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Let G be a reductive algebraic group over a local field F of characteristic 
0. Let n [ G ( F ) )  denote the set of equivalence classes of irreducible represen- 
tations of G(F) .  The irreducible characters 

are linear functionals on 3^(G(F)) ,  the Hecke algebra of G(F) .  They are 
invariant, in the sense that 

Characters are of course central to the harmonic analysis of G(F) .  They 
also occur on the spectral side of the trace formula, in the case of the com- 
pact quotient. In the general trace formula, the analogous terms come from 
weighted characters. A weighted character is a certain linear form on the 
algebra 

which is not in general the trace. Our purpose here is to study the weighted 
characters as functions of n. 
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20 JAMES ARTHUR 

There is not a major distinction between the theory for real and p-adic 
groups, so for the introduction we shall assume that F is isomorphic to R. 
Let us first describe some simple properties of ordinary characters. The set 
n{G(F))  is equipped with a natural action 

under the complex vector space a z c  attached to the rational characters of 
G. Then the function 

is analytic in A. More generally, suppose that M l ( F )  is a Levi component of 
a parabolic subgroup of G(F),  and consider an induced representation 

of G(F). Then 

is an entire function which, in fact, belongs to the Paley-Wiener space. In 
other words, the Fourier transform 

is compactly supported on Sf. Another basic property is that for general n, 
the functional JG(n, f )  can be expressed in terms of its values at tempered 
representations. Let Â£{G(F) be the set of representations of the form a: as 
above, but with a tempered. By analytic continuation, we can certainly 
express J&z, f )  in terms of the values at tempered representations of 
G(F}. But it is well known that any irreducible character has a unique 
expansion 

as a finite integral combination of standard characters. 
Weighted characters are linear functionals or "distributions" on 

&(G(F))  which are indexed by Levi components M ( F )  of parabolic 
subgroups, and representations 
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They reduce to ordinary characters when M = G. The weighted character is 
defined by a formula 

where ^/niq, P )  is a certain operator on the space 
representation Yp(ni,). In the case of rank 1, BM(n,, P 
rithmic derivative 

of the induced 
) equals a loga- 

of normalized intertwining operators, but in higher rank it is given by a 
more general limit process. At any rate, to define JM(ni, f )  we must first 
introduce suitably normalized intertwining operators 

This we do in Sections 2 and 3 and the Appendix. We shall show that the 
normalizing factors suggested by Langlands in [15(b), Appendix 111 do 
indeed endow the intertwining operators with the desired properties. We 
shall also show that the matrix coefficients of R W p ( q )  are rational 
functions of A. We introduce the distributions JM(ili, f )  in Section 6. The 
rationality of R p , , J ~ )  implies that the matrix coefficients of BM(il;., P) are 
rational functions of 2. It will follow that JM(n,, f )  is a meromorphic 
function of Ae a&,c7 with finitely many poles, each lying along a hyper- 
plane 

defined by a root a of (G, AM). A similar assertion applies if q is replaced 
by an induced representation 

where MAF) is a Levi subgroup of M(F). 
The generalization of (1) entails a comparison of the normalizing factors 

for n, and pA. If n and p occur in ( I ) ,  their normalizing factors need not be 
equal. In Lemma 5.2 we shall show that the ratio 

of these normalizing factors behaves in some ways like the operator (2). In 
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particular, ( 3 )  is a rational function of A. In Proposition 6.1 we will 
establish an expansion 

where for each Levi subgroup L(F) containing M(F) ,  r ^ q ,  p A )  is a 
rational function which is defined by a limiting process from the functions 
(3).  

We shall study the residues of JM(z) ,  f )  in Sections 8 and 9. Suppose 
that Q is a sequence of singular hyperplanes, which intersect at an afine 
space 

Let Reso denote the associated iterated residue. Lemma 8.1 asserts that if 
L = G,  

is an invariant distribution. A natural problem is to compute this dis- 
tribution, or at least to express it in terms of other natural objects. We shall 
study this question in some detail in a future paper. Another problem in 
the case of general L is to find a descent formula, which relates the residue 
to the distributions 

A partial answer to this will be provided by Proposition 9.1. 
One reason for studying residues is to be able to deform contours of 

integration. In Section 10 we shall describe a formal scheme for doing 
this, which is similar to that of the Paley-Wiener theorem. We will then 
conclude the paper with an application. It is important to understand the 
integral 

as a function of a tempered representation neIJ(M(F)). In Theorem 12.1 
we shall establish that < t > M ( / ,  z, X) is an entire function in the natural 
parameters which characterize n. This is a key requirement for putting the 
trace formula into invariant form. An equivalent result was established 
as [l(a),  Theorem 12.11. However, this earlier theorem was proved by 
looking at orbital integrals instead of residues, and it was contingent on 
some hypotheses from local harmonic analysis which have yet to be 
completely verified. 
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Since the results of this paper are to be applied to the trace formula, we 
shall work in greater generality. We shall include the case that F is a num- 
ber field, equipped with a finite set S of valuations. The weighted characters 
will then be functionals on X(G(Fv}) .  We should also include the twisted 
trace formula, so we will work with disconnected groups. In the paper, we 
will take G to be a component of a nonconnected algebraic group over F. 

Much of the material for the normalization of intertwining operators was 
contained in an old preprint "On the Invariant Distributions Associated to 
Weighted Orbital Integrals." The main step is to relate the normalizing 
factors to the Plancherel density. Our argument relies on an unpublished 
lemma of Langlands, which we have reproduced in the Appendix. I thank 
Langlands for communicating this result to me. 

Suppose that G is a connected component of an algebraic group over a 
field F. We shall write G+ for the group generated by G, and Go for the 
connected component of 1 in G+.  We assume that G is reductive. Then G+ 
and Go are reductive algebraic groups over F. We also make the 
assumption that G(F)  is not empty. Then G(F)  is a Zariski dense subset of 
G if F is infinite. As we noted in [ l (e)]  many of the notions which are used 
in the harmonic analysis of connected groups are also valid for G. Let us 
briefly recall some of them. 

A parabolic subset of G is a set P =  P n  G, where P is the normalizer 
in G+ of a parabolic subgroup of (7' which is defined over F. We shall 
write No for the unipotent radical of P. A Levi component of P  is a non- 
empty set M = f i n  P, where f i  is the normalizer in G +  of a Levi com- 
ponent of Po which is defined over F. Clearly P = M N p .  We call any such 
M a Levi subset of G. Suppose that M is fixed. Let g ( M )  denote the 
parabolic subsets of G which contain M. Similarly, let Y ( M )  be the collec- 
tion of Levi subsets of G which contain M. Any P E  F ( M )  has a unique 
Levi component M p  in Y ( M )  so we can write P  = M p N p .  As usual, we let 
9{M} denote the set of P E  F ( M )  such that M p  = M. Suppose that L is an 
element in .Sf(M). Then M is a Levi subset of L. We write F L ( M ) ,  
Y L ( M ) ,  and @ ( M )  for the sets above, but with G replaced by L. For any 
pair of elements Q e 9 ( L )  and R E  9 L ( M ) ,  there is a unique element 
P E  9 ( M )  such that P  c Q and P n  L = R. When we want to stress its 
dependence on Q and R, we will denote P by Q(R) .  

For a given Levi subset M, we let AM denote the split component of the 
centralizer of M in MO. We also write 
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where is the group of characters of M +  which are defined over F. 
Now suppose that P e ^ { M ) .  We shall frequently write A p =  AMP and 
a p  = aMp. The roots of (P, Ap) are defined by taking the adjoint action of 
A p  on the Lie algebra of Np. We shall regard them either as characters on 
A p  or, more commonly, as elements in the dual space a: of ap. The usual 
properties in the connected case carry over to the present setting. In par- 
ticular, we can define the simple roots zip of (P, Ap) and the associated 
"co-roots" 

in ap.  The roots of (P, Ap) divide ap  into chambers. As usual, we shall 
write a'p for the chamber on which the roots A p  are positive. 

From now on we take F to be either a local or global field which is of 
characteristic 0. We also fix a finite set S of inequivalent valuations on F. 
Then 

is a locally compact ring. We can regard G, Go, and G+ as schemes over F. 
Since F embeds diagonally in Fc, we can take the corresponding sets 
G(Fs), Go(Fs), and G+(Fs) of Fs-valued points. Each is a locally compact 
space. Consider the homomorphism 

which is defined by 

for any x  = noes xu  in G+(Fs) and x in X(G)/?. Let us write 

for its image. If the set, S n Sm , of Archimedean valuations in S is not 
empty, then aG. On the other hand, if S n  Sm is empty, a G S  could 
be messy. This is only a superficial difficulty, due to our definition of HG.  
To avoid it, we make the assumption that if S n  Sno is empty then all the 
valuations in S divide a fixed rational prime p. In general, we set 

Then 
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is the additive character group of aGs .  It is a compact quotient of a$ if 
S n  Sm is empty, and is equal to a$ otherwise. 

In this paper, all integrals on groups and homogeneous spaces will be 
taken with respect to the invariant measures. We will usually not specify 
how to normalize the measures, beyond assuming that in a given context 
they satisfy any obvious compatibility conditions. However, there will be 
two exceptions. One concerns the measure on the groups Np(R), in the 
special case that F = R. We shall discuss this in Section 3. The other, which 
is of no great significance, pertains to the spaces a^. We fix Euclidean 
metrics on these spaces in a compatible way-that is, so that they are all 
obtained from a fixed, Weyl invariant metric on a maximal such space. Our 
Haar measure on each aM will then be the associated Euclidean measure. 
We take the corresponding dual measure on ia'f,. Now the objects H M ,  
aM,* and a G S  can of course be defined as above. On the quotient space 
i aCs  = i c / i a ;  we take the associated quotient measure. In case S nSm 
is empty, we can assume that this quotient measure is dual to the discrete 
measure on a M S .  

For each v E S let Kv be a fixed maximal compact subgroup of G0(FV).  
Then K = Ke Kv is a maximal compact subgroup of G0(Fs) .  If v is non- 
Archimedean, we assume in addition that Kv is hyperspecial. We shall only 
be interested in Levi subsets M which are in good relative position with 
respect to K. More precisely, we require that each K,, be admissible relative 
to M O  in the sense of [l(a),  Sect. 11. From now on, M will always be 
understood to represent some Levi subset which has this property. The pair 
( M ,  K M  = K n  M O ( F ~ ) )  then satisfies the same conditions as (G, K) .  

Suppose that (T, V 7 )  is a representation of M + ( F s )  which is admissible 
relative to K M .  For any A e a L c ,  the representation 

is also admissible. For each P e P ( M )  let & ( T ; )  denote the associated 
induced representation. In this paper we shall usually regard it as a 
representation of the convolution algebra of smooth, compactly supported, 
K-finite functions f on G^(Fs) .  As such, it acts on the space Vp(~) of K- 
finite functions i f ) :  K  -+ V .  such that 

The operator Yp(t,., f )  is defined by 
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where we write 

for any x e G+(Fs) .  As always, pp denotes the vector in a: associated with 
the square root of the modular function of PO(F& We shall be concerned 
with the intertwining operators 

for these induced representations. Recall that J p . l p ( ~ A )  is defined by 

The integral is over Np.(Fs)  n Np(Fs)\Np.{FA and converges absolutely 
for the real part of A in a certain chamber. 

Let us list some of the elementary properties of the intertwining 
operators. These are either well known or follow directly from the 
definition (1.1 ): 

( J  ) Jp. p ( ~  ,) Y/,(T,, f )  = J^.(T;. , f ) J p ,  /,(T;.). (This of course is the 
basic intertwining property.) 

( J z )  Jp.. , p ( ~  ,) = Jp,, p t ( ~ A )  J p ,  /,(T ,), for P, P', and PIf in Y ( M ) ,  with 
d(Pt f ,  P )  = d(P1', P ' )  + d(P1, P). (We write d(Pf f ,  P )  for the number of 
singular hyperplanes in aM which separate the chambers of P" and P.) 

