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Introduction

Suppose that G is a reductive algebraic group over a field F of characteristic
0. In the text we shall usually take F to be a general local field, but for
purposes of illustration let us assume in the introduction that F is isomorphic
to R. In the paper [l(e)] we introduced the weighted characters

JM(nA, f), 7 E n(M(F)), A E a*C,f e 9(G(F)).

These objects are like ordinary induced characters

tr (Jp(r, f)), P eG(M),

except that one first composes fp(Zn, f) with another operator on the space
ofJp(n, f). This new operator is the logarithmic derivative of the standard
intertwining operator in the case of real rank one, and in general has poles
in A. One of the aims of [l(e)] was to investigate the iterated residues

Res (JM(7, f)). (1)
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(We refer the reader to the introduction of [l(e)] for a general discussion as
well as a description of the notation used here and below.) If the number of
iterated residues is at least equal to dim(aM/ac), the expression (1) is an
invariant distribution inf What is its connection with other natural invariant
distributions on jf(G(F))?

In [1(f)] we studied two families

IM(n, X,f), nE n(M(F)), Xe aM, (2)

and

IM(y, f), y e M(F), (3)

of invariant distributions on f'(G(F)). These arise naturally as the local
terms of the spectral and geometric sides of the invariant trace formula. It
is important to be able to compare the two kinds of terms. In [l(f), §4-5]
we gave a rather abstract procedure for doing this, which seems to be
sufficient for the applications of the trace formula. Still, it would be interesting
to find a more direct connection between the distributions (2) and (3).

In this paper we shall show that the three families of invariant distri-
butions (1), (2) and (3) are all closely related. The distributions (2) were
constructed by a formal procedure from the contour integrals

JM(RX,f) = j{, JM(nj,f)e-(x)dA, Xe aM.

Deformations of contours inevitably produce residues, so it is not surprising
that (2) and (1) should be related. The distributions (3) were constructed by
the same formal procedure from the weighted orbital integrals.

JM(Y,f), yeM(F),

discussed in [l(d)]. If y is restricted to lie in a Cartan subgroup T(F) of
M(F), then JM(y, f) is compactly supported in y. However, it happens that
IM(y, f) is not compactly supported in y. The residues (1) turn out to be the
reason. In the end, it turns out that the distributions (1), the distributions
(2) and the asymptotic behaviour of the distributions (3) can all be system-
atically computed from each other. We shall in fact see that everything may
be computed from sufficient information about any one of the three families
in the special case of rank 1.

In §1 we shall recall briefly how the three families of distributions are
defined. The residues (1) are distinguished by the fact that they are supported
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on a finite set of representations induced from n. We shall call such distri-
butions n-discrete. In §2 and §3 we shall establish some general properties of
n-discrete distributions. Chief among these is Proposition 2.2, which
pertains to the normalizing factors for representations induced from Levi
subgroups L v M. The proposition asserts that the normalizing factors
have nice properties when they act on a r-discrete distribution on L. This is
a generalization of [l(e), Proposition 5.2].

In §4 we shall study the residues in earnest. Recall that

A -+ JM(,f),), Ec ,a*,C
is meromorphic, with poles across finitely many hyperplanes. If the residues
did not exist, the function

JM,,(,x X,f) = JM(,, X,f)e-(x) = iaJm(M; f)e-' dA

would be independent of iu e a*. As it is, JM, (iC, X, f) is locally constant on
the complement of a finite set of affine hyperplanes. A similar assertion
applies to the associated invariant distribution

M, (r, X,f) = IM(:,, X, f)e-(x).
The problem is to compute the jumps of these functions as one moves
between different affine chambers. Our main result is Theorem 4.1, which
provides an expansion for IM,,(7, X,f) in terms of the residues (1), the
normalizing factors for intertwining operators, and the functions

IL,VL(e, hL(X),f), L e Y(M), e e S(L(F)).

Here, VL is an arbitrary point in general position in a*. In particular, v = VM
is an arbitrary point in a*. Restated as Corollary 4.2, the theorem gives a
recursion formula for the difference

IM4,,(t, X, ) - IMv(7r, X, ).

Theorem 4.1 can be regarded as a dual version of the various expansions for
weighted orbital integrals and their associated invariant distributions.

It is necessary to show that the invariant distributions (1) defined by
residues depend only on the characters off. We will be able to establish this
from Theorem 4.1, and the analogous property for the distributions (2),
which was proved in [l(f)] and [l(g)]. The proof is actually inductive, the
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initial induction assumption appearing in §1. Having established Theorem
4.1, we will then be able to complete the argument in §5.

In §6 we shall look at Theorem 4.1 in the special case that f is cuspidal.
The formula simplifies considerably. If additional constraints are imposed
on nr and {vL}, the expansion for IM,,(nT, X,f) reduces to just one term
(Corollary 6.2). The distribution becomes simply a finite sum of residues (1).
This has implications for the asymptotic structure of IM(y, f) (Lemma 6.6).
On the other hand, iff is a pseudo-coefficient for a discrete series represen-
tation, we shall show that IM(y, f) equals the value at y of the discrete series
character (Theorem 6.4). (This formula is a variant of the main result of
[l(a)], and will be used in another paper on the traces of Hecke operators.)
We shall combine the two formulas in Theorem 6.5. The result is a curious
identity between the characters of discrete series and residues of intertwining
operators. The formula is reminiscent of Osborne's conjecture. However, it
attaches to every character exponent induced representations which contain
the given discrete series as a composition factor.

§1. Residues

Let G be a reductive algebraic group over a field F, of characteristic 0. In this
article we shall impose two conditions which were not in the preceding paper
[l(e)]. We shall assume that G is connected, and that F is a local field. For
we want to study invariant distributions that rely on the trace Paley-Wiener
theorem, and this has been established in general only for connected groups.
The second condition, that on F, is essentially for convenience. We write v
for the (normalized) valuation on F.
We shall adopt the notations and conventions of [l(e)], often without

further comment. In particular,

aG, = HG(G(F))

is a closed subgroup of

aG = Hom(X(G)F, R).

The two groups are equal if v is Archimedean, but if v is discrete, aG, is a
lattice in aG. The unitary dual of a,v is isomorphic to

ia* = iac*/avG,v GGv
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where

, = Hom(a,, Z).

We are interested in the Hecke algebra '(G(F)) of functions on G(F)
which are left and right finite with respect to a suitable fixed maximal
compact subgroup K of G(F). We also have the larger space Jac(G(F)),
introduced in [l(e), §11], as well as corresponding spaces f(G(F)) and
Jac(G(F)) of functions on ,temp(G(F)) x aG,. These are related by a con-
tinuous surjective mapf -+ fc from agc(G(F)) onto Jac(G(F)), which maps
jf(G(F)) onto f(G(F)). As in [I(e)], we will sometimes regard an element
( in the smaller space J(G(F)) as a function of just one variable in
ltemp(G(F)). The two interpretations are related by a Fourier transform

(r, X) = fiav (7r)e-(X)dA, (, x) e ,temp(G(F)) x av

Thus, iff belongs to f(G(F)), we can either write

fG(M.) = tr(7r,(f))

or

fc(7, X) = tr7r(fx) = trG(F)x f(x)(x) dx)

where f stands for the restriction of f to

G(F)X = {x G(F): HG(x) = X}.

Suppose that I is a continuous linear functional or "distribution" on
'ac(G(F)), which is invariant. We say that I is supported on characters if

I(f) = 0 for every function f such that f vanishes. If this is so, there is a
unique "distribution" I on Ja(G(F)) such that

I(f) = I(fG), fe ac(G(F)).
The symbol M always stands for a Levi component of some parabolic

subgroup of G over F which is in good relative position with respect to K.
That is, K must be admissible relative to M, in the sense of §1 of [1(b)]. As
always f(M) denotes the finite set of Levi subgroups which contain M. In
the paper [l(f)] we introduced two families

IM(, f) = Im(y, f), y E M(F),f E ,fac(G(F)),
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and

IM(7, X, f) = Im(n, X, f), r e n(M(F)), X e aM,,, f *ae(G(F)),

of invariant distributions on ac(G(F)) which were eventually shown to be
supported on characters ([1(f), Theorem 6.1], [1(g), Theorem 5.1]). They are
characterized by formulas

JM(Y,f) = IM(y (f)) (1.1)
Le (M)

and

JM(, X,f) = I(,X(r,X (f)), (1.2)
LE Y(M)

in which JM(y, f) is a weighted orbital integral [l(d), §6], JM(n, X, f) is a
weighted character [l(e), §7], and

OL: OCac(G(F)) Jac(L(F))
is the map defined in §12 of [I(e)]. The two families are closely related.
Roughly speaking, {IM(l, X)} measures the obstruction to {IM(y)} being
compactly supported in y. In fact, there is an asymptotic expansion for
IM(y, f) in terms of certain maps

OL: ,ac(G(F)) - ,ac(L(F)), L E .(M),
and these maps are completely determined by the distributions {IL (1, X, f)}.
(See [1(f), (4.11), Lemma 4.1, and (4.9)].) Thus, the second family of distri-
butions determines the asymptotic behaviour of the first.
For the second family of distributions, it is sometimes appropriate to take

a standard representation Q e E(M(F)) instead of the irreducible n. (See
[1(e), §5]. Recall that a standard representation is induced from a represen-
tation which is tempered modulo the center, and may be reducible.) One
defines distributions JM(Q, X, f) and IM(Q, X, f) in a similar manner. The
two cases are related by a formula

IM(r, X, f) = E OP rm(,Ep(, X, IL(f)), (1.3)
PE9(M) LEY(M)

where

r(L,7POr, , L(f))



Invariant distributions 57

equals

fP+iaS,,/iavQE rM(F)) Q)(ILQAL(Q, hL (X), f)e-'(x) dA.Q E 1(M(r))

(See [1(f), (3.2)].) The notation here follows [l(e)] and [l(f)]. In particular,
Sp stands for a small point in general position in the chamber (a*)+,
and

cop = vol(a+ n B) vol (B)-1,

where B is a ball in aM, centered at the origin. The function rLM(n;, Q.) is
obtained from the ratios of the normalizing factors for ni and Q,.
Our ultimate goal is to show how to compute IM(n, X,f) in terms of

residues. Fix an element L e S(M). A residue datum Q for (L, M) is a pair
(&t, An), where

n = (E, ,...,Er)

is an orthogonal basis of (aL )* and A0 is a point in (aL ). It is required that
there be an embedded sequence

M = Mo C McI A C Mr = L

of elements in S(M) such that

aM, = H a :E ={H a H) }, 1 i < r.

