(r, s7rE)M(S, rE))PQ,.W(4)N(r, srE)- )
=trace (M(s,rE)UpqE(())),

using the basic property of intertwining operators. We have shown that
all contributions associated to elements of 6l are equal; remembering the
counting involved, we see that the sum of all terms of the type considered
in (4.3) is equal to

I det(s - 1)1- trace (M(s, O)ap,, (0,( )).
It is easy to check that, for the Coxeter element, s, | det(s - 1) = 1. Now

the identity of (4.1) and (4.2) implies the existence of some representation
r of G(A) lifted by II. Remark that, if (ei), i E I, is the set of all such
representations, we have, by the identity of traces:

trace Wi(f) = trace (M(s, 0)aI(l))

for associated f and 5. Since the operator M(s, 0) is unitary, the local
theory already implies that there must be only one representation on the
left. We will also obtain this fact from the consideration of L-functions.
We now proceed to show that r is cuspidal.
Assume r is a subquotient of w1 x * * x r,, a product of cuspidal repre-

sentations; we take A(Trr) minimal. If r i 1, we may, by induction, lift Trr
to HI, or IIu x Hn x * x I~-.

In the first case, we have

Ls(s,(s 1 x n1 x * * x Il'-) Hr) = nLS(s,, irX ).

The right hand side has a pole at s = 1; thus the left-hand side has one
also; since IIH is unitary and A(II) < 0, this implies (using again §2) that
LS(s, nlf0ft,) has a pole at 1, for some i. Therefore m = n, and Hn, n1f
which is impossible since II, is a-stable and II is not.

In the second case, we have

1=1

(4.5) IJ LS(s, Hfi 0 (ir)j) = J LS(s, r 0Fr 01).
i,j=O j
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The right-hand side has a pole at s = 1; thus we must have a pole at
s = 1 for some LS(s, HfiT (lr)J'). This implies again that nr/l = m and
Ir = IIak for some k.
Thus we see that r = 1 and ir is cuspidal. Moreover, in (4.5), the left-

hand side has a pole of order i exactly at 1. Thus the same must be true
for the left-hand side n LS(s, r 0 r 0 r). Therefore r - 7r 0 r/.

j
This proves (e).
Finally, (f) is then proved by induction. Of course there are a finite

number of ir lifted by II, and their number can be determined using the
cuspidal representation defining II and parts (d) and (e) of the theorem. 1

In the next proposition we collect some further properties of base change;
the local analogues have been proved earlier. We denote, as earlier, by w-
the central character of 'r.
PROPOSITION 4.4.: (i) The notion of base change lifting is independent of
the choice of the generator a of E.

(ii) If II is a base change lift of r,

wnr = Wr NE/F.

(iii) Assume
E

F

L
is a diagram of Galois extensions, with ElF cyclic as above. Let r E

Gal(E/L). Then, for xr, II representations of G(A) and G(AE), T' and
II are defined.

Then, if II lifts r, II lifts r7'.

Proof. (i) is clear since the notion of weak base change defined by (1.1) is
independent of a.

(ii) is also an easy consequence of (1.1), since the central characters are
determined by their values almost everywhere.

For (iii) we may use the proof of the local analogue at the end of §1.6.2.
If I lifts 7r, then at almost all finite primes, HI lifts 7r,-in the sense of
Hecke eigenvalues and also, by the considerations in §1.6.2, in the sense of
character identities. By the proof there, nII lifts 7r, in the character sense.
But for two unramified representations, one checks easily that this identity
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of characters is equivalent to the identity of Hecke eigenvalues (1.1). Thus
IIT is a (weak) lift of rt. |

Remark. When we have proved Theorem 5.1, Proposition 4.4 will immedi-
ately hold for strong lifting.
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5. Strong lifting
With the notions defined in §1, we will now prove the following (the

assumptions are as in Theorem 4.2):
THEOREM 5.1: (STRONG LIFTING). Assume ir, II are representations
induced from cuspidal of G(A), G(AE) respectively.

