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The purpose of this article is to prove an explicit invariant trace formula. In 
the preceding paper [l(j)] ,  we studied two families of invariant distributions. 
Now we shall exhibit these distributions as terms on the two sides of the in- 
variant trace formula. We refer the reader to the introduction of [1 (j)], which 
contains a general discussion of the problem. In this introduction, we shall 
describe the formula in more detail. 

Let G be a connected reductive algebraic group over a number field F , and 
let f be a function in the Hecke algebra on G(A) . We already have a "coarse" 
invariant trace formula 

which was established in an earlier paper [1 (c)]. This will be our starting point 
here. The terms on each side of (1) are invariant distributions, but as they stand, 
they are not explicit enough to be very useful. After recalling the formula (1) 
in $2,  we shall study the two sides separately in $53 and 4. These two sections 
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are the heart of the paper. Building on earlier investigations of noninvariant 
distributions [1 (e),  1 (g)], we shall establish finer expansions for each side of (1).  
The resulting identity 

will be our explicit trace formula. The terms I^(-/ ,  f )  and I,!(n, f )  in (2) are 

essentially the invariant distributions studied in [1 (j)]. The functions a ( s ,  y )  
and a ( n )  depend only on a Levi subgroup M , and are global in nature. They 
are strongly dependent on the discrete subgroup M(F) of M(W . We refer the 
reader to $53 and 4 for more detailed description of these objects, as well as the 

sets ( M ( F ) )  ,! and n(M, t )  . 
The paper [ l (c ) ]  relied on certain hypotheses in local harmonic analysis. 

Some of these have since been resolved by the trace Paley-Wiener theorems. 
Others concern the density of characters in spaces of invariant distributions, 
and are not yet known is general. In fact, to even define the invariant distribu- 
tions I J y  , f )  and I & ,  X ,  f )  , we had to introduce an induction hypothesis 
in [1 (j)]. This hypothesis remained in force throughout [1 (j)], and will be car- 
ried into this paper. We shall finally settle the matter in 55. We shall show that 
the invariant distributions in the trace formula are all supported on characters. 
Using [ 1  (j),  Theorem 6.11 we shall first establish in Lemma 5.2 that the distribu- 
tions on the right-hand side of (2)  have the required property. We shall then use 
formula (2) itself to deduce the same property of the distributions on the left 
(Theorem 5.1). This is a generalization of an argument introduced by Kazhdan 
in his Maryland lectures (see [8, 101). Theorem 6.1 (in [ l ( j ) ] )  and Theorem 
5.1 (here) are actually simple versions of a technique that can be applied more 
generally. They provide a good introduction to the more complicated versions 
used for base change [2, @11.10, 11.171. 

It is not known whether the right-hand side of (2) converges as a double in- 
tegral over t and n .  It is a difficulty which originates with the Archimedean 
valuations of F . On the other hand, some result of this nature will definitely be 
required for many of the applications of the trace formula. In $6 we shall prove 
a weak estimate (Corollary 6.5) for the rate of convergence of the sum over t . 
It will be stated in terms of multipliers for the Archimedean part f l i e s '  G(F, )  
of G(A) . One would then hope that by varying the multipliers, one could sepa- 
rate the terms according to their Archimedean infinitesimal character. For base 
change, this is in fact what happens. One can use the estimate to eliminate 
the problems caused by the Archimedean primes [2, $11.151. In general, Corol- 
lary 6.5 seems to be a natural device for isolating the contributions of a given 
infinitesimal character. 
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It is useful to have simple versions of the trace formula for functions 

that are suitably restricted. Since the terms in (2) are all invariant distributions, 
we will be able to  impose conditions on f strictly in terms of its orbital integrals. 
If at one place r the semisimple orbital integrals of /, are supported on the 
elliptic set, then all the terms with M # G on the right-hand side of (2) vanish. 
If the same thing is true at two places, the terms with M # G on the left- 
hand side also vanish. These two assertions comprise Theorem 7.1. They are 
simple consequences of the descent and splitting formulas in [ l ( j ) ,  $58-91. We 
shall also see that in certain cases the remaining terms take a particularly simple 
form (Corollaries 7.3, 7.4. 7.5). 

As with the preceding paper [ l ( j ) ] .  we shall conclude (58) by discussing the 
example of GL(n)  . Groups related to  GL(n)  by inner twisting or  cyclic base 
change are the simplest examples of general rank for which one can attempt a 
comparison of trace formulas. However, one must first establish some properties 
of the trace formula of GL(n )  itself. By imposing less stringent conditions than 
those of 57, we shall establish more delicate vanishing properties. The resulting 
formula for GL(n )  is then what should be compared with the twisted trace 
formula over a cyclic extension. 

Let G be a connected component of a reductive algebraic group over a num- 
ber field F . We assume that G ( F )  # 2. As in previous papers, we shall write 
G L  for the group generated by G , and G for the connected component of 1 
in Cr^ . The component G / F  will remain fixed throughout the paper except in 
$ 5 .  

We shall fix a minimal Levi subgroup .Ifn of G O  over F .  This was the 
point of view in the paper [1 (g)]. and we shall freely adopt the notation at the 
beginning of [1 (g)].  In particular, we have the maximal F-split torus .do = .d,,,,, 

of Go and the real vector space a, = a,,1j. On a,, we fix a Euclidean norm 

which is invariant under the restricted Weyl group Hb of 6". We also have 

the finite collection -/ = _/ "I of (nonempty) Levi subsets M c G for which 
11' contains 11,- and the finite collection /Â = / * I  of (nonempty) parabolic 

subsets P c G such that P O  contains ,\I,. These collections can of course 
0 (/' also be defined with Go in place of G in which case we shall write 2 = -f 

and 9"'' = 7'" . Observe that V -^ .v' is a map from >/ into J which is 
neither surjective nor injective. Finally, we have the maximal compact subgroup 

A- = IT-', = n('-',+ n GO(F, ) )  
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of c o p ) .  Set 
KLG = K ~ + ~ G ( F , )  and K G  = r[KLG 

In [ 1 (g)], we studied the geometric side of the (noninvariant) trace formula as 
a distribution on c ~ G ( A ) ' )  . However, to deal with the other side of the trace 
formula, and to exploit the present knowledge of invariant harmonic analysis, 
we need to work with K-finite functions. This was the point of view of [ l ( i ) ]  
and [ 1  (j)]. We shall also make use of the notation from 5 1 of these two papers, 
often without comment. In 5 1 1 of [1 (i)] we defined the Hecke spaces Z ( G ( F s ) )  
and 5yc(G(Fs)) , where S is any finite set of valuations of F with the closure 
property. Recall that q C ( G ( F s ) )  consists of the Hecke functions f on G(Fs) 
of "almost compact" support, in the sense that for any b C y ( a G  ,s) , the 
function 

f b ( ~ )  = f ( x ) b ( H G ( x ) ) ,  G(Fs), 

belongs to Z ( G ( F S ) )  . Let Sram be the finite set of valuations of F at which 
G is ramified. (By agreement, Sram contains Sm , the set of Archimedean 
valuations of F .) Suppose that S contains Sram . We can multiply any function 

on G(Fs) with the characteristic function of f̂ , K , ~  , thereby identifying it 
with a function on G(A) . This allows us to define the adelic Hecke spaces 

X ( G ( A ) )  = lim A?(G(Fs)) ---+ 
s 

and 

Similarly, we can define the Hecke space 

on ~ ( 4 ) '  . The terms in the trace formula are actually distributions on 

^ ( c ~ ( A ) ' )  . However, the restriction map f -Ã f '  sends q ( G ( A ) )  to 

Z(G(A)'), and we shall usually regard the terms as distributions on X ( G ( A ) )  
or q ( G ( A ) )  that factor through this map. 

In 5 1 1 of [1 (i)] we also defined function spaces Y ( G ( F s ) )  and Yac(G(Fs)) 
on 

ntemp(G(Fs)) X a m .  

Let n (G(A) )  (respectively nUnl t (G(A) ) ,  IItemp(G(A))) denote the set of equiv- 
alence classes of irreducible admissible (respectively unitary, tempered) repre- 
sentations of G + ( A )  whose restrictions to GO(A) remain irreducible. Observe 
that the disconnected group 

- 0 
= 12 Ss = lim + H O ~ ( G ' ( F ~ ) / G  (FJ , c*) 

s s 
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acts freely on each of these sets. We shall write {n (G(A) )}  , { I I i ( G ( A ) ) } ,  
and {IItemp(G(A))} for the sets of orbits. They correspond to the sets of rep- 

resentations of G ( A )  obtained by restriction. Suppose that S contains S ram.  
Then a G S  = a,. We can identify any function (p on ntemp(G(Fs))  x a, with 
the function on IItemp(G(A)) x a, whose value at 

With this convention, we then define 

^{G(A)) = lim ---+ Y ( G ( F s ) )  
s 

and 
^ G W )  = 1 5  ^c(G(Fs)) , 

s 
Keep in mind that any of our definitions can be transferred from G to a Levi 
component M 9 . In particular, we have spaces Y ( M  (A)) and < ( M  (A)) . 
It is easy to see that the maps / -  ̂ f̂  and / -  ̂ 4>^(.f), described in [1 (i)] 
and [ l ( j ) ] ,  extend to continuous maps from ~ ( G ( A ) )  to < ( M ( A ) ) .  

We are going to use the local theory of [I()")] to study the trace formula. 
Because the Archimedean twisted trace Paley-Wiener theorem has not yet been 
established in general, the result of [ 1  (j)] apply only if G equals GO, or if G 
is an inner twist of a component 

We shall therefore assume that G is of this form. However, we shall write 
the paper as if it applied to a general nonconnected group. With the exception 
of a Galois cohomology argument in the proof of Theorem 5.1, and a part of 
the appendix which relies on the Archimedean trace Paley-Wiener theorem, the 
arguments of this paper all apply in general. 

Suppose that M s3' and that S is a finite set of valuations of F with the 
closure property. In [1 (j)] we defined invariant distributions 

and 
l^(x.X.f) = J , , { ( ~ . X . f )  - i ' - ^ n . ~ . ^ ^ f ) ) ~  

Lâ‚¬Jr,(  

n n ( M ( F s ) )  , X a I Ã ˆ  , with f ^{G(Fs)) . (Recall that (̂M) denotes 
the set of Levi subsets L of G with M c L <- G .) These definitions were 
contingent on an induction hypothesis which we must carry into this paper. We 
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assume that for any S ,  and for any elements M  6 2 and L E s^(M), the 
distributions 

I , : ~ ( Y ) ,  ;l~.kf(F'), 

on Z ( L ( F s ) )  are all supported on characters. (A distribution attached to G  is 
supported on characters, we recall, if it vanishes on every function f such that 
fG = 0  .) Then the distributions I l1 (y )  , and, thanks to Theorem 6.1 of [ 1  (j)], 
also the distributions I \ A n ,  X )  , are well defined. In Corollary 5.3 we shall 
complete the induction argument by showing that the condition holds when L 
is replaced by G  . 

The distributions I,,/(:) and I,&, X )  have many parallel properties. How- 
ever, there is one essential difference between the two. If n  6 Y[[M(A))  and 
X  6 a Ã  , it is easy to see that I,&, X) can be defined as a distribution on 
E ( G ( A ) )  or even q c ( G ( A ) ) .  This is a consequence of the original definition 
of J,&, X )  in terms of normalized intertwining operators, and in particular, 
the property ( R Ã £  of [ l ( i ) ,  Theorem 2.11. On the other hand, if : belongs to 
M ( A )  , there seems to be no simple way to define I,ll(:) as a distribution on 
Z ( G ( A ) ) .  This circumstance is responsible for a certain lack of symmetry in 
the trace formula. The terms on the geometric side depend on a suitably large 
finite set S of valuations, while the terms on the spectral side do not. 

