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Introduction

Let G be a reductive Lie group with maximal compact subgroup K. The Paley-Wiener
problem is to characterize the image of Cc(G) under Fourier transform. It turns out to
be more natural to look at the K finite functions in Cc(G). This space, which we denote
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2 J. ARTHUR

by Cc(G, K), is sometimes called the Hecke algebra in analogy with p-adic groups. The

goal of this paper is to characterize the image of Cc(G, K) under Fourier transform. The

problem was solved for real rank one by Campoli in his thesis [1]. This paper represents
the generalization of Campoli's results to arbitrary rank.

IffE Cc(G, K) and :r is an irreducible representation of G on a Banach space U,
let

(fI)= fr(x) (x) dx.

Then

-- (f)

is a function whose domain is the set of irreducible representations of G, and which for
any (z, U,) takes values in the space of operators on U,. The problem is to character-
ize which functions ;r-»F(r) are of this form. For our introduction we shall fix a
minimal parabolic subgroup B with Langlands decomposition NoAoMI. Then we will

have the (nonunitary) principal series, a family of representations IB(a, A) of G induced
from B, indexed by quasi-characters A of Ao, and irreducible representations a of MO.
By a well known theorem of Harish-Chandra, any r is equivalent to a subquotient of
some IB(a, A). This means that ;r(f) will be completely determined by the map

f: (a, A)--fB(o, A) = IB(, A,f).

We will call f the Fourier transform off.
What should the image of the Fourier transform be? The function fB(, A) will

have to satisfy certain growth conditions. It should also be an entire function of A.

However, there is another, more complicated condition. It is that any linear relation

among the matrix coefficients of the representations IB(a, A) will have also to hold for
the matrix coefficients of the operators AB(a, A). An adequate understanding of these
linear relations would include a complete knowledge of all the irreducible subquotients
of the principal series. Since this is not available, the third condition on fB(a, A) is not

very explicit. In any case, following [1], we will define PW(G, K) to be the space of all
functions

F: (a, A)-- FB(a, A)

which satisfy the three conditions above. Then our main result (Theorem III.4.1) is that
the map f--f is a topological isomorphism from Cc(G, K) onto PW(G, K).
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An interesting consequence of our main result is the construction of an algebra of

multipliers for Cc(G, K). By a multiplier we mean a linear operator C on Cc(G, K) such

that

C(f* g) = C() g =f* C(g)

for allfandg in Cc(G, K). If C is such an operator, and 7 is an irreducible representa-
tion of G, there will be a scalar C, such that

r(C(f))= C= f),

for every function fEC'(G,K). In Theorem III.4.2 we will obtain an algebra of

multipliers {C} by constructing the corresponding algebra of scalar-valued functions

{Sr-.C,}. It is an analogue for real groups of a result (unpublished) of I. N. Bernstein,
in which all the multipliers for the Hecke algebra of a p-adic group were constructed.
We envisage using the theorem in the following way. Suppose that we happened to
know that a given map

7-d F(r)

was represented by a function in Cc(G, K). Then we could construct many other maps,
each also represented by a function in Cc(G, K), by taking

r-, Cr F(r).

If one studies the contribution of Eisenstein series to the trace formula, one is
confronted with this very circumstance. In fact, the trace formula was our original
motivation for working on the Paley-Wiener problem. In another paper, we will use
Theorem III.4.2 to overcome a nasty convergence problem connected with Eisenstein
series.

This paper is divided into three chapters. The first chapter is a collection of various
results which are required for the proof of our main theorem. Much of the chapter
contains familiar material, and discussion proceeds rather briskly. Chapters II and III
contain the main body of the proof. It is a question of studying successive residues of
certain meromorphic functions of A, in the spirit of Chapter 7 of Langlands' treatise
[11 b] on Eisenstein series. The reader might find it easiest to start this paper at the

beginning of Chapter II, referring to the sections in Chapter I only as they are needed.
We shall conclude the introduction by attemting to sketch the salient features of

the proof of our main theorem. The theorem will actually be proved for Cc(G, r), the
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space of smooth, compactly supported functions which are spherical with respect to a
two-sided representation, T, of K. Associated to T we have the Eisenstein integral

EB(x,A,A), xEG, (eo, AEac*

0o is the (finite dimensional) space of :M spherical functions on M', while a(* is the

space of quasi-characters on Ao, a complex vector space of dimension n, say. In this

setting, PW(G, r) will be defined as a certain space of entire functions from a* to 0o.
The most difficult part of the theorem is to prove surjectivity. Given FEPW(G, r) we
have to produce a function in Cc(G, r). Iff is such a function, we know from Harish-

Chandra's Plancherel theorem that there will be a decomposition

f-Ef

off into components indexed by classes of associated standard parabolic subgroups of
G. The component from the minimal parabolic subgroup will be

F }(X) = IWO-I i EB(x, B(A) F(A), A) dA, x E G,

where,B(A) is Harish-Chandra's u function and Wo is the Weyl group of (G, Ao). We
must somehow construct the other components and the function f.

Let Ao(B) be the chamber in Ao associated to B. If a EAo(B), EB(a, (, A) can be
written as a sum

E EBIBs(a' , A)
sEW0

of functions indexed by the Weyl group. For any s, EBB,( (, , A) is the unique function

on Ao(B) whose asymptotic expansion has leading term

(cBIB(S, A) a)(1) a(sA) 6B(a)-1/2,

where 6B is the modular function of B and cBIB(S, A) is Harish-Chandra's c function.
We will extend EBS,(, , ,A) to a r spherical function on

G_ = KAo(B) K,
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an open dense subset of G. It will then turn out that for F E PW(G, r) and x E G_,

EBIB, (X, /uB(A) F(A), A) = EBIB 1(X, UB(SA) F(sA), sA).

As a function ofA this expression will be meromorphic with poles along hyperplanes of
the form (f, A)=r, for P a root of (G, Ao) and rER (Corollary 1.6.3). We shall also show
that only finitely many of these poles intersect the negative chamber, -at(B), in a*
(Lemma 1.5.3). For this introduction, let us assume that none of the poles meet the
imaginary space iac. Then for x E G_,

F{B(x) = E1IB 1(x, /B(A) F(A), A) dA.
ia0

Let X be a point in general position in the chamber -a(B) which is far from any of the
walls. In Theorem II. 1.1 we will show that the function

FV()= EBIB, (x, FB(A)F(A), A) dA, xE G_,
+ia*

is supported on a subset of G_ whose closure in G is compact. It will be our candidate
for f(x).

The difference

Fv(x)-F }(x)

will be a sum of residues. Each one will be an integral over an affine space XT+ib,
where X E ac and b is a linear subspace of a' of dimension n- 1. (T will belong to some
indexing set.) We will group the residual integrals into sums corresponding to the Wo-
orbits among the spaces b. Now for any Wo-orbit of spaces b there is an associated
class 9 of parabolic subgroups of G, of parabolic rank n- 1. We might expect that the
corresponding sum of residual integrals should equalfg(x). However, to have any hope
of this we will need to replace each XT by a vector which is orthogonal to b. Let AT be
the vector in XT+b which is orthogonal to b. Let F5(x) be the sum of all the residual
integrals, taken now over the contour AT+ib, for which b belongs to the Wo-orbit
associated to 3?. (Again, we make the simplifying assumption that each residual
integrand is regular on AT+ib.) Then

F"(x) - Fv (x)- E F(x)
{5:prk ~P=n-l}
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will be a new sum of residual integrals, each over an affine space of dimension n-2. We
can repeat the process. In the end we will arrive at a formula

Fv(x) =2 F(x), xE G,

where now 9 ranges over all classes of associated parabolic subgroups.
The difficulty is that we do not yet know that Fv(x) extends from G_ to a smooth

function on G. Suppose that for every :=?{G} the functions F[(x) could be extended

smoothly to G. We could then use an argument of Campoli to extend FG} to a smooth

function on G. From this, we would be able to conclude that the function

FV(x)= > F[(x)

belonged to Cc(G, r) and that its Fourier transform was the original function F(A).

Clearly, then, an induction hypothesis is in order. IfP is any proper, standard parabolic
subgroup of G, with Levi component M, we will assume that our main theorem holds
for Cc(M, r). In Lemma III.2.3 we will show that there is a natural injection

F-oFp

of PW(G, r) into PW(M, r). By induction we will obtain a function Fp in CC(M, r). Let

Ap be the split component of P and let ap be the Lie algebra of Ap. If A E ia) let

Fp CUp(A) be the function which maps any point m EM_ to

I Fp {M(ma)eiH(ma))da.
P

It will extend from M_ to a cuspidal, TM spherical function on M. We would be able to

establish our main theorem for G if we could prove the formula

Fv(x) = l-' |W(aP)l- Ep(x, p() Fp, cusp() )d, (l )
PE ~ ia4

for any class tP*{G} and xE G. Indeed, the function on the right is a wave packet of
Eisenstein integrals and certainly extends to a smooth function on G. We would

complete the argument as outlined above.
However this last formula turns out to be quite difficult. It hinges on a recent
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theorem of Casselman. Let SM be the algebra of left and right invariant differential

operators on M. In Chapter I, § 7 we will define a space M(M_, r) of eM-finite, rm-
spherical functions on M_. (It seems likely that it is the space of all such functions.)
si(M, r) will contain usp(M, r), the space of functions which extend to cuspidal,
Ap invariant functions on M. The essence of Casselman's theorem is that the Eisen-
stein integral Ep(x, Qp, ), defined by Harish Chandra for p E scusp(M, r), can actually
be extended to the space d(M_, z). Then

Ep(x,9,A), x E G_, AEa,c, Es(M_,r),

becomes a meromorphic function of A with values in the space of linear maps from
s(M_, r) to s(G_, r). We will state Casselman's theorem formally in Chapter II, § 4.
Then, in § 5 of the same chapter, we derive some consequences of the theorem. It turns
out that all of the J, c and u functions, defined by Harish-Chandra in [7 e] as linear maps
on acusp(M, r), can also be extended to the space S(M_, r). In particular the map

-> Ep(x, up(A) p, A)

can be defined for 9 (M_, ). This will allow us, in Theorem 11.7.1, to prove a
version of the formula (1). We will then combine it with the induction hypothesis in
Chapter III to establish the main theorem.

A number of authors have proved Paley-Wiener theorems for particular classes of

groups. The case of SL2(R) was solved by Ehrenpreis and Mautner [5 a], [5 b]. For the
K bi-invariant functions on a general group the main problem was solved by Helgason
[8 a], [8 b] and Gangolli [6]. They developed techniques which allowed for changes of
contours of integration. To them is due the analysis on which sections 1.5 and II.1 of
this paper are based. The case of K bi-invariant functions is simplified by the fact that
no residues are encountered during the necessary contour changes. Further results in
this direction were later obtained by Helgason [8 c], [8 d]. We have already mentioned
Campoli's contribution [1] for groups of real rank one. A Paley-Wiener theorem for

complex semisimple groups was announced by Zelobenko in [14]. More recently,
Delorme [4] established a Paley-Wiener theorem for any groups with one conjugacy
class of Cartan subgroups. His techniques are algebraic in nature, and are completely
different from ours. Finally, Kawazoe [10a], [10b] made significant progress in han-
dling the residues on groups of rank greater than one. In particular, he established the
main theorem for the group SU(2, 2).

I am indebted to W. Casselman for many enlightening discussions. His theorem,
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which is crucial for this paper, will be described in the forthcoming paper [2 b]. I would
also like to thank N. Wallach for conversations on asymptotic expansions and J.
Millson for telling me of some of Campoli's results.

Notational conventions: IfH is any Lie group, we will denote the real Lie algebra of H
by Lie (H), and universal enveloping algebra of Lie (H))C by °U(H).

Our method for cross reference is as follows. Theorem III.4.2 means Theorem 2 of
Section 4 of Chapter III. However, we will omit the numbers of chapters when

referring to lemmas, theorems or formulas of a current chapter.

Chapter I

§ 1. The group G

Suppose that G is a reductive Lie group, with a fixed maximal compact subgroup K.
We shall assume that G and K satisfy the general axioms of Harish-Chandra [7 e, § 3].
Then both G and its Lie algebra can be equipped with an involution 0 as in [7 e, § 31.
Any parabolic subgroup P of G has a decomposition P=NpMp, where Np is the

unipotent radical of P and Mp is a reductive subgroup of G which is stable under 0

([7 e, § 4]). We shall call Mp the Levi component of P; we shall say that any group is a

Levi subgroup (of G) if it is the Levi component of a parabolic subgroup of G.

Suppose that McM are two Levi subgroups of G. We shall denote the set of Levi

subgroups ofM which contain M* by 'M(M*). Let us also write w(M,) for the set of

parabolic subgroups of M which contain M,, and 5Pm(M,) for the set of groups in

?4(M*) for which M* is the Levi component. Each of these three sets is finite. If
M=G we shall usually denote the sets by 2(M*), AM, ) and $(M,). (In general, if a

superscript M is used to denote the dependence of some object in this paper on a Levi

subgroup, we shall often omit the superscript when M=G.) If RECJ(M,) and

Q E (M), we will let Q(R) denote the unique group in 9(M*) which is contained in Q.
For the rest of this paper, Mo will denote a fixed minimal Levi subgroup of G. If

ME 2(Mo), let MK=MnK. For induction arguments it will often be necessary to apply
the notation and results of this paper to the group M. This poses no problem, for the

triplet (M, KM, Mo) satisfies the same hypotheses as (G, K, Mo).
Suppose that M is a group in £(Mo). Let AM be the split component of M ([7 e,

§ 3]), and set aM=Lie(AM), the Lie algebra of AM. Then aM is canonically isomorphic
with

Hom (X(M), R),
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where X(M) is the group of all continuous homomorphisms fromM to R*. As usual, we
define a subjective homomorphism

HM: M- aM

by setting
e(H'm)x ((m)I, XEX(M), mEM.

(In case M=Mo, we shall always write a0=aM0, Ao=AM0 and H0=HM0.)In general, M is

the direct product of the kernel of HM, which we denote by M', and AM. Suppose that
A is an element in aMc the complexification of the dual space of aM. Then A defines

quasi-characters

H-> (H), HC aM,

and

a-->a, a AM,

on each of the abelian groups aM and AM. They are related by

a e(H(a)) aEA.

Suppose that P E P(M). We shall sometimes write Ap=AM and ap=aM. Associat-
ed to P are various real quasicharacters on these two groups. One arises from the
modular function 6p of P. Its restriction to Ap equals

fi(a) = a2ep = e2Qp(HM(a)), a A,

for a unique vector gp in a* . There is also the set lp of roots of (P, Ap), and the
subset Ap of simple roots. We shall write Z(Ap) for the abelian subgroup of ap
generated by Ap, and Z+(Ap) for the subset of Z(Ap) consisting of nonnegative
integral combinations of elements in Ap.

If P is any group in (Mo), we know that

G = PK= NpMpK.

For a given point x in G, let Np(x), Mp(x), and Kp(x) be the components of x in Np,
Mp and K relative to this decomposition. We shall write

Hp(x) = HM(Mp(x)).
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It is convenient, although not really necessary, to fix a G-invariant, symmetric
bilinear form (,) on Lie (G) such that, as in [7 e], the quadratic form

-(X, OX), X Lie(G),

is positive definite. We will also write (, ) for the C-linear extension of the bilinear form
to Lie(G)®C. Suppose that tc is a Cartan subalgebra of Lie(G)®C such that

tc nLie(G) is a 0 stable Cartan subalgebra of Lie (G). Then (,) is nondegenerate on

ic, and

H- - (H, OH), H E c n Lie(G),

extends to a Hermitian norm II'-]on bc. From the nondegenerate bilinear form on tc
we can define a bilinear form, which we also denote by (,), on the dual space tf. We
also obtain a Hermitian norm II'|| on bt.

From now on we will take

t)c= )K,C ao, c,

where bK is a fixed Cartan subalgebra of Lie(K)n Lie(Mo). Then by restriction we
obtain a bilinear form (,) and a Hermitian norm || || on both ao c and a c. Suppose that

MEA(Mo). Then there are embeddings aM cca c and a*M cca c so we can also

restrict (,) and II11 to these smaller spaces. As is customary, a singular hyperplane in
a*, will mean a subspace of the form

{A E aM: O(, A) = 0)

for some root P of (G, AM). If P E 9(M), we shall write

a;l(P) = {A E a* : O(, A) > 0, P E 2p},
a(P) = {H E aM: P(H) > 0, p E Zp},

and

AM(P)= {aEAM: a>> 1, E p}.

Finally, we should say a word about Haar measures. From time to time we will
want to integrate over various unimodular groups. Unless specified otherwise, the

integrals will always be with respect to a fixed, but unnormalized, Haar measure. There
will be two exceptions. On the compact group KM, ME £(Mo), we will always take the
Haar measure for which the total volume is one. The second exception concerns groups
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connected with the spaces aM. On aM we will take the Euclidean measure with respect
to the fixed norm 11 11. The exponential map will transform this measure to a fixed Haar
measure on the group AM. Finally, on the real vector space ia* we will take the
measure which is dual to the measure we fixed on aM. Observe that if {v1, ..., vr} is
any orthonormal basis of alt, and h is a function in Cc(iaf),

Ihh\d, ( 1_ rfioIh(A) =(-2) J| i..j h(vI +...+uvrvr)du ...dur.