( J 3 )  Suppose that Q e 9 ( L )  and R, R' e ̂ {M}, for L l Â£'(MI Then 

where P = Q ( R ) ,  P' = Q ( R 1 ) ,  and di, is the function 

kl +l f>{klk) ,  k l  EKL,  
in ^ ( T ) .  

( J 4 )  If T is unitary, then 

where ( )* denotes the adjoint with respect to the Hermitian form 
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(J5) For any w E K, 

where the meaning of we and wA is clear, and l(w) is the map from i p ( e )  to 
i/Ã£,,,,,-^(we defined by 

I do not know whether one can prove analytic continuation for general 
T. However, we can obtain everything we need from the case that T is 
irreducible. Then it is well known [1 l (a) ,  13(b), 16(a)] that Jp'ip(G can 
be analytically continued as a meromorphic function to all A e a%,c (see 
also Theorem 2.1 below). Our eventual goal is to study a certain rational 
map constructed from the intertwining operators. However, it is necessary 
to use properties that hold only when the operators have been suitably nor- 
malized. In Sections 2-5 we shall discuss the normalization of the operators 
and some related questions. Before we turn to this, we should agree on how 
we will attach irreducible representations to the set M. 

Let ^(M+(Fs)) denote the set of equivalence classes of irreducible 
(admissible) representations of M+(Fs) .  There is an action of the finite 
group 

M , s =  Hom(M +(Fs)/MO(Fs), C*) = f] Hom(M + ( F v ) / M O ( ~ v ) ,  C*) 
v e - s  

on ^{ M + (Fs)), which is given by 

Here, m stands for the projection of m onto M+(Fs)/MO(Fs). More 
generally, if T is any representation of M +(Fs), and [ = (<, A) is an element 
in Gs  x a:, c, we shall write 

We define U(M(Fs)) to be the subset of l7(M +(Fs)) consisting of those 
n whose restriction nÂ to MO(Fs) remains irreducible. Note that no is then 
invariant under the finite group M+(Fs)/Mo(Fs). Conversely, any 
irreducible representation of MO(F~) which is invariant by this group 
equals no for some n in 77(M(Fs)). There is a character theoretic inter- 
pretation of Z7(M(Fs)). If n is any representation of M+(Fs )  of finite 
length, let tr(n) denote the restriction of the character to M(Fs). (It is suf- 
ficient here to regard tr(n) as a distribution, although it is actually known 
to be a function, at least for p-adic groups [7].) Then U(M(Fs)) consists of 
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the representations n in /7(M + ( F s ) )  for which t r (n )  does not vanish. It is 
easy to see that if { n }  is a set of representatives of Gs -o rb i t s  in 
n(M{Fs) ) ,  then the functions { t r ( n ) }  are linearly independent. Note also 
that the action of G s  preserves IJ(M(Fs)) .  Indeed, Z7(M(Fs)) is just the 
subset of ^ [ M  + ( F s ) )  on which G s  acts freely. Moreover, the map 

is a bijection from the set of fixed point free orbits of G S  in U{M + ( F s ) )  
onto the set of elements in /7 (M0(Fc) )  which are invariant under 
M + (FSVM0(FS). 

We shall write f i ( M ( F s ) )  for the subset of representations n in 
U{M(Fs ) )  such that nÂ is tempered. 

In this section we take n to a representation in Z7(M(Fc)). We shall first 
state the properties we require of the normalization as a theorem. In the 
remainder of the section we show that the proof of the theorem reduces 
in a canonical way to a basic special case, that of F local, G = Go, 
dim(Au/AG) = 1, and n square integrable modulo AM. We shall discuss the 
special case later, for real and p-adic groups separately, in Sections 3 and 4. 

THEOREM 2.1. There exist meromophic, scalar valued functions 

such that the normalized operators 

have analytic continuation as meromorphic functions of A e and such 
that the following properties hold: 

( R l )  R P , , P ( n , ) ^ P ( n , , f  =^ /> ' (x* , f )  RP , ,P (~A) .  

( R z )  RWp(n,}  = Rp,s IP(n) . )  RPlp(.n,), for any P, P', and P" in 9{M\ 

( R 3 )  (RP'lP(n/.)</>)k= RR' lR(nA)<i>k,  < />evP(n) ,  k e K ,  for P=Q(R)?  
P' = Q ( R f ) ,  with R, R' e {̂M} and Q e P ( L )  (and with apologies for 
overuse of the symbol R) .  

( R 4 )  Ifv. is unitary, then 
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(RJ If F is Archimedean, RpfIp(ni) is a rational function of 
{^ (av ): a E Ap}; if F is a local field with residue field of order q, Rp,lp(nj.) is 
a rational function of { q A ( '  " ): a. e A p}. 

(R,) I f  n is tempered, rp,lp(ni) has neither zeros nor poles with the 
real part of A in the positive chamber attached to P. 

(Re)  Suppose that F is local, non-Archimedean, that G and n are 
unramified, and that K is hyperspecial. Then if <t> E Vp(n) is fixed by K, the 
function RpSl  p(nj,)if> is independent of L 

The first five properties ( R l H R 5 )  are obviously extensions of (Jl)-(J5). 
Note that once the normalizing factors have been defined, the analytic 
continuation and (R,)  follow trivially from the corresponding properties 
for JpCl />(nJ.). Other properties, such as (R2), are nontrivial extensions and 
hold only for the normalized operators. We shall reduce the proof of the 
theorem to the special case mentioned above. We therefore assume in this 
section that the functions rYip(ni )  have been defined, and that the theorem 
is valid, when S = {v}, F= F y ,  G = Go, dim(AM/AG) = 1, and n is square 
integrable modulo AM. 

We shall first relax the condition on the rank. Assume that S, F, G, and n 
satisfy the constraints above, but that dim(AM/Ao} is arbitrary. Given 
P E  9 ( M ) ,  let Zp be the set of reduced roots of (P, AM). For each f5 e^p ,  
define Ma to be the group in Y ( M )  such that 

Then dim(AM/AMJ = 1. Let Pp be the unique group in @"p(M) whose 
simple root is f5. We define the normalizing factors 

in terms of those of rank 1. The property (R3) follows immediately. In 
proving (R,), we may assume that d(Pf', P') = 1 .  If d(Pt', P )  > d(P', P), (R-,) 
holds since it holds for J p , , , p ( ~ )  and rpifIp(7i^} separately. On the other 
hand, if d(P1', P )  < d(P', P), we have 

for the same reason. Reducing to the case of rank 1 by (R,) we obtain 

so (R2) follows. The analytic continuation and the remaining properties 
can all be reduced to the case of rank 1 by (R2) and (R3). 

Next assume that n is tempered. It is known that n is an irreducible con- 
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stituent of an induced representation :̂(a), where MR is an admissible 
Levi subgroup of M and a e  Z7(MR(F)) is square integrable modulo A R .  
Then Yp(q)  is canonically isomorphic to a subrepresentation of h R ) ( c ) .  
A glance at the defining integral formula reveals that Jpfl p ( q )  is identified 
with the restriction of Jp,(R),p(R)(aL) to the corresponding invariant 
subspace. If we define 

the required properties will all follow from the square integrable case. 
Now take n to be an arbitrary representation in U{M(F)). (We continue 

to assume that S = {v}, F =  F,,, and G = Go.) The Langlands classification 
[15(a), 5 1  holds for p-adic as well as real groups. Therefore n is the 
Langlands quotient of a representation <(oJ where MR is an admissible 
Levi subgroup of M, a is a representation in UtemP(MR(F)), and p. is a 
point in the chamber of a^/a^ attached to R. That is, n is equivalent to the 
action of YR(aJ on the quotient of %(a) by the kernel of J d J .  By 
(R7) the function rRIR(o,,) has no pole or zero at A = p.. Consequently the 
kernel of J R I R ( a p )  equals the kernel of R K I R ( ~ f ) .  Set A = p. + A, and define 

It follows from (R3), applied to the tempered representation a, that the 
induced representation &(nA) is equivalent to the action of Y p ( R ) ( ~ A )  on 
the quotient Â¥^p(R)(a)/ke Rp(R)lp(R)(aA). Under this equivalence the 
intertwining operator R p - l p ( ~ A )  becomes Rpr(R)lp(R)(aA).  All the required 
properties of RptIp(nJ, with the exception of (R4), then follow from the 
corresponding properties for a,. 

Assume in addition that n is unitary. It has been observed by Knapp and 
Zuckerman [14] that the unitarizability of the Langlands quotient implies 
that there is an element w in K M  such that WRW-' = R, wa E a, and 
wp. = -p.,  and such that the inner product on Vn can be obtained from 
R K I R ( ~ f t )  and w. More precisely, n is unitarily equivalent to the action of 
J^(a)  on Vy(a)/ker R R , R ( ~ p )  under an inner product 

Here l(w) is as defined in Section 1 and S is an intertwining operator from 
wa to a, acting by multiplication on e ( w a ) .  (Actually Knapp and 
Zuckerrnan considered only real groups, but their observation applies 
equally well to p-adic groups.) It follows that the induced representation 
^p{n) is unitarily equivalent to the action of YpiR)(aP) on 
VP(/;)((r)/ker Rp(R)l  p(R,(ap) under the new inner product: 
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To establish the adjoint condition (R4), we choose vectors 0 e Vp(R)(a) and 
@' e V/,-(/Ãˆ(a) Then 

By (R3) and the definition of 6, this equals 

Applying (R4) to the tempered representation a, we see that this in turn 
cquals 

Translating to a formula for n, we obtain 

Property (R4) follows for imaginary /I by a change in the definition of n, 
and then for general /I by analytic continuation. 

Finally, let us relax the conditions on S, F, and G. Taking these objects 
to be arbitrary, we write 

We shall require that 

Then 

and the theorem reduces to the case that S consists of one element v .  In this 
case, write My  = M p  and P,, = P p  for M and P, respectively, regarded as 
varieties over F,,. Then P+  P,, embeds Y(M) into 3'(M,,). Similarly, 
Pv -> P: embeds (̂M,) into P(M;). We shall insist that 
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Then 

R ~ , ~  ~ ( q . 1  = R P \ I  p f i j . )  = R^p\)~ l (pc~~(71; . ) -  (2.5') 

The definitions and properties in the theorem reduce to those for local 
fields and connected algebraic groups, the case we dealt with above. 

In this section we assume that G = Go, that 5 contains one Archimedean 
valuation v ,  and that F= F... Since we can always restrict scalars, we shall 
in fact take F"= R. Knapp and Stein [13(a), (b)] have given a general 
procedure for normalizing the intertwining operators so that some of the 
properties of Section 2 hold. In [15(b), Appendix 11] Langlands proposed 
normalizing the intertwining operators in terms of L-functions. Langlands' 
suggestions were for any local field, but at the moment they can be carried 
out only for the reals, since the L-functions for p-adic groups have not been 
defined in general. We shall show that for a natural choice of measures on 
the spaces Npi(R) n Np(R) ,  the normalization proposed by Langlands 
satisfies all the conditions of Theorem 2.1. 