If G ( A )  is replaced by G ( A ) '  , we can obviously define the sets ~ ( G ( A ) ' ) ,  
n n ( G ( A ) ' )  and ~ ( G ( A ) ' )  as above. The terms on the spectral side of 
the trace formula will depend on elements 152' E 2 and representations n  E 

I I U t  ( I W ( A )  ) . We shall generally identify a representation n  6 n u t  ( M ( A ) ' )  
with the corresponding orbit 

of ia\, in I I n t ( M ( A ) )  . With this convention, let us agree to write 

and 

^ . f )  = I , v ( n p . o l / ) ,  f ~ ^ c ( ^ ) ) l  

for the values of the distributions at X = 0 .  The two terms on the right are 
independent of p ,  and are therefore well defined functions of n .  They also 
depend only on the restriction f  of / to G ( A )  . This notation pertains 
also to the map f.;. For if n  is an arbitrary representation in n ( G ( A ) )  and 
X E a(;, we have 

Therefore, if n  belongs to F l u n I t ( ~ ( A ) ' ) .  it makes sense to write 
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The first version of the noninvariant trace formula is summarized in [ l(b) ,  
551 and [1 (c), (2.5)]. (See also [7].) It is an identity 

in which a certain distribution J on C ~ ~ ( G ( A ) )  is expanded in two different 
ways. The sets W ( G ,  F) and 2 = 2 ( G  , F) parametrize orbit theoretic 
and representation theoretic data respectively, but the corresponding terms are 
not given as explicitly as one would like. 

Suppose that J,(f) stands for one of the summands in (2.1). Then 7, is a 
distribution on C?(G(A)l) which behaves in a predictable way, 

under conjugation [ l(c) ,  Theorem 3.2; 71. Since we want to take f to be in 
q ( G ( A ) ) ,  we cannot use this formula. However, as in the proof of Lemma 
6.2 of [1 (i)], we can easily transform it to an alternate formula 

which makes sense for functions f q c ( G  (A)) and h X(G' (A) ' ) . Let % 
denote the set of elements L 2' with L # G . We then define an invariant 
distribution 

1*1f) = ~ * ~ ( f ) .  f e q ( G ( A ) ) l  

inductively by setting 

The invariance of I follows from (2.2) and the analogous formula [l(i),  (12.2)] 
for $., (see [l(c), Proposition 4.11). Implicit in the definition is the induction 
assumption that for any L E %, the distribution is defined and is supported 
on characters. This is what allows us to write c. Observe that this induction 
hypothesis is our second of the paper. However, in $53 and 4 we shall establish 
explicit formulas for I. and Ix in terms of IM(y) and IM(n) respectively. 
This will reduce the second induction hypothesis to the primary one adopted in 
$1- 

It is a simple matter to substitute (2.3) for each of the terms in (2.1). The 
result is an identity 
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in which the invariant distribution 

is expanded in two different ways (see [I(c) ,  Proposition 4.21). This is the 
first version of the invariant trace formula. It was established in [I (c)] modulo 
certain hypotheses in local harmonic analysis. In later papers [I (g)] and [I (e)], 
we found more explicit formulas for the terms J,( f ) and J (f) in (2.1). The 
purpose of this paper is to convert these formulas into explicit expansions of 
each side of the invariant formula (2.4). In the process, we will establish the 
required properties of local harmonic analysis. 

We shall derive a finer expansion for the left-hand side of (2.4). The result 
will be a sum of terms, indexed by orbits in G(F)  , which separate naturally into 
local and global constituents. We shall first review the results of [I(@],  which 
provide a parallel expansion for the noninvariant distributions on the left-hand 
side of (2.1). 

Recall that @ = @(G, F) is the set of equivalence classes in G(F)  , in which 
two elements in G ( F )  are considered equivalent if their semisimple Jordan 
components belong to the same G'(F)-orbit. The formulas in [ l(g)]  were 
stated in terms of another equivalence relation on G ( F )  , which is interme- 
diate between that of @ and ~ ~ ( F ) - c o n j u ~ a c y .  It depends on a finite set S 
of valuations of F . The (G , S)-equivalence classes are defined to be the sets 

in which a is a semisimple element in G ( F )  , and U is a unipotent conju- 
gacy class in Gy(Fs) . Any class o in @ breaks up into a finite set ( o ) ~ , , ~  of 
(G , S)-equivalence classes. The first main result of [ I  (g)] is Theorem 8.1, an 
expansion 

for any o e @ and any f e C?(G(F<,)) . Here S is any finite set of valuations 
of F which contains a certain set So determined by 0. The distributions 
JM ( 7 ,  f )  are purely local, in the sense that they depend only on y as an element 
in M(Fs) . The functions a^ \S ,  y )  are what carry the global information. 
These were defined by formula (8.1) of [1 (g) ] (and also Theorem 8.1 of [I (f)]), 
in the case that S contains S# . 

Suppose that M 2. A semisimple element cr M ( F )  is said to be 
F-elliptic in M if the split component of the center of M equals A,,, . Sup- 
pose that S is any finite set of valuations of F which contains S . We shall 
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Suppose that "/s an element in M ( F )  with semisimple Jordan component a .  
Set i M ( s ,  a} equal to 1 if a is F-elliptic in M ,  and if for every v 4. S ,  the 
set 

a d ( ~ ( F , ) ) a  = { r n a r n :  rn E M ( F ~ , ) }  

intersects the compact set K: . Otherwise set i M ( s  , a )  equal to 0 .  Then 
define 

{ u :  au-y} 

in the notation of [1 (g), (8. I)]. This definition matches the one in [1 (g)] in the 
special case that S contains S o ,  where o is the class in @ which contains a .  

The second main result of [l(g)] is Theorem 9.2, an expansion 

for any f e C: (G(FS) ' ) . Here, A is a compact neighborhood in G(A) , and 
S is any finite set of valuations of F which contains a certain set SA determined 
by A .  This latter set is large enough so that A is the product of a compact 
neighborhood in G(FS) '  with the characteristic function of fly i? K , and 
by definition, 

c ~ ( G ( F ~ ) ' )  = c ~ ( G ( A ) ' )  n C ~ G ( F ~ ) ) ' ) .  
M In [1 (g)] we neglected to write down the general definition (3.2) for a ( S ,  y) . 

This is required for the expansion (3.3) to make sense. 

Proposition 3.1. Suppose that S is a finite set of valuations which contains So, 
and that f is a function in &(G(Fs)). Then 

Proof. By definition, I (  f )  equals the difference between J (  f )  and 

We can assume inductively that if L E Â¥2'r, the proposition holds for IL . Since 
4, maps G ( G ( F s ) )  to <(L(Fs)) , we obtain 

r^.w})= r \<\\<I-' a M ( s l ? ) j ^ Y ? ^ ( f ) ) .  
. \ f â ‚ ¬  Y?[M(F)~Q) 'w  s 

This is valid whenever S contains the finite set soL associated to L . A look at 
the conditions defining So on p. 203 of [l(g)] reveals that So contains ~1', so 
we can certainly take any S 3 So . Combining this formula with (3. l ) ,  we write 
W as 
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The expression in brackets on the right is just equal to I M ( y ,  f )  , so we obtain 
the required formula for I,( f )  . 

The original induction assumption of $1 implies that for any L q ,  the 
distributions Î  y) are all supported on characters. The last proposition pro- 
vides an expansion for IL in terms of the distributions Therefore, IOL 
is also supported on characters. Thus, half of the second induction hypothesis 
adopted in $2 is subsumed in the original assumption. In $4 we shall take care 
of the rest of the second induction hypothesis. 

To be able to exploit the last proposition effectively, we shall establish an 
important support property of the distributions IM(y) .  Fix an element M e 
2, a finite set S,  of valuations containing S a m  , and a compact neighborhood 
A, in G(Fsl) .  Let 3 (G(Fsl)) denote the set of functions in Z ( G ( F s l ) )  
which are supported on A, . 

Lemma 3.2. There is a compact subset A of M ( F S ) '  such that for any finite 
set S 3 Sl  , and any f in the image of ZAl (G(Fsl))  in Z ( G ( F s ) ) ,  thefunction 

is supported on the set 

Proof. Suppose that 

v?S, 

is a Levi subset of M defined over FS . Then for each v Sl , M,, is a Levi 
subset of M which is defined over F,, . Let M,(F,)' be the set of elements y,, G 

M,,(F,,) whose semisimple component a ,  satisfies the following two conditions. 

(i) The connected centralizer M ,  of a in M is contained in M: . 
(ii) a ,  is an F,,-elliptic point in M,, . 

vES] 

Consider the restriction of the map 

to 4 ( F , )  . The map is certainly constant on the orbit of 

VES] 

The F,,-elliptic set in M(F, , )  has a set of representatives which is compact 
modulo A Ã £ ( F , , )  It follows easily that as a map on the space of 
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 orbits in 4 (FSlJ1 ,  Ha is proper. To prove the lemma, we shall 
combine this fact with the descent and splitting properties of IM(y,  f )  . The 
argument is quite similar to that of [l(c), Lemma 12.21. 

We may assume that 

A, = n  A,, 
ves, 

and 

so that fv belongs to 3 (G(Fv)) if v belongs to 5, , and fv equals the charac- 

teristic function of K if v belongs to the complement of S, in S . Suppose 
that y=nvv 

v f-s 

is an element in M ( F ~ ) '  such that IM(y,  f )  # 0 .  For each v E S, , let ov be 
the semisimple part of yv , and let A y  be the split component of the center 
of M y .  Set M,, equal to the centralizer of A y  in M .  Then & belongs to 
M ~ , ( F ~ , ) .  In other words, if 

the element 

belongs to 4 ( / ^ ) I  . If we were to replace y by an  conjugate, 4 
would be similarly conjugated, but I,$* would remain nonzero. Now there are 
only finitely many  orbits of Levi subsets 4 over FS . It is therefore 
sufficient to fix A?', , and to consider only those elements y such that y ,  belongs 

10 4 (^()I . 
For each valuation w in S - S, , we set M = M . We then define a Levi 

subset 

wes-Sl ves 

of M over F . Regarding y as an element in A ( F s )  , we can form the induced 
class 

But M , , ,  = M., for each v , so y.'* is just the A0(FS)-orbit of y . Applying 
Corollary 9.2 of [1 (j)] , we obtain 
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Recalling the definition of the constants dÂ¡(M 2 )  in [1 (j) , $91 , we find that 
we can choose 

G G G so that the natural map aA + @ a2 is an isomorphism, and so that 

Suppose first that w is a valuation in the complement of Sl in S .  Since 
f is the characteristic function of K: , Lemma 2.1 of [ l( j)]  tells us that 

for any Q S^{L) .  The function on the right is a weighted orbital integral, 
and by Corollary 6.2 of [ l  (h)], it is the integral with respect to a measure on the 
induced class 7: . Therefore, the class 7: must intersect K: . Combining the 
definition of the induced class 7: with the standard properties of the special 
maximal compact group Kw , we find that the M O ( ~ ~ ) - o r b i t  of yw intersects 
KWM . Notice in particular that H^ , (y )  = 0 .  

We turn, finally, to the valuations in 5, . It remains for us to show that the 
 orbit of y l  intersects a compact subset A, of M ( F )  which depends 
only on A l  . We are already assuming that y ,  belongs to ^fl(Fsl)' , so by the 
discussion above, we need only show that H4 (7,) lies in a fixed compact subset 
of aA . Set 

-  ̂p,,. 
ves1 

It is clear that the natural map 

+ Â¡.i @ a^ 
is injective. But the image of HA ( y , )  in a,., equals 

since y belongs to M ( F S )  . We have only to show that the image of H4 (7,) 
in as , namely the vector 

lies in a compact subset of as which depends only on A, . For any v S, , 
the distribution f,:, (c, , f,,,,,) depends only on the restriction of f,, to the set 

x , ,  G(F,,): HL,,(x,) = HLv(7,,)}. 
It follows from (3.4) that H L  (7") belongs to HL (Av) , the image of the support 
of /y . In other words, H A )  belongs to @,,Gsl HL (A,,) , a compact set which 
depends only on A, . This completes the proof of the lemma. 
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Suppose that f belongs to X(G(A))  . We shall write supp( f )  for the sup- 
port of f .  There exists a finite set S of valuations of F , which contains Sram , 
such that f is the image of a function in X(G(Fs ) )  . We shall write V( f )  for 
the minimal such set. If S is any such set and y is a point in ( M ( F ) ) v , s ,  
we shall understand I&, f )  to mean the value of the distribution I&) at 
f ,  regarded as a function in X ( G ( F s ) )  . Since we are thinking of IJy) as 
a local object, this convention is quite reasonable. It simply means that when 
y e (M(F)), , ,s  parametrizes such a distribution, we should treat y as a point 
in M(Fs) rather than M ( F )  . 
Theorem 3.3. Suppose that f e X ( G ( A ) )  . Then 

where S is any finite set of valuations which is sufficiently large, in a sense that 
depends only on supp( f )  and V( f )  . The inner series can be taken over a finite 
subset of (M(F)), ,  ,s which also depends only on supp( f )  and V( f )  . 