§ 2. Eisenstein integrals and associated functions

Throughout this section, and indeed for most of the paper, r will be a fixed two sided
representation of K on a finite dimensional vector space VT. This is the setting for
Harish-Chandra's Eisenstein integral as well as his J, c and u functions, which play
such a central role in the harmonic analysis on G. We shall list some of the basic
properties of these objects.

Fix a Levi subgroup M in L(Mo). Let cusp(M, ) be the space of TM spherical
functions on MIAM which are cuspidal. This is the same as the space of square
integrable, Tm-finite functions

p: M- V,
such that

(i) p(k1 mk2) = r(kl) (p(m) r(k2), k1, k2 6 KM, m EM,
and

(ii) q((ma) =q(m), m E M, a EAM.

Here SM is the algebra of left and right invariant differential operators on M. The space
cusp(M, T) is finite dimensional, and in fact equals {0} unless MIAM has a discrete

series. Indeed, if w is an equivalence class of square integrable representations of
MIAM, let (A(M, r) be the space of functions p9 in cusp(M,r) such that for any
E* V*, the function

m--t*(q(m)), m E M/AM,
is a sum of matrix coefficients of w. Then

Icusp(M, r) = E(ds(M, r).
CO
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Let p E6,cp(M, r), P E AM), x E G and A E act* The Eisenstein integral is defined to
be

Ep(x, qp, A t 1) =(kx)e( +p)(HP(kx))p dk,
KM\K

where (pp is the function on G such that

fpp(nmk) =p(m) r(k), n E Np, m 6 M, k 6 K.

Then the function

Ep(fp, A): x-- Ep(x, (9, A)

depends analytically on A, and is a S=IG finite, r spherical function on G.
Let Wo be the Weyl group of (G, Ao). It is a finite group which acts on the vector

spaces ao and at. Suppose that M1 is another Levi subgroup in St(Mo). As is custom-
ary, we will write W(aM, aM,) for the set of distinct isomorphisms from aM onto amI
obtained by restricting elements in Wo to aM. (Recall that any two groups P E SM) and

P1 E S(M1) are said to be associated if this set is not empty.) If t E W(aM, aM,) we shall

always let wI denote some representative of t in K. Now, suppose that E is any subset
of M such that KMZKM=Y, and that q is a TM spherical function from Z to Vr. If
tE W(am, aM), define a TM spherical function on El=ww-' by

(tp) (m) = t(w,) (wt ml w,) r(w,), m 6E .
If PEg(M) let tP be the group wtPwt' in A(M). Then if E cusp(M, r, it is easily
shown that

Ep((p, A) = Etp(tp, tA). (2.1)

More generally, if L is any Levi subgroup which contains both M and Mi, and
R E2 (M), there is an identity

tER(, A) = E(t, t) (2. ')

for Eisenstein integrals on L and tL=wLwt1.
Suppose that P 9(M). If T is a Cartan subgroup of M, let Sp(G, 7) be the set of
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roots of (G, 1) whose restrictions to AM belong to Ep. Suppose that P' also belongs to
9(M). Then the number

(a,\a) 1/2

p3p p (=2
a E Xp(G, T) n 2p,(G, T)

is independent of T. (As usual, P stands for the group in s(M) opposite to P.) Let dX be
the Euclidean measure on np,=Lie (Np) associated to the norm

lX12= -(X, OX), XEn.

We can normalize a Haar measure dn' on Np' by

.p(n')dn' = pq(expX)dX, p ECc(Np,).
p,

The same prescription gives us a Haar measure on the subgroup Np n Np. From these
two measures we then obtain an invariant quotient measure on the coset space
Np, nNp\Np,. Now if q Eusp(M, ), )A E ac and m EM, define

(4JPP(A) q9) (m) = 3pP f r(Kp(n)) (p(Mp(n) m) e(+ep)(Hp(n)) dn,
Np, n Np\Np,

and

(4p|p(A) q) (m) = fplp i p(mMp(n)) r(Kp(n)) e +e)HP(n)) dn.
Np, n Np\Np,

The integral converges if

(Re A+Qp, a) >0

for each root a in pnflT,. Because the factor fplp is built into the definition, the

integrals are independent of the measure on Np, and of the form (,).
Both Jfpp(A) and Jp,ip() can be analytically continued as meromorphic functions

from a* to the finite dimensional space of endomorphisms of usp(M, r). They
satisfy all the usual properties of intertwining operators. In particular, let d(P', P) be
the number of singular hyperplanes which lie between the chambers aM(P) and aM(P').
If P" is a third group in (M) such that

d(P", P) = d(P", P')+d(P', P),
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one has

Jpp()= Jpp,()JJp'), t = I, r. (2.2)

Suppose that M* is a Levi subgroup which is contained in M, and that R, R' E OPM(M*).
The functions

JR'IR(A), A e aMC, =,

associated to M and M* (instead of G and M) can certainly be defined. They depend
only on the projection ofA onto the orthogonal complement of a* in a c. We have

the formula

JP(R'IP(R)(A) = JRIR(A), t= 1 r. (2.3)

If AI Ea* c and P, Pl E AM), the operators J ,p(A,) and JpIp(A) commute. They also

both commute with SM. Finally, we should recall that

det (Jp,,P(A)), t = l, r,

does not vanish identically in A; the inverse Jp,,p()-' therefore exists as a meromorphic
function of A.

Actually, the J functions defined by Harish-Chandra in [7e] are intertwining
operators between induced representations, rather than operators on Scusp(M, T). It is
in this context that the results we are discussing were proved, ([7e]). The difference,
however, is minor and purely notational. For the convenience of the reader, we will

spend § 3 reviewing the relations with induced representations.
Suppose that s E W(aM, am,). Suppose that P E M) and P1 E A(M). The groups

s-1P1 and s-'PI both belong to (M). Define

CPi[P(S,Ai I_()-'J p (2.4)

It is a meromorphic function of A E a^ c with values in the space of linear maps from

,cusp(M, r) to icusp(Ml, ). By [7d, Lemma 18.1] and the corollary to [7e, Lemma
18.1], it is just Harish-Chandra's c function. Harish-Chandra has defined other c

functions

c° lp(s, ) = CpP(S, A) CPP(1l, A)-1 (2.5)
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and

°cpIp(s, A) = cp1p(1, sA)-1 Cplp(s, A). (2.6)

These also are meromorphic functions on a* c with values in the space of linear maps
from Scusp(M, r) to Scusp(MA, r). The following functional equations are satisfied:

C2IpI s, A) = cp(SP,(S1,) cllp(s, A), (2.7)

°Cp21l(S1 5, A) = °Cp2lp,(S1, S) 0Cpp(s, A), (2.8)

cp2lp(s s, A) = C°lpl|(Sl, sA) cPl1p(s, A)

= cp2p(s1, sA) cp,lp(s, A), (2.9)

Ep(x, p, A) = Ep,(x, OCpl(s, A) {p, sA), (2.10)
for s, E W(at,, aM2) and P2E (M2). Suppose that t e W0. If M' E £(Mo),

tM' = wtM'wt
is another Levi subgroup; if P E (M'), then tPE f(tM'). The restriction of t to aM'
defines an element in W(aM,, atM,), which we will denote also by t. It is an easy matter
to show that for P', P E (M),

tJ,,lp(A) t-1 = Jp,ltp(t), = , r. (2.11)

One also has

tcpp(s, A) = Clpp(ts, A), (2.12)

cPlp(s, A) t- = Cplltp(stf-, t), (2.13)
and similar formulas for ce and °cplp. From (2.11) one can also deduce alternate
formulas

Clp(s, )= sJl ,pl(A)-Jr' P(A) (2.14)
and

cpl (s A) th sPlp(A) lslp, ) (25)for the supplementary (2.15)
for the supplementary c functions.
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Finally, let us recall the definition of Harish-Chandra's u functions. It is easy to
see that for any P and P',

JpIp (A) Jlplp(A) = Jplp(A) Jp1p (A)
Let Up'lp(A) be the inverse of this operator. It is a meromorphic function of A with
values in the space of endomorphisms of cusp(M, r). For any A, u,ulp() commutes with

any of the operators

JP'pIp)(AJ),'E a*c Pl, P' E AM).
Therefore ,Gip(A) also commutes with uplp,(A,). Analogues of (2.2) and (2.3) follow

easily; one has

,pIp(A) = 'pp,(A)\p lp(A) (2.16)
if

d(P", P) = d(P", P')+d(P', P),
and

kP(R')iP(R)(A) = #R'lR(A), (2.17)

if A, P, R and R' are as in (2.3). Now, for any PE s(M), define

'p(A) ==pIp(A).
It follows from the properties above that up(A) depends only on M and G, and not the

group P. Moreover, for any t E W(aM, aM,) and P E 9(M,),

Up(A)=/p .(tA).
LEMMA 2.1. Suppose that M* E (Mo), R Er(M*) and P E(M). Then if

AE(aM,) and aM,

,q(m)lp(R)(A+A) = /P(R)(A+A) R(A)-1.
Proof. By (2.16) and (2.17) we have

/P(R)(A+A) = JP(R)I|P(R)(A+A)
= uPR)P(R))(A+A) p(R)IP(R)(A+A)
= u^q[(A+A)PP()|P^)(A+A).
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But

/lRIR(A+A) = /RIR(A) = R(A),

and this operator commutes with /i(R)IP(R)(A+A). The lemma follows. Q.E.D.

§ 3. Relation with induced representations
We shall remind ourselves of the connection of Eisenstein integrals with the theory of
induced representations. The reader who is experienced in such things or who does not
wish to track down the facts of § 2 in Harish-Chandra's paper [7 e], could easily skip
this section

Again, we fix a Levi subgroup ME2(Mo). Let co be an equivalence class of
irreducible square integrable representations of MIAM, and let (a, Ua) be a representa-
tion in the class of o. (Ua is the Hilbert space on which a acts.) Suppose that PE (M).
Define tX(a) to be the Hilbert space of measurable functions

'KK-- Ua
such that

(i) p(mk)=a(m) ip(k), m E KM, k E K,
and

(ii) Il-=J \(kll'dk<°.
KM\K

If Ai a* c, there is the usual induced representation

(Ip(a, A, x) V) (k) = e(A+p)(H(k)) (Mp(kx)) p(Kp(kx)),

ypE (a), x E G, which acts on X(a).
Suppose that (r, V) is an irreducible representation of K. Let X(a), be the finite

dimensional subspace of vectors in 3(a) under which the restriction of Ip(a, A) to K is
equivalent to r. Suppose that S E HomKM (V, U); that is, S is a map from V to Uo such
that

S(r(m) c)= o(m) S(~), E V, m E KM.

If ~ E V, the function

s(): k-- S(r(k) ), k E K,

2-838282 Acta Mathematica 150. Imprim6 le 30 Juin 1983
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belong to 9(a). By Frobenius reciprocity, the map

S-- TIs

is an isomorphism from HomKM(V, Uo) onto HomK(V, #(a)). Notice that /°(a) is the
space spanned by

{(s(): S HomK,(V, Uo), V}.

It is isomorphic to HomK (V, U)®8V. Now, if SE HomK,(V, Uo), and P' is another

group in 9(M), set

Jplp(a, A) S = pP|p I a(Mp(n)) Sr(Kp(n)) e(A+Qf)(H(n)) dn.
Np, nNp\Np,

Defined a priori only for thoseA E a* C for which the integral converges, Jp, p(a, A) can

be continued as a meromorphic function from a* to the space of endomorphisms of

HomK (V, Uo). The map

As()-' WJP,(o UA,)s), SE HomKM(V, Uo), 6 V,
which we can also denote by Jp'p(a, A), is just the restriction to W(a), of the usual

intertwining operator from Ip(a, A) to Ip,(a, A).
The contragredient representation of r makes the dual space V* of V into a K-

module. Similarly, the dual Hilbert space U* is an M-module under the contragredient
a* of a. As above, we have an isomorphism

HomK(V*, U*)-HomK(V*, 9(a*)).

On the one hand, the transpose gives a canonical isomorphism between

HomK (V*, U*) and HomK (Uo, V). On the other hand, the K finite vectors in a(o*)
and t(a) are in duality under the pairing

f {(V(k), *(k)) dk, E (a), p* E (o*),
K\K

so that HomK(V*, (aO*)) is canonically isomorphic to HomK(X(oa), V). It follows that
there is a canonical isomorphism

t*: HomK (U,, V)-HomK ((la), V).
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It is given by

(t) = fK\ r(k)-'S*(/(k)) dk,
K\K

for S*EHomK (Ua, V) and p E 3X(a). Notice that (ua)* is the space spanned by
compositions

{T* *: S* E HomK (U/, V), * E V*}.

It is isomorphic to HomKM(Ua, V)® V*.
Suppose that

(ri, Vi), i= 1,2,

is a pair of irreducible representations of K. We shall now take r to be the double
representation of K on

V = Homc(VI, V2),
defined by

r(k2)Xr(k) = r2(k2)oX o T(kl),

for k, k2 E K, and XE Homc (VI, V2). Any double representation of K will be a direct
sum of representations of this form. If S1 E HomK (VI, Uo) and S*E HomK (Uo, V2)
then

Qp(m)= Sao(m)S1, mEM,

is a function in sJ(M, r). The J functions we have just defined are related to those of
§ 2 by the formulas

(JplA)0 (m) = (JP,(o, A)* S2) o(m) S (3.1)

and

J",ep(A;))(m) = S2o(m) (Jplp(a, A) Sl). (3.2)

Next, we shall show that for any x E G,

I*' Ip(a, , x)TEs.= Ep(x, p, A). (3.3)
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Indeed, the left hand side is a composition of three operators, and is an element in
Hom (V1, V2)=V. Its value at any vector 1 e V1 is

(k-1) S'2((Ip(a, A, x) qjS( l))(k)) dkX\K

= fK r(k-l) (S'o(Mp(kx)) SI) (r(Ke(kx)) ,) e(+pP)(HP(k))dk
KM\K

= JfK r(k-') 9q,(kx) (a) e(A+ep)(Hp()) dk.
KM\K

This is just the value of Ep(x, Qp, A) at ~l.
Formula (3.3) provides a relation between Eisenstein integrals and matrix coeffi-

cients of Ip(a, ). There is a slightly different way to express it. We have seen that the

space of operators

Hom (A(a)2, (or),l)= (a)o ®L9o(a)*2

is canonically isomorphic with

HomK (V1, U,) 0 V1 0 HOmKM (C, V2) 0 V2*

Now the correspondence
(S1, Sh-

defines an isomorphism between

HomK (V, U) 0 HomK (Uo, V2)

and do,(M, r), while Vi®V is isomorphic to V*. Let End, be the double representa-
tion of K on the space

End (V) = Homc (V,, VT)

given by
(End, (k2)F. End, (kl)) (X) = r(k2) F(X) r(kl),

kl,k2EK, FEEnd(V,) and XEVT. Then s,(M, r)VT* equals s,(M,End,). We
therefore have an isomorphism

T--- T
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from Hom(n((a),2, Xt(ao)) onto ,sI(M, End). This mapping is essentially the one

defined by Harish-Chandra in [7 e, § 7]. Formula (3.3) leads to

tr(Ip(a, A, x) ) = tr(Ep(x, T, )), TE Hom ((Ta)t , (a),),
where the first trace is on the space X(a) while the second is on VT. The relations
between the J functions can be written

J'ptlp(A) 'PT = VVmp(oa,A)
and

P'IP(A) VT= Jp,p(a,A)T'

It is actually through these relations that we can extract formula (2.4) from the papers
of Harish-Chandra.

§ 4. Asymptotic expansions
From now on r will be as in § 2, a fixed two-sided representation of K on a finite
dimensional vector space V,. For the results on asymptotic expansions that we shall
quote the reader can refer to [7 a], [7b] or [13].

If eO and BE A(Mo), set

A%(B) = {a EA: a(Ho(a)) > , a E AB}.

By a neighborhood of infinity in G we shall mean a set of the form

Ge=K.A '(B)K.
It is an open subset of G which is independent of B. If = 0, we shall write G_ for G,.
Suppose that (q is a function defined on a neighborhood of infinity with values in V,
which is s-finite and r-spherical. It has a unique asymptotic expansion in any chamber
Ao(B). There is an e such that

cp(a) = C, (A,,a) aAi-,
i=1 gE Z+(AB)

for all a E A(B). Here {Ai} is a finite set of linear functions on ao, c such that for any

i=j, the function Ai-Aj does not belong to Z+(AB). For each i

a--E,BA Aa), SEZ'(AB), a AO,
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is a family of functions from Ao to VT which are polynomials of bounded degree in

HO(a) and such that

r(m) EB, (Ai, a) r(m)- = EB (Ai, a)

for all m E Mon K. The functions {Ai- } are called the exponents of p (with respect to

B) while {Ai} are called the principal exponents. Suppose that

B'=tB, tEWo,

is another group in (MMo). We leave the reader to check that there is a bijection

Ai/<--A

between the two sets of principal exponents such that

(i) A! = tAi
and

(ii) EB',t(AA, wtaw) = r(Wt)eB, (Ai, a)r(w,)- for all E Z+(AB).
Suppose that M is a Levi subgroup in 51(Mo) and that P E P(M). If R E PM(Mo) the

group B = P(R) belongs to A(Mo) and the set Z+(AR) is contained in Z+(AB). For qp as

above, and a point a in Ao(R), define

n

EP(a, 9)= E B,(Ai, a) a 'i P)
i=l E Z+(AR)

If t is an element in Wo, tB equals (tP)(tR), and we have
n

EtP(w,aw-lI p9)= etB, t(tAi, wt aw;-)(wawl)It(A'-C+p)
i=1IE Z+(AR)

= T(W,) EP(a, 9)T,(w,)-.
Taking t to be an element in Wo, the Weyl group of (M,Ao), we see that EP(a, cp)
extends to a tM-spherical function, EP(p), on M,. If t is a general element in Wo, the
formula above is just

EtP(9q) = tEP(p). (4.1)
Recall that there is a natural injective map

yM: --> M.
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Indeed, suppose that PE O(M) and that n and ft are the Lie algebras of the unipotent
radicals of P and P respectively. For z E , let yp(z) be the unique element in °1(M)
such that z-yp(z) belongs to nAt(M) f. Then as a left invariant differential operator on
M,

YM(Z) = 6p(m)- o y,(z) o 6p(m), m E M.