(See [l(e), §8].) Given such an 0, as well as a meromorphic function i(A) on
a*c and a point Ao e AQ + a c in general position, define

Res r(A) = (2ni)-rr' r. (A0 + zlEl +''+ zrEr)dz ... dz,.
0,A-AA0

As in [l(e), §8], F,, . ., F are small positively oriented circles about the
origin in the complex plane such that for each i, the radius of Fi is much
smaller than that of Fri,. It is this condition on the radii which allows us to
express an iterated residue as an iterated contour integral in r complex
variables.
We are interested in the case that

/(A) = aAJM(7g,g), n H(M(F)), g E J(L(F)),
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where a^ is an analytic function. Recall that

JM (RA, g) = tr(M(A, RO) (^A, g)),

where J (T^) is the representation induced from a parabolic subgroup R0,
and L(CAl, R) is an operator on the underlying space *.0(n) which is
obtained from normalized intertwining operators ([l(e), §6]). It is the Fourier
transform (in A) of J4(nA, g) which equals JA(7, X, g). According to
Lemma 8.1 of [l(e)], the distribution

Res (aAJ (7rA, g)), g E (L(F)), (1.4)
n,A-A0

A

is invariant. We would like to know that it is supported on characters.
Instead of trying to show this directly, we shall make an induction hypothesis.
We assume that for any L # G, and for any n and a^, the distribution (1.4)
is supported on characters. In §5 we shall complete the induction argument
by showing that the same thing is true if L = G.

§2. i-discrete distributions

For the next several sections, the Levi subgroup M and the representation
ni E n(M(F)) will be fixed. We would like to relate IM(in, X,f) with the
residues (1.4) of the distributions JMt(nr). However, we shall not actually
discuss the residues in detail until §4. The purpose of this section is to
introduce a general family of distributions of which the residues are typical
examples.

It is best to take functions in f(G(F)) which also depend analytically on
a parameter A E aMC Let -(am, G(F)) denote the space of functions

F: (a c/ia, ) x G(F) - C

such that

X -; F(A,x )e-(X) dA, Xe a,,, xE G(F),

is a smooth, compactly supported function on aM, with values in A(G(F)).
In other words,

F(A): x -XF(A, x)

is a Paley-Wiener function of A with values in Jf(G(F))r, for some finite
subset F of n(K). (The reader is asked to tolerate notation in which F stands
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for both a function and a field.) Similarly, we can define J(aM, G(F)) to be
the space of functions

(: (a, /iaJ,,) x ntmp(G(F)) - C

such that for some finite F c n(K),

(D(A): i --+((A, it)

is a Paley-Wiener function of A with values in J(G(F))r. As always, any
such function is analytic in It; as a function in the various continuous
co-ordinates of Itemp(G(F)), ( extends analytically to the entire complex
domain. It can therefore be defined for each standard representation
Q E £(G(F)). Both of these new spaces are algebras, and the elementary
notions from invariant harmonic analysis [l(f), §1] extend formally to this
setting. In particular,

F -* FG(A, C) = tr 7(F(A))

is a continuous surjective map from .(aM, G(F)) onto J(aM, G(F)).
Now, suppose that it is a general representation in I(M(F)). Let

D = D(n): F D(,F),

be a distribution (i.e., continuous linear functional) on )'(aM, G(F)) which
is supported on characters. Then there is a unique distribution D = D(it) on
J(aM, G(F)) such that

D(7, F) = D(tn, FC), FE (aM, G(F)).

We shall say that D is n-discrete if, as well as being supported on characters,
D(n, F) factors to a distribution on the space

{P(nA, F(A)): P e B(M), A e a*,c/ia,) }

which is supported at finitely many points A, . . , A,. Of course, a distri-
bution on a space of analytic functions does not in general have support.
However, if aA is a function which is analytic in a neighbourhood of A0 in
a* c, we shall write

dM,A-o aA
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for the Taylor polynomial of a, at A = A0 of total degree n. Then the
condition on D is that D(n, F) depends only on

e dA.AA^jP(nA, F(A)),

for some fixed integer n.
For a simple example, take a differential operator A = AA on a c and a

fixed point Ao e a* c. Then

F -* lim AAtr(ip(7A, F(A))), Fe f(aM, G(F)),
A-,AO

is a t-discrete distribution. More interesting examples are provided by the
residues. Suppose for a moment that G is replaced by a group L E S(M),
with L G, and that Q is a residue datum for (L, M). Then the residue

Res JL(i^, F(A)), FE Jf(aM, L(F)),
Q,A-An

is supported on characters. This follows from the induction hypothesis of§1.
The distribution is obviously supported at a finite set of points. It is therefore
a t-discrete distribution on Af(aM, L(F)).

LEMMA 2.1: Suppose that D is a n-discrete distribution on '(aM, G(F)). Then
there is an n such that the value

D(7r, (), (> E J(aM, G(F)),

depends only on an expression

E (, d \AA.dMj 1o@(^A, Qj ),
i=1 j=1

for fixed points A, e a ,C, Levi subgroups Mj of G and standard represen-
tations Qo e (Mj(F)).

Proof: The finite support property ofD concerns the operators Jp(^A, F(A)),
not their traces. But we are also given that D(n, F) depends only on FG. We
must convert this abstract assertion into a finite support property in the
function

FG(A, Q) = tre(F(A)), Q E2(G(F)).
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If F is Archimedean, let S(G) be the center of the universal enveloping
algebra. If F is non-Archimedean, we take Y(G) to be the Bernstein center
[2]. In either case, 3(G) acts on o(G(F)), so it also acts on Yf(aM, G(F))
through the second factor. From the definition of n-discrete we see that D
is annihilated by an ideal of finite codimension in S(G). The lemma will
then follow from a straightforward infinitesimal character argument. We
leave the details to the reader. D

For any invariant distribution on J(aM, G(F)) which is supported on a finite
set of points, the space of test functions can be enlarged. Let us write
J+ (a, G(F)) for the space of functions (I, defined almost everywhere on

(a* c/iaM,.) x E(G(F)),
which satisfy the following condition. For any Levi subgroup M1 of G, and
any Q E X(M1(F)),

(A, A1) - 4D(A, Q5,), (A, A) e aM)x oQ

is a meromorphic function whose poles lie along hyperplanes of the form

A(X) + A(X,) = c, ceC,

if F is Archimedean, and

q-(A(X)+A1(X)) = C, C e C,

if F is non-Archimedean with residual order q. Here (X, X1) is a vector in
(amM ( aM,, ) which we assume has nonzero projection onto the diagonally
embedded subgroup aG,. If ) J+ (aM, G(F)) and 21 e *c, the function

OD(A, e) = ((A + A, ), A e a*c, Q e S(G(F)),

also belongs to J+ (aM, G(F)). Notice that for almost all 2, the singularities
of o; will not meet a given finite set of points (A, Q). This is a consequence
of the condition on (X, X1) above.

