
ON A FAMILY OF DISTRIBUTIONS OBTAINED 
FROM EISENSTEIN SERIES H: EXPLICIT FORMULAS 

Introduction. The purpose of this paper is to find explicit formulas 
for those terms in the trace formula which arise from Eisenstein series. 
The paper is a continuation of [l(g)]. (We refer the reader to the introduc- 
tion of [l(g)] for a general discussion as well as a description of the nota- 
tion we will use below.) We have already solved the most troublesome 
analytic problem. The difficulties which remain are largely combinatorial. 

Our principal results are Theorems 4.1, 8.1 and 8.2. Theorem 4.1 
contains an explicit formula for a polynomial 

which was introduced in [l(g)]. (This polynomial depends not only on a 
test function B ? C:(i@*/iaÂ¤) but also on a fixed K finite function 
f ? C ~ G ( A ) ' )  and a fixed class \ ? X.) We will prove Theorem 4.1, not 
without some effort, from an asymptotic formula for PT(B) from the pre- 
vious paper ([l(g), Theorem 7.11). We will then be able to calculate J;(f) 
by substituting into the formula 

J^ f )  = lim P~(B') 
â‚¬ 

of [l(g), Theorem 6.31. This will lead directly to Theorem 5.2, which is the 
resulting formula for 

The distributions Jx give the terms in the trace formula which arise from 
Eisenstein series. 
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The formula for J (  f )  provided by Theorem 5.2 is not ideal. For one 
thing, it is only valid for a K finite function f .  What is worse, perhaps, it 
contains the test function Be and a limit as e approaches zero. The second 
half of the paper is designed to rectify these defects. An arbitrary function 
in c:(G(A)) is certainly a limit of K finite functions. Moreover, the 
pointwise limit of Be as e approaches zero will be 1. In view of these facts, 
we will be rescued by the dominated convergence theorem provided we can 
show that a certain multiple integral is absolutely convergent. This will be 
accomplished in Theorem 8.1. We will state the improved version of the 
formula for J as Theorem 8.2. 

Our main tools center around the idea of a (G, M)  family of func- 
tions, introduced in [l(e), Section 61. This notion will be useful in han- 
dling the combinatorial problems of this paper, and it will even be needed 
to state our final formula for J y .  A (G, M) family is parametrized by the 
finite set of parabolic subgroups of G with Levi component M.  Therefore, 
it is best not to fix a minimal parabolic subgroup, as we did in [l(g)]. In 
Section 1 we will recast some of the ideas of [l(g)] into a form that does not 
involve standard parabolic subgroups. We will open Section 2 by review- 
ing the main properties of (G, M )  families. We will then begin an investi- 
gation of the asymptotic formula for PT(B) inherited from [l(g)]. 

Some (G, M )  families can be represented geometrically by finite sets 
of points, of the kind which surfaced in an earlier paper [l(a)] (under the 
name "AM-orthogonal sets"). A typical example, the set of restricted 
Weyl group translates of T ,  occurs prominently in the asymptotic formula 
for P~ (B) .  In Section 3 we will examine some of the properties of (G, M )  
families of this sort. In Section 4 we will return to our study of the asymp- 
totic formula for PT(B). The formula provides a concrete function of T 
which is asymptotic to the polynomial PT(I3) as T approaches infinity in a 
certain way. The function is given as a finite sum of integrals of expres- 
sions, each of which comes from a product of two (G, M )  families. In each 
case, one (G, M )  family is independent of T ,  while the other is obtained 
from the set of Weyl translates of T. Each integral will be transformed in a 
natural way by the Fourier inversion formula. This will enable us to find 
polynomials of T which are asymptotic to the given integrals. The sum of 
these polynomials will give the explicit formula for P ~ ( B )  that comprises 
Theorem 4.1. 

The second half of our paper is based on the hypothesis that the in- 
tertwining operators between induced representations on the local groups 
G(Q,,) can all be suitably normalized. This hypothesis, which was also 
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made in [l(e), Section 71, is discussed in Section 6. Next, in Section 7, we 
will prove a combinatorial lemma for a special kind of (G, M )  family. It 
will allow us to express certain functions as products of logarithmic 
derivatives. We will then use this result in Section 8 to reduce the proof of 
Theorem 8.1 to the case of parabolic rank one. Section 8 also contains our 
discussion of Theorem 8.2 and a reduction of its proof to Theorem 8.1. 
Finally, in Section 9, we will complete the proof of Theorem 8.1 by verify- 
ing it in the case of parabolic rank one. 

We should note that our final formula for Jx in Theorem 8.2 really is a 
direct generalization of the results known for rank one. It is interesting to 
compare it with the formulas of Selberg in [6(a)] and the terms (vi), (vii) 
and (viii) on p. 517 of [2]. Our final formula also generalizes the one ob- 
tained for GL3 in [l(d)] . 