Now if q is a function as above, we have differential equations

yM(z) EP() =EP(zqc), z E . (4.2)

For the case that M=Mo this formula is in the proof of [13, Lemma 9.1.4.5]. For

general McG we refer the reader to [7 a] or the discussion in [11 a, pp. 91-97]. In any
case, since 1M is a finite module over yM(S), the function EP(p) is aTM-finite.

For any ME 2(Mo), the abelian algebra

C = cK,C ® ao,c,

introduced in § 1, is a Cartan subalgebra of Lie (M)®C. Let WM be the Weyl group of
(Lie (M)®C, ic) and let

z M,
be the canonical isomorphism from SM onto the WM-invariant polynomial functions
on bt. Then

M =pGPyMz) =z

for all z E T= G. Recall that any homomorphism from S to C is of the form

Zo pz(V) =PZ(V), ze,

and is uniquely determined by the orbit under W= WG of the linear function v E b.
Suppose that qp is a 'M-finite, rM-spherical function defined on a neighborhood of
infinity in M. Since Y'M() is a subalgebra of gM, the vector space generated by
{zq: z E YM()} is finite dimensional. Let {{pi} be a basis of this space. We can assume
that each qi is a generalized eigenfunction of ym(M; that is,

(ZM(zyi)dpt = , Z YM(),

for a positive integer d and a function vi E b. Let us write oa(q) for the union over i of
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the orbits under W of the points vi. It is a finite set of linear functions on )c. Suppose
that M, E Y(Mo) and that R E $A(M,). It follows from (4.2) that

OG(p) = OG(ER(9)). (4.3)

For convenience, we will denote the finite dimensional space scusp(Mo, r) by o4. If
< E so and A E

, c, we have the function

EMo(, A): m - EMo(m, (A,A) = (m) eA(H(m)) E M.

Let OG(T,A) denote the union, over all E.4, of the orbits OG(EM(0(IA)). It is

precisely the set of W orbits of points ?+A, where q is one of the finitely many linear
functions on K, c such that

z-=p=o() , ZE Mo,

for some I> E o. From formula (4.3) we have

LEMMA 4.1. Suppose that (q is a IM-finite, rn-spherical function defined on a

neighborhood of infinity in M. Let A, ..., An be the principal exponents of 9 along a
chamber Ao(R), R ES(Mo). Then for each i, OG(q)noG(,Ai+QR) is not empty.
Moreover,

n

OG(O = U (OG() n OG(r, Ai+QR)).
i=1

The i-finite functions on G of most interest in this paper are the Eisenstein

integrals associated to minimal parabolics. For B, B'E A(Mo) consider the expansions
of the functions

EB(x,Q,A), Q E so, A c

along the chamber Ao(B'). If E is a small postive number and a e A'(B'), EB(a, 1, A) can

be written

SE W 0gE Z+(AB,)

where cB,Wy (s, A) is a meromorphic function ofA with values in End (so), the space of
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endomorphisms of do. The functional equations for the Eisenstein integral give rise to
the formulae

tCBIB, (S, A) = CtB,BB ,(ts, A), (4.4)

CBIjB, (S, A)t- = CBItB,S(st-1, tA), (4.5)

CBsIB, (S1 s, A) = CBIB, ^1(s1, sA)0CB,((S, A), (4.6)

for elements t, s 6 Wo and B1 El6(Mo). Suppose that x is an element in GE. Then

x=k ak2, k,k2E K, aE A[(B').
Define

EBIB, (X, , A) = r(kl) > (cB'IB(S, A) )(l)a(SA-- eB)r(k2).
E Z+(AB,)

Then EBIB,,(, A) is a r-spherical function on G,. It is meromorphic in A, and

EB(x, ,A)= > EBIB, (X,),A).
sEWo

From the three functional equations above, one obtains

EB'IBS,(x, , A) = EtBBts (x, c, A), (4.4')

EB'Bs(X A) = EB,st-(X, t(, tA), (4.5')

EBBs,s s(x' A) = EBIB, Si(X, OCB B(S, A) P, sA). (4.6')

These functions are all I-finite. Indeed, if z ES let yMo(Z, A) be the differential operator
on Ml obtained by evaluating yMo(Z) at A. Then the equation

ZEB'IB,s(X, I, A) = EBB, (X, YM,(Z, A) a, A) (4.7)

follows from the analogous formula for Eisenstein integrals. Since (I is DM-finite,
EBIBS,(, A) must be S-finite. Another consequence of (4.7) (or alternatively, of
Lemma 4.1) is that the orbit oG(EBIB, (D, A)) is contained in OG(r, A).

We shall prove a lemma for use in Chapter II. It is, I am sure, known to experts.
Fix MEf(Mfo). We can, of course, define the functions

ER'R r(I, A), rE Wt, R, R' E qM(Mo),
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on a neighborhood of infinity in M. (Wo is the Weyl group of (M, Ao).) Fix

R e tm(Mo). Also take groups P, Q E 9(M). We shall show that for a point A in general
position in atc, the function

ERR 1(J(R)P(R)(A) JR)lP(R)(A)(I , A) (4.8)

can be expressed in terms of a i-finite, r-spherical function on GE. Let B=P(R). There
is a unique coset s in W0/Wmo such that the group P1=sQ contains B. If M1=wMws'
then PI belongs to 9(M1). Let SB be the unique representative of s in Wo such that

sB(a) is a root of (B, Ao) for every root a of (R, Ao).

LEMMA 4.2. IfA is a point in at,c in general position, the function (4.8) equals

s- E(E,, S(~, A)).

Proof. Let R1=B nM. Notice that

s-BB = SBI P(R,) = Q(R).

Also, sb1(B) equals Q(R). Now the leading term in the asymptotic expansion of

E i(as, EBIB, s,(, A))

along Ao(R1) is

(CBIB(SB, A)I ) (1) a B(-eR).

Therefore, the leading term in the expansion of the function

s-EP'(EBW,~s(, A)) at a E A(R) is

(sB CBIB(SB, A) ) ( 1 ) aAR

(- ABIB(A) JrB BIB(A) D) (1) * a R

= (J,,R)P(R)(A) JrQ(j(R)(A) D) (1) a*

by (2.4). On the other hand, the leading term in the expansion of the function (4.8) at

a EA(R) is

QRa)R(A) YQ(R)IP(R)(A) JrQ(R)jP(R)(A) (P)(1) A-lAR
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which by (2.2) and (2.3) also equals

(yQ(R)jp(R)(A) Jr,(R)1p(R)(A) ~) (1) alA-R
It follows that if (q is the function

s 'EP'(EBiB,SB(',A))-ERR' I(JQ(R)WpR)(A) JQ(R)P(R)(A) (, A)

the coefficient of a -eR in the expansion of 9p(a) along Ao(R) vanishes.
Our aim is to show that qp itself vanishes. Suppose that this is not so. From what we

have just shown, the principal exponents of qp along Ao(R) are all of the form A--eQR,
for nonzero elements EZ+(AR). By Lemma 4.1 any point in OG(9q) is contained in a
set OG(T, A-() for some *=0. On the other hand,

OG(S-EP(EBtB 8(', A))) = OG(EP(EBIB SB( , A)))

= OG(EBIB, SB(' A))

by (4.3). As we observed above this set is contained in OG(T, A). Applied to the group
M, the same observation tells us that

oG(ERIR, I(e(JMR)P(R)(A) Jr(R)lP(R)(A) ~, A))

is contained in OG(T, A). Thus, OG(q9) is contained in OG(, A). It follows that there are
elements r1, 12 E bl, t E W, and ~ E Z+(AR), *=0, such that

A- +it1l = t(A+i]2).

Since A is in general position, t must leave a, c pointwise fixed. This contradicts the
fact that 5 is a nonzero vector in at,c. It follows that (p vanishes. Q.E.D.

§ 5. Estimates

We will eventually want to study contour integrals of the functions EBIB s(a,(, A). In

this section we collect the needed estimates. We will assume from now on that the

representation (r, V0) is unitary. In particular, V, is a finite dimensional Hilbert space.
The spaces cusp(M, r), and particularly Do, will also be Hilbert spaces with the inner

product
(9, 2) = MA (P1(m) 2(m)) dm, 9P2 Ecusp(Mt ).

MIAM
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The leading term in the expansion of

EBIBS,(a, 4, A), a E A(B'),

is the function

(cB' ( A) 1) (1) a(-sAQB'

The operators cB,Wo(s, A) on do are just the c functions, CB,IB(S, A) discussed in § 2.
What about the other terms? For any ZE Z+(AB') it turns out that

CBIB, (s, A) = rB', (sA- QB) CB,'B(S, A),

where FB, ¢ is a rational function on a*c with values in End (o). (See [13, § 9.1.4].)

LEMMA 5.1. Fix A1 E a and Ho E ao(B). Then we can find a polynomial 1(A) and
constants c and n such that

III(A)rFB, (A) ||< c( l+||A||)n e(H,
for all 4 E Z+(AB) and aet c such that Re (A) belongs to Ai - a(JB).

Proof. An estimate of this sort, without the dependence on A, was first proved by
Helgason [8 a]. (See also [13, Lemma 9.1.4.4].) It was derived from the recursion
relations obtained from the radial component of the Casimir operator ( on G. This
radial component, denoted b'(c)), is a second order differential operator on Ao, with
values in End (o), such that if

DA(expH)= E rB, (A-B) e(^--QB)(MH
aEZ+(AB)

then

(6'(&) DA) (exp H) = DA (exp H) yMo(6, A).

It has been computed explicitly in Corollary 9.1.2.12 of [13], and is of the form

6'(A) = E+6a+6o,

in which E is the Laplacian on Ao and 60 and 61 are differential operators on Ao of
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respective orders 0 and 1. A closer inspection of the formula in [13] (at the top of p. 279)
reveals that the function 60 has an expansion

df e(H, HE ao(B),
CE Z+(AB)

where the coefficients are endomorphisms of S whose norms have at most polynomial
growth in ~. The differential operator 6b, on the other hand, is scalar valued and is

actually independent of do (i.e. of the representation r).
With the presence of the first order term 6l it is difficult to obtain uniform

estimates.(1) It is necessary to use the technique of Gangolli, as elaborated on p. 38-39
of [8b]. Let A"2 (expH) be the product over all roots a of (B, Ao), repeated with

multiplicities, of the functions

(ea(H)-e-a(H))/2, HE ao(B).

The differential operators E and 6b are independent of r, and we can eliminate the first
order term exactly as in the K bi-invariant case [8 b, p. 38]; we obtain

A 1/2B(b) o A--1/2 = E+bo,
where 60 is a function with values in End (o). As in [8 b] there are expansions

A-1/2(expH)= eQ-B(H) b> e-H)
tE Z+(AB)

Al/2(exp H)= eB(H) > ce-(H)
tE Z+(AB)

and

50= b(expH)= Z dge-(),
tE Z+(AB)

where {bg} and {ce} are complex numbers, while {dg} are endomorphisms of o0. The
norms of all the coefficients have at most polynomial growth in 5. The function

WA(expH) =A"x2(expH) A(expH) = > a^(A) e(^A-)()
(E Z+(AB)

(1) I thank J. Carmona for pointing this out to me. My original proof was wrong.
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where

ag(A)= ,2CF,rB. (A--B)'
u E Z+(AB): 4-#E Z+(AB)}

satisfies the differential equation

EWA(expH)-A(exp H)YMo0(, A)+60(exp H) rA(exp H) = 0.

Regarded as an endomorphism in End (o), YM0(c, A) equals the sum of (A, A) and an

endomorphism which is independent of A. Since E is the Laplacian on A, it follows
readily that the coefficients {ag(A)} satisfy recursion relations

(2(A, L)-((,a)+L)(a(A)) = E d, a,_,(A),
{(u*O, ;-#E Z+(AB)}

where L is a linear transformation on the vector space End (0o) which is independent
ofA and r.

If

¢= S naa,
aEAB

set

mg= E na

as in [8a] and [131. Then the number

12(A, )-(, a)
is bounded below by m5, for all A whose real part belongs to l-ai-(B) and all but

finitely many E Z+(AB). Thus, for all such A and all but finitely many g, the linear
transformation

2(A, r)-(g, g)+L

of End (Do) has an inverse, whose norm is bounded by m&'. This means that

Ila(A)ll m-1 Et d' Ila-,,(A)ll
{(t-O, -e Z+(As))
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for all such A and all 4 with me greater than some constant N. Now each at(A) is a
rational function of A. We can therefore choose a polynomial 1(A) and constants c and
n such that

Ili(A) a,(A)I ~< c(1 +lIIAI)ne)(Ho)
for all A with Re (A)E Al-a(B) and for the finitely many 4 with

m max (N Id,e\ole \)
Ee Z+(AB)

This inequality then holds for all EZ+(AB) and all such A by induction on mg.
However,

rB, C(A-eB) = by, aC_,(A).
u: fC-pE z+(AB)}

We therefore obtain the required estimate for the functions {Fr, C}. Q.E.D.

The singularities of the rational functions Fr, (A) lie along hyperplanes of the
form (4,A)=r, for ~EZ+(AB) and rER. That is, for every Aoiacc, there is a
polynomial p(A) which is a product of linear forms (d, A)-r such that p(A) rB, (A) is
regular at Ao. Moreover, only finitely many of these linear forms vanish in any region
Al-at(B). (See [13, p. 287].) We see from the proof of Lemma 5.1 that l(A) can be
taken to be a product of such linear forms.

Define

rB(x, ( , A) = EBIB, (x, /s(A) (, A)

for (IE o, A E a, c and x in a neighborhood of infinity in G. This function will be of
particular concern to us. The leading term of its expansion along Ao(B) is

(cBIB(l, A)B(A)(I ) (1) a(A-8), a E Ao.
LEMMA 5.2. The singularities of the functions CBB(l, A) and UB(A) all lie along

hyperplanes of the form (f, A)=r, where if is a root of (G, Ao) and r is a real number.
Moreover, for every Al E at we can find a polynomial l(A) and constants c and n such
that

111(A) BIB(1, A)/#B(A)I1 < c(1 + 1IAII)
whenever Re (A) belongs to A1-at(B).
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Proof. It follows from (2.2), (2.3) and (2.4) that CBIB(1,A) can be expressed as a

product of operators CB B,(1, A), where P is a root in ZB and Bf=B n Mp for a group Mp
in A(Mo) which modulo the center has real rank one. In particular, cB ,(1, A)depends
only on (/, A). As observed in [12], any matrix coefficient of an operator CB IB(l, A) can
be expressed as a linear combination of functions of the form

F(r-l(, A)+ml) F(r-l(, A)+m2)
F(r-l(, A)+nl) F(r-(W, A)+n2)

where ml,m2,nl,n 2 and r are real numbers, and r is positive. The poles of the
functions

F(r-lz+mi)
F(r-lz+ni)

all lie on the real axis. Similarly, uB(A) is a product of u functions yuB(A) associated to

Mp. Each function /uB(A) depends only on (3,A), and we know from its explicit
formula ([7 el) that it has poles only when (/, A) is real. Therefore, the singularities of
both CBB(1, A) and /B(A) are of the required form.

Now

CBj?(1, A)MB(A)
is a product of operators

CBB,(l1, A) B,(A),
where /B is a root of (B, Ao). It is enough to prove the estimate if G is replaced by Mp.
An estimate of the sort we need appeared in [1], but the proof was omitted. Write

cBf( 1, A) /B(A) = MB(A) JBj^(A)
= frB,(A)-I
= CB(1, A)-1.

We need to estimate the norm of this operator when (I, Re(A))<(f, A1). This is the
same as estimating the norm of cB B(1, A)-' in any region

(f, ReA)>b, bER.
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It follows from the results of [3] that the inverse of the determinant of CBIB|(1, A) is a

constant multiple of a product of functions

F(r- (I, A)+y)
F(r-l(3, A)+v)'

with ,, v E C and r a positive real number. Therefore by the result we quoted above, any
matrix coefficient of CB B(1, A)-I is a linear combination of such products. It is known

that

lim F(z+a) -alogz=, argz[r-6Izli- r(z)

for any a E C and 6>0. It follows easily that for any b we can find constants c and n
such that

I z+) < c(1 + IZI)nF(r-'z+v)
whenever IzI is sufficiently large and Re(z)>b. Since r(r-lz+u)/Ir(r-z+v) has only
finitely many poles in the region Re(z)>b, we can choose a polynomial l(z) and
constants c and n such that

rW(r lz+) '< c( + Izl)n,(r-z)(r'z+v)
whenever Re (z)>b. The lemma follows. Q.E.D.