Suppose that D = D(n) is a c-discrete distribution on 0P(aM, G(F)) and
that D belongs to + (aM, G(F)). The last lemma implies that D(n, D,) is
defined whenever ) E a* c is in general position. Moreover, D(n, (D) is a
meromorphic function of A. Set

(D *- (D)(rc, T) = D(nr,(IA), T E J(aM, G(F)),
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for A in general position. Then D * 4f is another distribution on J(aM, G(F)).
We shall write

@(X) = 9(X)

for the space of distributions obtained in this way from all such choices of
D and (. Observe that if D is fixed, and (F and A vary, then {D *.v } is a
finite dimensional subspace of 9(n). Any distribution 6 = 6(n) in 9(n) is
supported at a finite set of points, and if ( belongs to J+ (aM, G(F)),

i (7,f(A) A a*,C
is defined as a meromorphic function. Obviously, (Dv can be made to act on
any distribution in 9(n). Therefore

(D (Dv

may be interpreted as a homomorphism from the algebra a+ (am, G(F)) to
the algebra of meromorphic functions of A with values in the space of
endomorphisms of @(n).
The main purpose of this discussion is to accommodate the normalizing

factors for induced representations discussed in [l(e)]. Assume that we have
fixed normalizing factors

rplp(71r), P, P' E (M),

(for all possible choices of M and n) which satisfy the conditions of [l(e),
Theorem 2.1]. Suppose that L is an element in SA(M). If Q, Q' belong to

L(L), the normalizing factors rQQle(nL) are defined. We also have normalizing
factors rQ,' (Qo) for each Q E 1(L(F)). If E aLC set

Q'le.i: (A, L) rqQ(xLl+x, QA), (A, Q) e a* x S(L(F)),
where

rQlQ(iA+A,e A) = rQ'IQ(iA+A)-rQ'lQ(QA),

as in [l(e)]. The earlier definitions are of course valid if G is replaced by L,
and we see easily that rFQeIQ, is a function in J+ (aM, L(F)). At this point, we
have imposed no condition of block equivalence on nr and Q; the usual
transitivity property [l(e), Proposition 5.2] consequently fails for rFQQ'A.
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However, let us set

rQIQA = Q'IQ,'

so that rQQle, is an endomorphism of L(r). The next proposition, which is
our justification of the constructions above, asserts that rQQ,, does have the
transitivity property.
For any root a of (G, AM), set q,,(A) = Al(V ) if F is Archimedean, and

put q,, (A) = qA(v) if F is non-Archimedean of residual order q,.

PROPOSITION 2.2: We have

rQaQ, = rQiQ,,' rQQ,, ,Q ',Q Q" E (L). (2.1)

Moreover, rQl, a is as rational function of the variables {q,,(A)} with values
in the space of endomorphisms of §L(r).

REMARK: Consider the special case in which L = M and D(n) equals the
character of n. That is,

D(i, F) = tr n(F(O)), Fe -'(aM, M(F)).

Then D(n) is a n-discrete distribution on JA(aM, M(F)) whose Fourier
transform equals

D(7r, () = Z A(it, 0)(O, Q), () E J((am, M(F)),
oE(M(F))

the formal decomposition into standard characters. (See §5 of [l(e)].) It is
obvious that

(D - rQIQ A)(, DI) = 5A(Xr, Q)Q'etQ(7i,eAI(O, e), Q, Q' E Y(M).
Q

The proposition in this case is essentially equivalent to Proposition 5.2 of
[l(e)].
We shall reduce the proof of Proposition 2.2 to a second assertion.

If a is a representation which belongs to either H(L(F)) or E(L(F)),
set

L(ab) = (rQI(cra)rQlQ(<rA))', QeE (L), E a*LC
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Since the normalized intertwining operators

RQlQ(aO) = rQQl(a)-1JQ,1Q(a)
satisfy

RQlo(ax)RIoQ(la) = 1,

the operator

JQI(Ua)JQoIQ(A)
is equal to the product of /L(ab)-' with the identity operator. Thus, PL (CA)
is just the usual p-function. It is independent of Q E Y(L). Corollary 5.3 of
[l(e)] asserts that if Q eE(L(F)) contains a as a composition factor, then
uL (aC) equals PL(Oe).

LEMMA 2.3: Suppose that D = D(n) is a n-discrete distribution on '(aM, L(F)),
and that abelongs to J+ (aM, L(F)). Set

I((A, ) = pL( IA±)T k(A, Q)

and

4z(A, Q) = YL(Q .)-ID(A, Q).

Then

D(7r, <F) = D(7r, A).

This lemma is the main step in the proof of Proposition 2.2. It will be a
consequence of some general properties of (unnormalized) intertwining
operators which we shall review in the next section. We shall postpone the
proof of the lemma until then.
Assuming Lemma 2.3, let us establish the proposition. Fori2 aLc in

general position, the function

L,1: (A, e) -. L(+rA)-'L(Q) (A, e) E ,c x X(L(F)),
belongs to J+ (aM, L(F)). Choose an arbitrary functionT in J+ (am, L(F)),
and set

i>D(A, ) =~,()I(A,e))
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Then

AL,A = (A VI) + TP,

in the notation of Lemma 2.3. It then follows from the lemma that

D(n, PL,AT) = D(On, P).

Consequently, jLV equals 1. But

AL,)A r QIQ,
*

r1Q, = 1.

We have therefore established that

rQlQ rQlQ, = 1. (2.2)
Given (2.2), we can now prove Proposition 2.2 in exactly the same way as

the relevant portion ofTheorem 2.1 of [l(e)]. For example, to establish (2.1),
we make use of the decomposition

rQ IQ i = n rp,, (2.3)

which is the analogue of[l(e), (2.1)]. The formula (2.2), with G replaced by
a group Lp of which L is a maximal Levi subgroup, implies that

r_,' r -,= 1.
The relation (2.1) then follows. The rationality assertion of Proposition 2.2
is trivial if Fis non-Archimedean, for the normalizing factors are themselves
rational in this case. If F is Archimedean, the normalizing factors are
constructed from gamma functions. The functions rp, , therefore satisfy an
analogue of the estimate (3.8) in [l(e)]. As in §3 of [l(e)], the rationality
assertion then follows from the multiplicative property (2.1). This completes
the proof of Proposition 2.2. 0

Fix Q0 E £(L). Then

rQ,( , Q0) = rQ1QO, rQIQO,A+, Q e (L),+ E ia*,
is a (G, L) family. As usual [l(b), §6], we can define

rLG = lim E rQ,(S, Qo)OQ()-1. (2.4)
C-o QE (L)
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It follows from Proposition 2.2 that rA is a rational function of the variables
{q,,a()} with values in End(9L(n7)). It is independent of Q0. Suppose that
L, e S'(L), and that Q1 belongs to Y(L,). Then

rLQ = lim E rQ,(C, Qo)0Q(0-
--o {QeY(L):QcQi}

depends only on L, and not on Q1. In fact, rQ' equals the function rL
defined by (2.4), but with G replaced by L,.

Suppose that D = D(n) is a n-discrete distribution on r(aM, L(F)) and
that L1 e YS(L), as above. In practice, we shall want to consider (D * r/L ) as
a distribution on f(L1 (F)) which also depends on a point X e aM,,. As a
matter of fact, J(Ll (F)) has in the past been regarded as a space of functions
on X(L (F)) x aL,,, so this should be reflected in the notation. If
¢ E J(Ll(F)) and X e a,,, and if VL e a* is a point in general position,
define

(DfrLL)(7r, X, t/) = {.L i (D +r o)(i7r,/)dA, (2.5)LYIL··I)(.·X~) jiiii~tyli~jl.~Y r,x(nqb~) d, (2.5)
where

4x(A, e) = XX(A + 2, e =)= e-+)(x)( hL, (X)),

(A, e) e ac x ( ))

The convergence of this integral follows from the second assertion of
Proposition 2.2. More generally, we can take any 0< that behaves well on the
support of the given distribution. By Lemma 2.1, we can assume that

D(7, (), 0 e J(aM, L(F)),

depends only on a function

D © 4A-Ajdj.O(A,)(?q).i j

Then the definition of (2.5) makes sense if 0 is any function on

£(L1 (F)) x aQL, such that the restricted function

® dM, o<4(fJ,+.,Y), 2 e VL + ia, Y aL,,,,
J

it3t~f'L~]
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is the same as that derived from some function in f(LI (F)). For example,
iff e Y(G(F)), we could take ) to be the function

IL (f) (a, Y) = IL, (, Y,f), a e ((L1(F)), Y aL,,. (2.6)

This function has the required behaviour if VL e a* is in general position, and
the associated function in (2.5) is

I,, (f ) (A, Q) - e-(+')(xIL, (QA, hL(Xf). (2.7)
In the special case that L = M and D(n) is the character of n, we shall

usually write

rMiA(t, D) = (D - rm )(, (), ( e J(aM, M(F)).

This is equal to

E r(M ( )A ,(o, e).*
QEX(M(F))

(By definition [l(e)], r'M(L(nr QA) is the number obtained in the usual way
from the (G, M)-family

rp(CrQ,zO,Po) = A(7r, )rppo(,, Q)-' PIPo(7+ eA+),
P e Y(M), C e ia*,.)

If v e a* isin general position,

r'-,J(n, X, IL, (f))

IV+iatV/iav (rm ,)(,Il,;f)) dA

-= Z r(CA,Q)IL,(Qe', hL,(X),f)e-(xd,.eE£(M(F))

The notation is compatible with that of (1.3).

§3. Admissible families of operators
The purpose of this section is to prove Lemma 2.3 and a related result
(Lemma 3.1) which will be needed in §4. We shall recapitulate some formal
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notions, introduced in §8 of [l(e)], of which the lemmas will be easy
consequences.

Let L be a fixed Levi subgroup of G. Suppose that for each integer j,
1 j < s, we are given a Levi subgroup Mj of L, a parabolic subgroup
Rj E 9L(Mj), and a standard representation i e (Mj(F)). If n > 0 and
g e Yf(L(F)), set

a(g) = djO(Rj(Qj,, g)) (3.1)
J=1

Then a is a representation of A(L(F)). It acts on a direct sum of spaces of
polynomials with values in 'Rj(Qj). The induced representation

'((a,f), Q e Y(L), f (G(F)),

can be identified with

(~d©j,,o(-(Rj)(/j,I f))
j=l

(Recall that Pj = Q(Rj) is the group in Y(Mj) such that P, c Q and
P n L = Rj.)