As we have defined them, the intertwining operators depend intrinsically 
on K. Having fixed K, however, we shall describe how to choose canonical 
measures on the spaces Np'(R)  n Np(R).  Denote real Lie algebras by the 
appropriate Gothic letters. Then 9 and f are the Lie algebras of G(R)  and 
K, respectively. Let 6 be the Cartan involution and let B be a G(R)-  
invariant bilinear form on g such that the quadratic form 

is positive definite. Choose any maximal torus T of M which is &stable and 
defined over R. The restriction of B to the Lie algebra t of T ( R )  is non- 
degenerate. It may be used to define a bilinear form, which we still denote 
by B, on the dual space of tr-. This form is positive definite on the real span 
of the roots of (gc ,  tc) .  Set 

o t p . , p  n (&B(a, a)) ' I2,  P,  P' E Y ( M ) ,  
a 

where the product is taken over all roots a of (an,  t r )  whose restrictions to 
aM are roots of both (P', A,,,) and ( P ,  AM). This number is independent of 
the maximal torus T, Our measure dn on Np'(R)  n N p ( R )  is then defined 
by 
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where dX is the Euclidean measure defined by the restriction of the form 
(3.1) to np. n np. Note that if B(- , - )  is replaced by t 2 ~ ( . , . ) ,  t > 0, the num- 
ber of ap t  will be replaced by t -dim(Npn Np)aF p, while dX will be replaced 
by tdim(Np'n +"dX. Since B(- , - )  is uniquely determined up to scalar mul- 
tiples on each of the simple factors of g, the measures dn are independent of 
B. We define Jp.lp(nj.) with the associated invariant measure on 
N o . m  n NP(R)\NPW. 

We recall how the L-functions of representations of M(R) are defined. 
To any 7i e 77(M(R)), there corresponds a map 

from the Weil group of R to the L-group of M, which is uniquely deter- 
mined up to conjugation by L ~ O  [15(a)]. Let p be a (finite-dimensional, 
analytic) representation of L ~ .  Then p - 4  is a representation of Wa which 
has a decomposition @ T into irreducible representations of Wa. By 
definition, 

L(s, n, p)  = L(s, p .$4) = W ( s ,  7). 
I 

If T is one-dimensional, it is the pullback to Ha of a quasi-character 

of R *  in which case 

Otherwise, T is the two-dimensional representation induced from a quasi- 
character 

of C *  in which case 

(see [18]). 
Let p W p  be the adjoint representation of L M  on the complex vector 

space ^nF n ̂ nP\^np.. We shall take p = pp., p, the contragradient of p P i  p. 
In the present context, the normalizing factors of Langlands can be taken 
to be 
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We must show that they satisfy the conditions of Theorem 2.1. It is 
clear from the definition that the factors satisfy the formulas (2.1)-(2.3). 
Therefore, the reduction of the last section applies, and we may assume 
that dim(AM/AG) = 1 and that n is square integrable modulo AM. We shall 
establish Theorem 2.1 under these assumptions. 

Some of the conditions of Theorem 2.1 are immediate. As we mentioned 
earlier, the analytic continuation is known and (R,)  is equivalent to (J,). 
Condition ( R 3 )  is trivial since dim(AM/AG) = 1, while (Rg) does not pertain 
to real groups. From the definition (3.2) we may deduce formulas 

and, if n is tempered, 

Combined with (J4) and (J5) they yield properties (R4) and (R5) of the 
theorem. 

The remaining points of the theorem are (R2), (RA and (R,). To verify 
these, we must look more carefully at the map 4 associated to n. The Weil 
group WR contains a normal subgroup C* of index 2; we can fix an 
element o- in the nontrivial coset such that a 2  = - 1 and o - z a l  = 2. The 
L-group l'M = l'MO x WR comes equipped with a distinguished maximal 
torus LT=  l'TO x WR. Fix P e P ( M ) .  Then there are embeddings 

Following [15(a)], choose </> so that its image normalizes LTO. Then for 
each z EC*, d>(z) is a point in 'Â¥To It is determined by a formula 

for elements p, v E L Q C with p - v E L. (Recall that L "  is the lattice of 
rational characters of and L = Hom(L V ,  Z) is the dual lattice.) The 
expression on the right is just a formal way of writing the complex number 

The point 

normalizes L ~ O .  We shall write 5 for its adjoint action on 'Â¥To L, and L v .  
Then v = a. We note that there is a canonical injection of the space 
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into L @ C. If n is replaced by q, A a&, c, 4 will be replaced by a map (j),, 
in which (p, v, h )  becomes (p + A, v + A, h) .  

Let T c  M be a maximal torus over R whose real split component is A n .  
Fix an isomorphism of T ( C )  with Hom(L, C*). Then L and Lv are 
identified with X*(T) and X*(T) respectively and 6  is the same as the 
Gal(C/R) action induced from T (see [15(a), p. 501). Let Â£p{G T) be the 
set of roots of (G, T) which restrict to roots of (P, A M ) .  Then the 
eigenspaces of fipIP(<t>;.(C*)) are the root spaces of { -a  : xe Zp(G, T)}. 
Consequently, the irreducible constituents T ;  of fiW<t>,, correspond to 
orbits of 6  in ZAG, T). Consider a two-dimensional constituent, 
corresponding to a pair {a, 6 a }  of complex roots. Then T ;  is induced from 
the quasi-character 

of C*. Replacing a  by 6a if necessary, we can assume that ( 6 p  - p, ct ) 
is a nonpositive integer. Consequently 

The one-dimensional constituents correspond to the real roots { a o }  in 
Lp(G, T). There is at most one of these. If a. exists, let Xav be a root vector 
for a; , and set 

the one-dimensional constituent T;, comes from the quasi-character 

of R*. Consequently, 

Condition (R,) of Theorem 2.1 is easily observed from (3.3) and (3.4). 
For if 7t is tempered, and a  is as in (3.3), the real part of the number 
(p, av  ) is nonnegative. If /I belongs to the chamber attached to P, the 
number (A, a v  ) is real and positive. If a. is as in (3.4), the real part of the 
number ( p  + A, O.Q ) is positive. Condition (R7) follows from the fact that 
the gamma function has neither zeros nor poles in the right half plane. 
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To establish (R2), we must show that 

Incorporating A into the representation n and then appealing to analytic 
continuation, we may assume that A = 0 and n is tempered. Then (R4) 
applies, and it is enough to show that 

PROPOSITION 3.1. Assuming that n is tempered, we have 

where 

( - 1 )"o, i f  an exists 
& n  = {0, otherwise. 

We shall save the proof of this proposition for the Appendix. It rests on 
Harish-Chandra's explicit formula for the Plancherel density, and a lemma 
of Langlands which interprets en as a sign occurring in Harish-Chandra's 
parametrization. The right hand side (3.6) is actually somewhat simpler 
than Harish-Chandra's formula. It is missing certain constants, whose 
absence we owe to our choice of measures on N p ( R )  and Nc(R). 

Given Proposition 3.1 we have only to look at the absolute values of 
(3.3) and (3.4). If s is any imaginary number, 

while 

and 
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It follows from ( 3 . 3 )  and ( 3 . 4 )  that \ r p I p ( f l 2  equals the right hand of 
( 3 . 6 ) .  This proves formula ( 3 . 5 )  and therefore property (R2). 

It remains to establish the rationality of 

Let /? be the simple root of (P, Â \ Since r p l p ( 7 t j , )  is a product of functions 
of the form ( 3 . 3 )  and (3 .4 ) ,  both r F l p ( n j , )  and r p , p { n J 1  can be expressed 
as constant multiples of products of the form 

with each t i  a positive real number, and !,,, ,;, e C. Let /" denote a finite set 
of irreducible representations of K (in addition to the gamma function!). 
Write Jp^p(?.)r and R p l p ( Z i ) r  for the restrictions of the given operators to 
f n ( n ) / . ,  the subspace of f p ( n )  that transforms under K according to f. 
The operator J p l p ( ~ j , ) r  can be expressed simply in terms of Harish- 
Chandra's c-function [1 l(c), Lemma 11.1 1 .  It follows from a result of 
Wallach [20, Theorem 7.21 that the matrix coefficients of Jplp(Ti , } r  are 
linear combinations of functions of the form (3 .7 ) .  The same is therefore 
true of the matrix coefficients of Rp,p(71i)r .  On the other hand, by results 
of L. Cohn [lo, Theorem 51,  the inverse of the determinant of J p i p ( ~ ) r  is 
a function of the form (3 .7 ) .  Therefore, the matrix coefficients of J p ,  p ( ~ , ) p  
are also linear combinations of functions of the form (3 .7 ) .  The same is 
therefore true of the matrix coefficients of R p i p ( n A ) ~ l .  Now there is an 
elementary estimate of the gamma function that we can apply to ( 3 . 7 ) .  
Given t >0,  and 
constants c and n, 

I, n e e ,  and also a real number b, we can choose 
and a polynomial l ( z )  such that 

for all z e  C  with Re z >  b (see, for example, [l(d),  p. 331) .  It follows that 
we may choose 1( ), c, and n such that 

l l (A(bv  ) ) I  ( l l R p l p ( ~ ~ ) r l l  + l l R / > l p ( ~ j . ) ~ l l l )  < 4 1  +A(bv )I)", ( 3 . 8 )  

for all A E with Re A(bv ) 2 b. 
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On the other hand, the functional equation (R,) tells us that 

Apply (3.8) (with the roles of P and P reversed) to the norm on the right. 
Since -fi is the simple root of (P ,  A u \  we see that 

whenever A(^" ) <A. Combining this with (3.8), we get 

for all Ae akc. Thus R p l p ( ~ A ) r ,  a priori a meromorphic function of the 
complex variable ^.(Bv), extends to a meromorphic function on the 
Riemann sphere. It is therefore a rational function of A(fiv). This 
establishes the final property (RJ. Therefore Theorem 2.1 holds for real 
groups with the normalizing factors (3.2). 

Remarks. 1. Suppose that dim(A^/AG) = 1 as above, and the G(R) 
does not have a compact Cartan subgroup. Then there is no real root ao. 
Since each function (3.3) is rational, r p l p ( q )  is rational. Consequently 
J p l p ( q )  is itself in this case a rational function of L 

2. If T is any endomorphism of ^/.(n), 

The rationality of Rp',p(n,,) is therefore a generalization of a result [1 l(c), 
Lemma 19.21 of Harish-Chandra. 

3. Shahidi has used Whitaker functionals to investigate the normaliz- 
ing factors (3.2). Some of the results of this section can be extracted from 
his paper [ 16(c)]. Shahidi's methods give additional information about the 
normalized operators that will be useful in applications of the trace for- 
mula. 

Suppose that G = Go, S =  { v } ,  F= F,,, and that F., is non-Archimedean 
with residue field of order q. In Lecture 15 of [9], Langlands verifies the 
existence of normalizing factors r p e I p ( q )  such that Theorem 2.1 holds. The 
factors are required to satisfy (2.1)-(2.3), so it is enough to define them 
when dim(Am/AG) = 1 and n is square integrable modulo AG. For a given 
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P e P ( M ) ,  with simple root fi, Langlands observes that one can define a 
rational function Vp(n, z )  of one variable so that 

satisfies the conditions of Theorem 2.1. The main requirement of rplp(n2,) is 
that 

where 

is Harish-Chandra's p-function, and n is taken to be unitary as well as 
square integrable modulo A M .  

A future concern (although not for this paper) will be to show that 
related groups can be assigned the same normalizing factors. We remark 
that the general construction above will suffice for this, provided one can 
show that the p-functions can be matched. In [2] we shall carry this out 
for the example of inner twistings of GLn. 

It would of course be useful to define the normalizing factors in terms of 
L-functions, as we did for real groups. For p-adic fields and G = GLn, the 
L-functions have been defined. Suppose that P is a standard maximal 
parabolic subgroup of GLn, that n=nl x n2 is an irreducible tempered 
representation of Mp(F) s GLn,(F) x GLn2(F), and that 

nA(ml x m2) = n(m, x m2) ldet m l s  ldet m21 -', 

for S E  C. Shahidi [16(b)] has shown that for a certain normalization of the 
measures on N p ( F )  and Ns(F), depending on a fixed additive character <!/ 
of F, the factors 

satisfy (4.1). Here L ( - )  and e ( - )  are the functions defined by Jacquet, 
Piatetski-Shapiro, and Shalika [12]. Therefore, for GL, the intertwining 
operators can be normalized by L-functions. 