LEMMA 5.3. Fix e>0 and Al E a. Then we can find a polynomial I(A), which is a

product of linear forms

(~, A)-r, E Z+(AB), rER,

and constants c and n, such that

Ill(A) rB(a, F, A)II < c(1 +IIAlI)nIIIII a(RCA-B)
for all

E ao, a
E Ag(B) and A a c such that ReA E Al-ao*B).

Proof. We can choose Ho such that for any a E AB, a(Ho) equals e/2. Then for

5EZ+(AB) and mu as in the proof of Lemma 5.1, e(HO) equals e½2m . If a belongs to
Ag(B),

a- e) -Em E = e-Em'

3- 838282 Acta Mathematica 150. Imprimd le 30 Juin 1983
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It is clear that

e2
E Z+(AB)

is finite. Now, if a is any point in Ao(B), we have

IlrB(a, c, A)]I~< .E II(CBl B (1,A)/B(A) (|) (1) a(Re(A)-LB)
E Z+(AB)

| | ( 1A) (V -a| | (Re(A)-PB)

Our result follows from Lemmas 5.1 and 5.2. Q.E.D.

Suppose that B, B' GE SMo) and that s E Wo. The first part of the proof of Lemma
5.2 can be applied to CB'(B(S, A) to show that the singularities of this function also lie

along hyperplanes (fi ,A)=r, for fB a root of (G, Ao) and rE R.

LEMMA 5.4. Suppose that C is a compact subset ofAo(B'), that C* is a compact
subset of a, c and that s E Wo. Then there is a polynomial 1(A), which is a product of
linear factors

(AA)-r, E Z(AB), rE R,

such that the series

l(A)EBIB,(a,$,A)= Il(A)(CBIB(s, A)()(1) a(sA--B')
~E Z+(AB,)

converges absolutely uniformly for a E C and A E C*. In particular, the function

l(A) EBB, (a,I, A)

is defined and bounded for a E C and A E C*.

Proof. We know that

CBIB, (s, A) = FB,' (sA-QB) CB'IB(S' A).
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We can certainly estimate rB,, (sA-OB') on C* by Lemma 5.1. The lemma is then
proved the same way as Lemma 5.3. Q.E.D.

This last lemma tells us that the functions EBJB,(x, 0, A) are defined for all x in

G_=K.Ao(B) K.

§ 6. Further properties of the functions EB,IBS,
Let A(so) be the space of meromorphic functions from ca,c to 4o whose

singularities lie along hyperplanes of the form (/5, A)=r, where / is a root of (G, Ao) and
r ER. Suppose that B,B'E.(Mo) and sE Wo. We are going to study the class of S-
finite, r-spherical functions on G_ obtained by differentiating functions

EB,s(x, (A),A),A), (A) E A(J o),

with respect to A. For most later applications it will suffice to take B'=B and s=1.

LEMMA 6.1. Suppose that ¢(A) E (40). The meromorphic function
EB,B, s(x,(A), A) is regular at A=Ao if and only if each of the functions

CBIB^,(s, A) ¢(A), Z+(AB),
is regular at A=Ao. Suppose that this is the case and that D=DA is a differential
operator on a,c. Then for a Ao(B'),

lim DAEB, S(a,()(A), A)
A--+AO

equals

lim DA(cBB ,(s, A) ()(A)) (1) a( ').
e Z+(A,B) A--A0

Proof. The poles of the functions CB'IB, (s, A) )(A) all lie along hyperplanes
(~,A)=r, for EZ(AB') and rER. By Lemma 5.4, the same is true of the function

EB,'1B,(X, I)(A),A). Suppose that A is a point in general position on the hyperplane
(,A)=r. Set

Au =u(, )-2'1+A, uEC.
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Let r be a small, positively oriented circle about the origin in the complex plane. The
function EBIB,(x, 4?(A), A) will be regular along the hyperplane in question if and only if

fJ uEB'B s(a, (Au), Au) du

vanishes for all aEAo(B') and all nonnegative integers n. By Lemma 5.4 this integral
equals

SEZ+(B)f un(cB'B, (s, Au) 4(Au)) (1)(a(s- eB) du.

By the uniqueness of the asymptotic expansion, the first integral will vanish if and only
if each term in the second series vanishes. This happens for all n~O if and only if each
function CB,IB 5(s, A) ¢(A) is regular along the hyperplane in question. The first state-
ment of the lemma follows. The second statement follows without difficulty from
Lemma 5.4 and Cauchy's integral formula. Q.E.D.

Functions of the form

p(x) = lim DA EBIB,(x, (A), A), xEG_,

with ¢(A) and DA as in the lemma, will arise later. It is an easy consequence of
formula (4.7) that the orbit OG(qf) is contained in oG(T, Ao).

N. Wallach has shown that the only singular hyperplanes of the functions

CB,,B c(s, A) are actually of the form (f, A)=r, where / is a root of (G, Ao). His proof (not
yet published) uses Verma modules. We will need this result, so we shall include a
different proof which is based on the differential equations (4.2).

LEMMA 6.2. Suppose that <&(A) is a function in A(so). Then the singularities of
the function

EB'IBS(x,4?(A), A)
lie along hyperplanes of the form (i, A)=r, where / is a root of (G, Ao) and rE R.

Proof. Fix a singular hyperplane of the function. It is of the form (i, A)=r, for
E Z(AB') and r R. We must show that ~ is a multiple of a root of (G, Ao). Suppose

that this is not so. Let A be a point in general position on the hyperplane; define A,,
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u E C, and r as in the proof of the last lemma. Then there is a nonnegative integer n

such that the function

(p() = fUnEBIB',s(X, D(A), Au) du, xE G,

does not vanish. Suppose that a EAo(B'). In view of Lemma 5.4 we can write (p(a) as

E
u

(CB'IB' (S, Au) (I(Au)) (1) * a "' du.
E Z+(AB,)

Remember we are assuming that ~ is not a multiple of a root of (G, Ao). Neither of the
functions CB'jB(S, ) or ('.) has a singularity along the hyperplane in question, so that

(CB'tB(S, Au), (Au)) (1)

is regular at u=0. It follows that the first term in the expansion for qp(a) vanishes.
Therefore the principal exponents of q0 are all of the form sA----gB for nonzero
elements ,EZ(AB'). Then by Lemma 4.1 any point in OG(q) is contained in a set
OG(r,sA-;), for some =*0. This latter set can also be written as OG(r,A+1I) for
another nonzero element 51 in at.

On the other hand, we can write

w(x) = lim 2 ( d)k(un+k+ EBIBs(X (Au), A)),
u.*0(k+ 1)! \du

for any large integer k. By the remark following the last lemma, OG(p) is contained in
OG(r, A). It follows from this that there are elements i, 2Efk, t E W and aE at,
14o0, such that

A+I+ini = t(A+il2).

Now we can write
A =X+

where A is a point in general position in the subspace of at, c orthogonal to 4, and X is a
vector parallel to 4. The fact that A is in general position means that t must leave the
subspace pointwise fixed. Since the subspace is of co-dimension 1 in a c and 4 is not a

multiple of a root, t must leave a ,c pointwise fixed. In particular, A=tA. Therefore

4l+il = itr2.
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Since 1lis a nonzero vector in a$, while it 22-ill belongs to ibk we have a contradic-
tion. The vector 5 must then be a multiple of a root. Q.E.D.

COROLLARY 6.3. Suppose that FB(A) is an entire function from agc to 0o. Then
the singularities of the function

rB(x, FB(A), A)

lie along hyperplanes of the form (3, A)=r, where P is a root of (G, Ao) and rE R.

Proof. This follows immediately from Lemmas 5.2 and 6.2. Q.E.D.

In fact, it follows from Cauchy's integral formula that the polynomials 1(A) in
Lemmas 5.1, 5.2, 5.3 and 5.4 can all be taken to be products of linear factors

(3, A)-r,

where once again / is a root of (G, Ao) and r E R.

§ 7. The space i(G_, r)

Suppose that for a function ¢(A)E At(s0) and a group B E (Mo), the function

A- EBIB, 1(x, D(A), A), A6, c,

is regular at Ao. Then if D=DA is a differential operator (with respect to A) on a*,c,
the function

qp(x) = lim DA EBIB I(x, ¢(A), A)
A--,A

is a T-finite, r-spherical function from G_ to V,. Let s(G_, r) be the space spanned by
functions of this form. It is infinite dimensional. However, suppose that o is any finite
union of W-orbits in t and that d is an integer. Let o,d(G_, r) be the space of
functions of the form

91 + ...+(n

where for each i, cpi is a function in i(G_, r) with the property that

(z-pZ(Vi))di = 0, z E ,
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for some point vi in o. It is a finite dimensional space. If (P is as above, and d=degD,
then (p belongs to oDT,^0d(G-, t).

The space s(G-,r) is independent of B. Suppose for each i, l<i<n, that
,(A) E As(do), that Di is an analytic differential operator on ac, c that Bi, B. e f(Mo)

and that si, s E Wo. Suppose they are such that the function

> (Di)AE,8wj (X I(A), siA), A E c*c

is regular at Ao. We shall show that its value at Ao belongs to i(G_, r). Fix B EA(Mo).
Then in view of (4.4') and (4.5'), we may assume that BI=B and that s'=1. But

> DiEBis(, ,i(A), A)

equals

DEBIB, (x, OcBBi(s,, A) i(A), A).

Let l/(A) be the product, over all roots P of (B,Ao), of the factors (A-Ao, f)N. For
every positive integer N there is a differential operator DN such that

lim DN(lN(A)f(A)) =f(Ao)

for every function f which is regular at Ao. (For example, if (u , ..., uk) is a system of
co-ordinates on a c around Ao, and cul ... uk is the lowest term of IN(A) relative to

the lexicographic order on the monomials in (u1, ..., Uk), we could take

D Nc-l(n,)!... (nd)!),-lfu)n... c9 ~nk.)au, aukd )
If D is an analytic differential operator of degree no greater than d,

D = /N(A)Do N_(A)-1

is an analytic differential operator. Choose d=max {degDi}. Then

lim > (Di)AEBIB., si(x, (A), A) (7.1)
A--)AO i.'
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equals

lim E (DNDi), EBIB, (x, /N-d(A) cBIB,(Si, A) i(A), siA).A---A0

The function whose value at siA is

IN-IA) 0CBBi(Si, A) Fi(A)

certainly belongs to J(Mo). IfN is sufficiently large

EBIB I(x, IN-d(A) OCBIBi(Si A) Fi(A), Si A)

is regular at A=Ao. This means that the function (7.1) belongs to d(G_, r), or more
precisely, to o(r^,A),d(G-, r).

As a particular case, we have

LEMMA 7.1. Suppose that ¢(A) is an analytic function from ao,c to ao. Then if
D=DA is a differential operator (with respect to A) on at c, and BE SMo), the
function

p(x)= lim DAEB(x, (A),A), xEG, (7.2)
A--*AO

belongs to i(G_, r).

Proof. The function q(x) equals

lim DA ( EBIBS(x, (A),A)
A--Ao s Wo

The lemma follows from the discussion above. Q.E.D.

The function qp(x) defined by (7.2) is the restriction to G_ of a i-finite, r-spherical
function on G. Let s(G, r) be the space spanned by functions on G of this form.
Lemma 7.1 tells us that by restricting functions in d(G,r) to G_ we obtain an

embedding of i(G, r) into (G_, r). We can define

oO(,(G, r )= sd(G,T) o, d(G, ).

One would expect (G_, r) to be the space of all i-finite, r-spherical functions defined
in a neighborhood of infinity in G, while A(G, r) ought to be the subspace of such
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functions whose domains extend to all of G. However, we will not investigate this
question here.

There is the third space, sp(G, r), which we introduced in § 2.

LEMMA 7.2. Any function cp E cusp(G, r) is a sum offunctions of the form

EB(X, (), A), B E 9(Mo), e.sEo, A aec.

Proof. The lemma is essentially Harish-Chandra's subquotient theorem. We can

assume, as in § 3, that V,=Hom(V1, V2) for irreducible representations (rl, V1) and

(r2, V2) of K. We can also assume that

9(x) = sJtr(x)s1,

for an irreducible square integrable representation (r, Us) of G/AG, and maps
s EHomK(VI, UT) and s6E HomK(U7, V2). Then Xr is equivalent to a subquotient of
IB(a,A), for some B, a and A. More precisely, if g=Lie(G), there is a (g,K) isomor-
phism A from the (g, K) module associated to n and a subquotient of the (g, K) module
associated to IB(a, A). It follows that if k EK and X E g,

s2r(k) 2r(X) S = s'A- I(a, A, k) IB(a, A, X) As1
= 2*IB(r, A, k) IB(a, A, X) 21

for elements l E HomK(VI, YB(a)) and X2EEHomK('B(a), V2). By taking exponen-
tials we obtain

9(x) = sIjr(x) S

= ZIB((a, A,x) 1.

In the notation of §3 we have 1E=Ws and*-T* for unique elements

SI E HomM (V1, Uo)and S*E HomM (Uo, V2). It follows from (3.3) that

q(x) = EB(x, (, A),

if ,E4o is defined by
((m) =Sa(m)S1, mEMo. Q.E.D.

Thus, icusp(G, r) is a subspace of i(G, r). We have inclusions

acusp(G, ) c: s(G, r) c s(G_, r).



42 J. ARTHUR

IfME.A(Mo) we can of course define the spaces i(M, r) and As(M_, r). They each
consist of Ds-finite, rz-spherical functions on M. We can define the Eisenstein
integral of any qp E s(M, r) by the familiar formula

Ep(x, 9p, A) = fK r(k) q(kx) e(+QP)(HP)) dk,
tA\K

for PE A(M), xEG and A E aSc. Suppose that M, is a Levi subgroup which is
contained in M, and that R E M(M,). Then P(R) E AM,). The Eisenstein integral has
the transitivity property

EP(ER(qp, A*),A) = EP(R)(x, 9,, A+A),

for E i(M*, r), A* E a.f*,c and A E ai, c. If we let M*=Mo, and look back at the last
lemma (with G replaced by M) we see that the definition of Eisenstein integral is
consistent with the definition for the subspace scusp(M, r) of 4(M, r). The integral
formula, however, will not extend to functions v E 4(M_, r). Nevertheless, a theorem
of Casselman, which we will discuss later, gives another method of extending the
definition to functions S(M_, r). It will be crucial to us.

LEMMA 7.3. Suppose that qp is a function in scusp(M, r) which equals ER((), A),
for some REAPM(Mo), 4Eso0 and AEag,c. Then if A is a point in ac,c in general
position and P, P' E A(M), we have

JP1Ip(A) =ER(Jp,(R)tp(R)(A+A) (F, A), t =l, r.

Proof. In the notation of the proof of Lemma 7.2 (but with G replaced by M), we

can assume that

(p(m) = W. IR(, A,m)V,, mEM.

Now IR(a, A) is of course a representation of M. By the transitivity of induction,

Ip(IR(a, A), A) = Ip(R)(, A+A)

for any PE (M) and E aX,c. Moreover, for the intertwining operators between
induced representations, described in § 3, we have

Jp, p(IR(a, A), A) = JP'(R)IP(R)(O, A+A).
This is an immediate consequence of the integral formula for the intertwining opera-
tors. The lemma follows from formulas (3.1) and (3.2). Q.E.D.
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Chapter II

§ 1. A function of bounded support
We are now ready to begin the discussion which will eventually culminate in the Paley-
Wiener theorem. The main problem will be to prove surjectivity of the Fourier
transform. By means of a kind of inverse Fourier transform we will have to produce a
smooth function of compact support. In this section we will verify the compactness of

support. The proof of smoothness will have to wait until Chapter III. (The natural
domain of the function obtained in this section will be G_. The task of Chapter III will
be to show that the function has a smooth extension to G. The support in G_ will
actually only be bounded, in the sense that its closure in G is compact.)

Suppose that B E P(Mo). We shall say that a point XB E at is sufficiently regular in
-at(B) if for each a E AB the number -(a,XB) is sufficiently large. Recall that the
function rB(x, 0, A), introduced in I, § 5, is meromorphic in A. By Lemma 1.5.3 it has
only a finite set of singular hyperplanes, independent of x and 4, which meet any
translate of -at(B). It follows that rB(x, 4, A) is analytic for all A such that Re (A) is
sufficiently regular in -a(B). Suppose that

FB: at,c

is an entire function which is rapidly decreasing on vertical cylinders. By this we mean
that for every pair of positive integers A and n,

sup (IIFB(A)l(+ll+IA)n) < oo.
{A a* IIRe (A)||l A}

Let XB be a point in at at which rB(x, F, A) is analytic. Then the function is analytic on
XB+iat, and for any x E G_ the integral

6I rB(x, FB(A), A) dA
XB+ia~

converges, by Lemma 1.5.3. It follows from this lemma and Cauchy's theorem that as

long as XB is sufficiently regular in -ac(B), the integral is independent of XB.
Now suppose that

F = {FB(A): BEP(Mo)}
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is a collection of entire functions from aOc to AO indexed by S(Mo). Assume that each
function is rapidly decreasing on vertical cylinders. Define

FV(x)= M |I M0o)l' rB(x,FB(A), A) dA, xEG,
BEV.(M0) +i*B+

where for each B, XB is a point in at which is sufficiently regular in -at(B). (We let
19(Mo)l denote the number of elements in the set A(Mo).) Then FV is a smooth T-

spherical function from G_ to VT. It is independent of the points {XB}.
IfN is a positive number, let G(N) denote the subset of G consisting of all points

kl expH k2, kl,k2EK, HE ao,

for which IIHII<N.
THEOREM 1.1. Suppose that F={FB[A): B E(Mo)} is a collection of entire

functions from a*, c to 0o. Assume that there exists an N such that

\IFIIN,I = sup (IFB(A)II e-NIIReAll( 1 + AII)n
{AEac,BEE(Mo)}

is finite for every integer n. Then the support of the function Fv is contained in G(N).