If I is a weak lifting of r, then II is in fact a strong lifting of r.

Proof. Since weak and strong lifting survive induction, we may assume that
Xr is cuspidal. We distinguish two cases, corresponding to parts (a) and (b)
of Theorem 4.2.
Assume first that 7r E 7r0®r. Then, separating strings of Hecke eigenvalues

in the identity (4.1) as in the proof of Theorem 4.1, we obtain the equality

Z trace (r ® qi)(f) = I trace (II(qb)I,),
i=1

whenever f and q are associated. Note that by the vanishing conditions on
the orbital integrals of f (Proposition 1.3.1), this is in fact equivalent to

trace r(f) = trace (II()I,).
Let v be a place of F. This global identity obviously implies that, Io,,

being the normalized intertwining operator at v between IIH = 0 II and
wjv

IIH o o, we have, for f, and Xv = 0 jw associated:
wlv

trace r, (fv) = c trace (II (v)I,v)
c being some non-zero constant. By Weyl's integration formulas, this im-
plies
(5.1) On=,o= cO, o MA

where Onv,, denotes the character twisted by I,,.
Now %r1, as a local component of a cuspidal ir, is a generic representation.

By an easy extension of the results of §1.6 (cf. [11(a)] in the real case),
there exists a generalized principal series representation n° of G(Ev) such
that, for the normalized operator I, of §I.2, extended to the non-unitary
parameters in the obvious way:
(5.2) enos, = e9, OM
where Ono,a is defined by I. From (5.1) and (5.2) we obtain the equality
cOnno, = On,.- Of course, II° might so far be reducible. This is a lineartrd 'V U)IlJ1161VVYI ~LU~V L ll~ Vurr~r



Base Change 213

relation between standard (= generalized principal series) twisted charac-
ters. However, the same argument as in the non-twisted case (cf. [11(d),
Prop. 2]) shows that these twisted characters are independent-here we
have to use the Langlands classification for u-stable representations, cf.
before Proposition 1.6.9, and the independence of the twisted characters
(Lemma 1.6.3). Therefore we must have II° IIv, c = 1 and

On,,V -= eO .oN.
This finishes the proof in this case.

If r 0r 7, the identity (4.1) reads-using the counting arguments in
the proof of Theorem 4.2(e)

trace 7r(f) = E trace (M(sw, O)oPWE (0, )).

Here irE = HI1 ( 1H (
..0* I' , where H1 is cuspidal and HI1 II:

thus IrE is a representation of M(AE)1. The subscript w runs over 6I;
w7rE is the obvious permutation of rE and sw is the only cycle of length
I in Ei such that sW, (wiE) = a(wxE). All terms on the right side are
proportional, with the same constant, to trace(II(q)I,) where I, is now
normalized as in §1.2, and II = 1 x *. x II~' is generic.
Thus we obtain an identity

trace 7r(f) = c trace (II()I,).
From then on the argument is the same (note that the local components
of II are induced from generic representations and irreducible, and hence
generic). This finishes the proof. I
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6. Base change lift of automorphic forms in cyclic extensions

In this section we will show that the base change results we obtained
allow one to "induce" cusp forms on linear groups from one global field to
another. This is expected as a part of the general Langlands conjectures
and is best explained in terms of the (conjectural!) Tannaka group. We
refer to Langlands [30(c)] and to [26(b)] for more information.

Let F be a number field. From what is known so far about the proper-
ties of automorphic forms, it seems natural to surmise that automorphic
representations of GL(nAF) (in fact isobaric representations [30(c)] should
correspond bijectively to completely reducible representations of degree n

of some conjectural group, denoted by Gn(F).
Of course the local analogue is the so-called "local conjecture" of Lang-

lands, describing representations of local groups GL(n, F) by representa-
tions of degree n of the modified Weil group WF x SL(2, C) = WF. Local
and global conjectures should be compatible, i.e., there should be, for each
completion FV of the global field F, natural homomorphisms

W/ -a Gn(F)
such that, if the automorphic representation 7r is associated to : GI(F) -