Fix groups Q, Q' e 9(L). Suppose that

A = {A(Q): rQ(e) -* Q(Qo), 0 E (L(F))}
is a family of linear operators which depends meromorphically on e. In other
words, any K-finite matrix coefficient of A(e) is meromorphic in the natural
complex coordinates of 2(L(F)). We assume that the singularities of A(e)
are such that the function

A,(Q) = AQ(e), eEE(L(F)),

is analytic at any predetermined finite set of points e whenever A is a point
in a*c in general position. Then if a is as in (3.1) and 2 is in general position,
the operator

AA(a) = e dM OA(R (Qe,±+A))
j=

J

from k.(a) to '/f,(a) is defined. Recall that ^Q(a) can be identified with a

space of functions from K to the space on which a acts. We shall say that
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the family is admissible if for every such a, A,(a) is represented by a K-finite
kernel with values in the algebra

{a(g): g (L(F))}.

This is a definite restriction on the family A. It implies that for every self
intertwining operator of a representation a as in (3.1), there will be a
corresponding relation among the operators {A(e)}.
The most obvious admissible families comes from functions in f(G(F)).

Chooseffe '(G(F)). Then the operator

4Q(e,f): *PQ(Q) -* 'Q(e), Qe (L(F)),

is represented by a kernel

Q(fQ,k,,k2), kl, k2 e K,

wherefQ k,,k2 denotes the function

m + 6Q(m)l2 JN F)f(klmnk 2)dn, m e L(F),

in #(L(F)). Therefore

A = {JQ(e,f)}
is an admissible family. If D is any invariant distribution on 1'(L(F)), we
can define the induced distribution DG on '(G(F)) by

D (f) = D(fQ,k,k) dk.
There is a formal reciprocity identity

DG(f) = D(fL), fe (G(F)).

Now, suppose that D = D(7r) is a i-discrete distribution on f(aM, L(F)).
As in §2, r denotes a representation in H(M(F)), for a fixed Levi subgroup
M of L. We shall show how to define the induced distribution DG = DG(n)
on any admissible family. Actually, the domain of D consists of functions
which also depend on A, so we take

A = {A(A, Q): %(Q) - (Q)}
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to be an admissible family of operators that depend meromorphically on a

parameter A in a*c/iavc as well as Q. Again we want the function

Ax(A, o) = A(A + A, OQ)

to be analytic at any predetermined finite set of points (A, Q) whenever
A E aL* is in general position. To take care of this, let us assume that the
singularities of Az(A, e) have constraints like those we imposed in §2 on the
singularities of a function in J+ (a, L(F)). Choose an integer n > 0 and
points A, ..., At in a* c such that the value

D(t,, F, Fi f(aM, L(F)),

depends only on the operator

T(F) = AdMA.(fR(x7A, F(A))). (3.2)

We can regard z as a representation of i(aM, L(F)). Now X can be
represented as a subquotient of a standard representation. Therefore, z is a

subquotient of a representation like (3.1), but with the appropriate depen-
dence on A. (See (3.4) below.) It follows from the admissibility ofA that for
fixed 2 in general position,

A(Z) = e dA.AA(A, JR(@A)),=1

is uniquely defined as an operator from FQ(z) to f'Q(z). Indeed, Az(r) is
represented by a kernel

T(Fkl,k2), kl, k2 E K,

where Fk,, k is a function in J(aM, L(F)), which is K-finite in (k,, k2), and
such that

Flk,2k2(A, m) = Fk(A,, l-1ml2), m e L(F), 11, 12 E K L(F).
The induced distribution is then defined by

D(71, A) = K D(r, F,k)dk. (3.3)

It depends only on A(T).
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In analogy with the map f -+ f, let us define

AL(A,Q) = tr(A(A, )),

for a given admissible family {A(A, e)}. Then AL is a function in
J+ (aM, L(F)). Clearly, we have

AL,,(A, e) = tr(Az(A, Q)), a*Lc.

LEMMA 3.1: D (7, AA) = D(n, ALA).

Proof: We have agreed that

D(r, F), F e (aM, L(F)),

depends only on the operator (F) defined by (3.2). Moreover, by Lemma 2.1,
we can choose {(My, Ri, Qi)} as in (3.1) such that

D(n, (D), ) e J(am, L(F)),

depends only on the vector

I s

D(a) = d ,A-.AidMj,O ,(AeQ;,).i=1 j=l

Here a stands for the representation

a(F) = e d^,AAdAj,d, o(RjO(e,,, F(A))) (3.4)

of the algebra *$(aM, L(F)). Notice also that the map D -> ((a) can be
regarded as a finite dimensional representation of the algebra ¢(aM, L(F)).
The admissibility ofA means that A(A, q) can be represented locally (i.e.,

infinitesimally) by a good kernel. Having chosen z and a, we can always find
another representation of the general form (3.4) which contains both z and
a as subquotients. We can therefore find a K-finite function

Fk,,k2' k, k2e K,

from K x K to the algebra $(aM, L(F)) which represents the kernel of the
operator A, at both T and a. Here A is a fixed point in a ,c which is in general
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position (relative to z and a). Then

DC(i, A,) = K D(, Fk k)dk = D(n, ),

where

(D'(A, e) = K tr (Fkk(A))dk, (A,e) e a*c x S(L(F)).

If Fk , represented the kernel of A, everywhere, we would have

AL,(A, Q) = tr(Az(A,()) = (F'(A, e)

for all (A, Q). This need not be so, of course, but Fk, k2 does represent the
kernel at a. Therefore

AL a) = 4(()-

Since the value of D(n) at ()' depends only on Q'(a), we have

D(7r, ') = D(2, ALA)

The lemma follows. D

The next lemma is the main reason for the definitions of this section. Its
proof is an immediate consequence of the discussion of §8 of [l(e)].

LEMMA 3.2: Suppose that F is afinite subset of l(K). Then the unnormalized
intertwining operators

JQ IQ(Q Y) Q(e)r Q'Q(Q)r, Q E (L(F)),

form an admissible family. O

We can now prove Lemma 2.3. Let F be a finite subset of I(K) and let
EQo()r be the projection of %e(e) onto %Q (Q)r. The first step is to prove that

A(e) = IL(Q)- EQ(Q)r, Q E(L(F)), (3.5)

is an admissible family of operators. This is not a trivial assertion, for it
implies a linear relation among (the derivatives of) Plancherel densities for
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every self intertwining operator of a representation of O(L(F)) of the form
(3.1). However,

AA() = IL(eQZ) 'EQ(Q)

equals the restriction of the operator

JQIQ (QA)JQIQ (e)
to Q(Q()r. Since admissibility is preserved under composition, Lemma 3.2
tells us that (3.5) is indeed an admissible family.

In Lemma 2.3, we are provided with a nr-discrete distribution D = D(n).
Choose a representation z of 0f(aM, L(F)) as in (3.2) such that

D(7r, F), F e6(aM, L(F)),

depends only on the operator z(F). Similarly, choose a as in (3.4) such that

D(n1, o), · E 0(aM, L(F)),

depends only on i(a). It will be good enough to prove Lemma 2.3 with 0,
replaced by an arbitrary function 0( E (aM, L(F)). Fix such a D, and
choose a function F e Y(aM, L(F)) with FG = Q. Fix A e a*,c in general
position, and define

' (A, e) = L,(L+)-'O(A,e),

F2(A, e) = 'L(Q )-DO(A, L),

and

F'(A, m) = /L(,+a)- F(Am), mm L(F).

Then Fi equals OD. The admissibility of the family (3.5) means that the
inverse of the /a-function is an infinitesimal multiplier at T and a. In other
words, there is a function F e -f(aM, L(F)) such that

T(F) = T(F1)

and

G(a) = oD2().
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It follows from our conditions on T and a that

D(7, (1) = D(7r,F1) = D(n,F),

and

D(n, ) = D(71,F2) = D(7r,F).

We have thus established

D(7r,· ) = D(7r,2)
the required formula of Lemma 2.3. D

§4. The main formula

As in the last two sections, n is a fixed representation in H(M(F)). Suppose
that .Le a* is a point in general position. Our goal is to evaluate the
distribution

IM,, (r, X,f) = IM(Xr,,X,f)e-(x), fE f(G(F)),

in terms of residues and the functions rLI obtained from the normalizing
factors.

Suppose that we are given a set

X = = VL= :Le 2(M)

where each VL is a point in general position in a*. For example, if v e at is
any point in general position, let X = Xt(v) be the collection in which vL
is the projection of v onto a*. For any given X, we shall try to express
IM, (7r, X, f) in terms of the distributions

ILVL(e, hL(X),f)), L E JY(M), 0 E S(L(F)).

We begin by working with the noninvariant distribution

JM,(rn,X,f) = JM(X,X,f)e- (x), f E (G(F)).

By definition,

JM.(7r, Xf) = i*, JM(rA ,f)e-^(x)dA.
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We shall use the residue scheme of §10 of [l(e)] to change the contour.
According to Proposition 10.1 of [l(e)], there is associated to each L E Y(M)
a finite collection

RL = RL(1, XL)

of residue data for (L, M) such that JM,I (X, X, f) equals

Ev+i E
Res (JM(lA,f)e-A(x))dL.