Proof. Fix BE P(Mo). Let H be any point in ao(B) such that IIHIJ>N. Since
G_=K Ao(B) K, the theorem will be proved if we can show that the function

rB(exp H, FB(A), A) dA (1.1)

vanishes. Here XB can be any point in ao which is sufficiently regular in -a&(B). By
Lemma 1.5.3 there are constants co and no such that the norm in V, of the expression
(1.1) is bounded by

c'e(XB-QB)( ffX. (1 +lIAI)n° IFB(A)II dA.
X+ia*

This expression is in turn bounded by

CoFI,ne(XB-QB)(dH NIBII (1+li nl)°-dAco -IFII, ie X a (I+ IIAII)" dA,
J+ia*0
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for any n. These inequalities are true uniformly for all points XB sufficiently regular in
-a(B). We can choose n such that

JI (1+l+IA)no°dA
XB+ia*

is bounded independently of XB. Now, if ao were identified with its dual space at by
means of the inner product (,) we could always choose XB to be a large negative
multiple of H. Then we would have

XB(H) -IIXBI' I1HII.
By taking this negative multiple to be large enough we could ensure both that XB is
sufficiently regular and that the norm is as large as we want. It follows that the norm of
(1.1) is bounded by a constant multiple of

llXBll(N- )IIhl)

Since IIHMI>N, and IIXBII can be made arbitrarily large, the expression (1.1) van-
ishes. Q.E.D.

§ 2. The residue scheme

The function FV(x) is a sum of integrals over contours XB+iag. Our aim is to deform
these contours to new contours, eB+ia8, where EB is a point in a4 which is very close
to the origin. In this section, we shall set up a formal procedure for doing this. We will
obtain residues of the functions rB(x, F(A), A), new functions which could reasonably
be called Eisenstein systems, in analogy with Chapter 7 of [11 b]. The procedure we
follow does bear some formal resemblance to that of Langlands. However, ours is
much the easier, for here there are few of the serious analytic difficulties that arise in
the theory of Eisenstein series. Moreover, we will eventually be able to appeal to
Harish-Chandra's spectral decomposition of L2(G, r), whereas the main purpose of

Chapter 7 of Langlands' treatise is to establish the spectral decomposition of the
underlying Hilbert space.

Let us call a subspace b of aO a root subspace if it is of the form a*t for some Levi
subgroup ME (Mo). Then the root subspaces of a* are precisely those subspaces
which are intersections of hyperplanes of the form {A E a/: (a, A)=0}, for a root a of
(G, Ao). If b is a root subspace, we shall write b' for the orthogonal complement, with
respect to (,), of b in at. As always, we shall write bc and b6 for the complexifications
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of b and b-. We shall also write cham(b) for the set of chambers in b; these are the
connected components of the complement in b of the hyperplanes {A b: (a,A)=0},
where now a is a root of (G, Ao) which is not orthogonal to b. (Let us denote the set of
such roots by Jb(G, Ao).) For each pair (b, c), c E cham (b), there is a unique parabolic
subgroup P e (Mo) such that b=ap and c=a*p(P).

We will be defining meromorphic functions on the spaces bc with possible poles
along hyperplanes (a, A)=0, a being a root which lies in Zb(G, Ao). This will prevent us
from integrating over the imaginary spaces ib. We are therefore forced to fix, for each
root subspace b, a finite nonempty set W(b) of points in b. We assume that each point in
W(b) is very close to the origin in b, but does not lie on any of the hyperplanes (a, A)=0.
Assume also that each chamber in b contains an equal number of points in W(b).
Finally, suppose that the sets are such that if b' =sb for some s E Wo, then (ft')=sg(b).
For a typical example, take W(a4) to be the orbit under Wo of a regular point in a of
very small norm. We could then define W(b) in the following way. Given a chamber c in
b, let Co be a chamber in ca whose closure contains c. Let ec be the projection onto b of
the unique point in (4a) n co. It belongs to c and does not depend on Co. Take W(b) to
be the set of points {(c:ccham(b)}. This example would almost suffice. We have
taken a more general definition of the sets {W(b)} only to accommodate a later
induction argument.

In addition to the sets {g(b)}, our procedure will depend on a group B in S(Mo)
and a point X=XB in at. We do not yet need to take X to be a sufficiently regular point
in -4a(B), as in § 1. We will insist, however, that it be in sufficiently general position in

b, in a sense to be made precise presently. For every root subspace b we are going to
define a finite collection YB(b,X) of triplets T=(%T, XT, rT). We shall first describe the

triplets and then give their definition. The first component of T will be an affine

subspace

AT= AT+ b,

of at, the translate of b by a point AT in bL. The second component will be a point XT
in %T. The third component will be a function

rT= rT(x,(), A)

with values in V,. The variable x belongs to G_, A belongs to 2T.,C=AT+bc, and 1(

belongs to Hom (S(bc), dO), the space of linear maps from the symmetric algebra onbI
to Mo. This vector space is infinite dimensional. However, let Sd(bC) be the space of
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symmetric tensors of degree at most d. We will be able to choose d, independent of x
and A, so that r(x, ',, A) depends only on the projection of 4 onto the finite dimen-
sional space Hom (Sd(bc), d0). The function will be linear in 0 and meromorphic in A.
Its singularities will lie along hyperplanes of the form

{A E T:(a,A) =r}, aEb(G,Ao), rER.

As a function of x, rA(x, $, A) will belong to s(G_, r).
Our definition will be one of decreasing induction on dim b. We take -B(a, X) to

consist of the one triplet,

(a,X, rB(x,aO, A)), xEG_, Edo, AEaOc.

In general, let us write 3~B(k, X) for the union over all spaces b of dimension k of the
sets 3aB(b,X). Assume inductively that 3B(k+ 1,X) has been defined, and that each
function

rr(X, 1p, Al), T1E S3B(k+ 1,X),

has the properties described above. Then ~B(k, X) is defined to be the disjoint union
over all root spaces b1 of dimension k+ 1, over all triplets T1 E TB(b1,X) and over all
points e in '(b1) of certain sets. The set indexed by b1, T1 and e will be the collection of
all triplets T=(1T, XT, rT), in which WT ranges over the singular hyperplanes of

rT,(x, 1, A1), Al E b1c,

which meet the line segment joining XT, and AT,+, XT is the intersection of WT with
this line segment, and rT is the residue of -l((bl)-~rT along 2T at XT. More precisely,
suppose the singular hyperplane 91T equals AT+b, for a root subspace b of dimension
k. Let v be the real unit vector in b1, orthogonal to b, whose inner product with the
vector AT,+e-XTr is positive. It defines a basis of the one dimensional complex vector

space b&/bt c, and allows us to identify any vector $ in Hom (S(bC), i0) with a formal

power series in one variable,

E nZ>
n=0
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with coefficients n, in Hom (S(b c), 0). If A is a point in general position in r1TC,
r(Ax, D, A) is defined to equal

-l~(bl)l'(2ri)-' E znrT,(x, n,̂A+vz)dz, (2.1)
n=oJr

where F is a small positively oriented circle about the origin in the complex plane. It is
clear that the series is actually finite. It is also clear that the new functions r7Ax, (Q, A)
possess the properties described above.

The points in each set W(b) were assumed to be regular, and very close to the
origin. In view of the nature of their singularities, the functions

rTx, (D, A), T E 3-(bX),

are all regular at each point in W(b). Notice that a small perturbation ofX will induce
corresponding small perturbations in each of the points XT. The precise property that
we will require of the general position ofX is that each of the functions r7Ax, (, A) be
regular at A=XT, and that all the singular hyperplanes which meet the line segments
joining XT and AT+e, E E W(b), do so at distinct points.

For any TE STB(b,X) there is an integer d such that the function

rT(CI,A):x--->rTAx,,,A), xEG_,

belongs to oA),^ (G_, r). Notice also that

r7(xa, D,A) = rA(x, (, A)a, (2.2)

for any a in AG, the split component of the center of G. We can give estimates for these
functions. With the aid of the positive definite form (,), we can define the norm, ll[11d,
of the projection of any vector ( e Ho (S(bc), so) onto Hom (Sd(b), sd). Then we

have

LEMMA 2.1. Suppose that C is a compact subset of G_, and C* is a compact
subset of iT. Then we can find a polynomial I(A), which is a product of linear factors

(a,A)-r, aE6o(G,Ao), rER,

and constants c and n, such that

rll(A) rAx, m, A)| < c(1 + I|Aal)n. llid,

for all (D E Hom (S(bc), 0o), x E C and A E C*+ib.
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Proof. The lemma is a consequence of Lemma 1.5.3, the remark following Corol-
lary 1.6.3, and the inductive definition of r(x, E, A). Q.E.D.

§ 3. The functions Fi

The notion of residue we have adopted was copied from [11 b]. At first glance it might
seem odd, but it is designed to accommodate the residues of functions rB(x, FB(A), A)
where, as in § 1,

FB: aS,c --->

is an entire function which is rapidly decreasing on vertical cylinders. Given
TE TB(b, X) and A E AT, c, we can expand the analytic function

r)FB(rl+A), rEbc,

on bc as a Taylor series about i7=0. This results in a vector in Hom (S(bc), So), which
we denote by (dTFB)(A), or simply by dFB(A). Suppose that as in the inductive
definition of § 2, T is obtained from a singular hyperplane of the function rT,(x, I, A1)
which meets the line segment joining XT, and AT,+e. Then if ==(dTFB)(A), the
residue (2.1) is just

-W(b1)-'(2ri)- rT,(X, (dT, FB) (A+vz), A+vz)dz.

Any derivative of FB(A) can be estimated by the Cauchy integral formula in terms
of FB(A) itself. It follows from Lemma 2.1 that for a given TE -B(b, X) and a positive
integer N, there exists a constant CN such that

ll(A) r(x, dFB(A), A)| < clN(1+ JAlIl)-N, (3.1)

for any xEC and A E C* +ib. Here C, C* and 1(A) are as in Lemma 2.1. We can assume
that 1(A) vanishes only on the singular hyperplanes of rT which meet C*. In particular,
if T1 is as above, and e E (b1), the integrals

fx rriF(X,(d FB) (A1), AI) dAl

838282Acta Mathematica 150. Imprim le 30 Juin 1983
4- 838282 Acta Mathematica 150. Imprimn le 30 Juin 1983
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and

A+E+ib rT(X, (dT FB) (A1), A) dA
Tl++ibi

both converge. Their difference, when divided by IW(b1)l, is a sum of integrals

rx, (dTFB) (A), A) dA, (3.2)
JXT+ib

the sum ranging over the TE 3TB(k, X) indexed as in § 2 by 61, T1 and e.
Now suppose that

F={FB(A): B E(MO)}

is a collection of entire functions, each rapidly decreasing in vertical cylinders. For
each B, choose a point XB to be both suitably regular in -a4(B) as in § 1 and in general
position as in § 2. We have defined the function

FV(x) = IMMo)- I f rB(x, FB(A),A)dA, xeG..
BE J(Mo) JX+ia

In this expression, and in the subsequent residues as well, we shall move the contours

of integration. We will be left with a profusion of integrals over contours AT+E+ib.
Suppose that ? is a class of associated parabolic subgroups in SMo). Write prk () for
the dimension of Ap, P being any group in O. Let rt (9) be the set of root spaces b such
that b=ap for some group P 9P. For any x EG, define F;(x) to equal

I|M0)l-1 E 2 E fE rl(x, dFB,(A)dA.
BEf(Mo) bErt(*) TEr.(b,XB) eE W(b) A+e+ib

Then F; is a r-spherical function from G- to VT.

LEMMA 3.1. For any integer n, FV(x) equals the sum of

E F(x) (3.3)
{(Y: prk ?>n}
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and

P(M0)[- E E E |f rr(x, dFB(A), A) dA. (3.4)
B {b:dimb=n} TE B(b,XB) T+ib

(In the summations, 9 stands for classes of associated parabolic subgroups, and b
standfor root spaces.)

Proof. The lemma is established by decreasing induction on n. If n=dim at, the
first of the two given terms vanishes, while the second one, (3.4), is by definition equal
to FV(x). Suppose then that n<dima and that the lemma holds with n replaced by
(n+ 1). In expression (3.4) (with n replaced by (n+ 1)), decompose the integral into I|(b)|
equal parts, one for each point e in W(b). In each of these, change the contour of
integration from XT+ib to AT+E+ib. The contribution to (3.3) from integrals taken
over the new contours equals

E OF .(x).
{(:prk(g)=n+1}

The residues, terms of the form (3.2), just add up to the expression (3.4) (with the
original n). The lemma is proved. Q.E.D.

If we take n<dim at, the expression (3.4) vanishes. We obtain

COROLLARY 3.2. F(x) =E Fv(x).

It follows from (2.2), and the classical Paley-Wiener theorem applied to AG, that
for any 9 and x E G_, the function

a-- F(xa), a EA,

is of compact support. Define

Fcusp(G, x) = FG}(xa)e'(G(xda, A E a*
G

In the formula

Opwo) E ,i(a*)' > a rl(xa, dF(A),A)dA
B TE 3B(s, XB) e '(qc) ATr+e+ia
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for F'G}(xa), we can replace each contour AT+E+ia& by AT+iac. We obtain

FiG}(xa) = )(MO)-1 Jf r(xa, dFB(A), A) dA.
B T JAT+iC

It follows from the Fourier inversion formula on AG that

Fcusp(A x) = I(Mo)l r(x, dFB(Ar+L), AT).
B TE3B(q,XB)

In particular, the function

Fcp(A): x-- Fcusp( x), x E G_,

belongs to A(G_, r). It is also invariant under AG.
The notation, however, is only a promise of things to come; at the moment,

FcUsp() does not extend to a smooth function on G_, so it does not belong to

Mcusp(G, r).
All the discussion so far in Chapter II can be applied to any Levi subgroup M in

£t(Mo). A root space, b, for M is just a root space for G which contains ad. We have
already fixed the sets W(b) of points in b, so for RE M1(Mo) we can define the
collection SR(b, X) of triplets T=(rT, XT, rATm, Q, A)) exactly as in § 2, but associated
to M. Suppose that P E (Mo). Given the collection F= {FB(A): B E A(Mo)}, let

Fp = {FR(A) = FP(R)(A): RE 9MP(M0)},
the subset ofF indexed only by those B E g(Mo) such that BcP. We can then define the
function Fp(m) on M_ as in § 1. Similarly, we can take the subset

{XR=X(R): R E yP(M0)} of {XB: B E A(Mo)}. For each associated class Rt of parabolic
subgroups of Mp we have the functions Fp,,. We also have the functions

Fp, cusp(A), E iaMp,
on ((M_, ).

§ 4. The theorem of Casselman

Suppose thatM is a Levi subgroup in Y(Mo). The Eisenstein integral provides a natural
lifting of functions in i(M, r) to functions in 1(G, r). A recent theorem of Casselman
generalizes this lifting to one between the spaces s(M_, r) and s(G_, r).
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Let s be a coset in Wo/Wmo and let P be a group in i(M). Choose any group
BE (Mo) which is contained in P and let R=BnM. Then B=P(R). Let SB be the
unique representative of s in Wo such that sB(a) is a root of (B, Ao) for every root a of
(R, Ao).

THEOREM 4.1 (Casselman). (i) Suppose that 4(A)E J(do) is such that the func-
tion

A-> E/e l(m, ¢(A), A), A E ac, m E M_,

is regular at A=AO. Then ifA is a point in general position in at,,c the function

A- EB,, S(x),(A)A+),A+Ea, cxEG_,
is also regular at A=Ao.

(ii) IfD=DA is any differential operator on at c,

EPB,(x, q,).) = lim DAEBIB S,(X, ¢(A),A+A)A--AAo

depends, as the notation suggests, only on the function

9p(m) = lim DAER. 1i(m, ¢(A), A), (4.1)A--Ao

and not on its realization in terms of ¢(A).
(iii) The map

9-, EP, B, s(X, QA)
extends to an injective linear map from s(M_, r) to the space of meromorphic
functions of A with values in s(G_, r).