GL(n, C), Fr, should be associated to the representation b o Lv of WF .
Now assume E/F is an extension of global fields, that we take to be

cyclic. It seems, again, natural to expect an exact sequence, analogous to
the one relating Weil groups:

1 GI(E) - Gn(F) -- Gal(E/F) 1.

In particular, a representation of Gn(E), of degree n, should induce to
yield a representation of degree nl of Gn(F). Consequently, one should be
able to associate, to an automorphic representation of GL(n, AE), an auto-
morphic representation of GL(nl, AF). It is easy now to describe directly
(without the Tannaka group) what this correspondence should be. Let irE
be the automorphic representation of GL(n, AE).

For almost all places w of E, the representation TrE,W is unramified, and
is thus naturally associated to a representation of degree n of WE which
is a sum of unramified Abelian characters. We define a (hypothetical)
representation lrF of GL(nl, AF) by defining its Hecke eigenvalues almost
everywhere. Let v be a place of F, unramified in E and such that 7rE,W
is unramified for any wlv. We define the local representations of WF,, as
follows:
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(i) If v is inert, we have an exact sequence

1 WE, - WF, - Gal(E/F) -- 1.

We obtain a representation of WFp, of degree nl, by inducing that of WEW.
(Of course w is the only place of E above v.)

(ii) If v splits in E, and wl,... wl are the places of E above v, we obtain
a representation of WF, v WEi by taking the direct sum of the represen-
tations of WE,, (i = 1, ... 0).

(iii) The composite case may be left to the reader.
DEFINITION 6.1.: (ElF cyclic). If TE, TF are automorphic representations
of GL(n, AE), GL(nl, AF) respectively, we say that rT is automorphically
induced from 7rE if their Hecke eigenvalues are associated as in (i)-(iii)
above.

THEOREM 6.2.: Let E/F be a cyclic extension of global fields of degree 1
(prime or not).

Then, if rE is a representation ofGL(n, AE) induced from cuspidal, there
exists one, and only one, representation irF of GL(n, AF) automorphically
induced from WrE. Moreover wF is induced from cuspidal.

Notice first that it suffices to prove the theorm for rE cuspidal; the
general case follows by induction. We will see in the proof that wF is induced
from cuspidal, and therefore determined by the knowledge of its Hecke
eigenvalues at almost all primes. Thus the uniqueness of wF is obvious.
To prove the existence of a representation wF with the correct Hecke

eigenvalues at almost all primes, we first notice that automorphic induction,
as defined in Definition 6.1, satisfies the usual property of "induction by
stages". Namely, if E/E1/F is a diagram of extensions, all cyclic, if 7rWE is
automorphically induced from rE and rF from 7rE,, then aF is automorphi-
cally induced from WE. (The verification in terms of Hecke eigenvalues-or
Weil group representations-using Definition 6.1, is left to the reader).
Hence Theorem 6.2 can be proved by considering a sequence of cyclic

extensions of prime order. In this case, assuming ElF cyclic of order 1, we
may reformulate Definition 6.1 as follows. Assume EW/Fw is an unramified
field extension, with X, an unramified character of E,. Then

indmw Xt = Z Xv;
XoN=xw

it is the sum of the I characters of Fv that compose with the norm to yield
Xw. Using this fact, it is easy to see that Definition 6.1 is equivalent to
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the following formulas at almost all places. Let ( be a primitive 1th root of
unity.
Then TF is automorphically induced from irE if:

(6.1) t-F,V = tWE,wl ( tEW2 (B '.. tWEwI
(v split into wl,... wI)

(6.2) tF.,V = tW e (tEwt ; C(te/
(v inert, wlv).