Lef(M) VLl Liv eRL fA AQAn+A

As the notation suggests, the collection RL depends only on the set

fL = {VL: L' e Ly(M)}

Recall that if F E Yf(aM, L(F)), we can regard

F(A): m F(A, m), A e (ac /ia ), m E L(F),
as a function ofA with values in f(L(F)). We define

DmLL(, F) = E Res JL(1A, F(A)). (4.1)
QERL(1,L) ,AA n

In the special case that X = X(v) as above, we will usually write

RL(, V) = RL(J,AL)

and

DWML,H(nl) = DLdLL(Z).
In general, DML (i) is a distribution on f'(aM, L(F)) which supported at a
finite set of points (in the sense of §2).

If L #: G, our induction hypothesis implies that the distribution DL' is
supported on characters. It is therefore I-discrete. The constructions of §2
provide additional distributions

( -ML .rLL11)(z), LIE ((L), A E aL c,
on J(am, L(F)). We shall employ the notation (2.5), by which we can write

(^i~t~~ * r^f,)(7r' X' 0f>
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where 4 is the function

IL,(f): (a, Y) IL,(a, Y,f), a e (L (F)), Y aL,.

If L = G, we do not yet know that the distribution

,G#
D,

is supported on characters. This will be established in §5. In the meantime,
we shall indulge in a harmless abuse of notation for the sake of a uniform
formula. We shall write

(M, * r,vG)(t, X, IG(f)) = (DM)(Xr, Xfc)
when we really mean

D,(1r, e-)(x)f()) = Res (JM(lrA,fhG(X))e-A(X).
QeRG Q,A--An

Iff E J(G(F)), this equals

JI Z Res (JM(rA,)eA())dA.a t,.1 aA--GAtG+A

The next theorem gives the main reduction formula.

THEOREM 4.1: For any function f E ac(G(F)), we have

IM,,(n X,f) = (D * rL )(r, X, I, (f))
LI DL:M

Proof: The main step is to prove an analogous formula for JM, (, X, f),
with E f(G(F)). We have already noted that this distribution equals the
sum over L e S'(M) and the integral over A e VL + ia*,, of the expression

Z Res (JM(tA, f)e-A(X). (4.2)
ln RL f,A--n +A

By Proposition 9.1 of [1(e)], the expression (4.2) equals

E Res (e-A(x) tr(Jpo (OhA, f)-L (XA, PO)FQ(A, PO))).
flQRL ,A-*An+A
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Here, F (n^, Po) is the meromorphic function A with values in the space of
operators on Vpo(i) which was defined at the beginning of §9 of [1(e)], and
P0 is any element in Y(M). We can assume that Po = Qo(R), for fixed
elements Qo e (L) and R E PL(M). Now L(7^A, PO) is the operator

lim E -Q(G,^A, PO)eQ()-,10oQEs(L)

obtained from the (G, L)-family

Q(r, PrA, Po) = RQ(R)IQo(R)(1A) RQ(R)IQ0(R)(A+) Q (L), C e ia.

It is analytic for A near any of the points An + A, as long as i E a c is in
general position. We can therefore take the limit in C outside the residue
operator. Consequently, (4.2) equals the limit at 4 = 0 of the sum over
Q e Y(L) of the product of OQ(4)-1 with

Z Res (e-(x) tr(Jp (rA,f)aQ( , r, Po)F(n (̂ r P0))). (4.3)
fleRL fn,'-An +A

Assume that L # G. We are going to apply Lemma 3.1, with

D(n) = DmL().

Let

A = {A(A, Q):%0() - 0QO(Q)}
be as in Lemma 3.1, an admissible family of operators that depend mero-
morphically on A. If . e arL, is in general position, the operator

AA(A, JR(A)) = A(A + A, JR(7rA+ ))

on 'po(rn) is uniquely defined and analytic for A in a neighbourhood of each
of the points A in a* c. Consider the expression

E Res tr(A(A, (R(nJ))F(A^,X PO)). (4.4)
f(ERL flA-+A

The operator F(^rA, PO) acts on the space

p, (71 = "QO (*(R( ))
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entirely through the fibre, by means of the operator

rF (A, R): *R (a) -+ ().

But Proposition 9.1 of [l(e)] implies that

Z Res tr(9R(rA, F(A))Fr( A, R)) = D L(, F),
le RL fA--An

for any F e Jf(aM, L(F)). Choose a function Fk,,k2 eE(aM, L(F)) to
represent the kernel ofA at (A, JR(lA)) (up to sufficiently high infinitesimal
order). Then (4.4) equals

1f Res tr(R(xA, Fk k(A))rFn(7A, R)) dk
flERL i,A-+Aan+

= JDM,p(, Fk,k)dk
= (DLAL)G(, AA),

according to the definition (3.3). From Lemma 3.1 we then obtain the
equality of (4.4) with

)LML' (1C, (D ),

where

4,(A,Q) = AL,(A, Q) = tr(A.(A, e)).

We shall apply this last formula to (4.3). Since

rQ(R)I Q0(R)(A) = rQIQO(lA),
the operator MQ(C, ,A, Po) equals

(rQQleo(LA)-1 rQQO(1 +))- 0JQ(R)IQ0o(R)(A )JA)-Q(R)iQo(R) (EA+C )

Define

A(A, Q) = a^A(Q),
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where

a, = e-^(X)(rQIQo(7n)-l r (L))-1

and

A(e) = a0(Q, f)JQl,(Q)-' JQ1Q (OC).
By Lemma 3.2, {A(e)} is an admissible family of operators. Moreover, by
the transitivity of induction,

A(A, JR (7^)) = a^JP(^ A, f)JQ(R)IQeoR)(7A) JQ(R)I Qo(R)(^ + )

It follows that the expression (4.3) equals (4.4). Thus, (4.3) is equal to

J5H (0,A),

where

O<(A, e) = aA+tr(A(Q,)).
Observe that

(rQiQ,(A)-1rQIQ (eA+ ))- 1 tr(A(Q))
= tr( Qo(e, f)RQIQo(eA)-'RQQo(+))
= tr(fQo(ex,f)3Q( e, e, Q)).

Therefore,

(Dl(A, Q) = rQiQo(A+, Q)- rQIQo(7+A+, e+)A+'ITQA(, ,A ,eQ),
where

Q,;.(C, A, e, Qo) = e-( + )(X tr(QQo(0x,f)e(, eAQo)).

To obtain (4.2), we must multiply the formula we have just obtained for
(4.3) by OQ(4)-', sum over Q e 4(L), and then take the limit as C approaches
0. However, let us first write

DJ-·f( ^^ L

L_(>)(nl),&L C M,7r,
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where 1 stands for the constant function of (A, Q). Note that

Oe = (r-l'Q0,QiQO,.j+T'QA( Qo))v

= (rQIQo,)QI' rQo+C ( Q0)

= QrQQo *QIQoA+o+'O4 QA, Qo)

= rQ,(,Qeo) - , (C, Qo),

in the notation of §2. This is a product of (G, L)-families, and we may apply
Corollary 6.5 of [l(b)]. Consequently,

lim ( (rQe(C,, Qo) - (C, Qo))0()-O Qe (L)

is equal to

Lie '(L)Ll E (L)

As with rwLwe have suppressed Q0 in the notation TvA. Indeed,

TdL ,(A, Q) = e-^A )(X) tr(,(eL,( Qo)Jo (Q, f)),

and by formula (7.8) of [l(b)], this equals

e-()() JLI (OA, f).

In particular, TvL,, is independent of Q0. Since

.{L,rLX LI( '*rL,* Li. )(r, 1) = (D *,'rLj)(ir, TL,A),

we can therefore rewrite (4.2) as an expression

E (DfL-j rLA)(nr, L), (4.5)
LI E S(L)

in which

L ,,(A, Q) = e-(A+))J, (L', ).
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We have shown that the original expression (4.2) equals (4.5) for any
L G. According to our convention above, the same equality is trivially
true when L = G. Therefore, the original distribution JM4, (r, X, f) is equal
to the sum over L e Sf(M) and the integral over 1 in (vL + iaL*) of (4.5).
Take the integral inside the sum over LI which appears in (4.5). Then for a
given Li, replace A by

A + Cr, r Eia*,, 9

and integrate first over r. Note that

LI LI
,L+r, L,'

Also

Tia..Lit,A+(A, Q) dr

e- (A +A)(X) [i e-(x)JLi(Qlf)di-aI ,((Ae, f) drL

= e-^+)(JL (e', hL,(X), f)

= JL (A, ),

where

JL,(f): (a, Y) JL, (a, Y, f), a e (L1 (F)), Y aL,, v

It follows that

M'L,XL)d
JY L+ia X(DL', . rLI )(, T )di +ia* v Li\

is equal to

(jM VrLVL)(7, X, JL (f)),

in the notation of (2.5). Putting these facts together, we see at last that

JM (O, X, f)
= 4"' L I

JMP(, Xf) = Z (jD-M, rLYL)(7;, X, JL (f)).
LI LM
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We have established the analogue for JM,, (n, X, f) of the required formula.
At this point, f is just a function in J(G(F)). However, both sides of the
formula depend only on the restriction offto G(F)hG(x). Since the restriction
of any function in ac(G(F)) to this set coincides with that of a function in
J((G(F)), the formula remains valid iffbelongs to ac(G(F)).
We assume inductively that the required formula for IM, (7T, X, f) holds

if G is replaced by a proper Levi subgroup L' E S(M). The case of G will
be a consequence of the formula for JM, (rt, X, f) we have just proved. For
it follows from the definition that