The usual treatment of asymptotic expansions of Eisenstein integrals via recursion
formulas ([13]) does not seem to lead to the theorem. In fact, from this point of view the
theorem is quite surprising. Casselman actually finds a new formula for the asymptotic
expansion of the Eisenstein integrals

EB(a, , A+)A), aEAo(B), E6do,

in terms of the asymptotic expansion of ER(a, ,, A). The leading terms of his formula
are just the analytic continuations of the Knapp-Stein intertwining integrals. The other
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terms are obtained from more general integrals. If A is allowed to approach Ao, the
formula for EB(a, O(A), A+i) makes it possible to express the function Ep B, (x, 9p, ) in
terms only of the function qp(m), and not its realization (4.1). (See [2 a], [2 b].)

Suppose that o is a finite union of WM-orbits in bf. If A E ajc, let OG(o, A) be the
set of orbits under W of the points v+/A, where v is a point in o. It is a finite union of W-
orbits in hb. If (q belongs to siod(M_, r) then the function

EP, B,s(9,(p: x-->EP, B,s(X, , A), xE G_,

belongs to sOGO, ),(G_, r).
Suppose that t is an element in Wo. Retaining the notation of the theorem, we set

M =tM. Then tst-1 is a coset in Wo/Wo'. We shall show that

Ep tB, tst-(tq, tA) = EPB,s(4i). (4.2)

For if p is given by (4.1), tcp equals

lim DA(tERW 1(D(A), A)) = lim DA ERtR, 1(tO(A), tA),
A--AAo A--A%

in view of (1.4.4') and (1.4.5'). (See also (1.2.1').) Now,

(tst )tB = tSB t-,
so that

EtP, tB, tst- l(tq, t]- lim DAE, (t~(A), A+ tA)A-*Ao EtBItB,tsBt-

= lim DAEBW, B(S(A), A+i) = Ep B, s(Q, ),
^~Ao

again by (1.4.4') and (1.4.5'). This establishes (4.2). Consider the special case that t is an
element of WO'. Then t9q=q9, t=A,, and the coset tst-~ equals ts. We have

EpB,s((Q, = EP, tB, s(Q, 4 (4.3)

Thus, the map Ep, B, does actually depend on the minimal parabolic subgroup B, and

not just on P.
We have agreed that sA(M, r) is a subspace of I(M_, r), so Ep, B, s(, A) is defined

for q.E s(M, r). In this case, the Eisenstein integral Ep(, A) is also defined. They are

related by the next lemma.
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LEMMA 4.2. If q E s(M, r) we have

Ep(9p, A) = E EP,B,s('),S
s E Wo/Wr

for any group B Eg(Mo) with BcP.

Proof. Let R=MnB. We can assume that

q(m) = lim DA ER(m, D(A), A)
A^A`

= lim DA ( > ER, r(m, (A),A)).A-*Ao \rEWo /

In the notation used in the discussion prior to Lemma 1.7.1 (but with G replaced by M),
this equals

jlim (DND)AER' 1(m, N-d(A) °cBB(r, A) (A), rA).
reW, A'-Ao

Then

E EpB,s (X ,q)
sE Wo/ WiM

equals

~-~ lim (DN))^EBIB, sB(X IN-d(A)CB)B(r, A) 4(A), rA+A)
s r A--A

lim (DND)A EBIB, sBr(X, /N-d(A) D(A), A+i))A'--+A s, r

by (1.4.6'). This is just

lim ((DN)A lN(A) o DA) EB(x, Q(A), A+A)
A--%AO

= lim DAEB(x, (A), A+A)
A--AO

= lim D^AE(, ER(((A), A), A)
A^-AO

= Ep(x, p, A).
The lemma is proved. Q.E.D.
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Motivated by the lemma, we define for each q E (M_, r),

Ep(x, p, ) = E Ep,2(B %A)S
s E Wo/WO

for any group BE A(Mo) with BcP. It is independent of B. For any other group
Bl E A(M), with BlcP, will equal tB for some tE Wom. By (4.3),

Z EpB,,. EP B 's(X, ).
s Wo/0 WO sE W0o Wo

A change of variable in the sum over s shows that this is just Ep(x, p, A). Thus, the
Eisenstein integral can be extended to a map on sd(M_,r). However, if E si(M_, r),
Ep(x, 9p, A) will in general have poles in A, unlike the Eisenstein integral. They lie along
hyperplanes (a, A)=c, where a is a root of (G, AM) and c E C.

§ 5. Some definitions

In this section we shall unravel some interesting consequences of the theorem of
Casselman. It turns out that all the maps defined in I, § 2 on cusp(M, r) can be
extended to the space 4(M_, r). Fix groups P and P' in AM). The first step is to show
that the operators

JP',P(I): dcusp(M r)---,cusp(M, ), t=l, r,

can be extended to the space 4(M_, r).

THEOREM 5.1. (i) Suppose that (I(A) EC ((o) and R E M(Mo) are such that the

function
A--> ERIR (m,I(A),A), AEa c, mEM,

is regular at A=Ao. Then if A is a point in general position in a, c, and t=l or r, the
function

A-- ERR i(m,J,,(R)IP(R)(A+A) ¢)(A), A), A Ea, m EM,

is also regular at A=A0.

(ii) IfD=DA is any differential operator on at c,

(Jp,lp(A) Pq) (m) = lim DA ERiR I(m, JPh(R)IP(R)(A+iA),(A), A) (5.1)
A--A0
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depends, as the notation suggests, only on the function

cp(m) = lim DAERIR,(m, ¢(A), A) (5.2)

and not its realization in terms of 1(A).
(iii) The map

(JP,,p(A)Qo) (m)
extends to an injective linear map from I(M_, r) to the space of meromorphic
functions ofA with values in si(M_, r).

Proof. We shall prove the theorem first in the special case that P'=P. Define
another group Q E 9(M) by

= P if t=l
P if t=r.

Then the function

ERIR, i(m, JP(R)jI(R)(A+) 4((A), A)

is the product of e-A(HM(m)) with the value at m of

ERIR, I(JQ(R)IP(R)(A+A) JrQ)(R)P(A+) ) (A), A+). (5.3)

Let B=P(R). There is a unique coset s in WO/WO such that the group Pl=sQ contains
B. Then if A+A is in general position, (5.3) equals

s- ES'(EBiB,sB((I(A), A+A)) (5.4)

by Lemma 1.4.2. Theorem 11.4.1 tells us that for A in general position,
EBB, SB(((A), A+) is regular at A=Ao. By Lemma 1.6.1 each of the terms in the

asymptotic expansion of

EBIB, B(a, )(A),A+1 ), a A(B),

is regular at A=Ao. It follows from the definition of EP that the function (5.4) is regular
at A=Ao. This proves the first statement of the theorem in the special case under
consideration.

Suppose that Ao is a linear function on aM, c. Let &(M_, rAo) be the subspace of
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si(M_, r) generated by functions qp of the form (5.2), for which the restriction of Ao to
aM is AO. Define a map JplI(A) from d(M_, T, Ao) to itself by setting

JPIP(A) p = s'EP'(Ep, Bs,(, ))ei)'e

for p E s(M_, r, Ao). From Theorem 11.4.1 and the definition of EP'it follows that the

map is well defined and injective. We would like to show that it is linear. This is not
trivial, for although EpB,,(V), A) is linear in A, the map EP' is in general not linear.

Suppose then that

n

4'= 4'i,
i=1

where for each i,

Vi(m) = lim (DI)AERIR I(m, ,i(A), A)
A--Ai

is a function in s(M_, r, Ao). Let M =wM w-. Then Pi E A(Mi). We shall show that

for A in general position, the restriction of any principal exponent of Ep B,,(i, A) to aM

equals s(io+A)-Qp. The case that n=l will of course be included, so the principal
exponents of Ep, B,(Ji, A) will also all restrict to s(AO+A)-Qp, on aM . With these proper-
ties, the formula

n

EI(Ep, BS(), A)) = E EP Bs(,' A))
i=1

will be an immediate consequence of the definition of El1.
Any principal exponent of EpBs(p,l)will be of the form

I=SB(Ai+A)----QB, 1 < i n, CEZ+(AB).

By Lemma 1.4.1 the set OG(T,Y+QB) intersects OG(EP,B,S(QP, A)). However, according
to the remark following Lemma 1.6.1, OG(EpB,(4/, A)) is contained in the union overj of

the sets OG(T, Aj+)). It follows that there are elements ri, rj E bt and t E W such that

M+QBB+iri = SB(Ai+A)- +iri = t(Aj+A+irj).
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Since A is a point in general position in ait,c, t-SB must leave ac pointwise fixed.
Now suppose that H1 E aM,. Then H1=tH=sH for a unique point HE aM. We have

lu(H,) = (t(Aj+A+ihj)) (Hl)-(QB+ i)i) (HI)
= (Aj+A+i))(H)-Qpe(H)
= (Io+A)(H)-op,(HI)
= (S(o+A))-p,) (HI).

Therefore the restriction of u to a, does equal S(GO+l)-QP . It follows that Jflp(p) is a

linear operator on s(M_, r, Ao). It clearly extends to a linear operator on

.s(M_, r)= s(M_, r, A).
A0

Finally, suppose that q is the function (5.2). We must verify the relation (5.1). By
the discussion above, (5.1) is equivalent to the formula

EP'(EpB,,(, A)) = lim DA E(EBiB,s'((A), A+A)). (5.5)
A--,Ao

If a EAo(B), EP, B,s(a, q, A) equals

E lim DA(cBIB, SBA+A) (A)) (1) a(BA)--
EZ+(A ) A--A0

by Theorem 11.4.1 and Lemma 1.6.1. Then (5.5) follows from the fact, just proved, that
for A in general position the principal exponents of EPB,Bs(q, A) have the same restric-
tions to aM, as the function sB(AO+A)-,PI. This completes the proof of the theorem
when P'=P.

The proof of the theorem for general P' can be deduced from this special case. For
suppose that P" is a third group in S(M) such that

d(P", P) = d(P', P')+d(P', P).
Then

d(PF(R), P(R)) = d(PF(R), P'(R))+d(P'(R), P(R)),
so

J,(R)IP(R)(A+A) = Jl,(R)ip,(R)(A+A) J'(R)IP(R)(A+A).
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We therefore need only consider the case that d(P', P)= 1. As a bonus, we will obtain
the usual functional equations

Jptlp(A) = Jp'rp,(A) Jp p(A).

However, if d(P', P)= 1 there will be a maximal parabolic subgroup PL in f(M), for a
Levi subgroup L E (M), such that

JJP,(R)IP(R)(A+ ) = J(RPL(R)(A+f )

(see (I.2.3)). Thus, we are reduced to the case that P' =P (but with G replaced by L),
which was established above. Q.E.D.

COROLLARY 5.2. IfP, P' E AM) and t=l or r, J,lpP(A) is a meromorphic function
of A Eat,c which for any o and d takes values in the finite dimensional space of
endomorphisms of o, d(M-, r). It is independent of the group R E6 A(Mo) used in the

definition. Moreover, if P" is also in A(M),

Jp'lp(A) = Jp,1p'() Jp1pW(A)

Proof. If Q is any group in A(M), it follows from the proof of the theorem that for

any cp,

(JSQIp(A)Jp(X ) )(m)

equals the product of eA(Hm)) with the value at m of

s- 'EP(Ep,B, ((p )). (5.6)

Suppose that R was replaced by rR, for some rE WM. Then B, s, and Pi would all have

to be replaced by rB, rs and rP1 respectively. The expression (5.6) would have to be

replaced by

s r Er (Ep rBrs(')).

By (1.4.1) and (11.4.3), this equals

s-IEPV(EpfB, s(99, I),

which is just (5.6). Therefore fQip(A)Jrlp(A) is independent of R. The independence of

Jp,,,(A) from R follows from the arguments used to prove the theorem. The functional
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equations and all the other statements of the corollary follow also from the proof of the
theorem. Q.E.D.

For any o and d we can take the determinant of the restriction of Jpp(A) to

sfo,d(M-,r). It is a meromorphic complex valued function of A. In view of the
injectivity assertion in the theorem, the determinant will not vanish identically. Thus,
the inverse, Jplp(A)-' is defined; as with Jp,p(A), we regard it as a meromorphic function
which for any o and d takes values in the finite dimensional space of endomorphisms of
sd d(M-, r). We can proceed merrily to define all the funcitons of I, § 2:

cplp(s, ) = sy_,Ip(r-,)Jlp(A),

C°llp(S, A) = cpllp(s, A) Cplp(l, A)-l = sJlp (A) -l'r -1p(A)

°cpllp(s,) = cpllpl(l, sA)-Icplp(s,) = SJsplp()J lslp())-
and

Up(A) = J/lp(A)-lp()-I = Jplp(A)-Jpip(A)-1.
Here s is an element in W(aM, aa); Cp ip(, A), c°p,(s, A) and °cpip(s, A) all map d(M, r)
to Q((Ml)_,,), while /p(A) maps 4(M_, r) to itself. In each case, if cp is of the form
(5.2), the value of the operator at 9p can be expressed by a formula akin to (5.1). The
only such formula we will need is for the operator up().

LEMMA 5.3. Suppose, as in Theorem 5.1, that ERIR i(m, F(A),A) is regular at
A=Ao and that

qp(m) = lim DAERR, I(m, ¢(A), A), m E M_.
A-*Ao

Then ifA is a point in general position in a, c, and P E f(M), the function

A-- ERIR l(m, P(R)(A+A))/R(A)-I(A), A)
is also regular at A=Ao, and

(up(A) p) (m) = lim DAERR, I (m,I p(R)(A+A)[R(A)- '(A), A).
A--)AO
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Proof. By Lemma 1.2.1 we have

3tP(R)(A+A) UR(A)-1 = /UP(R)(R)(A+J/)
= JP(R)I(R)(A+)-IJP(R)IP(R)(A+)- .

Our lemma then follows from Theorem 5.1 and the definition of up(). Q.E.D.

We should point out that the restriction to ,usp(M, r) of any of the operators
defined in this section equals the corresponding operator defined in I, § 2. This follows
from Lemma 1.7.3. All the functional equations of I, § 2 hold for these more general
operators. As functions of A, their poles all lie along hyperplanes (a, A)=c, where a is a
root of (G, AM) and c C.

§ 6. Application to the residues

We want to use the theorem of Casselman to compare the functions r{(x, (, A) with

analogous functions on Levi subgroups. Fix a Levi subgroup M in (Mo), a coset

s E W0/Wm and a group P E (M). Fix also a group BE ^(Mo), BcP. Then the group
R=B nM belongs to SM(Mo) and B=P(R).

Suppose that b is a root subspace of at such that b ==s 1 b contains ac. Let X be a

point in general position in aS. Then X =s 'X will also be a point in general position in

a. We are going to construct a bijection between 3B(b, X) and JR(bI,,X). Suppose
that FB is an analytic function from at c to Ao. To make the notation simpler, we will
assume that

FB(SBA)= OCBIB(SB, A)FB(A), AEa,c.

LEMMA 6.1. There is a bijection
T- T1, TE 3B(bX),

from TB(b,X) onto SR(bi,X1) such that

(i) 9Tl=SB1 T

(ii) XT=s, XT

(iii) EP,Bs(up() rTr(?1, A), A) = r(I, SB(A +)A)),

where Al E AT, A E a* c, and for any FB(A) as above,

= (dTFB) (sB(A +A))
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and

1 = (dT, FB) (Al +A).

Remarks. (1) The third equation is of course an equality between meromorphic
functions in Al and A.

(2) Since sB(a) is positive for each root a of (R, Ao), there is no singular hyperplane
of either OcBIB(SB, A) or 0CBIB(sB, A)-1 which contains at c. In other words, if we first
fix Al and then fix a point E a, c in general position, OCBIB(SB, A1 +A) and

°cBIB(sB, Al +A)- will both be defined. It follows that given a positive integer d and any
vector D E Hor (S(bc),do), we will be able to choose a function FB as above such that
F and (dTFB)(SB(1A+A)) both have the same projections onto Hom (Sd(C), o).
On the other hand, if it is I EHom(S(b c), 0) that we are given, we can choose
FB as above so that 0, and (dT FB)(Al+A) both have the same projections
onto Horn (Sd(b,c),i). In particular, D<-sI defines an isomorphism between

Hom (Sd(bc),I0) and Hom (Sd(bL'c),d 0). There is a d such that the functions in (iii)
above depend only on the projections of 4 and (1 onto these respective spaces. It
follows that the map T->Tl is uniquely defined by the conditions of the lemma.

Proof of Lemma 6.1. Suppose that T1 E R(bl ,X1). Fix Al E WTI and i E a4 c.a As

always, we assume that these points are in sufficiently general position. It follows from
the inductive definition of 1R(b1,X1) that there is a nested sequence of root subspaces

b1 C 2 ...C br+i = a,

and for each i a triple Ti E 9R(b, Xl) such that rA(l , A1) is obtained from the function

rR(FB(A+A), A) = ERIR, l(/R(A) FB(A+ A), A)

by successive residues along the hyperplanes AlT. More precisely, for each i, l<i<r,
there is a unit vector vi E br-i+2, orthogonal to br-i+,, such that if

Au=Al+UuVl+...+UrVr, =(UI,...,Ur)ECr,

then

YT (m, pD,,A,), mEM_,
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equals the product of

(2)1 *... |(+)l(2i)-rr

with

cp(m)= .r rR(m,FB(AU+A), Au) du.. dUr

Here F, ...,Fr are small positively oriented circles about the origin in the complex
plane such that for each i the radius of F, is much smaller than that of Fr+, . We shall
find a formula for EP,Bs(R(A,)rT,((l, Al), i).