Proof. By (2.4) and Proposition 3.1, we have 

where S is any finite set of valuations that contains So . We shall use Lemma 
3.2 to show that the sum over o is finite. 

Choose any finite set S l  D S a m ,  and a compact neighbourhood A, in 
G(FS)  , such that f belongs to 3 ( G ( F S ) ) .  Assume that S contains S l  . 
Suppose that a class u gives a nonzero contribution to the sum above. Then 
there is an M e 9, and an element y e ( M ( F )  such that 

The nonvanishing of a ' ^ ( ~ ,  y) implies that for each v 6 S , the image of y in 
M(FÃ£ lies in 

ad(MO(~,,))K,". 

The image of y in M(Fs) then lies in M ( F ~ )  , and therefore belongs to a 

a d ( M o ( ~ , ) ) ( A ~ ~ ) ,  

by Lemma 3.2. It follows that the M(A)-orbit  of y meets the compact 
A ~ K  , and in particular that 

~ ~ ( G ( A ) ) o  n A K  # 0 . 

set 

set 

By Lemma 9.1 of [1 (g)] , o must belong to a finite subset @, of @ . Since 
A; depends only on A, , @, clearly depends only on supp( f )  and V( f )  . The 
required expansion for I( f )  then holds if S is any finite set which contains 
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the union of Sl with the sets S o ,  as u ranges over @, . This establishes the 
first assertion of the theorem. The union over u @, of the sets 

( M ( F )  n ̂  ,s 

is certainly a finite subset of (M(F) )M,s ,  so the second assertion also follows. 

We shall derive a finer expansion for the right-hand side of (2.4). The result 
will be a sum of terms, indexed by irreducible representations, which separate 
naturally into local and global constituents. Again, there is a parallel expansion 
for the noninvariant distributions on the right-hand side of (2.1). It is provided 
by the results of [ l(e)]  and [7]. However, these results are not immediately in 
the form we want, and it is necessary to review them in some detail. 

The set Sf = ̂ {G , F )  consists of cuspidal automorphic data [ 1 (b), 71. It is 
the set of orbits 

where Lo is a Levi subgroup in J ?  = 2 ,  ro is an irreducible cuspidal 
automorphic representation of L ~ ( A ) '  , and the pair (Lo,  ro) is fixed by some 
element in the Weyl set W: of isomorphisms of a induced from G .  (We 
have indexed the Levi subgroup with the subscript 0 to emphasize that it need 
not be of the form. MO for some M e J? .) The set Sf has been used to 
describe the convergence of the spectral side, which is more delicate than that 
of the geometric side. However, for applications that involve a comparison 
of trace formulas, it is easier to handle the convergence by keeping track of 
Archimedean infinitesimal characters, 

Set 

vesm 

Regarding G ' ( F )  as a real Lie group, we can define the Abelian Lie algebra 

t) = ibK @ b 0  
as in $3  of [ l  (d)]. Then b 0  is the Lie algebra of a fixed maximal real split torus 
in M 0 ( F ) ,  and is a fixed Cartan subalgebra of the centralizer of b 0  in 

The complexification b C  is a Cartan subalgebra of the complex Lie algebra of 
G ' ( F ) ,  and the real form t) is invariant under the complex Weyl set wG 
of G ( F )  . (By definition, wG equals Ad(&) W ,  where e is any element in 
G ( F )  which normalizes t ) , - ,  and W is the complex Weyl group of G ' ( F ~ )  
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with respect to (5 .) It is convenient to fix a Euclidean norm 1 1  1 1  on (5 which 
is invariant under wG . We shall also write 1 1  + 1 1  for the dual Hermitian norm 
on (5;. To any representation n e I I ( M ( A ) )  we can associate the induced 

G representation n of G+(A)  . Let v denote the infinitesimal character of its 
Archimedean constituent; it is a W-orbit in (5; . We shall actually be more 
concerned with the case that n is a representation in Y ~ [ M ( A ) ) .  Then vn 
is determined a priori only as an orbit of a;,̂  in (5; . However, this orbit 
has a unique point of smallest norm in (5; (up to translation by W )  and it is 
this point which we shall denote by v . If t is a nonnegative real number, let 
IIUnit(M(A) , t )  denote the set of representations n e nuit ( M ( A ) ' )  such that 

llJ^m(vR)ll = t 3 

where J^m^)  is the imaginary part of v relative to the real form (5*  of 
(5; . We adopt similar notation when M is replaced by a group Lo e 2 .  In 
particular, if 

G x = { s ( L o , r o ) :  e Wo } 
is any class in 2, we set vx = vro . 

Suppose that Lo is a Levi subgroup in 9'. Set 

A L ~  ,m = ' L o  ,mO 
where ALo is the split component of the center of the group obtained by 
restricting scalars from F to Q. Let 

be the subspace of L ' ( L ~  (F) A ^  ,^ \ Lo ( A ) )  which decomposes under Lo ( A )  as 
a direct sum of representations in I'Iunit(Lo(A), t )  . For any group Qo in 

and a point A e a;,^ , let 

be the induced representation of G ( A )  obtained from (4.1). If Q. is another 
group in ^ { L ~ ) ,  the theory of Eisenstein series provides an intertwining op- 
erator MQAlQ0 ( A )  from PQn ,, ( A )  to PQ; ,t ( A )  e 

Lemma 4.1. The representation pQOt(A)  is admissible. 

Proof. The assertion is that the restriction of pQo,,(A) to K contains each 
irreducible representation with only finite multiplicity. Since admissibility is 
preserved under parabolic induction, it is enough to show that the represen- 
tation of Lo(A)  on (4.1) is admissible. To this end, we may assume that 
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L - Go = G .  The assertion is then a consequence of Langlands' theory of 0 - 
Eisenstein series [12, Chapter 71. For one of the main results of [12] is a de- 
composition 

where x ranges over the data in Sf such that l l Y m ( ~ ) l l  equals t , and each 
corresponding summand is an admissible G(A)-module. On the other hand, the 
set of all x whose associated cuspidal representations contain the restrictions 
of a given K-type have discrete infinitesimal characters. That is, the associated 
points { v }  form a discrete subset of B + /a; , with B a compact ball about 

the origin in a',, . It follows that there are only finitely many modules LiiSc,/ 
in the direct sum above which contain a given K-type. The lemma follows. 

The representation p Q ( A )  of G ( A )  does not in general extend to the 

group generated by G(A) . However, suppose that s is an element in W: with 
representative w  in G(F)  . We can always translate functions on GO(A) on the 
right by elements in G(A) if at the same time we translate on the left by w '  . 
Therefore, if y belongs to G (A) , we can define a linear map p Q  As, A ,  y ) 
from the underlying Hilbert space of p Q  ,[ (A) to that of pSQ ,$A) such that 

for any points y ,  and y2 in G'(A) . This map depends only on the image of s 
in w/wÂ¡ In particular, it is well defined for any element in w G ( a L )  , the 

normalizer of a ,  in W: . Suppose that s is an element in w G ( a L )  which 
fixes A .  If f is a function in Z ( G ( A ) )  , we write 

is an operator of trace class on the underlying Hilbert space of p Q t ( A )  . Ac- 
cording to (4.2), its trace is an invariant distribution, which by Lemma 4.1 can 
be written as a finite linear combination of irreducible characters 

Observe that each such irreducible character is determined in the expression 
only up to the orbit of n under the group 5.  As in $1, we write 
{llUnil(G(A) , t)} for the set of such orbits in nunit (G(A) ' , t) . 

Consider the expression 
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where Qo stands for any element in ^ { L ~ )  and s is summed over the Weyl 
set 

G 
G ( a L o ) r e g  = { S  e W ( a , , ) :  det(s - # O}. 

Lo 

This is just the "discrete part" of the formula for 

provided by Theorem 8.2 of [ 1  ( e ) ] .  (For the case G # Go , see the final lecture 
of [7].)  According to the remarks above, we can rewrite (4.3) as 

a finite linear combination of characters. The complex valued function 

which is defined by the equality of (4.3) and (4.4), is the primary global datum 
for the spectral side. 

It is convenient to work with a manageable subset of { I I n i t ( G ( f t ) '  , t ) }  which 
G contains the support of ad i sc (n ) .  Let IIdisc(G, t )  denote the subset of 

%-orbits in { I IUn , (G( f t ) '  , t ) }  which are represented by irreducible constituents 
of induced representations 

where a, satisfies the following two conditions. 

(4 "d'-(4 # 0 ' 
( i )  There is an element s e wG(a.,),,, such that so, = a,. 

Observe that the restriction to G O ( f t )  of any representation in IIdisc(G, t )  is 
an irreducible constituent of an induced representation 

From the last lemma we obtain 

Lemma 4.2. Suppose that Y is a finite subset of I I ( K ) .  Then there are only 
finitely many ( orbits o f )  representations n e Qsc(G,  t )  whose restrictions to 
K contain an element in Y. In particular, there are only finitely many orbits 
n e { I I ( G ( A ) ' ,  t ) }  which contain an element in Y and such that aÂ¡-(' # 
0 .  

Before going on, we note the following lemma for future reference. 
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Lemma 4.3. Suppose that < is a one dimensional character on G + ( A )  which 
is trivia! on G ( F )  . Then 

Proof. If the character < belongs to , the assertion of the lemma is of course 
pan  of the definition of a : .  In general, observe that we can use $ to define a 
linear operator p Q  (t) on the underlying Hilbert spaces of the representations 

PQO > l  
( 0 ) .  It has the property that 

1 
~ ~ f l - ' ~ ~ ~ ~ ~ ~ ~ ( 0 ) ~ ~ ~ , ~ ( ~ ~ 0 ~  f )pQ0(<) = M Q o l s Q O ( 0 ) ~ Q o , t ( s ~  0 .  t f l )  9 

where 
(Wx) = < ( x ) f  ( x )  9 

x G ( ^ .  

Therefore, (4.3) remains unchanged if f is replaced by <f . The lemma fol- 
lows. a 

The remaining global ingredient is a function constructed from the global 
normalizing factors [l(e),$6]. We shall recall briefly how it is defined. Suppose 
that M E 9 and that n = n,, belongs to n d i S c ( M ,  t )  . The restriction of 
n to M O ( A )  is an irreducible constituent of some representation 

If P P ( M )  , we can form the induced representation 

Its restriction to G O ( A )  is a subrepresentation of p Q  ( A )  , where Qo is the 

group P0(R0)  in ~ O ( L ~ )  which is contained ir. Po and whose intersection 
with M 0  is Ro . If P' 6 9 ( M )  and Q; = ( P ' ) ~ ( R ~ )  , the operator 

defined as an infinite product of unnormalized intertwining operators, is there- 
fore equivalent to the restriction of MQ#(A)  to an invariant subspace. The 
theory of Eisenstein series tells us that the infinite product converges for certain 
A ,  and can be analytically continued to an operator valued function which is 
unitary when A e ia*, . But we also have the normalized intertwining operator 

v v 

described in [ l  (i)]. The infinite product reduces to a finite product at any smooth 
vector. It follows that the infinite product 



THE INVARIANT TRACE FORMULA. 11. GLOBAL THEORY 519 

of local normalizing factors converges for certain A and can be continued as a 
meromorphic function which is analytic for A e ia*, . Moreover, 

if P" is a third element in ^{M) . 
For a fixed P' e 9 ( M ) ,  we define the ( G ,  M)-family 

for each v [1 (i),$2], we have 

where r (n , z )  equals an infinite product 

which converges in some half-plane. Therefore, the ( G ,  M)-family is of the 
special son considered in $7 of [l(e)].  In particular, if L E 2'{M) and Q E 

P ( L )  , the number 

can be expressed in terms of logarithmic derivatives 

and is independent of Q and P' [l(e), Proposition 7.51. As a function of 
A e in*,, it is a tempered distribution [1 (e), Lemma 8.41. 