We should also point out an obvious omission from this paper. We 
have not discussed the invariant distributions 

defined in [l(e)]. Formulas for these distributions would be interesting, and 
can in fact be derived from Theorem 8.2. However, they would take us too 
far from the focus of the present paper. 

I would like to thank Mrs. Frances Mitchell for her usual superb typ- 
ing job. 

1. The operators M p  lp(s, A). Let G be a reductive algebraic group 
defined over Q. We shall adopt the notation and conventions of the 
preceding paper [l(g)] (especially Sections 1 and 7), often without further 
comment. There will be one important difference, however. We will not fix 
a minimal parabolic subgroup. Instead, we fix a subgroup M y  of G, defined 
over Q, which is a Levi component of some minimal parabolic subgroup of 
G (defined over Q). This is the point of view of the paper [l(e)]. As in [l(e)], 
K will stand for a fixed maximal compact subgroup of G(A) which is ad- 
missible relative to My. In this paper, a Levi subgroup (of G) will mean a 
subgroup of G which contains My and is a Levi component of some 
parabolic subgroup of G. It is a reductive subgroup of G which is defined 
over Q. If M C L are Levi subgroups, we denote the set of Levi subgroups 
of L which contain M by ~ c ~ ( M ) .  Also, we let S T L ( ~ )  be the set of parabolic 
subgroups of L defined over Q which contain M, and let (P'(M) be the set 
of groups in @(M) for which M is a Levi component. Each of these three 
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sets is finite. (If L = G, we shall usually denote the sets by Â£(M) F(M) 
and (P(M).) Suppose that R 6 @(M). Then R = NRMR, where NR is the 
unipotent radical of R and MR is the unique Levi component of R which 
contains M.  If Q is a group in (P(L), let Q(R) be the unique group in T(M) 
which is contained in Q. Then MQIR) = MR. 

Suppose that M 6 cC(Mo) is any Levi subgroup. For any parabolic 
subgroup P in (P(M) we have the group Ap and the vector spaces ap and a;. 
We shall often denote them byAM, OM and a&, since they depend only on 
M. To any P 6 @(M) there correspond chambers 

and 

The restriction of the map 

to M(A) is also independent of P. We denote it by HM. Suppose that 
L 6 Â£(M)  There is a natural surjective map from aM to ar whose kernel we 
will denote by a h .  The norm 1  . 1 1  on ao, fixed in [I(Â¤)] comes from a 
Euclidean scalar product so that a h  has an orthogonal complement in a ~ .  
We identify it with a^. In other words, aM = a.1 @ a h .  We also have a 
decomposition a$ = af @ (ah)* of the dual space. (These decomposi- 
tions are independent of 1  11 ; in fact in [l(c)] they were introduced 
without the aide of a Euclidean inner product.) 

In the present setting the functional equations connected with Eisen- 
stein series take a slightly different form. They are easily derived from the 
usual ones, for which the reader can consult [4(b), Appendix 111 or 151. 
Suppose that M and M I  are Levi subgroups. As usual, let W(aM, a M )  be 
the set of isomorphisms from a^ onto aMl obtained by restricting elements 
in Wo, the Weyl group of (G, Ao), to aM. Each s 6 W(aM, a%) has a 
representative w s  in G(Q). Givens ? W(aM, a M ) ,  P ? <5W) and Pi ? @(Mi), 
define ( M p  ,p(s, X)+)(x) to be 
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for 4 6 @(P) and x 6 G(A).  The integral converges only for Re(X) in a cer- 
tain chamber, but M p  lp ( s ,  A) can be analytically continued to a mero- 
morphic function of X 6 a;,c with values in the space of linear maps from 
@\PI to &\P^). If x is a class in X and TT 6 II(M(A)), Mpl  lP(s, A) maps 
the subspace fl&(P) to @ L ( p 1 ) .  The main functional equations are 

and 

for si 6 W ( a M l ,  a M 2 )  and P2 6 (P(M2). Another important, but more 
elementary formula holds when M and Mi are both contained in a Levi 
subgroup L ,  and r belongs to wL(aM, a M l ) ,  the subset of elements in 
W(aM, a M )  which leave aL pointwise fixed. Suppose that R 6 (PL(M), 
R l  6 @ ( M i )  and Q 6 (P(L). Then for any k 6 K and 4 6 @(Q(R)), the 
function 

belongs to @'-(R), and 

In particular, the left hand side depends only on the projection of X onto 
(ah):. 