JM,(, X, f) = E I(, K,X L'(f)).
L'e Yf(M)

The special case that p = 0 (and M = L,) also implies that

JL,(f) = E I (L(f)).
L'EY(L )

After substituting these two identities into the formula above, we apply the
induction assumption to the terms with L'Z G. We are left only with the
terms corresponding to L' = G, which give

IM, (r, XK (rf )) = Z (D rVL, X, IL, ()G(f))).
Ll DLSM

Since

It, (nr, X,( G(f)) = IM, (T, X,f)

and

IL ((G(f)) = IL,(f),
we obtain the required formula. [

COROLLARY 4.2. Set v = VM. Then the difference

IM, (7, X, f) - IMV,(n, X, f) (4.6)

equals

L (,L* rL,)( XIL ())
{Li,Le (A(M):LI GLUM}
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Proof: The theorem gives an expansion for IM,p (n, X, f) into a sum over L,
and L. Consider those terms in which L = M. It follows from the definitions
that

DM'rM (n, F) = tr1(F(O)), F e J(aM, M(F)).

In particular, this distribution is independent of u and X. Therefore, the
terms with L = M depend only on the point v = VM. Suppose for a moment
that p = v and X = 4r(v). Then

Dm, (n) = O, L # M.

Applying the theorem in this case, we see that IM, (n, X, f) equals the sum
of those terms in the general expansion in which L = M. Therefore, the
difference (4.6) equals the sum of those terms with L i M.

REMARKS: 1. Look again at the special case that p = v andX = X(v). The
expansion for IM, (n, X, f) contains only those terms with L = M. We have

(DM rM,)(, X,Ll(f)) = ri, X, I, ()),

in the notation described at the end of §2, so the expansion is just

IM,,(O, X,f) = r (, X, I(f)).
Li, e(M)

The theorem in this case is equivalent to (1.3).
2. Suppose that n is tempered. Then IM, (n, X, f) vanishes if v is near 0.

Corollary 4.2 may therefore be interpreted as an inductive procedure for
computing the distributions IM(n,, X, f) in terms of residues. We shall
discuss this in more detail in §7.

§5. Completion of the induction argument

Given Theorem 4.1, it is easy for us to show that the invariant distributions
defined by residues are supported on characters. Fix a residue datum

r = (o, An)

for (G, M), and a representation n e Hl(M(F)).
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LEMMA 5.1: The datap, e a* and X = {vL} of §4 may be chosen so that
RG(P, /X) consists only of Q.

Proof: This will follow easily from the definition. Recall that

So = (Ei,...,Er)

is orthogonal basis of (a )*, and that

M = Mo c Ml c c M, = G

is a sequence of Levi subgroups such that

aM, = {H a,_,: E(H) = }, 1 i< r.

Let E be a small positive number, and define a sequence

0 < 1El < £2 < * * < ,r = E,

in which each e, is much smaller than ei+,. We then define

P = Re(An) - (eE, + .. + ErEr).

Let Pm, be the projection of p onto a*, and set

VM = +M, + 2ei+ Ei,+, 0 < i < r - 1.

This defines the points vL e X when L = Mi. For the other elements
L E Y(M) we can take VL = 0. Then

| +iaf*rv(A)dA

equals

k=O (21)i firkt.t.F'' i'F(A+"A-' + z E1
+-

* + zkEk)d . . . dzkdA.

Here

I/(A) = JM(rA,^f)e- ,) f . (G(F)),
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while At is the projection ofAn onto (amk)* and F1, . . ., F are small circles
about the origin in C such that the radius of each Fi is much smaller than
that of Fi,,. We may therefore take RL(M, XL) to be empty unless L equals
some Mk, in which case it consists of a single residue datum

lk = ((E ,...,Ek), A').

In particular,
RG(1, .) = {}

as required.
THEOREM 5.2: Suppose that aA is an analytic function in a neighbourhood of
An in a* c. Then the distribution

Res (aAJM(A , f )), f E o(G(F)),QA-*A

is supported on characters.

Proof: We shall apply the formula of Theorem 4.1, with # andX as in the
last lemma. The term with L = LI = G in the formula equals

Res (JM(A, f)e-^(x))d. (5.1)jiat,,Q,A-AQ +A

This equals the difference between

IM. (7C, X, f)
and

E (^-z rLLL)(; X, IL, (f)).{LI =LzM:L#G}

Since L # G, DjL is well defined, by our induction assumption. Suppose
that f is such that f = 0. It follows from [1(f), Theorem 6.1] and [l(g),
Theorem 5.1] that IM,,(n, X,f) and IL(f) both vanish. Consequently, the
expression (5.1) vanishes. But the point X E aM in (5.1) is arbitrary. Taking
a finite linear combination of such expressions, over different values of X,
we can match Taylor series of a at An up to any given degree. It follows that

Res (aAJM(7lA,f)) = 0.
0,An n n

The given distribution is therefore supported on characters. E
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With Theorem 5.1 we have completed the induction argument begun in §1.
In particular, the distributions D 4of §4 are well defined, and Theorem 4.1
and Corollary 4.2 make sense as stated.

§6. Cuspidal functions

Suppose that f belongs to #(G(F)). If L is a Levi subgroup of G, the
function

fL: n -r tr(JQ(n',f)) QE (L), 7n ntemp(L(F)),

belongs to f(L(F)). We shall say that f is cuspidal iffL vanishes whenever
L # G. Assume that this is the case. Then, as we shall see, there is a
considerable simplification in Theorem 4.1.

Suppose that M, n, # and X are as in Theorem 4.1. Consider a term in
the expansion for IM, (n, X, f) corresponding to L c L1. Suppose first that
L i L1. We claim that the function

ILx (f): (A, q) -* e-(A+)(X)ILI(QI hLt(X),), A E at, E (L(F)),

vanishes identically. By the descent formula [l(f), Corollary 8.5], we can
express the Fourier transform

IJz,/ia, v'L' (LL', h'I (X), f)e-'(x) dA
as

Z dL(L,, L2)I2(e, X,fL2)
L2 e Y(L)

Since L g L1, the constant df(L1, L2) will vanish unless L2 i G. Our claim
then follows from the fact thatf is cuspidal. It follows from this that

( J XrL,L)(r, X, IL (f)) = 0.

In other words, we can discard the terms in Theorem 4.1 with L 5i L. The
term corresponding to L = L1 is just

,Lx(, Xff(),IL ) = xA( (f)),I~LM,# ((, ) LV W J} 9IL,VL(f))
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where

ILX,,(f): (A, e) IL, L(, hL(X),f)e-(̂, A E a*,c, e E I(L(F)).
We obtain the following corollary of Theorem 4.1.

COROLLARY 6.1: Iff is cuspidal,

IM,i ( Xf) = M- (, X, IL, (f)).
Le '(M)

For the rest of this section, e will llbe a small point in a in general position.
We now consider the special case that X equals X(e). In this case, the
associated residue scheme is essentially that ofthe real Paley-Wiener theorem.
The summand

Dm,,(2, X,f) = D,(I,X, IGv(f))

corresponding to L = G is the leading term in the expansion of Corollary
6.1. It equals

E Res (e-^(x)JM(A fhG())), (6.1)
QlRG(I,E) QA-,A

and consists entirely of residues. We shall show that if n is unitary, this is
the only term in the expansion.

COROLLARY 6.2: Assume thatf is cuspidal, that n has unitary central character,
and that e E a* is a small point in general position. Then

IM, (n,X, f) = D;,,(r, X, ).

Proof: Consider the expansion given by Corollary 6.1. Sincef is cuspidal,
the argument preceding Corollary 6.1 tells us that the function

IEL (e, hL(X),f)

vanishes if Q E ((L(F)) is properly induced. Now DjL'() is supported at
those Q e X(L(F)) with unitary central character. Any such e which is not
properly induced must be tempered. However, if Q is tempered, and eL is
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sufficiently small, we have

IL,,(Q, X,f) = 0, L G,

by [l(f), Lemmas 3.3 and 4.5]. It follows that the terms in the expansion with
L G must vanish. D

The last formula allows us to express the map

OM: ac (G(F)) -> (M(F)),

introduced in [l(f), §4], in terms of residues. For each P E S(M), let vp be
a point in the associated chamber (a*)+ in a* whose distance from the walls
is very large. We shall then write

DM(r, X, f) = E Op(X)YM,vp(, X,f), (6.2)
Pec(M)

where cop(X) is the ratio defined as in [l(f), §4]. That is,

0p(X) = vol(ap n Bx) vol(Bx)-', X E aM, PE. (M),

with Bx a small ball in aM centered at X. In particular, suppose that X is a
regular point in aQ,.V Then X belongs to a unique chamber ap, and

JYr(n,X, f) = D,,vp(, X, f).