Let

lAA), AE,c,

be the product, over the roots P of (R,Ao), of the factors (j, A-AI)N. For every
positive integer N there is a differential operator DN on aOc such that

lim DAlA) f(A)) ... f(A=,)d,...ur,
A-'-*A! r,

for every meromorphic function on ao c such that IN(A)f(A) is regular at A=Ai. (For
example, if cu(l+)... cur is the lowest term in IN(A,) relative to the lexicographic
order on the monomials in (u, ..., Ur), we could take DN to be the differential operator
which in the co-ordinates (u , ..., ur) is

c-l(2ri)r((nl)!... (nr)!)-'- n
... ( r))

We will take N so large that

I(A) rR(m, FB(A+A), A)

is regular at A=A1. Then

p(m) = lim (DN)^AERR' I(m,I(A), A),
A-A1

where

()(A) = lNA) R(A) FB(A+A).
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By Lemma 5.3, (up() p) (m) equals

lim (DN)AERIR 1(m, )'(A),A),
A--A1

where

(I' (A) =/B(A+i)/R(A)- I(A)

=/N(A)MB(A+A) FB(A+A).
Therefore

EP, B, s(X, ,ip(q)Q, )

equals

lim (DN)AEBIB s,(X, 4'(A), A+iA)
A--+Al

.. EBIBS(X, B(,(AU+A) FB(AU+it), Au+A) du1 ... dur.

By (1.4.6'), the integrand here equals

EBB 1(x, OCBIB(SB, Au+A) B(Au+A) FB(AU+I), sB(AU+A))
= EBIB, 1(x, /B(AU+A) FB(SB(AU+)), SB(Au+Aj))
= rB(x, FB(SB(AU+,)), SB(AU+i)).

Therefore

EP,B(x,#((iA)rTI(lA,Ali),I)
equals the product of

i1(2)1... Wg(br+)l- (2ri)-r = IsBb2)-... IW(SBbr+)- (2ri)r

with

.. rB(x, FB(sB(Au+A)),SB(AUJ+A)) du ... dur.

This function is obtained from successive residues along the hyperplanes

SBTi = SBAT+SB bi
5- 838282 Acta Mathematica 150. Imprim6 le 30 Juin 1983
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From the injectivity of the maps up(A) and Ep B, ( , A), we know that it does not vanish.
It follows from the inductive definition of 3B(b,X) that there is a triple TE B(tb,X)
such that

AT=B9BT,
XT = SBXT

and
r7(4, SB(Al +A)) = Ep B,Sp(uA) rr,(I1 Al), A).

On the other hand, suppose that T is any triple in «3B(bO,X). We can follow the

argument backwards to produce a T E SR(b1,X1). This gives us the required bijec-
tion. Q.E.D.

§ 7. Application to the functions F}
Suppose that F is a collection of entire functions

FB: a c--* Do, BE (Mo),

each rapidly decreasing on vertical cylinders. We will assume in addition, that the
collection has the symmetry property

FB,(sA) = CBIB(S, A) FB(A)

for s E Wo and B, B' E A(Mo). Then if P=NM is a parabolic subgroup in A(Mo), the
collection

Fp= {FR(A) = F(R)(A): R Eg(MO)}

has the same symmetry property for M. As in II, § 3, we choose for each BE A(Mo) a

point XB which is both suitably regular in -a(B) and in general position.
IfM is any group in £9(Mo), we shall write W(aM) for W(aM, aM).

THEOREM 7.1. (i) If P=NM is a parabolic subgroup in A(Mo) the function
Fp cup(A) is independent of any of the points {XB}.
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(ii) For any class ? ofassociated parabolic subgroups in 0(Mo) thefunction F'(x)
equals

IP-' W(ap)l' Ep(x, up(A) Fp, cup(A), ) dA,
PE Ep+ia~

where ep is any point in the chamber a$(P) of sufficiently small norm. In particular,
Fg(x) is also independent of the points {XB}.

Proof. Assume by induction on dimG that the theorem holds if G is replaced by
any proper Levi subgroup. If P=NM is a parabolic subgroup in (AMo), Fp,usp() is
defined in terms of the collection {Fp} associated to M. Then if P*G, the function
Fp CSp(A) is independent of the points {XB}. Now Fp, cusp) equals the sum over

{B E S(Mo): BcP} of the product of IM(Mo)l-' with

E rl(dFB(AT+A), AT). (7.1)
TE 3BnM(am, XB)

If we change one of the points {XB}, it will change at most one of the terms in the sum
over.B. It follows that the expression (7.1) is independent of the point XB.

Suppose that 93 is a class of associated proper parabolic subgroups in A(Mo). Then
F4(x) equals the sum over B E A(Mo), b E rt(T),TE SB(b,XB) and E E (b) of

IAM)-o) I(b)WlI f rAx, dFB(A),A)dA.
T+ib+e

Consider a summand, indexed by B, b, T and E. The point E belongs to a chamber in b.
There corresponds a certain group in 9, which is in turn conjugate to a unique group
P=NM in 9? which contains B. There is also a unique element s E Wo/Wo such that

s-lb=aci and such that the point el=s-I belongs to the chamber al(P). We can
therefore write F,(x) as the sum over B E (Mo), {P=NM E : PDB}, sE Wo/MO and

I E (al) n al(P) of

(M0)l-'I~(a*)l-' E X rr(x, dFB(A), A) dA.
TE 3̂(SaM*I, XB) JT+S(. I +ia^)
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For each T let T1 be the unique triplet in 3BnM(a, sB'XB) given by Lemma 11.6.1.
Since AT=SB AT we can make a change of variables in the integral over A. The integral
becomes

rT(X, (dTFB) (sB(AT,+A)), SB(AT +A)) dA.
c1+ia1

By Lemma 11.6.1, this in turn equals

I Ep,B,s(X, Up(A) rTT((dT, FB) (AT +A), AT), A) dA.
l +iak

The correspondence T-*T1 is a bijection, so we may replace the sum over T by a sum
over TIE SBnM(a, sB'XB). Since the maps EpBS and /p(A) are linear, we will be

confronted with an expression

^E rTr(dFB(XT +A), AT). (7.2)
T1E TBn~M(aM, SB- XB)

If a is a root of (BnM, Ao),

(a, S 'XB) = (SB a, XB)

will be a large negative number. Thus, s-1XB is a suitably regular point in -ao(B n M) in

general position. It follows from our induction assumption that the expression (7.2)
equals (7.1). In particular it is independent of s. The only thing which does depend on s

is the map Ep B . When we sum over s E WO/Wo we will obtain the map Ep, which is in

turn independent of B.

Up to this point, we have shown that F,(x) equals the sum over P=NM in P and ec

in W(an)naU(P) of the product of IAMo))l- I (a)jl-' with

Ep(xpP(A) [ E E rT(dFB(AT+A),AT)] , dA.
e+iaonidh qBCnPTbE isBnjoM(aVB)

The expression inside the square brackets is just equal to

IW(Mo)l Fp, o,,(nA.
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The function Ep(x, p(i) F, cusp(), A) is regular for all A in the tube over the elements in

a;(P) of sufficiently small norm. Therefore, we can deform each contour £E+iam; to
the contour Ep+iac. It follows that F'(x) equals the sum over PE 9 of the product of

J Ep(x, Hp(A) Fp, cusp(), )dA,
p+ia*

with

I~(Mo)l[-' IP(Mo)l, (7.3)
and

W(a)l-' W(a) n aAP)I. (7.4)

Now the reciprocal of (7.3) equals the number of groups in 9? which are conjugate to P.
The reciprocal of (7.4) is just equal to the number of chambers in aj. When divided by
the order of W(ap), this equals the number of conjugacy classes within the associated
class O. Therefore the product of (7.3) and (7.4) equals

IM -1 IW(ap)l-'.
We have obtained the required formula for F((x). In particular F (x) is independent of
the points {XB}.

We saw in II, § 1 that the function FV(x) is also independent of {XB}. It follows
from Corollary 11.3.2 that

FG,(x) = Fv(x)- F(x)
I,{G)

is itself independent of the points {XB}. Therefore

-'(HG(xa))FG, cup(, X) = F}(xa) e da, EAG, C'
AG

is independent of {XB}. This completes the proof of part (i) of the theorem. The only
thing remaining in part (ii) is the formula for FG}(x) in terms of FG cp(A,x). This
follows from the formula just quoted by Fourier inversion on the group AG. Q.E.D.
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Chapter III

§ 1. A review of the Plancherel formula

The Plancherel formula for reductive groups is due, of course, to Harish-Chandra. The
version we will use pertains to (I(G, T), the space of r-spherical Schwartz functions
from G to V, (see [7c]). The results we recall here are well known, and can be
extracted from ([7 c], [7 d], [7 e]).

Suppose that 29 is an associated class of parabolic subgroups in A(Mo). Suppose
that for each P E ?, we are given a Schwartz function Fp cusp on iaM with values

Fp, cusp(A):m Fp, cusp(, m), A Eiamp, m E Mp,

in the finite dimensional vector space susp(Mp, r) of functions on Mp. Then for x E G,
the function

I-1 IW(,p)l-' Ep(x,y(Ai)Fp, cusp(A),) (1.1)
PEW iat

belongs to (6(G, r). The closed subspace of 6(G, r) generated by such functions is
denoted by 6g(G, T). Then there is a decomposition

)(eG,T) = E (G, r).

Let 6(G, r) be the space of collections

F= {Fp, cusp E (M0)}

of Schwartz functions Fp usp from iam to usp(Mp, ) with the following symmetry
condition: if t is an element in W(ap, ap'), for groups P, P' E (Mo), then

FP',, cusp(t) = °cplp(t, A) Fp, cusp(A)
Given FE 6(G, ), let F,(x) be the function in %,(G, r) defined by (1.1), and let

F(x) = F(x).

The Plancherel formula can be taken to be the assertion that F-+FV is a topological
isomorphism from C(G, r) onto @(G, r).
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Suppose that fE C(G, r). There is a unique FE C(G, r) such that Fv(x)=f(x). For

any class ?, set

f(x) = F(x).

It is the projection off onto 16(G, r). If PEC (Mo), set

P, cusp(,) = Fp, cusp( ), CE iMa

It can be recovered from f by the formula

(fP cusp() ) = (f(x), Ep(x, t, 2)) dx, (1.2)

valid for any p E cus(Mp, r). The collection

{fp cusp() = Fp cusp(i): P EE(Mo)}

can be regarded as the Fourier transform of f. We shall usually write fcusp(A) for

fG, cusp() Then we have

fcusp( ,,X)= |f )(xa) e da.
GA

Similarly, we will write Fcusp() for the function

FG cusp(;l) = fJFi)}(x a)e ) da.
G

Suppose that P E 5(Mo). There is another interpretation of the function fp, cusp()· If

fE C(G, r), define

fp(m) = bp(m)12 I f(mn) dn, m E Mp,

where bp is the modular function of P. Then f-fp is a continuous map from W(G, r) to
6(Mp, r) (see [7 c]). On the other hand, if F E c(, r), consider the collection

Fp= {FR(A) = FP(R)(A): R E ?P(Mo)}.
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It is clear that F->Fp is a continuous map from 6(G, r) to 6(Mp, r). It is not hard to
show that ifF is the Fourier transform off, then Fp is the Fourier transform offp. That
is,

(FV)p(m) = (Fp)V(m). (1.3)

We shall write Fp(m) for this common value. It is clear that p, cusp(W), as defined above,
is also equal to the function

(fp)p, cusp(A) = (fp)cusp(A)

Incidentally, there are no proper parabolic subgroups of Mo, so ifB E ^Mo) there is no
need to include "cusp" in the notation. We shall write

fB(A)= fB, cusp(A),
and

FB(A) = FB cusp(A)
for A E iao.

We have been a little bit compulsive with the notation. Our aim has been to make it

mesh with the notation for the collections

F= {FB(A): B E Mo), A E a, c}

introduced in Chapter II.

§ 2. The space PW(G, r)

IfN is a positive number, let C}(G, r) denote the space of smooth, r-spherical functions

from G to V, which are supported on the set

G(N) = {klexpH k2: k, k2 EK, HE ao, IIHIl N}.

It is a complete topological vector space with the usual seminorms. Let Cc(G, r) be the

space of all smooth, r-spherical functions from G to VT which are compactly supported.
As a topological space it is the direct limit, as N approaches o, of the spaces C :(G, r).

Our main problem is to characterize the image of Cc(G, r) under Fourier trans-

form. For a compactly supported function the Fourier transform will be defined as a
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collection of functions indexed only by the minimal parabolic subgroups B E (Mo).
Suppose that fE CC(G, r). If D E do, define

(fB(A), D) = f (f(x), EB(x, , -A)) dx, A E ac.

Then fB(A) is an entire function from ac with values in do which is rapidly
decreasing on vertical cylinders. Unfortunately, the image cannot be described very
explicitly. The reason is that any identity between Eisenstein integrals will show up in
the collection

{fB(A): BE 2(Mo)}.

Indeed, suppose that for all x E G and v E V, a relation
n

D(Dk(, EB(x, k,-Ak)) = 0 (2.1)
k=l

holds, for groups BkE P(Mo), vectors o(k E 0o, points Ak Eac and differential opera-
tors Dk of constant coefficients on at. Then it is obvious that the relation

n

A Dk(fak(A,), (k)= 0
k=l

will also hold. (In each case, Dk acts through the variable Ak.)
Suppose that N is a positive number. Let PWN(G, r) be the space of collections

F= {FB(A): B E Mo)}
of entire functions FB from at c to io which satisfy two conditions. First, whenever a
relation of the form (2.1) holds, the relation

n

Dk(Fk(A), (Dk) =0
k=

must also hold. Secondly, for every integer n, the semi-norm

IIFIIN,n = sup (IIFB(A)II e-NlReAll(1+11Al)n)
{AEa*, BE (M0)}

is finite. With these semi-norms, PWN(G, r) becomes a topological vector space. We
define PW(G, r) to be the direct limit, as N approaches oo, of the spaces PWN(G, r).
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Observe that as a special case of a relation of the form (2.1) we have the functional
equation

EB(x, 1, -A) = EB,(x, CBiB(,c -)C, -sA)

for any s E Wo. It implies that

FB(sA) = °cBv(S, A)FB(A) (2.2)

if F={FB(A)} belongs to PW(G, r). In particular, all the results of Chapter II hold for
collections F in PW(G, T).

Suppose that for eachj in a finite indexing set J, Sj is a finite dimensional subspace
of S(a*, c). Suppose also that for eachj EJ, we are given a group Bj E 9Mo) and a point
A E a c.* If FB is an analytic function from a, c to o0 we shall write ds FB(Aj) for

the projection of the vector

dFB(A) E Hom (S(a, c), so)

onto the finite dimensional vector space Hom (Sj, 4o).

LEMMA 2.1. Suppose that F={FB(A): B E Mo)} is a collection in PW(G, T).
Then the vector

ds,FB(Aj)jEJ

belongs to the subspace
=Uj{ dsj.f (A): fE C:(G, r)1

of (jeJHom (Sj, do).

Proof. If v E VT and x E G, define a vector eB(x, v, A) in do by

(eB(x, v, A), )D) = (v, EB(X, , -A)).
Then

e(x, v) = dd eB(x, v, A)
iEJ J
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is a smooth function from GxV to Hom(Sj, o). Suppose that fo is any smooth,
compactly supported function from G to VT. Then the function

f(x) = f f r(k)-'f(k xk2) r(k2)-' dkl dk2

belongs to Cc(G, r). We have

(eB(x, fo(x), A), ) dx (x) EB(x, , A)) dx

= (f(x), EB(X , -A)) dx

= (fB(A),(),

for any (IE Mo. Therefore,

fe(x,fo(x)) dx = dsBj (Aj).

It follows that UJ is the subspace of JjHom(Sj, Mo) spanned by

{e(x, v):xEG, v V,}.

Now o is a (finite dimensional) Hilbert space, so there is a nondegenerate pairing
between jHom(Sj, so) and j (Sj1®o). When e(x, v) is paired with the vector

J\ iI
X3j(0 (v). XE Sj, 'INE

,

0 (2.3)

the result is

D(Xj) (v, EBx, F,, -A,)), (2.4)
ij

where D(Xij) is the differential operator on at associated to Xj.. Now, suppose that
(2.3) is an arbitrary vector in the annihilator of Uj in Ej(Sj(®)). Then (2.4) will
vanish. It follows from the definition of PW(G, r) that

D(X,;) (FB(Aj),(j) = 0.
ij
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In other words, the vector (2.3) annihilates

dsj FBj(Aj).
jEJ

It follows that this latter vector belongs to UJ. The lemma is proved. Q.E.D.

This lemma gives another interpretation of the first condition in the definition of

PW(G,r). The condition is equivalent to demanding that for each finite set

{(Sj, Bj, Aj):jEJ} there be an fE Cc(G, r)such that

ds FBj(Aj) =dsjfB(A,), j J.

In other words, F={FB(A)} must locally be a Fourier transform of a function in

Cc(G,T).
The following corollary is the form of the lemma we will actually need to apply.

COROLLARY 2.2. Suppose for each jEJ that the point Aj belongs to (a)c, and

that Sj equals S(t(aGc),the space of symmetric tensors on (a*)C of degree at most d.