We should point out two other functional equations, which follow eas- 
ily from the definitions. Suppose t 6 W o .  If M 6 Â£(Mo and P 6 (P(M) then 
tM = w t M w t l  is another Levi subgroup, and tP = w t P w l  is a parabolic 
subgroup which belongs to (P(tM). The restriction of t to O M  defines an ele- 
ment in W ( a M ,  a t M ) .  We can associate a linear transformation 

to this element by defining 
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Now, by Lemma 1.1 of [l(e)] there is a vector To in a. such that H ~ ~ ( W ' )  
equals To - t 1  To. One can check that if A 6 age and y 6 G(A), 

From this it follows that 

and 

for s 6 W(aM, aMl)  and Pi 6 ^Mi).  
Suppose that Po 6 (P(Mo) is a minimal parabolic subgroup, and T is a 

suitably regular point in ao(Pn). That is, the number 

dpo(T) = min {a(T)} 
a â ‚ ¬  

is sufficiently large. A major part of this paper is devoted to finding an ex- 
plicit formula for the associated distribution J^ f ). Here \ is a class in X 
which will remain fixed for the rest of the paper, and f is a function in 
c:(G(A)) which, until further notice, is assumed to be K-finite. Our 
starting point will be Theorems 6.3 and 7.1 of [l(g)]. Let B be an arbitrary, 
but fixed, function in ~ : ( i t ) * / i a&)~ .  For each P 3 Po and IT 6 II(Mp(A)), 
the function 

defined in Section 6 of [l(g)], belongs to C:(ia$/iaE). Our distribution 
may be evaluated from a polynomial P ~ ( B ) ,  which can in turn be obtained 
as the asymptotic value (in T)  of the expression 

(We are preserving the convention, introduced in Section 7 of [l(g)], of 
identifying any representation IT of M ~ ( A )  with a representation of Mp(A) 
which is trivial on A ~ ( R ) . )  
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The operator w ; , ~ ( P ,  X )  acts on the space @,,.(P). It is the value at 
A ' =  Xof 

(In the paper [l(g)], throughout which Po was fixed, we wrote M(t,  h )  for 
M p I p ( t ,  A ) .  This was reasonable, since P and P I ,  as the standard 
parabolic subgroups associated to a p  and a p ,  were uniquely determined 
by t . )  We can write t '  = ts, where s is a uniquely determined element in 
the group 

Then w;,,.(P, X )  becomes the value at X' = X of the sum over Pl 3 Po, 
t  ? W(ap, a p l )  and s ? W(ap)  of 

By (1.4) we have 

where Q equals tipl, another group in (P(M), and 

Notice also that 

Op1(t(sX' - A ) )  = OQ(s\' - X ) .  

Define Y Q ( T )  to be the projection onto a,,,, of the point 

t - l ( ~  - T o )  + To.  
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and ~ L ( P ,  A) is the value at X '  = \ of 

We have obtained a convenient formula for the function 

in (1.6). It is the function obtained by setting X '  = \ in the sum over 
s â W(ap) of 

The next few sections will be devoted to a study of this expression. 

2. (G ,  M )  families. Fix parabolic subgroups 

and for simplicity set M = Mp. We shall also fix v ? II(M(A)) and s 6 W(aM). 
As a function of (A', X) ? a$,c X a$,C, the expression (1.7) is meromor- 
phic. We would like to show that it is regular on ia$ X ia$, and to in- 
vestigate its value at X ' = \. 

We will use the notion of a (G, M)  family, introduced in Section 6 of 
[l(e)]. Recall that a (G, M)  family is a set of smooth functions 

indexed by the groups Q in (P(M), which satisfy a certain compatibility 
condition. Namely, if Q and Q '  are adjacent groups in (P(M) and A lies in 
the hyperplane spanned by the common wall of the chambers of Q and Q '  
in ia;, then CQ(A) = CQ-(A). A basic result (Lemma 6.2 of [l(e)]) asserts 
that if {CQ(A)} is a (G, M)  family, then 
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extends to a smooth function on iag. A second result, which is at the root 
of most of the calculations of this paper, concerns products of (G, M)  
families. Suppose that {dQ(A):Q ? GYM)} is another (G, M)  family. 
Then the function (2.1) associated to the (G, M)  family 

is given by 

([l(e), Lemma 6.31). For any S ? 7(M), cL(A) is the function (2.1) 
associated to the (Ms, M)  family 

and c;(A) is a certain smooth function on iag which depends only on the 
projection of A onto ia&. The values at A = 0 of the functions cM(A) and 
c;(A) are of special interest. Following a convention from We)], we shall 
often suppress A = 0 from the notation, writing C M  = cM(0) and C; = cgO). 