For the rest of this paper G and F will be as in Section 1, with no 
additional restrictions. We assume that the normalizing factors {rFip(n^}} 
have been fixed, and satisfy the supplementary conditions (2.1)-(2.5) as 
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well as the properties (R,)-(Rs) of Theorem 2.1. This section will be an 
addendum to our discussion of normalization. We shall compare the nor- 
malizing factors for representations which are related by block equivalence. 
We begin by discussing how this equivalence relation, which was 
introduced by Vogan [19(b)], applies to the present context. 

We can regard G as a scheme defined over the ring Fs. An admissible 
Levi subset over Fs will be a product A= nues Mu,  where each M., is a 
Levi subset of G which is defined over Fu and for which KO is admissible. 
Given such an A ,  we write AM=nues A M c  and a & =  e u e S a M L .  By a root 
of (G, A A )  we shall understand a root of (G, AM^), for some v e S .  If 
a = Q u s  is an admissible representation of the group A + ( F s )  = 

M^{F,) and A = A" belongs to a* then 

is also an admissible representation of A+(Fs ) .  We shall write a: for the 
equivalence class of the associated induced representation of G + (Fs). 

Let Â£(G(Fs) denote the set of (equivalence classes of) representations of 
G +(Fs) which equal a: for some A ,  with a a representation in 

and A a point in a$ which is regular (in the sense that A(p) # 0 for every 
root 6 of (G, AM)). The elements in Z(G(Fe)} are called standard represen- 
tations. Suppose that p eÂ£(G(Fs)) Our definition is such that p0 belongs 
to Z(GO(F~)). It is known that p0 has a unique irreducible quotient. Con- 
sequently, p also has a unique irreducible quotient. It is a representation in 
17(G(Fs)), which we denote by p. Moreover, p -> p is a bijection from 
Z{G(Fs)) onto U(G(Fs1). 

The next proposition is a slight extension of a basic result (see [19(a), 
Prop. 6.6.71 and the introduction to [19(b)]). We include a proof, which is 
based on familiar ideas. 

PROPOSITION 5.1. Let {U{G(Fs))} and {Z(G(Fs))} denote the set of 
&,s-orbits in Z7(G(Fs)) and Z(G(Fs)), respectively. Then there are uniquely 
determined complex numbers 

with 
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and 

A(nV, p^=r,(G)A(% P ) ^ ( G ) - ~ ?  ^ , f l < = =  -G,S i  (5.2) 

such that 

tr(p) = 1 UP,  n)  tr(n), P 6 Z(G(Fs)), (5.3) 
!IHG(Fs))} 

and 

tr(n) = 1 A(n, P)  tr(p), 7.L /7(G(Fs)). (5.4) 
P C  {Z-(G(Fs))} 

Proof. Recall that if {n} is a set of representatives of SGs-orbits in 
Z7(G(Fs)), the functions {tr(n)} are linearly independent. The uniqueness 
assertion follows easily from this. 

To prove the existence of {F(p, n}} and {A(n, p)} we can clearly assume 
that S =  { v }  and F= Fy. Let p be a standard representation in Â£(G(Fs)) It 
has a decomposition 

p=@rn(p ,+ ,  m(n ,p )=0 ,1 ,2  ,... 
n 

(within the appropriate Grothendieck group), into irreducible represen- 
tations of G +(Fs). Consider this decomposition as a character identity on 
G(Fs). If i does not belong to n{G(Fs)), its character vanishes on G(Fs) 
and may be ignored. Consequently, 

tr(p) = Y m ( p ,  n) tr(n). (5.5) 
n n(G(Fs)) 

We define 

r (p ,  n)  = 1 m(p, n,)^(G). (5.6) 
< E ~ G , S  

The formula (5.3) then follows from (5.5). 
The numbers' {A(n, p)}  are constructed by inverting (5.5). Each 

representation in 2'(G(Fs)) or /7(G(Fs)) has an infinitesimal character 

(If F is Archimedean, 3 ( G )  is just the center of the universal enveloping 
algebra, while for p-adic F we take Z ( G )  to be the Bernstein center. See 
[3,4].) The constituents of p will have the same infinitesimal character, so 
r (p ,  n)  vanishes if n and p have different infinitesimal characters. 
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Moreover, it is known that there are only finitely many representations in 
ZZ(G(Fs)) with a given infinitesimal character. (For real groups this is a 
basic result of Harish-Chandra. For p-adic groups it follows from [17, 
Theorem 3.9.11.) Therefore, to invert (5.5) we need consider only the finite 
set of n and p with a given infinitesimal character. 

Fix a minimal parabolic subset Po of G over F. Then P: is a minimal 
parabolic subgroup of Go over F. The positive chamber (a&)+ in a*po 
associated to Po is contained in the chamber (a,?)+ = ( a 2 ) +  associated to 
P:. As is usual, we shall write 

if A - A '  is a nonnegative, real linear combination of simple roots of 
(P:, Ap;) .  Suppose that p is a representation in Z(G(Fs)). Then there are 
unique elements M, P E P(M) ,  (T E / 7 , ( M ( F s ) )  and A E (a:)+, with 
P^iPo, such that p = ma }̂. Set A = A p .  It is a point in the closure of 
(a,?)+, which is uniquely determined by the representation pe II(G(Fs)). 
Now, consider the expression (5.5). The representation p occurs as a con- 
stituent of p only as the Langlands quotient. Therefore, m(p, p) = 1. We 
claim that if TT occurs on the right hand side of (5.5) with positive mul- 
tiplicity, then An -^Ap with equality holding only when n = p. Indeed, if 
G = Go the assertion is well known (see [5, IV.4.13 and XI.2.131). But if G 
is arbitrary, the restriction of p to GO(F~) is standard. The claim therefore 
follows from the connected case. This establishes that the matrix 

is unipotent. Its inverse is again a unipotent matrix, so that 

we obtain the formula (5.4). The required formulas (5.1) and (5.2) follow 
immediately from the definitions. Our proof is complete. 1 

Following Vogan, we define block equivalence to be the equivalence 
relation on n[G(Fs)) generated by 

Block equivalent representations have the same infinitesimal character. I t  is 
also clear that if A(n, p )  #0, then p and n are block equivalent. 
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We now return to our general Levi subset M. Suppose that 
p  e  Z (M(Fs ) ) .  Define 

and 

for P, P' e Y ( M )  and -l a L c .  With the exception of (R4), all the proper- 
ties of Theorem 2.1 hold for these operators. This follows by analytic con- 
tinuation from the case that p  is tempered. If n  is any representation in 
IT(M(Fs)),  we set 

PROPOSITION 5.2. Fix n  e  17(M(Fs))  and p  6 Z ( M ( F s ) )  with n  and p 
block equivalent. Then 

for any P, P', and P". Moreover, F y l p ( q ,  pA) is a rational function of 
{ - ^ a v ) :  a e  A p }  if F  is Archimedean and a rational function of 
[ q i ( a v ) :  a  e A p }  i f  F  is a local field of residual order q. 

Proof. Suppose that n  and p are block equivalent to a third represen- 
tation T = 6, with 0 e  Z ( M ( F s ) ) .  Then 

It is therefore enough to prove the proposition when Hp, n)^0. By (2.5) 
the function b I p ( n A ,  pi) is left unchanged if n is replaced by n t ,  with 
Â£,eSys It follows from the definition (5.6) that we may take n  to be a 
constituent of p. This makes the induced space V p ( n )  into a subquotient of 
^(p). Let Jp - ,  p(p ;,)= and R P Â ¥  p(pA)n  be the operators on ^/>(7t)  obtained as 
subquotients of Jp .  p (pA)  and Rp., p(p ;.). The original integral formula for 
intertwining operators tells us that 

Consequently 
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The two assertions of the proposition follow from the properties ( R 2 )  and 
(Rs), applied to both R p , , p ( q )  and Rp.,p(pi}. 1 

COROLLARY 5.3. Let n and IT' be representations in U{M(Fs)) which are 
block equivalent. Then the p- functions pM(ni) and pM(n',} are equal. 

from (R,). Since a similar formula holds for 6, the corollary follows from 
(5.9). 1 

We come now to our primary objects of study. They are linear 
functionals on the Hecke space of G(Fv}. Recall that the Hecke space, 
Jf(G(Fs)), consists of the smooth, compactly supported functions on 
G(Fs) whose left and right translates by K span a finite dimensional space. 
The linear functionals, which we shall call distributions on 3^(G(Fs)) (a 
harmless abuse of language), are obtained from a certain rational function 
constructed from the normalized intertwining operators. They were 
originally introduced in [l(a), Sect. 81, and were later shown to describe 
the terms in the trace formula arising from Eisenstein series [l(c), 91. 

Fix a representation n e I J ( M ( F s ) ) .  The distributions are defined in 
terms of the (G, M) family 

introduced in [l(a), Sect. 71. (For the definitions and properties of (G, M) 
families, we refer the reader to [1 (a), Sect. 61 and, for the case that G # Go, 
the remarks in [1 (e), Sect. I].) The functions (6.1 ) are meromorphic in v 
and A, and depend on a fixed Po E Y ( M ) .  If we take A e a& to be in 
general position, the function (6.1) will have no poles for ve ia%.  The 
distributions are then defined by 

where 

in the notation of [l(a), Sect. 61. They are independent of Po. 
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The distributions Ĵ  ̂f )  are meromorphic in A. More generally, 
suppose that A = n u s  M y  is an admissible Levi subset of M over F g ,  and 
that a is a representation in 

If A = @ A" is a generic point in a>,c ,  the induced representation cry 
belongs to Z7(M(Fs)). The associated distribution Ĵ î f ), which we will 
often denote simply by J M ( o A ,  f ), then extends as a meromorphic function 
of A to We can be rather precise about its poles. Let L^{G,AA) 
denote the set of roots of ( G ,  A M )  which do not vanish on a M .  Any 
f i e  &(G, A Ã £  belongs to Z M ( G ,  AMu) for a unique v e S. Set q s ( A )  equal 
to A w )  if FÃ is Archimedean, and equal to q ; * ~ ( ~ " )  if Fp is non- 
Archimedean of residual order q u .  The properties ( R 2 ) ,  ( R i ) ,  ( R e ) ,  and 
(2 .4 ' )  of Section 2 tell us that the matrix coefficients of the operators 

are all rational functions of the variables 

whose poles lie along hyperplanes of the form 

The same is therefore true of the matrix coefficients of a M ( o ? ,  Pn)- It 
follows that J M ( ~ ,  f )  is a meromorphic function of A whose poles lie 
along hyperplanes of the form (6.3). 

It is important to relate the distributions J,,,,(n,} to similar objects 
defined for standard representations. Suppose that p S(M(Fs) ) .  Then 

for some .A? as above. We define 

with A ranging over points in a*^,^ for which o-y belongs to U{M(Fs)) .  
Then 
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where StM(p,, Po)  comes from the (G ,  M )  family 

It is clear from the remarks above that JM(pi,  f )  is a well-defined, 
meromorphic function of A. Now, suppose we are also given n e /7(M(Fs)).  
The distributions JM(n;.)  and JM(p) , )  will be related by a (G, M )  family 

of scalar valued functions. These functions all vanish unless n and p are 
block equivalent. The compatibility condition required of a (G,  M )  family 
follows from (2.3) and (5.9). Suppose that L l .Y(M).  There is certainly the 
[L ,  M )  family 

r'o(v, n,, P , ,  Ro), R, Roe  ̂ (M), 

obtained by replacing (G, M )  by ( L ,  M )  in the definition (6.4). On the 
other hand, for any Q e 9(L\ 

is also an (L, M )  family. These two (L, M )  families are not the same. 
However, it follows easily from (5.9) that the associated numbers 

and 

are equal. We denote their common value by r f i ,  p,). It is independent 
of Ro7 Po, and Q. 

The next proposition is a generalization of (5.4). 

PROPOSITION 6.1. We have 

for any n 6 77(M(Fs))  and f  e %(G(Fs)).  