In (6.2), t'/l denots any Ith root of the diagonal matrix t; note that t,,,v
is unambiguously defined (up to permutation of entries), since we then add
all the products by powers of C.
To prove the existence of rF, we rely on Theorem 4.2(d) and (e). Assume

first that TrE - r, where a generates Gal(E/F). By Theorem 4.2(d), irE
lifts exactly I representations Trn,,X7r 0),1... n iD r-1, where 7rn is a cupidal
representation of G((n, AF) Set

7r= rF = rn X (n 0 77) X * X (irTn 0 7l-l)
We check that the tr, are given by (6.1) and (6.2). Note that we have

(6.3) tX,^, = tTE,w, v split, wjv,

(6.4) (tn,,v)l = tWE,w, v inert

In particular, trE,wi = tTrE,W if wi $ wj, wj above v. It is then obvious
that (6.1) is satisfied.
Assume v is inert: thus t7(wv) = (, a primitive Ith root. Then

tr)V = tn,,V ( Cttn,lV C tWTnV'

By (6.4), t^.,Vis an /th root of t,r,w. So tv has the value specified by
(6.2).
Assume now that IE i irE. By Theorem 4.2(e), IrE x TEr x . xXTr

defines a unique representation Ir of GL(nl, AF); moreover, 7r 0 77 Tir.
Again, we check that (6.1) and (6.2) are satisfied by Ir. By construction we
have

(6.5) tW,v = tE,wi .. tr,w,, v split,

(6.6) t, = tv,w .tE,w, v inert,
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(It is easy to check (6.5) by composing Galois action and parabolic in-
duction at a split place.) Thus (6.1) is satisfied. As for (6.2), note that
r - r ® rv ; if C is identified with a diagonal matrix, this implies that
=(t,v= s - t,,v where s is an element of n5,. Setting t = t,,,, we see that,
up to a reordering of the indices, we can write

t = (tlCtl, ,... 1 t212,... -,...1tn).
Set T = tB,,w = (T1,... Tn). We have the equality (6.6), which is true of
course modulo permutation. It implies that, up to reordering,

(titi I... ti,... t ,tt ,... t4 )
I terms I terms

is equal to I times the segment (T1, T2, ... Tn).
Obviously this means that, upon reordering, we may assume t = T /l

where the lth roots are arbitrary; this implies that-always mod En1-
t is equal to T1/' $ CT1/1 ( ... ( C(-T1/l. That is the equality (6.2).
Theorem 6.2 is proved. I

We now observe that more information may be obtained on the repre-
sentation WF. We will need two lemmas:
LEMMA 6.3.: Assume rE is cuspidal and 'rE ~- 7T, where a is a generator
of Gal(E/F). Then there are exactly 1 representations of GL(n, AF) lifted
by WE. They are of the formWFt, WrF rrE/F, . . ., rF® rfEF, where rFp is
one of them; TF is cuspidal, 7F 7-F ® 7lE/F-
Here of course rIE/F is a generating character of F*NA*\A*.
Proof. Of course if I is prime this is part of Theorem 4.2. We reduce to the
prime case. Let E/E1/F be a composite extension, with [E : E1] prime.
Given WE, we obtain WrE1 lifted by WE (Theorem 4.2), then 7rF lifted by TrE
using Lemma 6.3 inductively. By transitivity of the lifting identities (1.1)
we see that WE lifts 7TF and TF 0 rlE/F for any i. Moreover the identity

LS(s,7WE 0 E) = II LS(S, WF 0 TF 0 7E/F)

shows that the 7F ® r/i are distinct; one has only to compare the orders of
poles at s = 1 on each side. I
LEMMA 6.4.: Assume WE is cuspidal and WE W'ffor any i < 1. Then
there is a unique representation WF of GL(nl, AF) lifted by WE X Wr x ...x