For a given Levi subset M e 2, let I I (M , t) denote the disjoint union over 
M I  e L?M of the sets 

I I M ( M . t )  = { n  = nl  , ,: . n1 e I I h ( M i ,  t).A E ia"y/ia;}. 

We define a measure dn on I I ( M ,  t )  by setting 

for any suitable function 4 on W M ,  t) . The global constituent of the spectral 
side of the trace formula is the function 

(4.5) 
M M M 

a ( ~ ^ d i s ~ l ) r M l ( n l , A ) ~  

defined for any point 
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in II., ( M ,  t) . In our notation we should keep in mind that n l  is a represen- 

tation in I I u n l , ( ~ l ( ~ ) l )  (determined modulo Z A ) ,  so that {n ,  ,^} stands for 

the associated orbit of ia",/ia\, in I I U n ( M l  (A) n M(A)')  . In practice, how- 

ever, we shall usually identify n = \, with the induced representation ny]. 

in { I I u n t ( ~ ( A ) ' ) }  . In this sense, the invariant distribution 

studied in [l(j)] is defined. It will be the local constituent of the spectral side. 

Theorem 4.4. Suppose that f 6 Z ( G ( A ) ) .  Then 

where the integral and outer sum each converge absolutely. 

Proof. Set 

~ ~ ( f )  = E ~ ~ ( f ) .  
{ x â ‚ ¬  \\^m(u,)\\=t} 

We shall apply the formula for J (  f )  provided by Theorem 8.2 of [ l(e)]  (and 

the analogue in [7] for G # G O  ). Then J ( f )  equals the sum over M I  6 2, 

Lo 6 2""; , and s e w"' ( a L ) ,  of the product of 

Here, Qo is an element in @ ( L ~ ) ,  and the operator 

for PI 6 (̂M,) and u ia*/ . As above, Ro is a fixed parabolic subgroup 

of M h i t h  Levi component L o .  We can assume that Qo = P ( R ~ )  for some 
fixed element P in ^(M,). 

The trace of the operator 

M I  (A]  Q o ) M Q o W o ( 0 ) ~ Q o , ~ ( ~ ~ ~ ~  f )  

vanishes except on an invariant subspace on which the representation p Q  ( A )  
reduces to a sum of induced representations 
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(Actually, p Q  ,[(A) is only a representation of G O  (A) , so we really mean the 
restriction of 4, ( z ,  ,^) to this group.) With this interpretation, the intertwining 
operator Mpo,^o)lQo(A) corresponds to a direct sum of operators 

Therefore, 4 (A, Qo) corresponds to a direct sum of operators 

This last expression is obtained from a product of ( G ,  M)-families. By Corol- 
lary 6.5 of [1 (c)] it equals 

We now apply the definition of a:. Given the observations above, we use 
the equality of (4.3) and (4.4) (with G replaced by M I  ) to rewrite Jr (f) as the 

sum over M I  2 and M e 2 ( M l )  of the product of 1 1 1 wZ1-l with 

Observe that GI ( z l  ,^) depends only on the projection A of A onto i a b  / i aL  . 
Moreover, by the definition in [1 (i),$7], we have 

/ tr(sM(zl , A t f i  " ) 4 ( " l  ,A+f i l  f ) )  d~ 
/a; 

if P is any element in SÂ¡[M) (Since A stands for a coset of ia; in iaL1 , 

it is understood that z r A  is a representation in I ~ ( M ( A ) ~ ) .  This justifies 
the notation of the last line.) Decomposing the original integral over A into a 
double integral of ( A ,  p )  in 

we obtain 

a ( z )  J J ~ ,  f )  d z  
M E P  MI E P , ~  
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The convergence of the integral and the justification for our use of Fubini's 
theorem follow from the fact that /'Ã ( z ,  ,,) is tempered. 

Set 

I , ( f )  = E qf ) .  
{Â¥/.^ \\^m(v,}\\=l} 

Since the invariant x expansion converges absolutely to I (  f )  , we have 

the series converging absolutely. From the definition of I (  f )  , we obtain 

Assume inductively that 

for any L  E To and any g E ( L ( A ) )  . Combined with the formula above for 
J ( f )  , this tells us that I  ( f )  equals 

It follows that 

The theorem follows immediately from (4.6) and (4.7) . a 

The definitions in this paragraph have obvious analogues if the real number t 
is replaced by a fixed datum x E Sf.  In particular, if ~ ~ Y m ( v x ) l l  = t  , we have 
a subrepresentation p y x  ( A )  of p Q  , ( A )  . As in earlier papers, we shall some- 

times write && for the space of K-finite vectors in the underlying Hilbert 

space of p y x  ( A )  . Then for any s  W: and f  E Z ( G ( A ) )  , pQo ,x ( s  , A ,  f  I )  

is a map from J^ ,^ to ŷ  ,^, . The definitions also provide functions az:c,x 
M and a  on respective subsets 

and 

n ( M , x )  c n ( M , t ) ,  M  â‚¬2 
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The proof of Theorem 4.4 yields 

Corollary 4.5. Suppose that f E E ( G ( A ) )  and y E S" . Then 

For any element L E 3, the corollary provides an expansion for I: in 
terms of the distributions 

But our original induction assumption of $1 implies that the distributions 
I^, ( T T  ,0 )  are supported on characters. This is a consequence of Theorem 6.1 

of [1 (j)]. Therefore, the distributions I are also supported on characters. We 
have thus shown that the entire second induction assumption, adopted in $2, is 
subsumed in the original one. 

5. COMPLETION OF THE INDUCTION ARGUMENT 

We shall now show that all the distributions which occur in the invariant 
trace formula are supported on characters. These are local objects, so we shall 
not start off with the number field F that has been fixed up until now. Rather, 
we take a local field F, of characteristic 0, and a connected component G ,  of 
a reductive group over F, , in which GI  ( F , )  # 0 .  As usual, we shall assume 
either that G I  = G: , or that GI  is an inner twist of a component 

Theorem 5.1. For any G J F ,  as above, and any Levi subset M I  of GI  ( with 
respect to F , )  , the distributions 

are supported on characters. 

Proof. Fix a positive integer N, , and assume that the theorem is valid for any 
G , / F ,  with dimF ( G I )  < N ,  . Having made this induction assumption, we fix 
G I  and F, such that dimFl ( G I )  = N ,  . If L ,  % M I ) ,  the distributions 

12 ( y , )  are by hypothesis supported on characters. This matches the induction 
assumption of $2 of [ l( j)]  that allowed us to define I Ã  ( y , )  in the first place. 

Let f ,  be a fixed function in ^{GI ( F , ) )  such that 

fl ,GI = 0.  
We must show that the distributions all vanish on f ,  . It is convenient to fix 
M, and to make a second induction assumption that 

for any L ,  E 2 ( M l )  with L ,  # M I  . We must then show that IMl ( y , ,  f , )  
vanishes for each y ,  E M I  ( F , )  . 
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If y ,  is an arbitrary point in M I  (F,) , we can write 

= lim I M  (ay, , f, ) , 
a+ I 

by (5.1) and [1 ( j ) ,  (2.2)]. Since a stands for a small regular point in A M  (F,) , 
we may assume without loss of generality that G I 1  = MI , y l  . But now we can 
apply [1 (j) , (2.3)] . This formula asserts that the function 

coincides with the orbital integral of a function on M I  (F,) , for all points y 
whose semisimple part is close to that of y,  . It is known that the orbital 
integral of a function on M , ( F l )  is completely determined by its values at 
regular semisimple points. For p-adic Fl , this is Theorem 10 of [9(c)]. If 
F, is Archimedean, the result is due also to Harish-Chandra. The proof, which 
was never actually published, uses the Archimedean analogues of the techniques 
of [9(c)]. In any case, it follows that if I M  (y  ,/,) vanishes whenever 7 is 
GI-regular, it vanishes for all y l  . We may therefore assume that y ,  itself is 
GI-regular. We can also assume that 7, is an Fl-elliptic point in MI (F,) . For 
y l  would otherwise belong to a proper Levi subset M of M I  defined over F, , 
and we would be able to write 

by the descent property [ l( j)  , Corollary 8.31. Since ~ G ( M , ,  L) = 0 unless 
L is properly contained in G , the expression vanishes by our first induction 
assumption. Thus, it remains for us to show that I M  ( y ,  , f,) vanishes when y ,  
is a fixed point in M I  (F,) which is GI-regular and Fl-elliptic. For this basic 
case we shall use the global argument introduced by Kazhdan (see [8] and [lo]). 

Suppose that G is a component of a reductive group over some number field 
F ,  with G ( F )  # 0 ,  such that Fh Â¥ Fl and G,,] = GI for a valuation v ,  of 
F . Then 

dimJG) = dimF1 (GI )  = N ,  . 

It follows from Corollary 9.3 of [1 (j)] and our induction assumption on N,  
that for any 5 ,  the distributions 

are all supported on characters. Therefore, G I F  satisfies the conditions of 5 1 , 
and we can apply the results of $53 and 4 .  

Lemma 5.2. Suppose that 

f = T\f, & Z ( G ( F " ) )  9 

v 

is a function in Z ( G ( A ) )  such that f ,  = f, . Then I ( / )  = 0 



THE INVARIANT TRACE FORMULA. 11. GLOBAL THEORY 

Proof. Consider the spectral expansion 

of Theorem 4.4. We shall show that the distributions 

which occur on the right, vanish. In doing this, we will make essential use of 
the fact that n is unitary. 

It is clearly enough to establish the vanishing of the Fourier transform 

I f )  = / \(nAjf)e -A(2) d A ,  

where, for a large finite set S of valuations, 2 belongs to the vector space of 
. elements in eves u M  , v  whose components sum to 0 .  The integral is over the 

imaginary dual vector space. According to the splitting formula [1 (j) , Propo- 
sition 9.41, we can write I&, 2, f )  as a finite sum of products, over v S , 
of distributions on the spaces A?(L(Fv)) , L ^f(M) . But if L ? S o ( M )  , our 
induction hypothesis, combined with Theorem 6.1 of [1 (j)], tells us that the 
distributions 

are well defined. They must then vanish, since fl  ,, = 0 .  It is therefore enough 
to show that the distributions 

vanish. ( Recall that by an abuse of notation, we denoted these distributions 
by Î [n, , XI , f l  , G )  in the splitting formula. ) 

The formula [1 (j) , (3.2)] gives an expansion for I&, , XI , f,) in terms of 
the distributions associated to standard representations p Â£(M(Fv) . Only 
those p with A(p , n1)  # 0 can occur in the expansion (see [1 (i) , $55-61). 
Since n, is unitary, this implies that p has a unitary central character. It is 
sufficient to establish that for any such p and any point A u L c  with a small 
real part, the distributions 

all vanish. Since its central character is unitary, p must either be tempered or 
be induced from a proper parabolic subset of M . If p is tempered, 

f l , G ( ~ : , h ~ ( x ~ ) ) .  i f L =  G ,  
0 ,  otherwise, 

by Lemma 3.1 of [1 (j)]. But f, ,G = 0 ,  so the distribution vanishes even if 
L = G . In the other case, 
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and we can make use of the descent property [1 (j) , Corollary 8.51. We obtain 
an expression for a Fourier transform of (5.2) in terms of the distributions 

~ P , , . ~ W ~ , M ~ ~ .  M 2 ~ . 2 0 ( A f 1 1 ~ f 1 ~ ~ . , , 1 , v 1 .  

Since M2 # G , the distributions are well defined, and therefore vanish. Thus, 
the distribution (5.2) vanishes in all cases. In other words, the spectral expan- 
sion reduces to 0 ,  and I (f) vanishes. 