Proof. By definition JM(n;., f )  equals 
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We write this as 

where 

for any admissible representation T of Af^Fc) .  It is a straightforward 
consequence of the integral formula (1.1) that as a function of T, Tp(v, T ~ )  
depends only on tr(r). In fact 

extends to a linear functional on the vector space spanned by the functions 
{ t r ( ~ ) } .  It follows from Proposition 5.1 that 

Therefore JM̂ ;., f )  equals the sum over p {S(M(Fs))} of 

This last expression is built out of a product of two (G, M)  families. 
Applying [ 1 (a), Corollary 6.51, we obtain 

A simple argument, similar to the derivation of [l(a), (7.8)], establishes 
that 

The lemma follows. 1 
In the paper [l(a)], we actually defined the distributions for Schwartz 

functions and tempered representations. We then proved a formula 
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for their behaviour under conjugation [l(a), Lemma (8.3)]. Here J$Q 
stands for the distribution on MQ(Fs), while 

in the notation of [l(e), (2.3)]. This formula must be modified for the 
present situation, since conjugation at the Archimedean place does not 
preserve the Hecke space. Take f~ ̂ f(G(Fs)). If y E GO(Fs), the functions 

do not in general belong to ^{G(Fs)). However, if h is in the Hecke 
algebra of the group 

GO(F~)~  = { y E GO(F~): HG(y)  = O}, 

the functions 

Lhf = [ h W ( ~ y f )  d~ = * f 
G~(FS) '  

and 

do belong to ^f(G(Fs)). More generally, for any Q F ( M )  the functions 

belong to &'(MQ(Fs)). Observe that LC^/= Lhfand RG,h f = R,,f. 

LEMMA 6.2. Fix f e &'(G(Fs)) and h &'(GO(Fs)l). Then 
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and 

for any 7t 6 /7(M(Fs)). 

Proof. Suppose first that n 77,emp(M(Fs)). Then the formula (6.5) may 
be applied. (Actually, (6.5) was proved in [ l (a)]  only for G =  Go, but the 
argument is identical for general G.) Since 

we have 

Multiply both sides by h ( y )  and integrate over y e  G0(FS)'. We obtain 

J M ( ~ A ,  L h f )  = 1 J;Q(~^, RQ,hf ), 
Q a f ( M )  

which is the first of the required formulas. Observe that if 

for some A, then each side of the formula can be analytically continued to 
any A e a>,c. The formula therefore holds if n is replaced by any standard 
representation in Z(M(Fs)). 

Now, suppose that n 77(M(Fp)) is arbitrary. Combining Lemma 6.1 
with what we have just proved, we see that 

Thus, the first of the required formulas holds in general. The second 
required formula is established the same way. 1 

It is natural to call a distribution I on Jf(G(Fs)) invariant if 
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for each f l ^f(G(Fs)) and h E ̂ f(GO(Fs)l). The last lemma asserts that 

and so gives the obstruction to JM(zi) being invariant. 

It is not actually the distributions JM(n2) which occur in the trace 
formula, but rather their integrals over n. Recall that the set 

is a subgroup of aM. It equals aM if S contains an Archimedean place, and 
is a lattice in aM otherwise. The additive character group 

equals a$ in the first instance, and is a compact quotient of at ,  in the 
second. Now, suppose that n e 17(M(Fs)) is such that JM(ni, f )  is regular 
for ^.E iat,. This holds, for example, if 71 is unitary (by property 
Theorem 2.1 ). Then if X e aMs, we define 

For a general representation n e Z7(M(Fs)), we define 

where each ec is a small point in the chamber (a;)+, and 

with B a ball in a., centered at the origin. By changing the contour of 
integration, we see that these two definitions are compatible. 

The distributions JM(n, X) have some simple transformation properties. 
If t, = (t, 2) is any element in 

it follows from (2.5') that 
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where the component M is understood to be diagonally embedded in Gs .  
It is clear that Lemma 6.2 can be used to describe the behaviour under 
convolution. We have only to multiply the two formulas of the lemma by 
- ;.(XI , and then integrate over A. The first formula, for example, becomes 

We shall sometimes need to define J M ( n ,  X, f )  when f  is not quite in the 
Hecke space. Suppose that Z is a point in a G S .  Let fz denote the restric- 
tion of a given function f e 3^(G(Fs))  to 

G(FS)' = { X  E G(Fs):  H G ( x )  = Z } .  

The Haar measures on G ( F s )  and a G S  determine measures on the spaces 
G(Fs)z .  For any TI,  

is an operator on ^An) .  Define 

It is clear that 

for any point A,, in a&c .  Now take 

where h,, denotes the projection onto a,,. By the Fourier inversion formula 
on a G s ,  we have 

for { e p }  as above. In particular, ^(TI ,  X, f )  depends only on f =. It can be 
defined for any function f which has the same restriction to G(FS)' as some 
function in 3^(G(Fs)) .  

As with JM(TI, } ,  the distribution J M ( q  X )  has an expansion in terms of 
standard representations. If p belongs to Â£(M(Fs) )  we can define J M ( p ,  X )  
in terms of J M ( p i )  by mimicing the discussion above. This new distribution 
then satisfies the obvious analogues of (7.1 k ( 7 . 3 ) .  
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PROPOSITION 7.1. Fix n e U((M(Fs)), X e  and f E X(G(Fs))). 
Then 

J M ( ~ , X , ~  I =  Z W P  1 r k ( n ,  X, JL(f)), 
P W M )  LeS ' (M)  

where for any point ,u at/ in general position, 

equals 

by (7.3) and Lemma 6.1. We are assuming that E~ is in general position. 
Consequently, the function 

has no singularities which meet cp+ at/,s/ia*,,s. By a standard estimate, it 
is integrable over this space. We may therefore take the integral above 
inside the sum over L and p. We then decompose the resulting integral into 
a double integral over 

It becomes 

Proposition 7.1 follows. 1 
We should keep in mind that JM(z, X, f )  is a function not only off but 

also of (n, X). Interpreted one way it is a family of distributions, and the 
other way it is a transform. As in [l(a)], we shall use a completely 
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different notation when we want to emphasize this second point of view. 
We write & for the map which transforms fe &?(G(Fs)) to the function 

on Z7temp(M(Fs)). This is a linear combination of matrix entries of 
^p,,(n, f ), which for 

as in Section 6, has coefficients which are rational functions of the variables 
(6.2) .  In particular, it cannot be extended to all nontempered n. We would 
like to show, however, that the map 

can be so extended. We would also like to compare its values at arbitrary 
(n ,  X )  with JM(n ,  X, f ). Both of these questions are related to the residues 
of the function 

We shall devote the next two sections to a study of these residues. 

Suppose that A? = n u s  M u  is an admissible Levi subset of M over Fs. 
For each v, write So = { v }  and define a M b  to be the image of the map 

and 

For the next two sections we shall keep A! fixed. We shall also fix a 
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representation a e n [ ^ ( F s ) )  and a function a,, which is defined and 
analytic on a neighbourhood of some point A.  in 

We propose to investigate the residues of the functions 

It is clear from the discussion of Section 6 that the singularities of each of 
these functions lie along a set of hyperplanes of the form (6.3) which is 
finite modulo i a i 5 .  

Consider a sequence 

of embedded Levi subsets of G over Fs.  We assume that for each i, 
1 < i < r ,  

for some root /?, of ( G ,  A & ) .  The roots {pi} are uniquely determined up 
to scalar multiples. For each i let E, be a fixed nonzero real multiple of pi. 
Then the set 

determines the sequence (8.2). In addition, fix a linear functional An e a>,c 
which vanishes on a y .  We shall call the pair 

a residue datum for 9. 
Take A.  to be a fixed point in general position in the afine subspace 

An + a s c  of a:,c, and set 

for 

Z = ( z , ,  ..., z r )  

in Cr. Let .TI, ..., r, be small positively oriented circles about the origin in 
the complex plane such that for each i, the radius of F, is much smaller 
than that of r,+,. Consider a meromorphic function $ ( A )  on a 
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neighbourhood of A. in a>,^ whose singularities lie along hyperplanes of 
the form (6.3). Then 

is a meromorphic function of A n .  We denote it by 

Res $ ( A )  = Res $(Ao).  
f 2 . A -  A0 Q 

We shall study it with $ ( A )  equal to the function (8.1) above. 
Define a sequence 

of elements in 9 ( M )  inductively by 

LEMMA 8.1. Suppose that L = G. Then 

is an invariant distribution. 

Proof. We shall use the formula 

of Lemma 6.2. Fix Q e F ( M )  with Q # G. Let i be the smallest integer such 
that Mi is not contained in MQ.  The partial residue 

is a meromorphic function of (z, ,  ..., z.). Its poles lie along affine hyper- 
planes obtained from roots of (G, A d , )  which vanish on a M  The hyper- 
plane z, = 0 is defined by any root which is a multiple of E,. Our choice of i 
means that E, does not vanish on aMQ. Consequently z,=O is not a 
singular hyperplane of the function. It follows that 
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and the lemma follows. 1 
We return to the case that L is arbitrary. Our goal is to provide a simple 

formula for 

We shall postpone this until the next section. In the meantime, we shall 
- - 

make some comments of a general nature. 
The distribution 

can be extended to functions in .^(L+(Fs)), the Hecke algebra of L+(Fs). 
A simple extension of Lemma 8.1 (and also Lemma 6.2) affirms that it is 
invariant, in the sense that 

Let us fix a parabolic subset R in F ( M ) .  Then for each g e  % ' ( L + ( F s ) ) ,  
the number y(g) can be obtained from the Taylor series of &(GI, g )  
about z = 0. In fact there is a positive integer N, independent of g and also 
of the function a,, above, such that y(g) depends only on the Taylor coef- 
ficients of total degree no greater than N. We shall let T denote the 
representation of ^ f ( L + ( F c ) )  obtained by taking the Taylor series of 
&((T%,, g)  modulo terms of degree greater than N. It acts on the space of 
power series in z, taken modulo terms of degree greater than N, with values 
in %((T%). We can of course also regard &((T%) as a representation of 
the group L+ (Fs), so that T is the representation of X ( L + ( F s ) )  associated 
to an admissible representation ( T ,  V,) of L+(Fs).  By construction, 

is a well-defined invariant form on the algebra 

of operators on V,. 
Let Q be an element in 90, and form the induced representation 
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Let us say that an operator A ( r )  on V Q ( r )  is admissible if it is represented 
by a K-finite kernel A(r;  k , ,  k - , )  with values in the algebra sS7 of operators 
on V-.  Define a linear form 

on the space of admissible operators. Since y is invariant, we have 

for every pair A ( r )  and B ( r )  of admissible operators. For any function 
f  E X ( G ( F s ) )  the operator YQ(r ,  f )  is admissible. Its kernel is 

For obvious reasons we can refer to 

as the distribution on G(Fc)  induced from y .  
The linear form T ( A ( t ) )  is of course closely related to our study of 

residues. Set P =  Q ( R )  and write n = 0%. By induction in stages we can 
identify (̂n), the Hilbert space on which &(o-y) acts, with % ( c ( n ) ) .  
Then the operator 

acts on Vp(7i) through the fibre. It transforms the values of a given function 
by the operator {̂.c, R) on V , ( n ) .  Now, suppose that A ( ( T ~ )  is a 
holomorphic function with values in the space of operators on ^/.(re). By 
taking the Taylor series of A(o-&), modulo terms of degree greater than N, 
we obtain an operator A ( r )  on V p ( r ) .  It is clear that A(o-A) + A(^)  is an 
algebra homomorphism, and that each &((T^, f )  maps to &(T ,  f).  We 
shall call A ( 4 )  admissible if the corresponding operator A ( r )  is admissible. 
In this case we have 

Res U A  t r (A(o-7)  ̂ (o-7, P ) )  = T,(A(r}) .  
Q , A  -> A0 

(8.4) 

This last formula provides the connection with residues. 
Let Q' be another element in ^{L), and set P'= Q r ( R ) .  It is clear that 

the definition of admissible operator can be extended to linear transfor- 
mations from VQ(f)  to i o t ( r ) .  Formula (8 .3)  and the correspondence 
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A(cr^} -> A(^)  also have obvious extensions. It is easily deduced from (1.1) 
that the intertwining operator Jp- ̂ {cry+ /.) maps to JQ. Q ( ~ / . ) .  In particular, 
J Q - l Q ( ~ j . )  can be analytically continued to a meromorphic function of A on 
a t c .  Now, J g . i Q ( ~ i )  is not admissible as it stands. However, let f be a 
finite subset of IJ{K). We shall show that the restriction of J Q i l Q ( ~ , , )  to 
iQ('r)r is an admissible operator. (As before, ( ) / -  denotes the subspace that 
transforms under K according to representations in F.)  