1-. It is cuspidal and F E/FrE It is cuspidal and 7r- rF ® rlZ/F.
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Proof. Again, assume I = l1kl is composite, [E: E1] = 11, [E1 : F] =
k1. Thus E1 is the field fixed by r = ak . Since rE- ir, we obtain a
representation of GL(nll,AE,), say 7rE--this is part of Theorem 4.2. It
is cuspidal. Moreover, assume rEl, - Wr; for some i < kl. By Proposition
4.4(iii), we get WrE wE', contrary to our assumption. Thus xrE1 J wr,
and applying Lemma 6.4 inductively we get IrF, a cuspidal representation
of GL(nl, AF). Again, the identity of L-functions shows that TrF 'rF ®
E/F. I
We now give a more explicit description of the "induced" representation

obtained in Theorem 6.2. Assume that WE - Tr, where r =u"a for 1 <
a < 1, and a is minimal: WrE ! WEk if i < a. Let L be the fixed field of r.
By Lemma 6.3, rE lifts the representations 7Lt, 7L 0® )E/L,... , 0L0 7k/L
of GL(n, AL). Now XrLi. XL' for i < a, since rE k 7rk' (again Proposition
4.4(iii)); the same applies to all the twists up to WrL X® EL Threefore
there is a unique cuspidal representation WrF of GL(na, AF) lifted by WL x
* 'x rL . By class field theory, we may write TlE/L = rlE/F o NL/F.
Just by using Theorem 3.1, we see that the representation of GL(nl, AF)
automorphically induced from HE (which exists by Theorem 6.2) is Ar} x
T ® T7E/F X *.. X IrF 0 rbE/F: the theorem implies that one is the twist
of the other by a power of T7E/F, and both are stable by such a twist.
Wehaveave /lF =1 on NL/FAL, and 7/IF is a generator of the character
group of F*NA*\AF. Thus by Lemma 6.4 applied to L/F, we see that
TF T rI/F - 4. We record this in
COROLLARY 6.5.: Under the assumptions of Theorem 6.2, assume WrE cus-

pidal. Let r = aa, a minimal, be a generator of the stabilizer of WrE
in Gal(E/F). Let L be the fixed field of r. Then the representation of
GL(nl, AF) automorphically induced from rE is of the form

TF = (wF ® ryi) x 0
* * x (-®FrF(=rF 711) X X (TF C) b)

weree I7r is a cuspidal representation of GL(na, AF) and r7i ranges over
the characters ofF*NAD\A* modulo those vanishing on NAL. Moreover,
for any character Ti of F*NAL\AF, WF Cr02' WF
We end up this section with a lemma which has been used in §I.6. No-

tations are as above.
LEMMA 6.6.: Assume rF is cuspidal and satisfies 7rF - 'rF riE/F with
b minimal. Then, if I is the lift of rF to GL(n,AE), we have H = II1 x
1I x *. x II ', II1 being a cuspidal representation of GL(b,AE) such
that II1 HIN' fori < a =11 b'
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Proof. Using Theorem 4.2 inductively we may find II; it is induced from
cuspidal. Since II S la', we see that II is a product (for the operation
denoted by x) of blocks of type II1 x * x II1 with IIl cuspidal and
IIU II, and a minimal. Using the "going down" Lemma 6.4, and the
considerations of §2, one easily sees that there must be only one block if
rTF is cuspidal. Finally, one checks that a = by using the identity of
L-functions (Lemma 4.3) at s = 1.
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7. The strong Artin conjecture for nilpotent groups
Let EIF be a Galois extension of number fields, with Galois group F. If r

is a complex representation of F, we denote by L(s, r) the Artin L-function
associated to r ([2(a), (b)]). It is a product of local factors Lv(s, r).
We will call "strong Artin conjecture" the following assertion: if r is

irreducible, there should exist a cuspidal representation r of GL(n, AF)-
where n is the degree of r-such that, for some finite set of places of F
containing all ramified primes for r and 7r:

Lv(s,r) = LU(s, r). (v ¢ S)
This conjecture was made by Langlands [30(a)]. Since the Frobenius

eigenvalues of r at the other places are unitary, it is easy to check that it
would imply the holomorphicity of L(s, r).
THEOREM 7.1.: Assume that E/F is a Galois extension of number fields
with nilpotent Galois group F. Then, if r is any irreducible complex repre-
sentation of r, the strong Artin conjecture is true for r.
Of course this says nothing new about the Artin conjecture itself, which

is true in this case since irreducible characters are monomial.
Remark. The method used to prove Proposition 1.6.9 implies the stronger
result that L(s, r) = L(s, r), i.e., the L-functions coincide at all places.
We will in fact deduce Theorem 7.1 from a stronger result.
Let us call a representation r of Gal(E/F) = r automorphic [27(b)] if

there is an automorphic representation wr of GL(n,AF), where n is the
degree of r, such that L,(s, r) = L(s, r,), (v B S) for large S.
PROPOSITION 7.2.: Let E/F be a solvable Galois extension of number
fields, with Galois group r. Assume that r is an irreducible representation
of r, and that its character belongs to the subgroup of the Grothendieck
group of characters of F spanned over Z by characters of the form
(7.1) indr(x),
where Fo is a subgroup of admitting a subinvariant series

To < rl < F2 * * * < Fn = r

with all factors cyclic, and X is an Abelian character of ro.
Then r is automorphic, associated to a cuspidal representation. In par-

ticular, the strong Artin conjecture holds for r.

Since nilpotent groups are monomial, and any subgroup ro of a nilpotent
r has the property stated in Proposition 7.2, this implies Theorem 7.1.



Base Change 221

Remark. E. C. Dade [16] has shown that the characters verifying the as-
sumptions of Proposition 7.2 are monomial. Therefore the Artin conjecture
was already known for r. We don't know for which finite groups the group
of characters is spanned by characters of type (7.1).
Proof of Proposition 7.2. We will rely on a result of Jacquet-Shalika [27(b)].
Consider first a representation r = ind(x) of r as in (7.1). (Thus r is not,
in general, irreducible). If Lo is the fixed field of ro, the character X of
Gal(E/Lo) is associated, by Abelian class field theory, to a character of
L*\A*o that we denote also by X. Using Theorem 6.2 repeatedly in the
tower of fields associated to the normal series rT C r ... C r, we otain
an automorphic representation ir of GL(n,AF), where n = degr = [ :

To]. The identities (i-iii) in Definition 6.1 show that ir has (for almost all
primes) Hecke eigenvalues corresponding to the Frobenius eigenvalues of r.
Therefore, r is automorphic.

If now r is an irreducible representation of degree n of F satisfying the
assumptions of Proposition 7.2, we may write it, in the Grothendieck group,
as r = r' - r", where r' and r" are sums of representations of the form
ind(x), as in (7.1). By the previous paragraph, r' and r" are automorphic.
By Theorem 4.7 of [27(b)], we conclude that r is also automorphic, asso-

ciated to an automorphic representation ir of GL(n, AF), and ir is cuspidal.
This concludes the proof. I
The proof of Theorem 7.1 implies that the automorphic representations

of GL(n,AF) associated to representation of Gal(E/F) can be multiplied
by arbitrary automorphic representations of GL(m, AF). Recall that if ir,
r are cuspidal representations of GL(n, AF) and GL(m, AF) respectively,
Langlands' principle of functoriality implies that there should exist an auto-
morphic representation II = r Er of GL(mn, AF) whose Hecke eigenvalues
satisfy (up to permutations, and at almost all primes):
(7.2) tn,V = tr,V 0® trT

(see [8(b), 30(c)]. The representation II will not, in general, be cuspidal but
should be induced from cuspidal, in the sense of this chapter, for unitary ir,
T.

THEOREM 7.3.: Let E/F be a finite nilpotent extension of F, with Galois
group r. Let r be an irreducible representation of r of degree n, and ir the
associated cuspidal representation of GL(m, AF), there exists a unique au-
tomorphic representation TrTr ofGL(mn, AF) verifying (7.2); it is induced
from cuspidal.
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Proof. Write r = indro(X), To = Gal(E/Fo) being a subgroup of I
and X a one-dimensional character of ro. We can find a tower of fields
F = Fr C Fr,- C .. C Fo associated to subgroups To C Fl C. -* C Ir = r
with cyclic quotients (of prime order). The representation ?r associated to
r is then obtained by automorphic induction (Thm. 6.2) from GL(1, AFO)
to GL(n, AF), where n = deg(r), from the one-dimensional character of
GL(1,AFo) associated to X. We denote it by tFo(X), I standing for auto-
morphic induction.