Combining Corollary 6.2 with [l(f), Lemma 4.7], we obtain

COROLLARY 6.3: Assume that f is cuspidal, that zn e Tmp(M(F)) and that
X aM,. Then

M(f, n, X) = DM(,X,f). [O
For the rest of this paragraph we assume that F = R. We shall also assume
that M contains a maximal torus T over R which is R-anisotropic modulo
AM. Let Hdi (G(R)) denote the set of representations n in Hemp(G(R)) which
are square integrable modulo AG(R). The vector space ia* acts on

IdiG(G(R)) in the usual way, and the set of orbits can be identified with the
discrete series, nldi(G(R)1), of

G(R)1 = x e G(R): H(x) = 0}.
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For n e nIld,(G(R)) and y E Trg(R), the set of G-regular points in T(R), we set

IG(y, r) = IDG(y)II/2R (y),
where O, is the character ofn and DG(y) is the usual discriminant. This func-
tion is not constant on the ia*-orbit of I. However, its product with the
function

fa(i, HG(y)) = i )tr(i(f))e-(HG(Y)) dA
is constant on the orbit, and depends only on the image of nt in ndis(G(R)' ).
Here, i denotes the contragredi of the representation n.
We shall now bring in the distributions IM(yf). Suppose that L E Y(M).

According to the descent formula [l(f), Corollary 8.2],

IL(, f) = Z d(L, L')IL(yj,fLt),f '(G(R)).
L'E(M)

IfL # M, the constant dG (L, L') will vanish unless L' i G. It follows that

IL(y,f) = O, y e Treg(R), L i M, (6.3)
wheneverf is cuspidal.
We are going to establish the following variant of the main result of[l(a)].

It will be used in another paper on the traces of Hecke operators.
THEOREM 6.4: Suppose thatf E f(G(R)) is such that thefunctionfG is supported
on ndisc(G(R)). Then IM(y, f) equals

(-1)dim(AIAvo(T(R)/AM(R)o) - IM(y, I7)fc(t, HG()),
Bcndis(G(R) )

for any point y E Teg(R).
Combining this theorem with our results on residues, we will also prove
THEOREM 6.5: Suppose that f e f(G(R)) is such that the function fG is
supported on ndis(G(R)). Then

E Ig(M ,)fG(7 H,(y))
Itf disc(G(R)1)

(_I)dim(AM/AG) E IM(Yt U)D;(7r HM(Y) f)= (-I(y it) (, HM(y),)f),
E disc(M(R)1)

for any point y E Trg(R).
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We shall first establish a direct connection of IM(y, f) with the residues.

LEMMA 6.6: Suppose thatf and y are given as in the two theorems. Then

IM(y, f) = vol(T(R)/lA(R)°)-1 E IM(y, rH)DY(:,HM(y), f).
it E dij(M(R) )

Proof: Notice that our condition onf implies that the function is cuspidal.
According to [l(f), (2.6)], IM(y, f) satisfies a differential equation

M(y' zf) = a(yzL)I(y,f), y e Tr(R),
Le '(M)

for every element z in the center of the universal enveloping algebra. We
know that aM(y, z) equals a(h^(z)), the invariant differential operator on
T(R) obtained from the Harish-Chandra map. (See for example Lemma 12.4
of [l(d)].) Therefore, by (6.3), the differential equations simplify to

IM(y, zf) = a(hT(z))IM((,f), Y Treg (R). (6.4)

Since the distribution IM(y, f) is supported on characters, it depends only on
fc. But fG is a finite sum of eigenfunctions of the center of the universal
enveloping algebra, each having regular infinitesimal character. As is well
known, this severely limits the solutions of the equations (6.4). For y lying
in a given connected component of Treg(R), we can write IM(y, f) as a sum

Z c,(H(y)) (y), (6.5)

where £ ranges over the regular quasi-characters of T(RI) n G(R)1, and
c¢ = 0 for almost all <.
According to the expansion [1(f), (4.11)], we can also write

IM(yf) = E iM(Y, OL(f)).
LE Y(M)

We would like to show that 'IM(y, f) vanishes if M $ G. Assume inductively
that this is so whenever G is replaced by L, with M i L i G. We make a
second induction assumption that if L; M and Y E at, the function

OL(f h,i ), n Ec ntemp(L(R))9
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is supported on IdisC(L(R)). Then OL(f) is the image in a(L(R)) of a
function in JaC(L(R)) which satisfies the same conditions at f. The first
induction hypothesis then implies that

IM^(, O(f)) = 0,

ifM g L i G. We can therefore write

IM(y f) = 2 (,Y O (f)) + IM(y,f).

The function f is cuspidal. Combining [l(f), Lemma 4.7] with the descent
property [l(f), Corollary 8.5], we see that OM(f) is the image in Jac(M(R))
of a cuspidal function in acC(M(R)). This function is certainly K-finite, so the
orbital integral im(y, OM(f)) can be expanded in terms of characters. From
the standard orthogonality properties of characters, we obtain an expression

voI(T(r)/Am(R)°)-1 E IM (y, 7)0M(f/ myr Hm(y)),

in which the sum is over a finite set of representations n e ntemp(M(IR))
whose characters do not vanish on the elliptic set. By Corollary 6.3, this in
turn equals

vol(T(IR)/AM(R)0)1 E /M(ym, n)DqM(, HM(y),f). (6.6)

We have shown that the difference between (6.5) and (6.6) equals CIM(y, f).
Suppose that HM(y) lies in the chamber aP,P e Y(M). Identifying the Lie

algebra of AM,() with aM, we replace y by a translate

y exp X,

where X lies in

(aG)+ = aYa,+ : h,(Y) }=={ G(Y) =ea; 0}.

The resulting functions of X given by (6.5) and (6.6) are both analytic. In
fact, they are both (aG)+-finite, in the sense that their translates by (aGy)
span a finite dimensional space. On the other hand, [l(f), Lemma 4.4] tells
us that JIM(y exp X, f) is a compactly supported function of X. An analytic
function and a compactly supported function can only be equal if they are
both zero. Therefore, (6.5) equals (6.6), and cIM(y, f) vanishes. This completes
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the first induction argument. Since the quasi-characters in (6.5) are all
regular, the sum in (6.6) can be taken over n E ndiS(M(R)'). But (6.6) equals
Im(y, OM(f)), and we have seen that OM(f) is cuspidal. It follows that for
any Y e aM, the function

OM(f, 7eY), pE ntemp(M(R)),
is supported on ndi(M((R)). Therefore, the second induction argument is
also complete.
We have actually established the lemma in the course of the two induction

arguments. To recapitulate, we note that the expansion [l(f), (4.11)] reduces
to

M(y, f) = Ij(y, OM(f)).

The orbital integral on the right then has an expansion

vol(T(R)/Am(R))- E IJ (y9, 7)OM(fg Fi Hm(y))
nE ndisc(M(R) )

into characters of discrete series on M(R)1. The required formula of
Lemma 6.6 is then a consequence of Corollary 6.3. D

Proof of Theorem 6.4: This theorem is an invariant version of Theorem 9.1
of[l(a)]. It is established by showing that as functions of y, both sides satisfy
the same differential equations, boundary conditions, and growth con-
ditions. This was done in full detail in [I(a)], so we shall be quite brief.
The differential equations for IM(yf) are given by the formula (6.4),

established in the proof of the last lemma. There is a boundary condition for
each real root fB of (G(R), T(R)). It follows from (6.3) that the function
I(7y,f), referred to in [l(f), §2], is just equal to IM(yf). If a(u) is any
invariant differential operator on T(R), the boundary condition becomes

lim (a(U)IM(r, f) - O(u)I(y_, f)) = n(AM) lim a(u,)I, (6, f),
r--+ s-O

(6.7)

in the notation of [l(f), (2.7)]. A similar argument shows that IM(y,f) is
smooth across the hypersurface defined by an imaginary root of(G(R), T(R)).
The growth condition we would expect is for IM(y, f) to be rapidly decreasing
on T7g(R). However, the uniqueness argument works equally well if we only
establish that IM(y, f) is bounded. We shall apply Lemma 6.6.
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Suppose that HM(y) lies in the chamber a+, P E P(M). Then the distri-
bution

D£M(, HM(y),f) = DYM,VP(, HM(y),f)

equals

E Res (e-^(HM(Y))JM(A, fHG(Y)))
QE RG(Vp,E) QSA-Af

But RG(vP,I) is the residue scheme of the real Paley-Wiener theorem. In
particular, the points

{Re(AQ): Qf E RG(v, E)}

all lie in the closure of the dual chamber for P. That is,

Re A.(X) > 0, Q E RG(v, e), Xe ap .