Let f, be the set of irreducible representations of KL which occur as 
constituents of restrictions to KL of representations in f. Define 

and set 

for any v e  V-.  Then E. is the projection of V.  onto the finite-dimensional 
subspace ( V A .  If <t> is any vector in VQ('r)/-, the value of J Q , , e ( ~ A )  <t> at 
k l K  equals 

This follows from (1.1) and the fact that J Q - i Q ( ~ A )  maps Yo(^)^ to VQS(~)j-. 
We claim that for each m e L  + (Fs) ,  the operator 

belongs to the algebra dT. To see this, choose a sequence { g , }  of functions 
in C"L+(Fs))  which approach the Dirac measure at m. Then the matrix 
coefficients of the operators ~ ( g , )  approach those of r (m) .  But the functions 

all belong to X ( L + ( F s ) ) ,  and 

In particular, r ( g i r )  converges to Err(m) Er. This shows that E&) Er 
belongs to the closure of the subspace 
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of sfr. Since the subspace is actually finite dimensional, the claim follows. 
Now, left translation on any space of K-finite functions on K is an integral 
operator with K-finite kernel. It follows from (8.5) that the restriction of 
J Q , l Q ( ~ i )  to VQ(~) / -  is an admissible operator. 

The following lemma is a consequence of this discussion. We shall use it 
in the next section. 

LEMMA 8.2. Suppose that we are given a finite sum 

where for each i, a i A  is a holomorphic function on a neighbourhood of A,, and 

is admissible. Then 

Res t r ( ~ , , ~ ( a y ) - '  A(oy) w a y ,  P)) 
a , A  - Ao 

equals 

Res tr(A(ay) Rp.,  ̂,(a^}-' W^,P1)). 
a , A  -Ã A0 

Proof. Since both expressions are linear in A(aY), we can assume that 
n = 1. Write 

~p~p(aA)V'=rp , lp(aM) Jp , ip (^ r l .  

Each of these three functions is holomorphic in a neighbourhood of Ao.  
This follows from the general position of A n  and the fact that 
P n L = P' n L = R. Define y as above, with 

Then by (8.4), our two expressions equal 

and 

respectively. We can certainly replace J Q S l  Q ( ~ ) '  by its restriction to a sub- 
space ~ Q ' ( T : ) ~ .  The operator is then admissible, so the lemma follows from 
an obvious variant of (8.3). 1 
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We shall now establish the formula for 

It will be given in terms of a certain operator rl2(C, Po),  which we must 
first describe. 

We continue with the notation of the last section. The embedded sub- 
spaces 

are of successive codimensions 0 or 1. If aM, is of codimension 1 in 
let e, be the unit vector in a $ ,  in the direction of the restriction of E, to 
a M .  (Recall that we have fixed Euclidean norms on aM and a; . )  If 
a M I  = a M , , l ,  take el to be the zero vector. Then the nonzero vectors in 
{el, ..., e,.} form an orthonormal basis of (a&)*. Let Ro be the unique 
parabolic in P L ( M )  for which the Levi components M, are all standard, 
and on whose chamber ai0  the functions e, are all nonnegative. Similarly, 
for 1 < i < r, let R, e y L { M )  be the parabolic for which each M ,  is standard 
and such that the functions {e l ,  ..., -el, ..., e,.} are all nonnegative on a;,. 
Fix Qo E P ( L ) ,  and define parabolics 

in y{M). Set 

Taking an r-fold product of logarithmic derivatives, we define an operator 

onG(7r). Observe that if any of the vectors {e , ,  ..., e,.} is 0, the operator 
r&Y, Po) vanishes. 

PROPOSITION 9.1. The distribution 

equals 
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Proof. The proof will be by induction on the length of the residue 
datum Q. Assume that the proposition holds for any datum of length r. Let 
Q' be a datum of length ( r  + 1) associated to a sequence 

It is clear that Q' is obtained from a datum Q of length r, for which we 
follow the notation above. The only additional information in Q' is Er+ a 
multiple of some root f i r+  of (G,  A y ) ,  and a point A*. in (AQ + CE., , ) .  
Let AQ be a point in general position in AQ- + a$.,^, and set 

with z r +  a variable point in C. The operator ResQ,,^,+,., can be calculated 
by first applying Resm + ,, and then integrating z,.+ over a small circle 
about the origin. It follows from our induction hypothesis that 

equals the residue about zr+ = 0 of 

We recall here that Po = Qo(Ro),  where Q o e 9 ( L )  is arbitrary, and 
R d L ( M )  is chosen to be compatible with the directions { c l ,  ..., c,.}. 

The operator ac, Po)  is obtained from the (G,  L )  family 

Applying [ l ( a ) ,  (6 .5 ) ]  to this family, we see that (9 .2)  equals 

where 

This expression does not depend on the point v e  The only con- 
stituent of the expression which could possibly contribute a pole along the 
hyperplane Ao(brv+ ) = 0 is the function 
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But each singular hyperplane of this function is defined by a co-root whose 
restriction to a? separates the chambers (a$)+ and (aEo)+. Consequently, 
the function gives no contribution to the residue (9.1) unless the restriction 
of Er + to a, defines a hyperplane of this sort. In particular, (9.1) vanishes 
if the restriction of E , + ,  to a, is zero. Combining this with our induction 
assumption, we obtain the required assertion that (9.1) vanishes in case 
any of the vectors {el, ..., er+ ,} is zero. 

We can assume, then, that E ] ,  ..., er+ are all nonzero. We must fix an 
arbitrary parabolic Q b V ) .  Taken together with the unit vectors 
e l ,  ..., er + } it determines unique parabolics 

in 9 ( M )  by the conventions above. The parabolic Q@(L), which has 
been arbitrary, we now take to be the unique parabolic which is contained 
in Qb and for which the function ( - c ~ + ~ )  is positive on a;. Then 

Given P = Q(Ro), with Q e 9(L) ,  we note that the hyperplane in a, defined 
by separates the chambers a; and ago if and only if d(P, Po) > 
d(P, Po). Writing 

for each such P, we see that (9.1) can be obtained by summing the product 
of (r! @()(v))-' and 

over P = Q(Ro) in the set 

and then taking the residue about z r+  =O. 
The operator r a (a^ ,  Po) acts on the vector space î &) = Y&(V&(n)) 

through the fibre. It transforms a given function from K to G ( n )  by the 
operator r a ( e ,  Ry). The other operators in (9.3) are products of scalar 
valued functions of A with admissible operators. We can therefore apply 
Proposition 9.1 inductively, with G replaced by L, to the fibres of these 
operators. It follows that the expression (9.3) is left unchanged if 
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f a ( o y l  P o )  is replaced by {̂a?, Po) .  Consequently, we may apply 
Lemma 8.2 to commute the operators R p d p 0 ( o y ) '  and 

Now, we employ Leibnitz' rule to write 

It is only the operators R p o l p O ( - )  which can contribute a pole along 
Ao(/lrv+ = 0. If j = 0, these operators cancel. The corresponding term can 
therefore be left out of the resulting formula for (9 .1) .  Recombining the 
residues in zr  + and Q, we express (9.1 ) finally as 

where R ( A )  is the operator 

Here P = Q ( R o )  is summed over the set (9 .4) .  
The point v intervenes only in the expression (9 .5) .  Since the final residue 

is independent of v ,  we may choose the point any way we wish. Set 
v = v' + $ 6  with v' a point in general position in and s  a small 
complex number which approaches 0. Note that the function 

is the only term which can contribute a singularity in s  to (9.5) .  It has at 
most a pole of order 1 at s = 0, and this occurs precisely when some root 
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AQ vanishes on a^.. That is, when the parabolic P =  Q(Ro)  equals 
Qr(R;)  for some Q' E 9 ( L f ) .  On the other hand, 

lim ~ ( r - 7 )  M = ~ ( r - 7 )  

s - 0  
P I  PA 3 pip; (O';? v')? 

while 

since Pb n L' = Po n L'. Therefore, the only summands in (9.5) which do 
not approach 0 are those with j = 1 and P = Q(Ro)  = Q'(Rb), Q' E 9 ( L 1 ) .  
Observe that if P is of this form, and a1 is the unique root in AQ which 
vanishes on a,., then 

lim ~ Q ( v ) -  s 
s - 0 

Consequently, the value of (9.5) at s = 0 is 

Appealing again to [ l ( a ) ,  ( 6 . 5 ) ] ,  we see that this equals 

Consequently, (9.1 ) equals 

We are now essentially done. The parabolics Pi, 0 ̂ i< r, are all con- 
tained in Qo.  Similarly, the parabolics Pi, 0 < i < r, are all contained in 
another fixed element of ^(L). Since Pi n L = P,! n L, we have 
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We have already noted that Po = Pi+ It follows that 

Substituting into (9.6) gives the required formula 

Res a, tr(%(gy, f) a?#, pb) r&, PO)) 
a'. A -Â A'y 

for (9.1). This completes the induction step, and the proof of the 
proposition. 1 

In this paper we shall use the proposition only as a vanishing assertion. 
Let h y  and hM denote the natural projections of a,& onto a^, and aM, 
respectively. 

COROLLARY 9.2. The distribution 

vanishes unless 

Proof. The projection h y  is associated to a canonical splitting 

A similar assertion holds for hu. Consider the associated dual projections 
a> Ã‘ a$ and a> a$. The kernel of the first one is spanned by 
{Ei, ..., Er} .  But if these vectors have images in a$ which are linearly 
dependent, the operator FQ(oy,  P o )  is defined to be 0. The corollary 
therefore follows from the proposition. 1 

The reason for studying residues is to be able to deform contour 
integrals. In this paragraph we shall set up a scheme for keeping track of 
the residues that arise from changes of contour. It is similar to the 
procedure used in the proof of the Paley-Wiener theorem [l(d), Sect. 11.21, 
and was originally motivated by Langlands' theory of Eisenstein series 
[15(b), Sect. 71. 

Suppose that A? and 0 e Z7(A(Fc) )  are as in the last two paragraphs, 
and that fi is a fixed point in general position in a*. Suppose also that for 
each Levi subset JS? over Fc which contains A, we have fixed a point v y  



66 JAMES ARTHUR 

in general position in a*. Let r be a finite subset of II(K), the set 
of equivalence classes of irreducible representations of K. We write 
3^'(G(FS)),- for the space of functions in Jf(G(Fc)) which transform on 
each side under K according to representations in F. The residue scheme 
will be determined in a canonical way from the point p, the collection 

and the set 

of functions on a L c .  Note that the singularities of all the functions in Y 
form a set of hyperplanes of the form (6.3) which is finite modulo i a i S .  
Our assumption on the general position of vw implies that i f  $(A) belongs 
to Y and Q is a residue datum for 9, then the function 

Res $(A) = Res $(Aa + A), A e a ,̂,,;, 
* , A - ( / ) Q + ) . )  0 

is regular on v y  + ia*. 

PROPOSITION 10.1 For each 2' there is a finite set 

of residue data for 9 such that 

for any function $ in Y. 