We must decide how to choose G , F and v ,  in order to prove the theorem. 
Our original element y,  in M I  (F,) belongs to a unique "maximal torus" 

in M I  . By definition, TI is the connected centralizer GI , .  of y ,  in G" 

It is a torus in M: which is Fl-anisotropic modulo A.,, . Let E l  D F,  be a 
finite Galois extension over which GI and TI split. Choose any number field 
E ,  with a valuation w, , such that E E El . The Galois group, Gal(E,/F,)  , 
can be identified with the decomposition group of E at w, , and therefore acts 
on E . Let F be the fixed field in E of this group, and let v, be a valuation 
of F which wl  divides. Then F, = F,, and Gal(Â£',/^ = Gal(E/F) . We 
can therefore use GI to twist the appropriate Chevalley group and "maximal 
torus" over F . We obtain a component G and "maximal torus" T defined 
over F , with G(F)  and T ( F )  not empty, such that GI = G v  and TI = TVl . 
Moreover, the construction is such that MI = M I  and a,,, = aM , where M 
is a Levi subset of G which contains T and is defined over F . It follows that 

But the set T ( F )  is dense in T(F, ,[) .  We can therefore approximate our 
G-regular point y ,  by elements y E T ( F )  . Since I,,,(y,, f , )  is continuous in 
(regular) y ,  , we have only to show that I M ( y ,  f , )  = 0 for any fixed G-regular 
element y in T ( F )  . We can use the trace formula to do this. 

We shall choose a suitable function 

in Z ( G ( A ) ) ,  and apply Lemma 5.2. Observe first that T is FV-anisotropic 
modulo A M .  This means that T is contained in no proper Levi subset of 
M (relative to FV ). We can always replace F by a finite extension in which 
v, splits completely. We may therefore assume that T is also F,,-anisotropic 
modulo A,. , where v, is another valuation of F .  Let V = {v, , v 2 ,  . . . , vk} 
be a large finite set of valuations of F which contains v, and v2, and outside 
of which G and T are unramified. At v = v ,  , we have already been given 
our function f v  = f, . If v is any of the other valuations in V , let fv be any 
function which is supported on a very small open neighborhood of y in G(F,,) , 
and such that 
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If v lies outside of V , let /, equal the characteristic function of K: . Then 
f = nv /, certainly belongs to Z ( G ( A ) ) .  It follows from Lemma 5.2 and 
Theorem 3.3 that 

Since V = V( f )  , the shrinking of the functions / ,  , . . . , A ,  around y does 
not increase V(f) . Nor does it increase the support of f .  It follows that in 
(5.3), the set 5 may be chosen to be independent of f ,  and the sums over 8 
can be taken over finite sets which are also independent of f .  

Suppose that L 2' and 8 (L(F))L,s . We apply the splitting formula 
[1 (j), Corollary 9.21 to IL(8 ,  f )  . If L c L ,  5 G , we have 

by assumption. It follows that 

v#n 

Now the function f y  is supported on the Fv-anisotropic set in M(Fv2)  . This 
means that / y  ,L = 0 unless L contains a conjugate of M . On the other hand, 
if L contains a conjugate 

of M , we can write 

by [ I  (j), (2.4 * )I. If M is properly contained in w ' LW , this vanishes by 
(5.1). Thus, the contribution of L to (5.3) vanishes unless L is conjugate 
to M . Since the contributions from different conjugates of M are equal, we 
obtain 

Once again, 8 can be summed over a finite set which is independent of how 
we shrink f .  

The orbital integrals 

vanish unless 8 is close to the ~ ~ ( F , , , ) - o r b i t  of y . In particular, the sum 
in (5.4) need only be taken over elements 8 which are regular semisimple. 
Consequently, 
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by Theorem 8.2 of [1 (g)]. Moreover, the ( M ,  5')-equivalence classes of regular 
semisimple elements in M ( F )  are just MO(F)-orbits. It follows that 

where 8 is summed over those MO(F)-orbits in M ( F )  which are G O ( F  ) -  

conjugate to y for 2 < j < k , and which meet K ,  for v outside of V , and 
where 

We must show that every such 8 is also ~~(F , , , ) - con juga te  to y . As in [lo, 
Appendix], we use an argument from Galois cohomology. 

For the first time in this paper we shall explicitly invoke our limiting hypoth- 
esis on G . If G is an inner twist of the component 

then any two elements in G(F)  which are in the same GO-orbit are actually 
in the same GO(F)-orbit. There is nothing further to prove in this case. We 
can assume therefore that G = G o .  Then T is a maximal torus (in the usual 
sense) in G . The set of G(FV)-conjugacy classes in G ( F )  which are contained 
in the G-conjugacy class of y is known to be in bijective correspondence with 
a subset of 

H'{FV, T )  = H'{G~~(F/F,,), T ( F ) ) .  

A similar assertion holds for G(F)-conjugacy classes. Let E/F be a finite 
Galois extension which is unramified outside V ,  and over which T splits. 
Then H' (FV, T )  equals H' (Gal(Ew/FV),  T ( E ) )  , and Tate-Nakayama theory 
provides an isomorphism between this group and 
(5.6) 
{Av X*(T) : NormEwlF, ( A v )  = o}/{A" - idv : A" E X* ( T )  . i; Gal(Ew/FV)} , 

and an isomorphism between 

and 
(5.7) 

{Av â X,(T): ~ o r m ~ ~ ~ ( A " )  = 0}/{iC' - â:̂ E X _ ( T ) .  a Gal(E/F)}. 

Here w stands for a fixed valuation on E which lies above a given v . More- 
over, there is an exact sequence 
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The first map is compatible with the embedding of G(F)-conjugacy classes into 
nv G ( F )  , and the second arrow is given by the natural map 

from the direct sum of modules (5.6) into (5.7). Now, consider the conjugacy 
class of y . Any 8 which occurs in the sum (5.5) maps to an element eV AV 
such that Ev 2 = 0 .  If v is one of the valuations v., , . . . , v, , 8 is G(Fv)- 
conjugate to y , so that / I  = 0 .  If v lies outside V ,  8 is ~ " ( ~ ~ ) - c o n j u ~ a t e  
to an element in K: . Since ( G ,  T) is unramified at v , we again have 2" = 0 
[11 (a), Proposition 7.11. It follows that 2 = 0 .  In other words, 8 is G(Fv,)-  
conjugate to y , as we wanted to prove. 

We are now done. For if 8 is an element in M ( F )  which is G"(F,,)- 
0 conjugate to y , we have 8 = y 1  yy , for some element y M ( F v ) K v  which 

normalizes M" . It follows from [l( j) ,  (2.4 * )] that 

But for any 8 which occurs in the sum (5.5), the constant c(8) is strictly 
positive. It follows from (5.5) that 

As we noted earlier, this implies that 

for our original point y l  M l  (F,) . Theorem 5.1 is proved. 0 

Corollary 5.3. Suppose that G I F  is as in 5 1. Then for any S and any M E L? , 
the distributions 

I'..(Y) 1 Y M(FS)J  

are supported on characters. 

Proof. The corollary follows immediately from the theorem and Corollary 9.3 
of [l(J)l. 

Corollary 5.3 justifies the primary induction assumption of 51. In particular, 
the distributions which occur in the invariant trace formula are all supported 
on characters. We have at last finished the extended induction argument, begun 
originally in [1 (j)]. 

It is not known that the spectral expansion for I(f) provided by Theorem 
4.4 converges as a multiple integral over t , M and n . The main obstruction 
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is the trace class problem. This is essentially the question of showing that the 
operators 

) p Q , , ( ~ . f l j  Q e y o j f  e y { ~ ( ~ ) ) .  
120 

are of trace class. We shall instead prove an estimate for the rate of convergence 
of the /-expansion. The estimate is an extension of some of the arguments used 
in the derivation of the trace formula. Although rather weak, it seems to be a 
natural tool for those applications which entail a comparison of trace formulas. 

The estimate will be stated in terms of multipliers. Recall [1 (d)] that multipli- 
ers are associated to elements in ^ ( f ) )  , the convolution algebra of compactly 
supported W-invariant distributions on f) . For a E 8(fj)"' and f E Z ( G ( A ) )  , 
f is the new function in .^(G(A)) such that 

Similarly, for any function 4) E J^(G(A)),  there is another function 4 )  
Y ( G ( A ) )  such that 

(As in 51 1 of [1 (i)], we shall sometimes regard 4) as a function on qemp(G(A))  
instead of the product IItemp(G(A)) x aG . Then two interpretations are of course 
related by the Fourier transform 

on ia> .) Suppose that a belongs to the subalgebra CCm(f))" . Then we have 

where 
a G ( n , Z )  = 6(vn +A)e / - " ' ) d ~ ,  Z e a G .  

;a; 

Formula (6.1) is useful because it makes sense even if belongs to the larger 
space J^ (G(A))  . For if X remains within a compact set, the function 

is supported on a fixed compact set. It follows that 4) -  ̂4 )  extends to an action 
of CCm(f))" on XC(G(A))  such that (6.1) holds. Similarly, f + f extends 
to an action of CCm(f)) " on q c ( G ( A ) )  . Recall that if f q G ( A ) )  and 
X E aG , f x  is the restriction of f to 

and 
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Then we have 

(6.2) n(fax) = ~ ( ( f ~ ) ~ )  = 1 n ( f Z ) a G ( ~ ,  x - 2) d z .  
a G 

Setting X = 0 ,  we obtain the formula 

for the restriction fi of fa to G(A) '  . 
We do not want f to be an arbitrary function in q c ( G ( A ) )  . We must insist 

in some mild support and growth conditions on the functions f z  as Z gets 
large, Fix a height function 

on G(A) as in $52 and 3 of [1 (d)]. We shall say that a function f E q c ( G ( A ) )  
is moderate if there are positive constants c and d such that f is supported 
on 

{X ' G ( A ) '  log l l x l l  5 c(l lHG(x)ll  + '11 
and such that 

for any left invariant differential operator A on G(Fm) . In a similar fashion, 
one can define the notion of a moderate function in Yac(G(A)). (We shall recall 
the precise definition in the appendix.) 

It is not hard to show that the map f + fG sends moderate functions in 
qc (G(A)) to moderate functions in Xc (G(A)) . Conversely, we have 

Lemma 6.1. Suppose that r is ajinite subset of I I ( K )  and that 4 is a moderate 
function in Yac(G(A)),-. Then there is a moderate function f E qC(G(A)) , -  such 
that fG = 4 .  

This lemma can be regarded as a variant of the trace Paley-Wiener theorem. 
We shall postpone its proof until the appendix. 

We shall write C; ( f j  ) , as usual, for the set of functions in C: ( 9 )  which 
are supported on the ball of radius N  . 
Lemma 6.2. Suppose that f is a moderate function in T c ( G ( A ) )  . Then there 
is a constant c such that for any a E C r ( 9 )  w ,  with N  > 0 ,  the function fo is 
supported on 

{X G(A):  1 0 g ~ ~ x ~ ~  5 c ( ~ ~ H G ( x ) ~ ~  + N +  

Proof. We can use the direct product decomposition G(A) = G(A)' x A G I m  

to identify each of the restricted functions f x ,  X E aG , with a function in 
z(G(A) ' )  . The lemma then follows from Proposition 3.1 of [1 (d)] and the 
appropriate variant of (6.2). 
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We are now ready to state our convergence estimate. Fix a finite subset l- of 
H(K)  . If Lo E 2' and x E 2 ( G ,  F) , a variant of the definition of $4 provides 
a set IIdisc(Lo, x) of irreducible representations of L ~ ( A ) '  . Let IIdisc(Lo, x),- 
be the subset of representations in Hdisc(Lo, x) which contain representations 
in the restriction of l- to K n Lo(A) . 
Lemma 6.3. Suppose that 4 is a moderate function in xc (G(A)) , - .  Then there 
are constants C and k such that for any subset of 2 ( G ,  F) and any 

a E C F  (4 ) , with N > 0, the expression 

is bounded by the supremum over x E q ,  Lo E pO, A E iaLo and 0 E 

n d i s c ( L O 1 ~ ) r  of 
~ e ~ ~ l & ( v ~  + All. 

Proof. By Lemma 6.1 there is a moderate function f in TC(G(A)Ir  such that 
fG = 4 .  Then 

for ,y E 2 and a E C F ( ~ ) ~ .  By Lemma 6.2, the function fl is supported 
on a set 

{X E G(A) ' :  i ~ g ~ ~ x ~ ~  5 ~ ( i  + N)}, 

where the constant c depends only on f . We are first going to estimate the sum 
1 Jx ( fa) 1 of noninvariant distributions. We shall appeal to two results 

0 
(Proposition 2.2 and Lemma A. 1 )  of [1 (d)] which apply to the case that G = G . 
The results for general G ,  which require slightly different notation, can be 
extracted from [7]. We shall simply quote them. 