In the same situation, we may also apply automorphic induction to
any representation irF, of Gn(AFo). Consider the representation r7F of
Gm(AF0) obtained from r by repeated base change in the tower
(F, Fr,-,... , Fo). We denote it by PF- Fo(T); it is obtained by automorphic
restriction from r (for Galois representations, this would translate restric-
tion). We will prove that

(7.3) F (x PF_-F r) F Xs0r

this being taken to mean that the representation on the left (which exists by
the results of this chapter) has Hecke eigenvalues equal almost everywhere
to those of the (conjectured) right-hand side. This implies the existence of
.Tr,; its uniqueness follows from the fact that the operations involved in IoF
and PF--Fo preserve the category of representations induced from cuspidal:
these are determined by their Hecke eigenvalues almost everywhere.
One should notice that, in the case that T is associated to a represen-

tation r' of Gal(E/F) (maybe for a larger, non-nilpotent E/F), (7.3) just
translates on the automorphic side the standard isomorphism

(7.4) indrFo( 0 resr-.ror') ~ indro X ® r

between representations of F.
Notice also that (7.3) can be obtained by repeated cyclic lifting. Indeed,

replacing F = F, by F,-1 in (7.3), and r by PF-F,-_,, assume we have
proved

(7.5) F-' (x 0 PFrFO) X
PFF

Fo P F -FFo PF--,F,._

in the sense indicated above (note that PFr_1Fo ° PF-Fr_ = PF-Fo).
Then, applying (7.3) in the cyclic extension of prime degree F,_1/F,, we
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obtain:

FO(X X PF-FOT) = l4;41; ( pFC Far)
= IF,-1(Fo X PF-F,_1 r)
= (FoX0 Tr.

The first equality uses only the obvious transitivity of I; the second is
(7.5); the third uses (7.3) in the prime cyclic extension F_-i/F; however,
we see that we must extend (7.3) so as to deal with the non-Abelian rep-
resentation IF,~-X. Therefore the proof will be completed by the following
lemma:
LEMMA 7.4.: Let E/F be a cyclic extension of prime degree, II a repre-
sentation of Gn(AE) induced from cuspidal, r a cuspidal representation of
Gm(AF). Assume II0 PF-p Er exists and is induced from cuspidal. Then

4E(l Ia PF-E T)- IFE110 Tr.

Of course exists means that there is an (induced from cuspidal) represen-
tation with the correct eigenvalues almost everywhere, and the last equality
has the meaning explained after (7.3).
The proof is an easy computation, relying on formulas (6.1) and (6.2)

in §6, and is left to the reader (alternately, one can use, in the inert case
at least, the interpretation of the functors I and p in terms of Weil group
representations (Def. 6.1) and an obvious extension of (7.4) to this case). |

The proof of Theorem 7.3 is now complete. I
We conclude with a tantalizing remark. Consider the regular represen-

tation r of a solvable Galois group r on the space C[r] of functions on
r:

r=g deg(p) p
pEr

where F is the dual of r. By solvable base change, as in the proof of
Proposition 7.2, we know that there exists an automorphic representation
r of GL(n, AF), where n = [E: F], such that

L(s, r) = L(s, r) = I(L(s, p)deg p

p

(As remarked after Theorem 7.1, we may even get the identity of L-functions
at all places.) Write r, as in [25b], as a formal sum of cuspidal representa-
tions tri of GL(ni,AF); ~r = d17r1 + d27r2 + ... + dklrk, ri non-isomorphic,
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dlnl + d2n2 + ..+ dknk = n. The consideration of the poles of L(s, r 0 7r)
and L(s, r ® r) at s = 1 shows that

d2 + d + .+ d=E deg(p)2 = n.
p

Showing that each p E F is associated to a cuspidal Iri, however, seems to
be difficult.
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