Proof. The construction is similar to that of [l(d),  pp. 45-51], so our 
discussion will be rather brief. We shall define the sets Rw by induction on 
dim(a>/a*,). In the process, we shall associate to each Q E  RÃ a point pa 
in a^,. 

If 3' = A?, take RÃ to consist only of the trivial residue datum Qy, with 
S^y empty and Ano = 0. Set fzQo = fz .  Now assume inductively that we have 
defined the sets Ry and also points {w a^,: Q e R3'}, for each 3' with 
dim(a>/ag) = r. Fix a Levi subset S" over Fs with dim(aL/a^,.) = r + 1 .  
Then Ry. will be defined as a union over all 3' 3 9' with dim(a*^/a*y) = r, 
and over all Q E  R9,  of certain sets. Consider such an 3' and a residue 
datum 
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in Ry. By our general position assumption, v9 - /^ does not belong to 
a$.. Let Er+ be the unit vector in a$ which is orthogonal to a^,,, and 
whose inner product with the vector v y  - pa is positive. (The inner 
product on a^, is constructed in the same way as that on a&.) We shall 
describe the subset of Ry. associated to JS? and Q. It is parameterized by 
the orbits under i a i 3  of those singular hyperplanes of the function 

which are of the form 

and which intersect the set 

The residue datum Q' = (gas, A*,) attached to such a singular hyperplane is 
defined by 

and 

We then take ~ n ,  to be the unique point in a*,, such that An ,  + pn. belongs 
to the set (10.3). 

The inductive definition is set up to account for changes of contours of 
integration. Standard estimates (such as the inequality (12.7) below) allow 
us to control the growth of a function (10.2) on the set (10.3), at least away 
from the singular hyperplanes. We can therefore deform the integral of 
(10.2) over (h + ia*y5) to an integral over ( v y  + ia*y5). In the process, we 
pick up residues at the singular hyperplanes. The general position of v9 
means that the singularities can be handled separately. It follows from our 
definition that the sum over (9, Q), with Q eRy and dim(a%/a$) = r, of 
the expression 

equals the sum over ( S f " ,  Q'), with Q' e R y  and dim(a$/a>) = r + 1, of 

(Res $ ( A n .  + A)) dA.. jPrn + ;a>.,, *, 
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The required identity (10.1) is then obtained by applying this last formula 
repeatedly, as r increases from 0 to dim(aJaG). 1 

Remark. It is clear that the construction applies to any family of 
functions on a>,c/ia;,s whose singularities and growth properties are 
similar to those of Y. 

11. THE SPACES 3eAG(Fs)) AND Ac(G(FS)) 

As an application of our discussion on residues, we will study the 
function 

In particular, we shall show that as a function of the parameters on 
~ ( M ( F s ) ) ,  it can be analytically continued to an entire function. We 
will come to this in Section 12. In the present paragraph we shall simply 
describe some spaces of functions, in order to illustrate the properties of 
4u. These spaces will also be useful for another paper on the invariant 
trace formula. 

We shall consider 3e(G(Fs)) as a topological vector space. Fix a positive 
function 

on G(Fs) as in [ l (b) ,  Sect. 21. We assume in particular that 11 - 1 1  satisfies 
[l(b),  conditions (i)-(iii), p. 12531. Suppose that N is a positive number 
and that r is a finite subset of U ( K ) .  We define &(G(Fs)),- to be the space 
of smooth functions on G(Fs) which are supported on the set 

and which transform on each side under K according to representations in 
F. The topology on 3?v{G(FS))j- is that given by the semi-norms 

where D is a differential operator on G(Fsns) .  (We are writing Syy for the 
set of Archimedean valuations of F.) We then define ,^f{G(Fs)) as the 
topological direct limit 
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where 

Suppose that f  M ( G ( F s } } .  We have the invariant Fourier transform 

However, it is convenient for us to take a slightly different point of view. 
Define 

f c ( T  2)  = tr n ( f  ' ) 1  71 U l e m p ( G ( F s ) ) ,  6 acXs. 

Then 

Thus, fG can be interpreted in two ways, either as a function on 
&emp(G(Fs)) or, via the Fourier transform on a C s ,  as a function on nternp 
( G ( F s ) )  x a G s .  Note that the situation is analogous to that of the function 
^( f  ). Indeed fc is just the special case that M = G. We will generally lean 
towards the second interpretation. Then f -> fG will be regarded as a map 
from 3^{G(Fs)) to a space of functions on Kernp(G(Fs ) )  x a G s .  When 
G = Go, the work of Clozel-Delorme [8(a), (b)] and Bernstein-Deligne- 
Kazhdan [4] provides a characterization of the image. 

In order to describe the image, it is convenient to fix Euclidean inner 
products and Haar measures on the various spaces associated to Levi sub- 
sets A = nod Mu.  We do this for each u e S separately, by following the 
conventions of Section 1 (with F replaced by F,,). We obtain Euclidean 
norms on the spaces a& and a*, and Haar measures on the groups a&, 
Â ¥ A S  ia*y, and i a L s .  For any positive number N,  let C ; ( a A S )  denote the 
topological vector space of smooth functions on a A S  which are supported 
on 

Suppose that f is a finite subset of II(K),  and that N is a positive 
number. We define A , ( G ( F S ) ) , -  to be the space of functions 

which satisfy the following three conditions. 

1. If C = (Â£. A )  is any element in S G s  x ' a G s ,  then 
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2. Suppose that the restriction of n to K does not contain any 
representation in F. Then 4(n, 2 )  = 0. 

3. Suppose that A! is an admissible Levi subset of G over FLY, and 
that a e ntem,(̂ (Fs)). Then the integral 

converges to a function of 3E which belongs to C;(a-). 

We give &(G(Fs)),- the topology provided by the semi-norms 

with A! and a as above, and 11 .\\^,, a continuous semi-norm on Cf/{aMS). 
We then define 9(G(Fs))  as the topological direct limit 

where 

Note that the first condition implies that the integral 

is actually a Fourier transform on aGs. The other two conditions are taken 
from [8(a)] and [4]. For example, Condition 2 asserts that the function 
n -> 4(n, 2) is supported on finitely many components, in the sense of [4]. 
Condition 3 requires that for every A and 0, the function 

belongs to the Paley-Wiener space on ia5,s. In particular, if S consists of 
one discrete valuation, the function is a finite Fourier series on the torus 
ia>,s. 

The function #^{ f )  does not in general belong to (̂M(Fs)). To accom- 
modate it, we must extend our definitions slightly. Suppose again that r is 
a finite subset of 77(K).  Define J ~ & ( G ( F ~ ) ) ~  to be the space of functions f 
on G(Fs) such that for any b e  C:(aGs), the function 
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belongs to ^{G(Fs)),-. (Here ac stands for "almost compact" support.) We 
give Xc(G(Fs)),. the topology defined by the semi-norms 

where b is any function as above, and 11 .I1 is a continuous semi-norm on 
X(G(Fs)),-. Similarly, define JUG(Fs))r to be the space of functions <b on 
& ( G ( F S ) )  x aG,S such that for any b as above, the function 

belongs to ^{G(Fs)),-. We topologize Ac(G(Fs))r the same way, by the 
semi-norms 

with l l - l [  a continuous semi-norm on ^{G(Fs))r. We then define 
Xc(G(Fs)) and 9,c(G(Fs)) as topological direct limits 

and 

While we are at it, we shall define a useful space of functions that lies 
between ^f(G(Fs)) and xc(G(Fs)) .  We shall say that a function 
f e J^,;(G(FS)) is moderate if there are positive constants c and- d such that f 
is supported on the set 

and such that 

for any left invariant differential operator A on G(Fsns) .  We shall also 
say that a function 4e.fac(G(Fs)) is moderate if for every Levi subset A? 
over Fs, and every u 6 ./7temp(A?(Fs)), the function </>(a,-) has similar sup- 
port and growth properties. Namely, there are positive constants c ,  and d ,  
such that </>(a,.) is supported on the set 
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and such that 

for any invariant differential operator A ,  on sm. 
The notion of a moderate function will be a crucial ingredient in a cer- 

tain convergence estimate required for the comparison of trace formulas. 
We shall see this in another paper, where we shall also show that f -> fc 
maps the moderate functions in X c ( G ( F s ) )  onto those in Yac(G(Fs)).  

We defined the function 

in Section 7 .  If Z is the projection of X onto a C s ,  the value &(A n, X )  
depends only on f '. Consequently, q5,,,,( f )  is defined for any f e X c ( G ( F s ) ) .  
In this section we shall establish that d M  maps 3Vac(G(Fs)) to Yac(M(Fs)) .  
It is one of the main results of the paper. 

It is convenient to study a slightly more general map. Suppose a!,. 
Let d M , @ (  f )  be the function whose value at a point (n ,  X )  in 

equals 

This too is defined iff is any function in X c ( G ( F s ) ) .  If [ = ( C ,  4 belongs to - 
- M . S  x i a c ,  we have 

from (7 .1) .  If h belongs to % ? ( G ~ ( F ~ ) ~ ) ,  (7 .2)  tells us that 

Suppose for a moment that f belongs to 3f {G(Fs) ) .  Suppose also that 
b e  C:(aM,s) ,  that î =noes Mu is an admissible Levi subset of M over 
Fs, and that oe77temp(^i(Fs)) .  We shall need to study the function 
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From the definitions of the last paragraph, we have 

Assume for simplicity that J M ( o A ,  f )  is analytic for A in p + i G S .  Then 

Our main concern will be to show that this function is compactly suppor- 
ted in 3. As in the proof of the classical Paley-Wiener theorem, this entails 
changing contours of integration. We will use Proposition 10.1 to account 
for the resulting residues. 

THEOREM 12.1. For each p e a & ,  h ,  maps A&(G(Fs)) continuously to 
^ c ( W s ) ) .  

Proof. Fix a function b C^aMss).  Then 

for any f e &(G(Fs)).  Thus, if b is any function in C : ( a G S )  which equals 
1 on the image in a G s  of the support of b, we have 

We may therefore assume that f belongs to ^f(G(Fs) ) .  More precisely, we 
need only establish that 

is a continuous map from 3C(G(Fs)) to J f ( M ( F s ) ) .  Choose a positive 
number N and a finite set rcU(K). Let /,,, be the set of irreducible 
representations of K,,, which are constituents of the restrictions of F to K,,,. 
The theorem will follow if we can show for some N M  > 0, that & ,  maps 
J+$,r(G(Fs)),- continuously to J^JM(Fs))/- . , .  
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In order to prove that a function 

belongs to a space AM(M(Fs))^,^ we must establish three conditions. The 
first condition is just (12.1), while the second follows immediately from 
Frobenius reciprocity and the definition of r M .  The third condition, of 
course, is the main point. Fix A and a as above. We shall show that the 
function 

belongs to the space C%(aA5), with NM depending only on Nand F, and 
that it varies continuously with ~ E & ( G ( F ~ ) ) ~ .  This will establish the 
third condition, and complete the proof of the theorem. 

We shall combine Proposition 10.1 with Corollary 9.2. However, we first 
observe that it is sufficient to prove the assertion with p replaced by any of 
the points e p  + p in the formula for ^(/, a, S )  above. We may therefore 
assume that each function JM(oA,  f )  is analytic for A ( p  + ia>,s). 
Consequently, 

Next, we assign a chamber cy in ay to each S => A. There are only finitely 
many such assignments, and a M S  is the corresponding finite union of the 
sets 

{%-E hy(X) e Cy, 9 =' A}. (12.4) 

We may therefore assume that S actually belongs to a given set (12.4). For 
each 9, let c*, be the associated chamber in a*,, and let v y  be a highly 
regular point in general position in c z .  Applying Proposition 10.1, with 
/T = {v9}, we see that h,p(/, a, X) equals 

Res (e ^J^a^f^ d L  

Corollary 9.2 (with a A  = e-A(y)) then provides an important condition on 
^? in order that the integral not vanish. We are thus able to write 
< t>M, ( f ,  a, 3') as the sum over those 93 A with 
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and over Q e R w ,  of the product of b(hM(3C)) with 

Res (ecA(*)  t r ( g M ( o Z  Po) tms f ))) dA. (12.6) 
J v y + i a > , s  f i . A + A ~ + j .  