Fix a minimal parabolic subgroup Qo E 9'O(M0) for GO . Proposition 2.2 of 
[ l (d ) ]  applies to the distribution J:( fo) , where T is a point in a. such that 
the function 

dQo(T) = min {a (T)}  
oCAu0 

is suitably large. The assertion is that there is a constant 

and if fa is as above, then J:( fa) equals an expression 

Co such that if 

Here, 
T 

y ~ , x ( A j  L) = lP '(~~)l- '  t r ( f l ~ l s Q , x ( s ~ ) p Q , x ( ~ ,  A ,  f;)), 
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G 2 where s is any element in Wo , pQ ,x ( s ,  A ,  f:) is the linear map from dQ ,x to 

$i,x discussed in $4, and Q & ~ , ~ ( S A )  is the linear map from J X ? ~ , ~  to &iSx 
such that for any pair of vectors q5 E &iSx and q5$ E $i,x , 

( EQ stands for the Eisenstein series associated to Q , and AT is the truncation 
operator.) Therefore, 

is bounded by 

where 1 1  I l l  denotes the trace class norm. 
Suppose that f is bi-invariant under an open compact subgroup KO of 

GO(&,) . According to Lemma A. 1 of [1 (d)], there are constants CKo and 
do such that 

is bounded by 

where Am is a certain left invariant differential operator on G ' ( F ~ ) '  and (.IKo 
denotes the restriction of a given operator to the space of KO-invariant vectors. 
In order to exploit this estimate, we note that 

is no greater than 
m - I  T 

IKo ~ Q Q l s Q , x ( ~ A ) K o l l l ~  l l ~ ~ , ~ ( ~ ~ ~ ~ ~ ~ f ~ ) l l  
It follows that (6.4) is bounded by the product of (6.5) with 

Now J:( fa) is a polynomial in T ,  and Jx( fa) is defined as its value at a 
fixed point To [1 (c) , $21. We can certainly interpolate Jx( fa) from the values 

of J;(fa) in which T satisfies (6.3) [ l ( d ) ,  Lemma 5.21. It follows that 
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there is a constant Ck0,  depending only on K O ,  such that the original sum 

xxEz lJx(fa)l is bounded by the product of (6.6) with cLO(l  + N ) ~ '  . 
Consider the expression (6.6). For a given Q , write 

where pQ ,x denotes the representation induced from the isotypical compo- 
nent of rs . Then 

Since 
Amf; = ( ~ ~ f ) : ,  

the formula (6.2') leads to an inequality 

The operator pQ , x  (s , A ,  x )  is unitary, and has norm equal to 1. obseme also 
that the function aG(oA,  2)  vanishes unless IlZIl < N . It follows that 

Since f is moderate, the intersection of its support with G(AIN is contained 
in a set 

{x E G(A): log llxll 5 c(N + I)},  

whose volume depends exponentially on N .  Moreover, the supremum of 
IA f (x) 1 on G(AIN is bounded by a function which also depends exponentially 
on N . It follows that 

for constants Co and ko which are independent of N . On the other hand, we 
can write 

G 
SUP ~ a ~ ( g ~ j ~ ) ~  5 1  I ~ ( U , , + A + P I I ~ P  

ZEnG in; 
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where 

CG = / ( 1  + llpl12)-dimnG 
i n ;  

d p .  

Combining these facts, we see that the expression (6.6) is bounded by the 
product of CGC0eknN with the supremum over x E , Q 3 Qo , A E iab 
and 0 E IIdisc (MQ , x ) ~  of 

( 1  + l l ~ l l ~ ) ~ ~ ~ ~ ~ l & ( v ~  + A ) l .  

We can now state an estimate for 

In order to remove the dependence on Qo , we shall replace the supremum over 
Q by one over Lo E 2'. Choose positive constants C; and k;  such that 

Then (6.7) is bounded by the supremum over x E , Lo E -Yo, A E iaLo 
and 0 E IIdisc(Lo,  x ) ~  of 

1 k ; N  
C l e  ( 1  + ~ ~ ~ ~ ~ ~ ) ~ ~ ~ ~ ~ ~ ~ ( v , ,  + A ) I .  

To remove the factors ( 1  + ~ ~ A ~ ~ ~ )  from the estimate, we require a simple 
lemma. 

Lemma 6.4. For any integer m 2 1 we can choose a bi-invariant diferential 
operator z on G ( F w ) ,  and multipliers a l  E ~ ~ ~ ( b ) ~  and a2  E ~ ~ ~ ( b ) ~  such 
that f = ( z  f Ia1  + f a 2 ,  for any function f E q C ( G ( A ) ) .  

Proof, This follows from a standard argument, which was first applied to the 
trace formula by Duflo and Labesse (see for example [ 1  (a), Lemma 4.11.) 
For any m , one obtains a W-invariant differential operator C with constant 
coefficients on , and functions a l  E CCm ( b )  and a 2  E CCw ( b )  , such that 
<al + a2 is the Dirac measure at the origin in b . Let z be the inverse image 
of [ under the Harish-Chandra map. Then 

f = 4ca,+a2) = ( z f  + fa> 

as required. 

Returning to the proof of Lemma 6.3, we apply Lemma 6.4, with m large, 
to our moderate function f . We see that (6.7) is bounded by 
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Since the function z f is also moderate, we can apply the estimate we have 
obtained to each of these sums. Notice that 

2 dimac; 
sup ( ( 1  + IIAII I ( @ ,  * @lV, + All) 

LLO ,A .a 

But the real parts of the points u lie in a fixed bounded set, and the functions 
6, decrease rapidly on cylinders (in a sense that depends on m ). Therefore 

It follows that there are positive constants Cl and kl  such that (6.7) is bounded 
by 

c,eklN sup sup (I&(u, + A ) l ) .  
~â‚¬ LO ,A ,a 

We must convert this into an estimate for 

Suppose that M e g. It follows from Corollary 12.3 of [ 1  (i)] that the function 
tf)J f )  in a ( M ( A ) )  is also moderate. Since 

we can apply the lemma inductively to t f ) M (  fa)  . We obtain constants CM and 
k,,, , depending only on f ,  such that 

is bounded bv 

The required estimate for (6.8) then follows from the estimate for (6.7) and the 

Mâ‚¬ 

We shall restate the lemma in a simple form that is convenient for applica- 
tions. Let (5: denote the set of elements u in (5L/ia> such that P = su for 
some element s e W of order 2 .  Here P stands for the conjugation of b p  
relative to ( 5  . As is well known, the infinitesimal character u of any unitary 
representation n E I l u n i , ( ~ O ( ~ ) ' )  belongs to (5;. Observe that if r and T are 
nonnegative real numbers, the set 
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is invariant under W . (An element v (5 * is only a coset of ia*_ in f) , but 
v \ \  is understood to be the minimum value of the norm on the coset.) Let ( 5 '  
be the orthogonal complement of aG in (5 . Then (5; can be identified with a 
subset of the complex dual space of (5 ' . 
Corollary 6.5. Choose any function f e ^,-(G(A)) . Then there are positive 
constants C ,  k and r such that 

forany T>O andany a < = C a 1 ) ^ ,  with N > 0 .  

Proof. Lemma 6.3 is stated for multipliers in C; ( (5 )  ^ , but it is equally valid 
if a belongs to Cr((5  I ) ^ .  To see this, apply the lemma to the sequence 

in Cp((5) ̂  , where /3,, e ^(aG) approaches the Dirac measure at 1. The 
(upper) limits of each side of the resulting inequality give the analogous in- 
equality for a .  Notice that f: depends only on f , so that f can indeed be 
an arbitrary function in ^ (G(A))  . 

We shall apply this version of the lemma to the given a ,  with q5 = fG , and 
with 

= {x 2: l I Y m ( 5 )  > Tll}. 
Then 

D m =  EIWI- 
t>T xâ‚ 

Choose a finite subset F of H(K) such that q5 belongs to J?_(G(A)),- .  There 
is a positive number r such that if n is any representation in I I , ( G ' ( A ) )  
whose K-spectrum meets F ,  the point v belongs to 

If x , L o ,  A and o are elements in , .yo ,  ia; and IIdisc(Lo , x),-, as in 
the inequality of the lemma, the point v + A then belongs to (5y(r, T )  . The 
corollary follows. a 

Remark. Suppose that (5 is any vector subspace of (5 which contains f) . Then 
there will be an obvious variant of Corollary 6.5 for multipliers a E cab2)^ . 
For this, f must again be taken to be a moderate function in ^ (G(A))  . 

7. SIMPLER FORMS OF THE TRACE FORMULA 

The full trace formula is the identity 

y lw:l l̂ o'T1 y aM(s,Y)'M(YIfl 
ME^ ?E(M(F)),t, s 
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given by the two expansions for I( f )  in Theorems 3.3 and 4.4. In this section 
we shall investigate how the formula simplifies if conditions are imposed on 
f .  The conditions will be invariant, in the sense that they depend only on the 
image of f in Y ( G ( A ) )  . Equivalently, the conditions will depend only on the 
(invariant) orbital'integrals of f . 

We shall say that a function f E Z ( G ( A ) )  is cuspidal at a valuation vl if 
f is a finite sum of functions nv / , / E Z ( G ( F , , ) )  , such that 

This is implied by the vanishing of the orbital integral IG(yl, / )  , for any 
G-regular element y l  E G ( F )  which is not F-elliptic. 

Theorem 7.1. (a) If f is cuspidal at one place v,  , we have 

(b) If f is cuspidal at two places vl and v 2 ,  we have 

= o ,  M â ‚ ¬ P  

Part (a) will be a special case of the spectral expansion 

The main step is to show that if M E ,Sn, then 

But this is very similar to the proof of Lemma 5.2. Using the splitting formula 
[ l ( j ) ,  Proposition 9.41, we reduce the problem to showing that 

We then apply the expansion [ l ( j ) ,  (3.2)] into standard representations, and 
the descent formula [1 (j), Corollary 8.51. Since n l  is unitary, the required 
vanishing formula follows as in Lemma 5.2. In particular, the terms with M # 
G in the spectral expansion all vanish. Moreover, 
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since 
G 

z G ( n l ~ f ) = ' M 1 ( n l ~ f M l ) ' o ~  M i # G , n l e n u n i t ( M l ( ' ' ) ) '  

Part (a) follows. 
Suppose that f is also cuspical at a second place v2. Part (b) will be a 

special case of the geometric expansion 

The set S is large enough that it contains v, and v2, and so that f belongs 
to ^{G(Fs)). Write 

where Sl and S2 are disjoint sets of valuations with the closure property, which 
contain v,  and v2 respectively, and whose union is S .  From the splitting 
formula [ 1  (j), Proposition 9.11, we obtain 

The distributions on the right vanish unless L ,  = L2 = G . Moreover, d i  (G , G) 
= 0 unless M = G . It follows that if M # G , the distribution I./(y,  f )  equals 
0 ,  and the corresponding term in the geometric expansion vanishes. This gives 
(b). ' 
Corollary 7.2. Suppose that f is cuspidal at two places. Then 

For simplicity, we shall assume that G = G O  in the rest of $7. We shall also 
assume that f l 2?(G(A)) is such that 

With additional invariant restrictions on f we shall be able to simplify the 
trace formula further. 

Corollary 7.3. Suppose there is a place vl  such that 

whenever n, is a constituent of a (properly) induced representation 

Then 
'(f) = > t r ( ~ d i s c , t ( f ) )  1 

0 0  

where Rdisc ,, denotes the representation of G(A) on L ~ ,  (G(F)  A G  \ G(A)) . 
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Proof. If M belongs to the condition implies that 

so that /., = 0 .  Therefore f is cuspidal at v ,  . Applying part (a) of the 
theorem, we obtain 

in the notation of $4. Here, Q is any element in (̂M) . If M # G , 

t r ( M Q l s Q ( 0 ) ~ Q , , ( S ~ O ~ f ) )  

is a linear combination of characters of unitary induced representations. It 
vanishes by assumption. If M = G , 

by definition. The corollary follows. 0 

Corollary 7.4. Suppose there is a place vl  such that 

^ J f v l ) = O  

for any element y l  e G ( F V )  which is not semisimple and FV-elliptic. Suppose 
also that f is cuspidal at another place v2 . Then 

where {G (F) , ,}  denotes the set of G (F)-conjugacy classes of F-elliptic elements 
in G ( F ) ,  and G ( F ,  y)  and G(A, y)  denote the centralizers of 7 in G(F)  and 
G (A) . 