Then for any FEPW(G, r) there is a function h E Cc(G, r) such that

Eds iAB(Aj+A) = ds FB.(Aj+A)
J J

for every point A E aG, c.

Proof. G is the direct product of AG and

G1= {x EG:HG(x) = 0}.

It follows that

Cc(G, r)= C(A) Cc(G', r)

and

PW(G, r) = PW(AG) ) PW(G', r).

Moreover,

UJ= I\@d(f ) (A):fECC(GI, r)I.
tJEJ Si
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Applying the lemma to G1, and recalling the classical Paley-Wiener theorem, we see
that

dS FB(Aj+A), iAE a,jeJ

is the Fourier transform (on AG) of a smooth, compactly supported function from AG
to the finite dimensional space UJ. The corollary follows. Q.E.D.

Suppose that P E (Mo). We can certainly define the space PW(Mp, r). It consists
of collections of functions from ac, c to sd indexed by the groups in P'(MO). The next
lemma will prepare the way for a key inductive argument.

LEMMA 2.3. Suppose that F={FB(A): B E AMo)} belongs to PW(G, r). Then the
collection

Fp= {FR(A) = Fp(R)(A): R E IP(M0)}

belongs to PW(Mp, r).

Proof. Suppose that we have any identity
n

Dk(v, ERk(m, Ok -Ak)) =0, m EM, v VE,
k=l

between Eisenstein integrals on Mp. If ERk(., O, -A) is extended to a function on G in
the usual way, then

EP(R)(, k, -Ak) = J ()-lER(ux, k, -Ak) du.
fnMp\K

It follows that
n

E Dk(u, EP(R (x, , -Ak)) = O, x E G, v E V,.
k=1

Since FEPW(G, r), we will have
n n

Dk(P(Rf d(^k)D = 0 = > Dk(FR(Ak), (ak)'
k=l k=l

Therefore Fp belongs to PW(Mp, r). Q.E.D.
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§ 3. The main theorem

We are now ready for our main result. We shall show that the Fourier transform maps
C~(G, r) isomorphically onto PW(G, T).

LEMMA 3.1. The map

f--t{B: B E AM)}, fE C(G, ),

is a continuous, injective map from CQ(G, T), to PWN(G, z).

Proof. If fE C(G, r) and ' E so, (fB(A), (F) is the integral over x of the inner

product off(x) with

f (kx)e('-A+QB)(HB(k)) dk.

The integral will vanish unless

x=kl:expH k2, k1,k2EK, IIHI\ N.

It is known that the point

HB(kx) = HB(kkl exp H)

lies within the convex hull of

{sH: s E W}.
Consequently

|e-A(HB(kx))[ ellReAlll-IHB(k)lt

II elReAll lIHII

< eNtIRe All

It follows that there is a continuous seminorm 11 IIN on CN(G, r) such that

(f(foA), )l -< IN 11ch11 eMlaRlement

for allf and <. Now, for any n it is possible to choose an element z in SI such that

(i+llAlirnIIfBA) II < I(z) " A)
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for all A E atc. But

f-l IfIlIN

is a continuous seminorm on Cv(G,r), so f~{fB} is a continuous map from

C;(G, r) to PWN(G, r).
If G is compact modulo AG the injectivity of the map follows from the classical

Fourier inversion formula on AG. Suppose then that G/AG is not compact. We will
assume by induction that the lemma holds if G is replaced by Mp, for any proper
parabolic subgroup P of G. Letf be a function in Cc(G, r) such that !B(A)=0 for every
B and A. If P is a proper parabolic subgroup of G, we have

(fp)R() =P(R)(A) =0

for any group R E $9P(M0). It follows from our induction assumption that the function

fp in Cc(Mp, r) vanishes. In particular,

fp, cusp() = 0, EiaMp.
From (1.1) and (1.3) we see that if 9 is an associated class of parabolic subgroups,

.t*{G}, the function

fw.(x) = '11-' (ap)ll Ep(x, p(A) fp, csp ), ) d
PE. ia

equals zero. Therefore

f(x) = f9(x) =ftG(x)

Applying a Fourier transform on AG, we obtain

cuS(, x) = A f(xa) eA(HG(xa))da.
G

As a function of x, the expression on the right has compact support modulo AG. The
expression on the left, however, is a i-finite, r-spherical function on G. In particular, it
is analytic. Since G/AG is not compact, both functions must vanish identically in x and
A. By Fourier inversion on AG, f(x) vanishes. This establishes injectivity. Q.E.D.
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The next theorem is the culmination of everything. It tells us that any collection
FEPW(G,r) can be extended to a collection in (6(G, ) so that the functions
Fp, CS(A, x), FV(x) and F;(x), which we defined differently for PW(G, r) and ((G, T),
actually coincide.

THEOREM 3.2. For every F={FB} in PW(G,r) there is a unique function
fE Cc(G, T) such that

fB(A) = FB(A) BE M),B Eo)A , c.

It has the additional properties
(i) cusp()=Fpcusp(A), P E M0), E ia,

(ii) f(x) = F(x),
(iii) f(x)=F;(x),

for each associated class 5.

Proof. The uniqueness off was established in the last lemma so we can concen-
trate on its existence. If G is compact modulo AG, the theorem is an immediate
consequence of the classical Paley-Wiener theorem.

Suppose then that G/AG is not compact. We will assume by induction that the
theorem holds if G is replaced by Mp, for any proper parabolic subgroup P in AIMo).
By Lemma 2.3 the collection

FP= {FR(A) = FP(R)(A): R E OP(MO)}

belongs to PW(Mp, r). Then Fp, the associated tM -spherical function on (Mp)- de-

fined in II, § 1, extends to a function in Cc(Mp, r) with the properties demanded by the

theorem. By (i),

FP, cup() = (F)CUSP(A).

In particular, Fp cusp(A) belongs to susp(Mp, r). Now suppose that 9 is associated

class, 9t{G}. We shall use the formula for F}(x) in Theorem 11.7.1. Since

Fp,,Cp(A) belongs to scusp(Mp, r), for P E , the function Ep(x, Fp, p(A), A) is entire in

A. Therefore

Ep(x, Ap(A) Fp' cusp(A), A)
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is holomorphic in a neighborhood of ia4. We can therefore change the contour in the
integral in the formula for F'(x) from ep+ia4 to ia%. We obtain

F(x) = fi Ep(x, U(A) Fp cu(A), ) dA. (3.1)=P. IW(pI jap.

Thus F~ belongs to (gc(G, r). In particular, it extends across G_ to a smooth function
of G.

Suppose, given what we have shown so far, that we were able to find a function
fE Cc(G, r) such that fB(A)=FB(A) for each B. We will show how the other conditions
of the lemma follow. We must first check a compatibility condition. If P is a proper
parabolic subgroup of G we have two functions in Cc(Mp, r); the function Fp given by
our induction assumption above, and the function

fp(m)=6p(m)m2 f(mn) dn.
Np

We must show they are the same. If R E6 P(Mo),

(fP) (A) =f(R)(A) = FP(R)(A).

However, Fp is by definition the unique function in C'(Mp, r) with this property, so
the two functions are in fact the same. Now, if P*G,

acusp() = (Fp)up()= FP, sp().
This is property (i). It follows from (3.1) that if G={G}, fp(x) equals F.(x). Therefore if
xEG_,

f(x)-FV(x)= f (x)- Fv(x)
.91 91

=f{G}(x)-F{G}(x).
Applying a Fourier transform on AG, we obtain

fcusp(, x)-Fcusp(, x) = f (f(xa)-Fv(xa)) e-x(HG(x)) da.
AG

As a function of x, the expression on the right has compact support modulo AG. The
expression on the left, however, is i-finite and r-spherical, and is an analytic function

6-838282 Acta Mathematica 150. Imprime le 30 Juin 1983
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on G_. Since G/AG is not compact, both functions must vanish identically in x and 2.
Therefore

fcusp(, X) = Fcusp(} x)

for all x and A. In particular, Fcusp(A) belongs to scusp(G, r) for each A. By Fourier

inversion on AG, we see also that f{G^(x)=F{}(x) and that f(x)=F(x). This verifies all

the conditions (i), (ii), and (iii) forf.
However, we have not yet proved the existence off. To proceed, recall that there

is an integer d, independent of A and F, such that the function

FCup(Ax) = I(M)l'1 E r(x, dFB(AT+), AT)
BE (M0) TE rB(aG, XB)

depends only on the projection of the vector

e©(dTFB)(1A+A), Eac, (3.2)
B T

onto the finite dimensional vector space

ED© Hom (Sd((aG)), s0o). (3.3)
B T

It follows from Corollary 2.2 that there is an h inCc(G, r) such that for all A E a, c, the

vector

® 9(dT aB) (AT+A)
B T

has the same projection onto the space (3.3) as does (3.2). Therefore, Fcusp(A, x) equals

I|M0)|-I1 Errx, dh (AT+A), AT).
BE Y(Mo) T

From the discussion above, (with f replaced by h), we obtain

/cusp(A, X) = Fcusp(A, x),

and then by Fourier inversion on AG,

h{G(x) = F{G}(x).
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In particular, F'G}(x) extends to a function in C{G(G, r). Therefore the function

FV(x)= F(x),

defined, a priori only for xEG_, extends to a function in 6(G, r). This will be the
required function. Since it has bounded support,fbelongs to Cc(G, r). For any P, Fv
is just the projection off onto Cp(G, r), so it equals fi.

Let 9o= P(Mo), and take a group B E Po. It follows easily from (1.2) that if 9 is an
associated class distinct from ,Po, and A is a point in iar,

(f)B (A) = 0.

Therefore,

fB(A) =(/f0) (A).

Consider the collection

F= {F%^,p, cusp(A): P E (oM0)}

in whichFpcp equals Fp ifP belongs to 9o, and equals 0 otherwise. The collection

belongs to C(G, r); in fact it is the Fourier transform (in the sense of § 1) offe. That is,

Fo,P, cusp(A) = (fo)p(A),
for each P E i(Mo). It follows that

B(A) = FB(A)

for each B E a(Mo), and all A E i4. By analytic continuation the formula is true for all
A E ac. Thus, f is the function required by the lemma. Q.E.D.

If we combine Theorems 3.1 and 3.2 of this section with Theorem II. 1.1 we obtain

THEOREM 3.3. The map

f-- {B: B E (Mo)}, fECEc(G, r),
is a topological isomorphismfrom Cc(G, r) onto PW(G, r). For any N, the image of the
space CQ(G, r) is PWN(G, r).
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§ 4. The Hecke algebra and multipliers
It is a simple matter to reformulate our results for complex valued K-finite functions on
G. Suppose that N is a positive number and that F is a finite set of classes of irreducible
representations of K. Let CQ(G)r be the set of smooth complex valued functions on G,
which are supported on G(N), and whose left and right translates by K each span a

space which under the action of K is a direct sum of representations in F. Define

Cc(G, K) to be the direct limit over N and F of the spaces CN(G)r. It is just the space of

K finite functions in Cc(G), but it is a complete topological vector space under the

direct limit topology.
We shall let Rep (G) denote the set of irreducible admissible representations of G.

Suppose that N and F are as above. If (a, Ua) belongs to Rep (Mo/Ao) and B E s(Mo),
let aB(u)r be the sum, over all irreducible representations r of K which belong to an
equivalence class in F, of the spaces aB(a), defined in I, § 3. Let PWN(G)r be the
space of collections

F= {FB(a): B E (Mo), a Rep (MoAo)}

of entire functions

FB(): A-- FB(o, A), A acc,

from aoc to WB(o()r which satisfy two conditions. First, suppose that for all xE G a
relation

n

_ Dk(IBk(o, Ak x) Wk, ,k) = (4.1)
k=l

holds, for differential operators Dk of constant coefficients on act, and vectors Wk,
Wk, in 'Bk(ak)r. Then the relation

e Dk(FBak, Ak)A ,k'Wk)= 0
k=I

must also hold. (As in III, § 2, it is understood that Dk acts through the variable Ak.)
Secondly, for every integer n the semi-norm

|FlNn = sup (IIFB(o, A)II e-NlReAIl(AlIIl)n){B, a, A
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is finite. With these semi-norms, PWN(G)r becomes a topological vector space. Define
PW(G, K) to be the direct limit, over N and F, of the spaces PWN(G)r.

IffE Cc(G, K), set

fB(a, A) = IB(a, A,f) f(x) IB(, A, x) dx.

Then the collection

f= {fB(a, A): B E AMo), E Rep (Mo/Ao)}

belongs to PW(G, K). It will be called the Fourier transform off.
In I, § 3 we gave a dictionary between Eisenstein integrals and matrix coefficients

of induced representations. The translation of Theorem III.3.3 is

THEOREM 4.1. The map

f-i, fECc(G,K),

is a topological isomorphism from Cc(G, K) onto PW(G, K). For any N and F, the
image of CZ(G)r is PWNG)r.

The space Cc(G, K) is an algebra under convolution. It is sometimes called the
Hecke algebra, in analogy with the theory ofp-adic groups. It is clear that PW(G, K) is
also an algebra, and that the isomorphism of the last theorem preserves the multiplica-
tion.

The space Cc(G, K) also has the structure of a left and right module over the
universal enveloping algebra °U(G). Let End(G) (Cc(G, K)) be the algebra of left and
right °l(G) endomorphisms of Cc(G, K). It is just the algebra of linear operators C on
Cc(G, K) such that

C(f* g) = C(f) * g =fC(g)
for all f, g E CC(G, K). We shall see how to explicitly exhibit a large number of such
operators.

We have introduced the Cartan subalgebra bC=1K, c®Co,c of Lie(G)®C. Set

b =i©K ato.

It is a real abelian Lie algebra, which remains invariant under the Weyl group W of
(Lie(G)®C, bc). Let W(D)W be the space of compactly supported distributions on D
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which are invariant under W. It is an algebra under convolution. Any yE W(t))W has a
Fourier-Laplace transform

y(v), v Et.

It is an entire, W invariant function on bt. There exist integers Ny and ny such that the
semi-norm

sup (lf(v)l e-NyIIRevllI( +I1vl)-ny (4.2)
vE6

is finite. Here Re (v) stands for the real part of v relative to the decomposition

ft='*+it*.

An example of a function

y(v), yE W(b), vEy ,

is a W-invariant polynomial function on Ad. Such a function is of the form pz for a

unique differential operator z in S. There corresponds an operator

f-zf, fECC(G,K),

in EndWG(C'(G, K)). If n belongs to Rep(G), let {v,} be the W-orbit in b: associated

to the infinitesimal character of n. Then by definition

7r(zf) = pz(vn) t(f), fE Cc(G, K).

The function zfis uniquely determined by this formula. The next theorem, which is the
second major result of this paper, is a generalization of this example.

THEOREM 4.2. For every distribution y in ([1)w and every function fE Cc(G, K),
there is a unique function fy in Cc(G, K) such that

r(fy) = y(v)) 7r(f)

for any n E Rep (G).

Proof. It is clear that fy is uniquely determined by this condition. We need only
establish its existence. Fix fE CQ(G)r. Define a collection

F = {FB(, A): B E (Mo), a E Rep (Mo/Ao)}
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by setting

FB(a, A)= y(v+A)fB(a, A), A E at c.

We shall show that it belongs to PWN+N(G)r.
The growth condition is easy. For any n, the semi-norm IIFIIN+N, nis bounded by

the product of (4.2) and IIPIIN,n+n , and is in particular finite. Next, suppose that for all

x, the relation (4.1) holds. We must show that

E Dk(FB(k, Ak) k' k) = 0.
k=l

Now f is an entire function on bt; its Taylor series converges uniformly on compact
subsets. Since f is W-invariant, its Taylor series will be a sum of W-invariant polynomi-
al functions on fb. It follows that there is a sequence {zjjI}of operators in 2 such that

o(v)=- p,(v), ve *C,
j=i

with absolutely uniform convergence on compact subsets of fb. If :r is the representa-
tion IB(a, A), {v}, will be the W-orbit of the point v,+A. It follows that

FB(o, A)= y(vo+A) !B(o, A)

= pz(v+A) IB(o, A, )
j=l

00

= IB(a, A, zj).
j=i

Since any Taylor series can be differentiated term by term,
n

Dk(FBk(ak, A) Wks, k)
k=1

equals
x0 n »

j24EDkIBk(ok, Ak, zjf) .
j= lk=l

The expression in the brackets will vanish, by virtue of the relation (4.1). We conclude
that F does belong to PWN+N(G)r.
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Let fy be the unique function in CN+N(G)r whose Fourier transform is F. Any
7rE Rep(G) will be equivalent to a subquotient of some representation 1B(a, A). Then
zt(f) will be equivalent to the action of the operator

IB(o, A, fy) = (vo+A) IB(, A, f)

on an invariant subquotient of (iB(u). It follows that

t(f,)= P(vo+A) Jr(f)

= (v,7) (f).

This proves the theorem. Q.E.D.

In the proof of the theorem we observed

COROLLARY 4.3. ff belongs to CN(G)r, fy will belong to C+N (G)r.
The following is also clear.

COROLLARY 4.4. Define

c,(f) =fy, y E W()W, fE Cc(G, K).

Then the map
Y- Cy, yE (ft)W,

is a homomorphism from the algebra W(b)w to the algebra Endv(G)(Cc(G, K)).
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