As always, Po is any fixed element in SP(M). 
Our next step is to deform the contour of integration in (12.6). Our 

assumption on vw ensures that none of the singularities of the integrand 
meets the tube over the translated chamber ( v y  + c$).  Now a standard 
argument shows that there is a constant A, depending at most on f, such 
that 

for any f e ̂ {G(Fs) ) r ,  n E R and A E a>,c- (See, for example, the first 
steps in the proof of [l(d),  Lemma 111.3.11.) Here 1 1  . [ l o  is any norm on the 
finite-dimensional space Vpo(i7)r, c Ã £ ( .  is a continuous semi-norm on 
XN(G(FS) ) , - ,  and A x  is the projection of A onto 

Since &(oy,  Po} is a rational expression in the variables (6.3), the 
function 

satisfies a similar estimate for A in the tube over ( v y + c $ ) .  We can 
therefore deform the contour of integration in (12.6) to rvy + ia*yS, where t 
is a real number which approaches infinity. If 3C belongs to the support of 
(12.6), we obtain an inequality 

with A depending at most on F. But we are already assuming that h a )  
belongs to the closure of c y .  Since v y  is strictly positive on the com- 
plement of the origin in this set, we can estimate llhy(5?)l[ in terms of 
~ ~ ( 3 C ) l .  Consequently, there is an A ^ ,  depending only on F, such that 

if 3C belongs to the support of (12.6), 
The condition (12.5) implies that 
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Imposing the additional requirement that b ( h M ( X ) )  # 0, we then combine 
(12.8) and (12.9).  We obtain 

for a fixed constant A 2 .  It follows from this that the original function (12.3) 
is supported on a ball whose radius depends only on N and F. 

The proof of the theorem is essentially complete. The only additional 
point is to establish the continuous dependence of (12 .3)  on f. In this 
regard, it is simplest to represent the value of a continuous semi-norm on 
the function (12.3) in terms of the Fourier transform. The required 
inequality then follows easily from the estimate (12.7). Thus, the properties 
of (12.3) are as promised, and the theorem is proved. 1 

COROLLARY 12.2. For each  US a^,, d M S p  maps moderate functions in 
x c ( G ( F s ) )  to moderate functions in Yac (M(Fs) ) .  

Proof. Suppose that f  is a moderate function in Xac(G(Fc)).  In order to 
show that & ( f )  is a moderate function in A c ( M ( F s ) ) .  we must verify 
two conditions. For the support condition, we must look back at the proof 
of the theorem. Note that the integral (12.6) depends only on the function 

By assumption, f  is supported on a set 

so we may identify f  with the restriction to G ( F ~ ) ~  of a function in 
Xw(G(Fs)) ,  where 

The inequality (12.8) can therefore be written 

Combined with (12.9),  this becomes 

Since 
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is supported on a set 

This is the required support condition. The growth condition on 
<I>M,u(/Ã o\ 2") is a routine matter. It follows easily from the given growth 
condition on f and the appropriate variant of the estimate (12.7). 
Therefore, hu( f )  is a moderate function. 1 

COROLLARY 12.3 The linear transformation (hn maps x c ( G ( F v } )  con- 
tinuously to ^ ( M ( F s ) ) .  The image of a moderate function in Xac(G(Fs)) is 
a moderate function in 4 ( M ( F S ) ) .  

Proof. This of course is just the special case of the theorem in which 
p=O. 1 

We shall prove Proposition 3.1. There are two steps. The first is a 
straightforward examination of the constants that appear in Harish-Chan- 
dra's explicit formula for the p-function. The second is an interpretation of 
the sign e x  in terms of a certain abelian character value that appears in the 
work of Harish-Chandra. This is an unpublished lemma of Langlands. 

We adopt the notation of Section 3. In particular, G = Go, M  is maximal 
Levi subgroup of G, P= M N p  is a group in 9{M\ and T is a maximal 
torus of M over R with real split component A M .  In addition, we have the 
cuspidal map i f >  from Wn to LM with 

and 

We shall write Z ( M ,  T )  and W A M ,  T )  respectively for the set of roots and 
the real Weyl group of ( M ,  T). Let pm equal one-half the sum of the 
positive roots in 2(M, T )  with respect to some fixed order. We should first 
recall how Langlands attaches a packet {n} of cuspidal representations of 
M ( R )  to 4. Choose a point A. e LOO C such that 
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for every element ,Iv E L v  such that (a, A ) = 0 for all the roots a in 
Â£{M T). We have fixed an isomorphism of T(C) with L v  (x) C*, and we 
use this to identify the complex Lie algebra tc with L v  (x) C. If 

is any point in T(C), define 

Then the packet consists of those cuspidal representations n of M(R) 
whose character values at regular points t e T(R) are of the form 

Because he uses different measures on the groups Np(R), Harish-Chandra's 
p-function actually equals 

aPlP7PlP(Jp\pW* JPlP(z))-l (A.2) 

in our notation, where y P l p  is the constant defined in [ll(c).  Sect. 21. We 
must examine Harish-Chandra's explicit formula in [ l l (c ) ]  for this 
expression. 

There are two cases to consider. Assume first of all that dim Np(R) is 
even. Then T(R) is fundamental in G(R). The expression (A.2) equals 

in the notation of [ l l (c) ,  Theorem 24.11. We have used the fact that the 
Weyl group of A M  is isomorphic to Wa(G, T)/Wa(M, T). By [ l l (a) ,  
Lemma 37.31, 

where 

r M  - re = &{dim(M/T) - dim(G/T)} = -dim N p ,  

v M  - v G  = i{dim(M(R)/K n M(R)) - rank(M(R)/K n M(R)) 

- dim(G(R)/K) + rank(G(R)/K)} 

= - + dim N p ,  
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and 

the volume of M(^)r K\K with respect to the invariant measure dk 
defined by the Euclidean structure (3.1) on f nm\f. Now from [l l(b),  
p. 451 we know that 

where c is the positive constant such that 

for every (Ã  ̂C:(Kn M(R)\K). To evaluate c, observe that if {Xi: 1 < i; 
dim Np is an orthogonal basis of rip, {2 112(Xi  + OX,}: 1 < i < dim Np} is 
an orthonormal basis of f n m \ i  Taking d> to be supported in a small 
neighbourhood of 1 we find that c = 2(112)dimNp . It follows that the 
expression (A.2) equals 

where a" is the co-root of a. 
Next suppose that dim Np is odd. Then there is a positive real root a. of 

(G, T).  We choose a basis (H', X', Y') of the derived algebra of the cen- 
tralizer of t n f in g as in [ l  l(c), Sect. 301. Define y = exp n[X' - Y') as in 
[ll(c), Sect. 301 and let B be the maximal torus obtained frog T by 
Cayley transform. Then B(IR)/AG(IR) is compact. Let &(G, T) denote the 
complement of { a 0 }  in Sp(G, T), which is just the set of complex roots in 
&(G, T). Then the expression (A.2) equals [ l l(c) ,  p. 1901 
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and WR(G(R)O, B(K}0} is the subgroup of WR(G, B) induced from elements 
in the connected component G(R)O of G(R). 

By [ 1 1 (a), Lemma 37.3 1, 

where again 

and 

Also, 

v M  - v G  = i{dim(M(R)/Kn M(R)} - rank(M(R)/Kn M(R)) 

- dim(G(R)/K) + rank(G(K)/K)} 

= - i dim N p .  

Repeating an argument above, we obtain 

We can write 

since B(R) n KO is connected. It follows that 
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It is a consequence of the discussion of [ l l ( c ) ,  Sect. 301 that 
{exp 6(X' - Y'): 0 <0 < 7t ] is a set of representatives of B(R)O/T(R) n 
B(R)', and that 

B(X' - Y', X' - Y ' ) l l *  = 2B(ao, ao)-112. 

Therefore, 

It follows that the expression (A.2) equals 

dim Np 2 
( 2 ~ ) -  y p I p - B ( a o ,  ao) --. 

Since y 2  = 1 ,  the number 

equals Â 1 .  If it equals 1 ,  

Similarly if ek = - 1, 
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Set ek = 0 if there is no real root ao. Then collecting the facts above, we 
see that 

( J F , P ( ~ *  JP,P( 

equals 

(2n)-dim NP n l^aV)I 
a 2"p(G. T )  

Proposition 3.1 will then follow from 

LEMMA A. I (Langlands). E;  = E ~ .  

Proof. Associated with the embedding into g of the Lie algebra spanned 
by (H', X', Y') we have a homomorphism of SL2 into G. The co-root a; 
can be defined as the composition 

It follows that y = a; ( - 1 ). Since 

we have 

Let a = art where a' e (LMO)der, the derived subgroup of ^Â¥M and t E ̂ Â¥To 
Since an is real, a; extends to a character on ^Â¥ which must vanish on 
(LMO)de, Then 

We have only to show that 

This is a statement about a real reductivegroup G, a Levi component M 
of a maximal parabolic subgroup, a Cartan subgroup T of M with T/AM 
compact, a real root a. of (G, T), and any element a' in (^MO),,,, norrnal- 
izing ^TO such that a' xi a acts as -1 on the roots of (^MO, ̂Â¥To) We leave 
the reader to check that it holds if the derived group of G(R) is locally 
isomorphic with SL(2, H) or SU(2, 1). We prove the statement in general 
by induction on the dimension of G. Let be the largest root of one of 
the simple factors of (^MO)^. Let be the connected subgroup whose 
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Lie algebra is generated by the Lie algebra L! of ' T  and {X," : =a]. 
Define '(7, = 'G? xi WR, a subgroup of 'G, and set ^-Mi = 'Mn 'Â¥GI Let 
^-JO be the connected subgroup of L M O  whose Lie algebra is generated by 
't and {Xcv , X _ e v  }. Let a ,  be an element of ' M  0 which normalizes LTO 
and takes positive roots to negative roots. Let a2 be an element in LJO that 
normalizes '-To and takes j" to - jv . Then a ,  and a-, commute, and 

L M , ,  LT, a;, a ,  x a )  satisfies the same assumptions as ' M ,  
LT, 6 , a"M a). Moreover, we may assume a' = a, a2 [ I  5(a), p. 471. After 
applying our induction hypothesis, we have only to prove that Ad(ai) Xmv 
equals Xxv times ( - 1) raised to the exponent 

Suppose that y > 0, y( j  ) # 0, y(a; ) # 0, and y " is not in the plane span- 
ned by a; and ^. If y " = Ad(a2) y " we would have y = Ad(a2) y and 
y ( j v  ) = 0. If y " = Ad(^(a)) y " we would have y " w. Finally, if 
y " = Ad(a:,^)) y " , y " would be in the plane of a; and fl ". These three 
possibilities are all impossible. It follows that f", Ad(a2) y v, Ad(4(cr)) y ", 
and Ad(a-,(A(a)) y " are all distinct and positive. Since 

the summands for these four roots may be dropped from (A.4). We can 
also drop those y with y(a; ) = 0. 

Thus, the sum in (A.4) can be taken over those y > 0, y ( j  " ) # 0, which 
lie in the plane spanned by a,, and p. This becomes a sum over positive 
roots of a Lie algebra of rank two. On the other hand, Xv is the zero 
weight vector in an irreducible ( ' J ' ) ~  module of odd dimension, say 
2n + 1. Since a; represents the nontrivial Weyl group element in {^JO)*~* ,  

We can calculate the integer (A.4), case by case, from each of the diagrams 
on [6 ,  p. 2761 which have a pair (a0, fl) of orthogonal roots. We calculate 
n from the corresponding dual diagram. It follows easily that the difference 

these two integers is even. 1 
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