Proof. The conditions imply that f is cuspidal at v ,  and v2 . We can therefore 
apply the formula 

of the theorem. If an element y G(F)  is not F-elliptic, it is not FV-elliptic, 
and I&, f )  = 0 .  The corollary then follows from Theorem 8.2 of [1 (g)] and 
the definition of ZG (7, f )  . 

The conditions of Corollaries 7.3 and 7 .4  sometimes arise naturally. For 
example, if v, is discrete, Kottwitz [1 l(b)] has introduced a simple function 
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/ which satisfies the conditions of Corollary 7.4. Kottwitz also establishes a 
version of this corollary in [ l  1 (b)]. He imposes stronger conditions at v2 , but 
derives a formula without resorting to the invariant trace formula. 

For another example, take G = GL(n) . Suppose that f is cuspidal at v, . 
Any element y, l G ( F )  which is not F-elliptic belongs to a G(F)-conjugacy 
class 

8: , S , e M ( F v l ) , M e ^ ; .  

Therefore, the first condition of Corollary 7.4 is satisfied. Moreover, it is known 
that any induced unitary representation 

the condition of Corollary 7.3 also holds. Combining Corollaries 7.3 and 7.4, 
we obtain 

Corollary 7.5. Assume that G = GL(n) and that f is cuspidal at two places v, 
and v2 . Then 

The simple versions of the trace formula were obtained by placing rather 
severe restrictions on f .  In many applications, one will need to prove that 
certain terms vanish for less severely restricted functions. We can illustrate this 
with the example of GL(n) , begun in Â 10 of [1 (j)]. 

Adopt the notation of [1 (j),Â 101. Then 

is a given inner twist, and G' stands for the group GL(n) , embedded diagonally 
in (G*)' . Let us write 2" for the set of Levi subgroups of G' which contain 
the group of diagonal matrices. For each L 9 ,  we have the partition 

of n such that 
L E GL(n,)  x . . .  x GL(nr) .  
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Suppose that p ,  and p 2  are partitions of n . We shall write p l  5 p, , as in 
[1 (c), $ 141, if there are groups L l  c L2 in 2'' such that p = p (L,)  and 
P, = p(L2) - 

We shall assume that q(MO) is contained in a standard Levi subgroup of 
( G " )  , and that the restriction of q to A,,  is defined over F . Then the map 

is an injection of 2' into 2'. The image of this map is easy to describe. For 
as in [ l( j) ,  $101, we can assume that 

where E / F  is a cyclic extension of degree lp = 11,' , d is a divisor of n ,  
and D is a division algebra of degree d2  over F . The minimal group M' in 
the image corresponds to the partition p (d) = (d , . . . , d )  . The other groups in 
the image correspond to partitions (nl  , . . . , n )  such that d divides each nl . 
For each valuation v , we shall write d for the order of the invariant of the 
division algebra at v . Then d is the least common multiple of the integers dv . 

In [ l  (j), 5 101, we described the norm mapping y -+ y' from (orbits in) G(F)  
to (conjugacy classes in) G'(F) . It can be defined the same way for any element 
M E 2' . We also investigated certain functions on the local groups G ' (F~)  . Let 
f '  = nv f be a fixed function in ^{G'(A)) whose local constituents satisfy 
[ l( j) ,  (10.1)]. That is, the orbital integrals of f i vanish at the G-regular 
elements which are not local norms. 

Proposition 8.1. Suppose that L 2'' and that 8 L(F)  . Embed 8 in 
(L(F))L,s ,  where S n Sm is a large finite set of valuations. Then 

ZL(8,f1) = 0 ,  

unless L = M' and 8 = y ' ,  for elements M E 2' and y M ( F )  

Proof. In the orbital integral, 8 is to be considered as a point in L(Fs) . We 
must therefore regard f '  = rives f as an element in Z(G' (F~))  . Assume 
that IL(8,  f ') # 0 .  We must deduce that L = M' and S = y' . 

The first part of the proof is taken from p. 73 of [1 (c)]. Applying the splitting 
formula [ 1 (j) , Corollary 9.21 , we obtain 

where the sum is taken over collections { L  2 ' (L)  : v E S }  , and d({Lv}) is 
a constant which vanishes unless 
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By assumption, the left hand side of (8.1) is nonzero. Therefore, there is a 
collection {Lv} for which (8.2) holds, and such that {^ (8 ,  f , , )  # 0 for each 
v 5 .  This implies that 

Our first task is to show that p (d)  5 p (L) . Let p be any rational prime, 
and let pk  be the highest power of p which divides d . Since d is the least 
common multiple of {d,,} , there is a valuation v e S such that pk divides 
d . But the invariants of a central simple algebra sum to 0 , so there must be 

k a valuation w 5 ,  distinct from v , such that p also divides d . It follows 

that p{pk) < y[Lv) and p ( p k )  5 p ( L )  . Since a:' n a:'" = {O} , we can apply 

Lemma 14.1 of [1 (c)]. The result is that p (pk )  5 p (L) . In other words, the 
k integer p divides each of the numbers n ,  , . . . , n which make up the partition 

p(L) . The same is therefore true of the integer d , so that p(d) < p(L) . In 
other words, L = M' for an element M 9. 

The next step is to show that 8 belongs to the set 

Assume the contrary. Then there is a character Â£ e x ( M " ) ~  such that ^(6) is 
not a local norm at some place. Consequently, <(8) is not a global norm. It 
follows from global class field theory that ^(S) is not a local norm at two places 
v, and v, . We can assume that v ,  and v, both belong to 5 ,  and that the sets 
S, = S - {v,} and S2 = {v,} both have the closure property. (In other words, 
if S contains an Archimedean valuation, so does Sl .) Define 

Then by the splitting formula [1 (j), Proposition 9.11, we have 

It follows that there is a pair L ,  , L2 e {̂L} such that d , ( ~ ,  , L,) # 0 ,  and 

Now, by Lemma 10.1 of [l(j)], we can write 

^S) = w)w) J x(Ll)F  2 i2 x(L2)F'  

Suppose that <^,(8) is a global norm. Then it is everywhere a local norm, so 
that (^,(8) is not a local norm at v, . It follows without difficulty from the given 
property of f ',, that /^ (8 , f i L )  vanishes. This is a contradiction. On the 
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other hand, if ,̂(S) is not a global norm, it is not a local norm at two places 
in S .  At least one of these places must belong to S ,  . It follows easily that 
Î' (6,  f , , _  ) vanishes. This too is a contradiction. It follows that 8 belongs 

to the set M ' ( F ~ ) . ~  . 
The final step is to apply [ l( j) ,  Proposition 10.21. This vanishing result was 

stated only for local fields, but by the splitting formula it extends immediately to 
G1(FS) . Since M S .  f ') does not vanish, and since 8 belongs to M1(FS)'", 
the element 8 must belong to a smaller set 

(The set M'{F),,)~ was defined in the preamble to [ l( j) ,  Proposition 10.21.) 
Now, any element in M ( F ) ~  is the local norm of an element in M ( F )  [1 (j), 
Lemma 10.41. Since S is large, this implies that 8 is everywhere a local norm. 
One can then show that 8 is the global norm of an element in M ( F )  (see [2, 
Lemma 1.1.2). In other words, 8 = y , for some element y e M ( F )  . This 
completes the proof of the proposition. 

Proposition 8.2. Suppose that L l  c L are elements in 2" and that S 2 Sram 
is a large finite set of valuations. Then 

for any Y a, and any induced representation 

unless both L l  and L are the images of elements in 2' 

Proof. Suppose that I f i ,  Y ,  f )  # 0 .  Using the splitting formula [1 (j) , 
Proposition 9.41, we first argue as at the beginning of the proof of the last 
proposition. This establishes that L = M for some element M 2'. We 
then apply the local vanishing property [ l ( j )  , Proposition 10.31. This proves 
that L,  = M' for another M I  E 2'. 

Propositions 8.1 and 8.2 are the first steps toward comparing the trace for- 
mulas of G and G' . They assert that for functions f '  on G'(A) as above, 
the distributions vanish at data which do not come from G . The trace formula 
for G becomes 

It is considerably harder to compare the terms which remain with the corre- 
sponding terms for G . This problem will be one of the main topics of [2]. 
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We shall prove Lemma 6.1. The result can be extracted from the trace Paley- 
Wiener theorems [6(a), 6(b), 5 and 141 for real and p-adic groups. For implicit 
in these papers is the existence of a continuous section 4> + f from J ' ( G ( F  ))  

5 r  to Z(G(Fs))r . ,  in which the growth and support properties of f can be esti- 
mated in terms of those of 4 .  I am indebted to J. Bernstein for explaining this 
to me in the p-adic case. 

Suppose that S is any finite set of valuations of F with the closure property. 
The notion of a moderate function f e q c ( G ( F s ) )  can be characterized in 
terms of the behavior of the functions 

Indeed f will be moderate if and only if there are positive constants c and d 
such that for any N > 0 ,  and any b ^(aG , 

(i) f " belongs to -^., (G(Fs)) , the set of functions in Z ( G ( F s ) )  sup- 
ported on the ball of radius c ( N  + I ) ,  and 

(4 llf " 1 1  ^(b)dN . 
Here. 

where A is an arbitrary (but fixed) left invariant differential operator on 
G(Fsmm) , while 

for invariant differential operators D, , . . . , Dr on aG ,^ which depend only 
on A .  (If S consists of one discrete valuation, we take A and {D,} to be 
constants.) The reader can check that this definition is equivalent to the one in 
$6. Similarly, the notion of a moderate function 4> e ̂ , (G(FS)) can be defined 
in terms of the behavior of the functions 

More precisely, d> is said to be moderate if there are positive constants c and 
d such that for any N > 0 ,  and any b e C r ( a G  ,^) , 

(i) 4 >  belongs 10 < ( N + l )  (G(F')) and 
i i )  ~ f l l l '  g ( b ) d N .  

Recall [1 (i)] that (G(Fs)) is the set of y e Y(G(Fs) )  such that for 
every Levi subset ,Â = M of G over F , and every representation 
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the function 

is supported on the ball of radius c ( N  + 1 ) .  In the second condition, it is 
understood that 

where A' is an arbitrary invariant differential operator on aL ,snsw for some 
fixed ^f and a , while 8 ( b )  is a seminorm on C y  (aG ,^) of the form (A.2) 
which depends only on A ' .  

Lemma A.I. Suppose that Y is a finite subset of H ( K )  . Then there is a contin- 
uous linear map 

h :  J r ( G ( F S ) ) ^  -+ ̂ ( G ( F S ) ) ^  

with the following four properties. 

a )  h(4)G = 4 J 4 Y ( G ( F s ) ) r  ' 
(b) h ( ^ )  = h ( 4 I b ,  b E C,"(aG,,). 
(c) There is a positive constant c such that for each N > 0 ,  the image under 

h of Y N ( G ( F S ) ) ^  is contained in ^ ^ { G ( F S ) ) ^ .  
(d) There is a positive constant d such that 

where \ . I \ \  is an arbitrary seminorm of the form (A.  I ) ,  while \\ . 1 1 '  is a 
finite sum of seminorms (A.3) which depends only on 1 1  + 1 1  . 

Lemma 6.1 follows easily from Lemma A. I. Take S 3 Sram to be a large 
finite set of valuations of F , and let 4 be a moderate function in Yac(G(FS) ) , - .  
Let {b , }  be a smooth partition of unity for aG and set 

Then f obviously belongs to a G  (Fs))r  . We have 

Suppose that N > 0 and that b E ( ^ ( a G )  . Then 

The required support and growth properties of f then follow from conditions 
(c) and (d) of Lemma A. I .  
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The main point, then, is to establish Lemma A. 1. It is evident that we can 
treat the valuations in S separately. We shall therefore assume that S consists 
of one valuation v . To simplify the notation, we shall also assume that F itself 
is a local field (rather than a number field), so that F = F = Fn . 

Suppose first that F is non-Archimedean. In this case, the space a G y  is 
discrete, and the required condition (b) presents no problem. For if h satisfies 
all the conditions but this one, and if 

for elements X , Z a(, ,, , the map 

it, - y h 

will satisfy all the required conditions. It is therefore enough to construct a map 
h for which the conditions (a), (c), and (d) hold. 