It follows from Lemma 6.6 that I(y, f) is bounded for y E Treg(R).
Now consider the other side of the formula we are trying to prove. From

the character theory of discrete series, the function

IM(y, ) = (- l)dim(AMIAG)vol(T(R)/AM((R)O)-'
x , IM(y, )/G(ft, HG(y)), y E Tg(R),

7endisc(G(R) )

satisfies the same differential equations, boundary conditions and growth
conditions as IM(y, f). The theorem is to be proved by induction on dim AM.
If M = G, the required formula follows directly from the orthogonality
properties of characters of discrete series. (In the more difficult case of
Schwartz functions, it is a standard result of Harish-Chandra.) In general,
we can assume inductively that

IM, S f) = IM (S f)

for Ml and bS as in (6.7). Consequently, the difference

IM(, f) M(y7,f)

is smooth across the hypersurface defined by a real root. Theorem 6.4 then
follows from a standard uniqueness argument. (See §9 of [l(a)].) 0



94 J. Arthur

Proof of Theorem 6.5: This follows immediately from Theorem 6.4 and
Lemma 6.6. [1

I do not know quite what to make ofTheorem 6.5. It expresses the character
values ofdiscrete series on noncompact tori as sums ofresidues ofintertwining
operators. The formula is reminiscent of Osborne's conjecture, which has
been proved by Hecht and Schmid [3, Theorem 3.6]. However, it provides
somewhat different information. Suppose for simplicity that A = { 1}, and
that f is a pseudo-coefficient. That is, fG(i') = 1 for a fixed representation
It' in ndisc(G(IR)), andfG vanishes at all the other points in nHte,(G(R)). Then
the left side of the formula in Theorem 6.5 equals

IM(y,7') = IGG(y)II0 (y).

The invariant distribution

Di(y , HM(y),f) = M,Vp(t HM(y),f), HM(y) E a+

on the other side is obtained by combining residues of intertwining operators
according to the scheme of the real Paley-Wiener theorem. It follows that
the right hand side of the formula can be regarded as a sum of pairs

(7i, A), 7r E Hdi(M(R)), A E aM,

in which A belongs to the chamber +a* in a* which is dual to a+, and 7t'
occurs as a composition factor of the representation

dAYP(nA).

In particular, Theorem 6.5 implies that n' occurs as a composition factor of
an induced representation for every character exponent of n'.

§7. Conclusions

In the introduction, we claimed that the residues of {JM(nA, f)}, the distri-
butions {IM(7, X, f)}, and the asymptotic behaviour of {IM(y, f)} could all
be computed from each other. Let us summarize how this can be done.
The main point is to compute the distributions

IM(7t, X, f), it n(M(F)), (7.1)
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from the residues. Formula (1.3) gives the values of (7.1) in terms of
distributions

IM(o, X, f), EY(M(F)).

We shall assume inductively that we can compute these latter distributions
if G is replaced by a proper subgroup or ifM is replaced by a strictly larger
group. (The case thatM = G is trivial.) Now, a given standard representation
Q EE(M(F)) is of the form

Itl M1, M, n, e ntemp(M,(F)), Al E a*,.
Suppose that M, i M. Then the descent formula [l(f), Corollary 8.5]
allows us to write the Fourier transform

ia /ia, I M(l,Aj +AlhM(X), )e-i(')dA, X, e av,

as a linear combination of similar distributions on proper Levi subgroups of
G. In other words, IM(Q, X, f) is the inverse Fourier transform of a finite
sum of functions we can compute inductively. This leaves undecided only
the case that M, = M. It follows that the general distributions (7.1) can be
computed from distributions of the form

IM,,(7r, Xf) = e-P(x)IM(7r,, X,f), 7E lltemp(M(F)),/ E a*.

Recall that I/,,(7t, X, f) is a rather straightforward function of PI. It is
locally constant on the complement of a finite set of affine hyperplanes
which are defined by coroots. Moreover, the mean value property [l(f),
Lemma 3.2] gives the value at any Iu in terms of the values at nearby points,
so we can take Iu e a* to be in general position. We may as well also assume
that M # G. Then by [1(f), Lemma 3.1],

IM,(i, X,f) = IM(,X,f) = 0,

for E near 0. It therefore suffices to compute the difference

IM, (X,X,f) - IM, (, X,f),
for any points, , v e a* in general position. We apply Corollary 4.2. The
difference becomes a sum over L =- L R M of the distributions

(DL i*.LVL)(, X, IL (f)) =
i li (D"r·L,)(7r, IL,,()) da""M,t .- rL, x)(L,Ii,.xLf))vd2
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Suppose that the residues of JM(nA^, f) are known. What does this mean?
According to Lemma 2.1 and Theorem 5.2,

F -, Res JM(^A, F(A)), FE '(aM, L(F)),

can be regarded as a distribution of finite support in the function

4&(Ae) = F(A,))A Eac Q E (L(F)),

for any residue datum 0f for (L, M). We assume that we can calculate it
explicitly. This presupposes a knowledge of the poles of JM(^A, F(A)), which
in turn determines RL(u, X'L) and DL,, (n). We will then be able to write

J1 L(r', F) = E (Aij(7r)D)(Ai, QL), 4D E J(aM, L(F)), (7.2)
ij

for Levi subgroups Mj c L, standard representations qj e £(Mj(F)), points
Ai e a*,c, and differential operators Aij(i) on ac x a,c, all of which we
can determine explicitly. Now the integrand

(DM'*rLI )(,iLA(f ))

above comes from the (LI, L) family given by (7.2), in which

D = rQ~Q Q I (f), Q e6(L), 4c ia.QlQol ' rotoo,"Z+c L!,

That is

(A, e) = QIQ0(xA+,, Q)-lQIQ0(^L+A+c,)e-(A+ )()IL, (, hL(X),f).

The functions rQlQo come from normalizing factors, which we regard as
known. Moreover, we can calculate IL,(Q0', hL,(X)f) inductively, since
LI i M. Therefore, we can evaluate (7.2) for the given F. This allows us to
calculate the integrand, and the expansion given by Corollary 4.2. Thus,
Corollary 4.2 gives an inductive procedure for computing the distributions
(7.1) in terms of residues.

In fact, all we need to compute are the one-dimensional residues. For we
can cross the singular hyperplanes one at a time. Suppose that P and v lie
on opposite sides of a singular hyperplane

A(aV) = c, a (G,AM,),ceC,
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and that these two points differ by a small multiple of a. Define

XA = {VL:LEYS(M)},

as above, by taking vL to be the projection of v onto a*. Then the distri-
butions

DLAL L i M,

all vanish except when L is the Levi subset defined by

aL = {H E a(H) = 0}.

For this exceptional L,

(Dmt)(, F) = 2ic J(x+ ,F(O + zct))dz,

for any F eE f(aM, L(F)). This is just an old fashioned residue, in which C
is a small positively oriented circle in the complex plane. The center of C is
of course the point z0 such that i + zo0 lies on the given singular hyper-
plane. Thus, the distributions (7.1) can ultimately be understood in terms of
the one-dimensional residues.

Conversely, it is easy to compute residues from the distributions. Suppose
that Q is an arbitrary residue datum for (G, M). According to Lemma 5.1,
we can choose # and JX so that RGc(, X) consists only of the residue datum
0. Then

Dm'(n, Xf) = Res (e-^)JM(A ,̂ fhc(X))), fe (G(F)).
f2,A AfA

Since X is an arbitrary point in aM,, the expression on the right is sufficient
to determine the residue

Res JM(TA, F(A)),
fl,A--An

for any function F e o(aM, G(F)). But the expression on the left equals

,IMU(@ X, f) - (DM-. r.VL)(7r, X, IL (f)).
{LI zL:L#G}
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Thus, the residues can be computed inductively from the distributions
IM.p (n, X). Observe that it suffices to know all the distributions in the special
case of a maximal Levi subgroup. For these will determine the one dimen-
sional residues, and as we have seen, these in turn determine the distributions
in the case of general rank.
The distributions (7.1) can be used to construct maps

0M, "0M: fac(G(F)) Jac(M(F))

which determine the asymptotic behaviour of I(7, f). This is treated in
[l(f), §4-5], so we shall not discuss it further. Let us consider instead the
converse question. How can everything be determined from the asymptotic
behaviour of IM(y, f)? Again, we need only assume such knowledge in the
case of a maximal Levi subgroup.

Suppose that dim (AM/AG) = 1. From the formula [1(f), (4.11)], we know
that

IM(^, f) = IM(Yf) + m(Y, OM(f)).

If X belongs to a chamber a+, with P E P(M), we have

OM(f, , X) = IM, (7 X,f),

by [l(f), Lemma 4.7]. Assume that n E n emp(M(F)). Then IM,(7r, X, f)
vanishes for any small point s in a*, and by Corollary 4.2,

IMVP(t, X, f) = DM,,p(, X, f).

This is just the distribution associated to the one dimensional residue
scheme, with # = vp and v = E. It equals a finite sum of residues

2Zi .Ck J(7. ,f)e- dz, (7.3)
where a is the reduced root of (P, AM) and k indexes the finite set of points
Zk in the right half plane at which the function

z -+ Rplp(mz)-l d Rplp(irz), z E C,
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has a pole. For each k, Ck is a small positively oriented circle about zk. Now,
consider

I (Y, OM(f))

as a function of a(HM(y)). If this variable is positive, the function equals a
finite sum of terms

Pk(a(H (y)))e- k(H(y))(7.4)
where each Pk is a polynomial. These terms are characterized by their
exponents, and are uniquely determined from the asymptotic values of
im(y, OM(f)). But (7.4) is just the orbital integral of the function of n defined
by the residue (7.3). Moreover, I[m(y, OM(f)) equals I(y, f) for HM(y)
outside a compact set. It follows that all the one dimensional residues can
be obtained from the asymptotic behaviour of IM(y,f), in the case of
maximal Levi subsets. We have observed that these in turn determine the
distributions {IM(r, X, f)}, the asymptotic behaviour of {IM(y, f)}, and the
residues of {JM(^rA, f)}, all for general M.
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