The Bernstein center is a direct sum 

of components indexed by supercuspidal data y . Recall that a supercuspidal 
datum is a Weyl orbit 

where Lo is a Levi subgroup of Go and ro is an irreducible supercuspidal rep- 

resentation of L ~ ( F )  which is fixed by some element in W . The definition, 
in fact, is in precise analogy with that of a cuspidal automorphic datum, given 
in $4. We also recall that ^{G(F))  = 3 ' ( G 0 ( ~ ) )  is isomorphic to the algebra 
of finite Fourier series on the torus {ro : A E ia;" ,, } which are invariant under 
the stabilizer of the torus in Wo . Let 2?(F)r denote the finite set of data x 
such that ro contains a representation in the restriction of F to K n Lo(^) .  
Then (̂F),- is a finite set, and 

is a finitely generated algebra over C. Let z ,  = 1 , z,, . . . , z be a fixed fi- 
nite set of generators. There are actions <f) -  ̂zit, and f -+ z f of 2Â¡{G(F)) 
on ^{G(F)),- and F ( G ( F ) ) r ,  and the module Y ( G ( F ) ) r  is finitely gener- 
ated over Z ( G ( F ) ) , - .  Let <f), = 1 ,4,, . . . , 4>m be a generating set. Then any 
function (̂  J'[G(F)),- can be written as a finite sum 
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where { c i }  are complex numbers, and where 

for any n-tuple y = (y, , . . . , y )  of nonnegative integers. Assume that the 
functions 

x 4 7 ( ~  X )  ^ â ntemP(G(F))  X â 9 

are supported at X = 0 .  Then by the trace Paley-Wiener theorem, there are 
functions f, , . . . , f in ^[G(F)'),- such that ( fj)^ = 4 , .  We are going to 
define 

However, the expansion (A.4) for 4 is not unique. We must convince ourselves 
that it can be defined linearly in terms of 4 in a way which is sensitive to the 
growth and support properties of 4 .  

We can identify each 4 Y(G(F) ) , -  with a collection of functions 

ranges over a finite set of pairs which depends only on r .  Each 4 is a finite 
Fourier series which is symmetric under the stabilizer W of the orbit {o\} in 
^(a,,) . The size of the support of 4 is determined by the largest degree of a 
nonvanishing Fourier coefficient. Let \ 4' denote the largest absolute value of 
any of the Fourier coefficients. It is a continuous seminorm on Y(G(F) ) , -  of 
the form (A.3). 

Let us embed Y(G(F) ) , -  into the space / (G(F)) r  of collections 

of finite Fourier series which have no symmetry condition. Then /(G(F)),- is 
also a finite Z(G(F)),--module. By averaging each function over W , we obtain 
a Z(G(F))+ear  projection i// -  ̂y7 from Y(G(F)) ,-  onto Y(G(F)) , -  . We 
can assume that our generating set for Y(G(F)) ,-  is of the form 

where the functions y/, = 1 , fi, . . . , tym generate f{G(F)) ,- .  Now, for each 
0 = ( M ,  a)  , we fix a basis of the lattice aM , v  . This allows us to identify the 
corresponding functions with finite sums 
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runs over Z^ , and 

denotes the function on {gl} whose /?th Fourier coefficient is 1 and whose 
other Fourier coefficients vanish. The functions y and y , l  of course belong 
to y ( G ( F ) ) , - ,  so we can define finite expansions 

y =  E ( 8 / ) * ( z y  y,) , (w C . 
J 7 

Substituting these expressions into the /?th term of (A.6), and iterating \B\ = 
I / ? ,  I + Â Â + I &  1 times, we obtain an expansion 

which is now well defined. If pmax and ymax index the nonvanishing coefficients 
of greatest total degree in the expansions (A.6) and (A.7), one sees that 

and 
~"P( I< . . I )  5 ~ U P ( I ~ , , ~ I )  . d l h a x l  

for constants c and d which depend only on Y. Finally, observe that if yo 
equals an element 4 )  in J^G(F)),- , we can project each side of (A.7) onto 
Y ( G ( F ) ) , - .  We obtain a canonical expansion 

We have shown how to define the expansion (A.4) in a way that depends 
linearly on 4) .  Moreover, if 4) belongs to YÃ£(G(F)), and y indexes the 
nonvanishing coefficient of highest degree in (A.4), we have 

and 

for fixed constants c and d . We are thus free to define h(4)) by (A.5). It 
remains to check conditions (c) and (d) of Lemma A. I .  

Let KO be an open compact subgroup of G ( F )  which lies in the kernel of 
each of the representations in Y. Set go equal to the characteristic function of 
KO divided by the volume of K O .  Then go acts by convolution on Z ( G ( F ) ) , -  
as the identity. The algebra Z ( G ( F ) ) , -  acts on Z ( G ( F ) ) ,  so we can set 

These functions each belong to Z(G ' (F) ) ,  and they commute with each other 
under convolution. Consequently, for any y = ( y ,  , . . . , y )  , the function 
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g y  = gy '  * . . . * g7" is well defined and belongs to %'{GO(F)) . Since Z(G(F) ) , -  
acts as an algebra of multipliers on X ( G ( F ) ) , - ,  the function (A.5) can be writ- 
ten 

h(4)) = y y V ( g 7  * 6). 
j 7 

To estimate the support of h(4)), we use the inequalities 

and 
1 1 ~ ~  1 1  5 llxll IIY I 1  9 

both of which are easily established. It follows that h(4)) is supported on a set 

where cl is a constant which is independent of f .  The support condition (c) 
of the lemma then follows from (A.8). To establish the growth condition (d), 
we may assume that 1 1  1 1  is the supremum norm on Z ( G ( F ) )  . Then 

where 1 1  - 1 1 ,  is the Ll-norm. Condition (d) then follows from (A.8) and (A.9). 
This completes the proof for non-Archimedean F . 

Next, suppose that F is Archimedean. If G # G o ,  we must invoke our 
assumption that G is an inner twist of 

G = (GL(n) x . Â ¥  x GL(n)) xi 6 * ,  

in order to have the trace palei-wiener theorem (see [2, Lemma 1.7.11). We 
shall say no more about this case. For one can obtain Lemma A. 1 from the trace 
Paley-Wiener theorem by arguing as in the connected case below. We assume 
from now on that G = G o .  In this case the lemma is implicit in the work 
of Clozel-Delorme [6(a), 6(b)]. They construct a function f = h(4)) for every 
4 )  and they give an estimate for the support of f which is stronger than our 
required condition (c). Our main tasks, then, are to convince ourselves that the 
map 4) -  ̂h(4)) is well defined, and to check the growth conditions (d). We 
shall only sketch the argument. 

The analogy between real and p-adic groups becomes clearer if we describe 
the steps of Clozel-Delorme in a slightly different order from that presented 
in [6(a)]. Let %(G(F)'),- be the space of distributions on G(F)'  which are 
supported on K , and which transform under K according to representations in 
r . For a typical example, take p r , and let X be an element in f Y ( g  ( ~ 7 ) ' ) ~  , 
the centralizer of K in the universal enveloping algebra. Then the distribution 

belongs to ^(G(F)'),-.  Suppose that D is any element in s[^{G(F)'),-. 
Since it is a compactly supported distribution, it can be evaluated at a smooth 
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function from G(F)  to some vector space. In particular, one can evaluate D 
on the function n(x)  , for n I I (G(F))  , to obtain an operator z (D)  . Set 

Then DG is a scalar valued function on Iltemp(G (F) )  . Let us write AG (G (F)'),- 
for the space of complex valued functions 8 on I l tmP(G(F) )  which satisfy the 
following two conditions. 

(i) 8 (n )  = 0 ,  unless n contains a representation in r .  
(ii) For any Levi subgroup A 4  2, and any a e % ( M ( F ) ) ,  the func- 

tion 
G 

A + ^ ( % ) ,  A e a L I C ,  

is a polynomial which is invariant under a 'yC . 
It is easy to see that the map D + DG sends s',.(G(F) '1,- into AK (G(F) '1,- . 

One of the main steps in the proof of Clozel-Delorme can be interpreted as an 
assertion that the map is surjective. In fact, any function 8 e A,.,(G(F)~),- is the 
image of a finite sum of distributions X . This is obtained by combining the 

characterization of the action of 2 / ( 0 ( ~ ) ' ) ~  on a minimal K-type ([6(a), The- 
orem 21 and [6(b), Theorem 21) with the reduction argument based on Vogan's 
theory of minimal K-types [6(a), p. 4351. 

Smooth multipliers on G(F)  map % (G(F) I),- to Z ( G ( F ) )  . More pre- 
cisely, if D Q!^{G(F)~),- and a e ~ ~ ~ ( f ) ) ~ ,  there is a unique function Do 
in E ( G ( F ) ) , -  such that 

(see [6(a), Lemma 61). Observe also that if 8 belongs to A,.,(G(F)~),-, the 
function 

^(z) = J(X)Q(^) 1 n ' ntemp(G(F))  

belongs to Y ( G ( F ) ) , - .  It is clear that (Daly = D G a  . The second main step 

of Clozel-Delorme can be interpreted as an assertion that over ~ ~ ~ ( f ) ) ~ ,  the 
module Y ( G ( F ) ) , -  has a finite set of generators in A,.,(G(F)~),-. In other 
words, there is a finite set 8, , . . . , 8 of elements in A,., (G(F) '),- with the 
property that any function ip e J^G(F)),- can be written 

for multipliers a,  , . . . , am in ~ : ( f ) )  . Fix elements Dl  , . . . , Dm in 
%(G(F)'),- such that 

We are going to define 

(A. 12) h i p  = Dl + . . , + Dm ,om . 
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However, we shall first indicate briefly how the expansion (A. 11) can be defined 
in terms of 4 so that it has the appropriate properties. 

As in the p-adic case, we can identify each 4 Y ( G ( F ) ) ?  with a collection 
of functions 

ranges over a finite set of pairs. For each 4 ,  one constructs a Paley-Wiener 
function <I> on f): by following the procedure on p. 439 of [6(a)]. Clozel and 
Delorme then appeal to a result in [13], which asserts that 

for elements u l  = 1 , u., , . . . , ud in S(f) I ) ,  the symmetric algebra on t) . 
Indeed, one need only take { u , }  to be homogeneous elements which form a 
basis of the quotient field of S(tl} over that of ~ ( t ) ) ^ .  From the corollary of 
Lemma 1 1  of [9(a)], one can then construct continuous projections 

whose sum is the identity. Apply the decomposition to ( / !>  and then restrict the 
functions obtained to the affine subspaces vU + a;,̂  of G. This provides a 
well-defined expansion (A . l l )  for q5 . The expansion for 4 is then the corre- 
sponding sum over o . In particular, we take {<^ , . . . , 8 }  to be the union over 
a of the sets of d functions 

It follows that the expansion (A. 11) is given by a well-defined linear map 

The map k is then determined by (A. 12). 
It is clear from the definitions that A((/!>)," equals 4 .  The other conditions of 

the lemma come from properties of the map (A. 13). For one can check that the 
map commutes with the natural action of ia>n Y ( G ( F ) ) ?  and C Y ( ~ ) ) ~ .  
This gives the required condition (b). If (/!> e YN(G(F)),- ,  N > 0 ,  it can be 
shown that each a,  belongs to c;(t))". Since the support of a function (or 
distribution) behaves well under the action of a multiplier, condition (c) follows. 
To prove (d), first note that a seminorm (A.1) is continuous on the Schwartz 
space of G(F) . It follows from the corollary of Theorem 13.1 of [9(b)] that the 
value of any such seminorm on k((/!>) is bounded by a finite sum of continuous 
seminorms, evaluated at classical Schwartz functions 
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Here P Y ( M O )  , a E I Ikmp(Mp ( F ) )  and 4 (a*) is the induced representa- 
tion of G ( F )  . We are assuming that h ( 4 )  is given by (A.12) ,  so that 

But for any k there is a seminorrn 1 1  on Y ( G ( F ) )  of the form (A.3)  such 
that 

for any A ian and any 4 Y N ( G ( F ) ) ,  N > 0 .  This is a consequence of the 
continuity properties of the map (A.13). The final condition (d) of the lemma 
follows. 
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