We should also recall, for later use, that for any (G, M)  family 
{cQ(A) : Q ? (P(M)} and any L ? &(M) there is associated a natural (G, L )  
family. Let A be constrained to lie in iaf and choose Ql ? @(L). The com- 
patibility condition implies that the function 

is independent of Q. We denote it by cQ(A).  Then 

is a (G, L )  family. We write 

for the corresponding function (2.1). 
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We return to our original problem. The formula (2.1) is our clue for 
dealing with (1.7). It suggests that we define 

The only possible singularities of (1.7) on i a &  X i a &  are at the zeros of the 
functions 

Therefore in proving its regularity we can study (1.7) as a function of A. 
Define 

and 

Then {cQ(A)} is a (G, M )  family. (See the first example in Section 7 of 
[l(e)].) We would like to show the same of {dQ(A)}. The right hand side of 
the formula for dQ(A) is analytic at any imaginary values of X '  and X, so 
dQ is a smooth function on i a & .  Let Q '  be a group in @(M) which is adja- 
cent to Q. Then 

If A belongs to the hyperplane i a ?  spanned by the common wall of the 
chambers of Q and Q '  in i a & ,  the points X and sX' will have the same pro- 
jections onto i a & / i a ? .  In this case 

by (1.3), and 
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This is the required condition. Therefore { d Q ( A ) }  is a (G, M )  family. 
The expression (1.7) equals 

which extends to a smooth function of A â i a f , .  It follows that (1.7) ex- 
tends to a smooth function of ( A ' ,  X )  ? i a$  X ia&.  

Keep in mind that s is a fixed element in the Weyl group of aM = ap .  
It can be represented by an element in the normalizer of M in G. Let L be 
the smallest Levi subgroup in Â £ ( M  which contains a representative of s. 
Then 

the space of fixed vectors of s in a M ,  and a h ,  the orthogonal complement 
of a/,  in a M ,  is an invariant subspace of s. 

From now on we will take X '  = X  + {', where {' is restricted to lie in 
the subspace ia?. Then sf = C, and 

is the decomposition of A relative to 

i a f ,  = i ( a h ) *  @ i a f .  

If \J_ is the projection of X onto ia?,  the map 

is a linear automorphism of the vector space i a f ,  @ i a f .  In particular, the 
points X and X '  = X  + (" are uniquely determined by A and \r. Write 

and 
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to keep track of all the variables. These of course are still ( G ,  M )  families 
(in the variable A) ,  and for A' = A + f as above, the expression (1.7) 
equals 

Now apply (2.2). We obtain 

To evaluate (1.7) at X' = X we set (" = 0. This simply entails replacing A 
in this last expression by sA - A. 

We have established 

LEMMA 2.1. The expression (1.7) extends to a smooth function of 
(A' ,  A) ? ( iag X iah) .  Its value at A' = A equals 

I: CUT, S A  - A)ds(\r, sA - A ) ,  
Sâ‚¬'S( 

where {cQ(T,  A ) }  and {dQ(XL, A ) }  are the ( G ,  M )  families defined by 
(2.3) and (2.4) respectively. 

3. Some remarks on convex hulls. The dependence of the expres- 
sions in Section 1 on T has been isolated in the functions c ~ , ( T ,  A). These 
functions are closely related to certain convex hulls. 

Suppose in general that M is a group in Â £ ( M o  and that 

is a set of points in a\i indexed by the groups in S>(M). Assume that for 
every pair ( Q ' ,  Q )  of adjacent groups in (P(M), Yn -  - Y Q  is a positive 
multiple of the co-root a", where a is the unique root in AQ- ("I ( -AQ) .  
Then is what we called in [ l ( a ) ]  a positive AM-OrthOgOnal set. It is clear 
that the functions 

form a (G ,  M )  family. From the discussion in Section 6 of [ l (e )]  it follows 
that the function 
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is the Fourier transform of the characteristic function of the convex hull of 
'y (regarded as a compactly supported distribution on OM). More gener- 
ally, suppose that L ? Â£(M and that S is a group in (P(L). The set 

is another positive AM-orthogonal set, but this time with the underlying 
group being L instead of G. All the elements in YL project onto a com- 
mon point in 0.1, which we denote by Ys. The convex hull of 'y& is the 
translate by Ys of a set of positive measure in a h .  We shall denote its char- 
acteristic function by x&. Then 

Finally, observe that the collection 

is a positive A^-orthogonal set. 

LEMMA 3.1. Suppose that H is a point in a~ which belongs to the 
convex hull of 3. Then the projection of H onto a^ belongs to the convex 
hull of ,̂. 

Proof. A necessary and sufficient condition that H belong to the 
convex hull of 'y is that the projection of H onto a. equal Yg  and that 

for every P ? @ ( M )  and a ? Ap. (See [l(a), Lemma 3.21. Following the 
custom of previous papers we will let An denote the basis of (a$)* which is 
dual to the basis {a":  a ? Ap}  of a$.) We are assuming that H belongs to 
the convex hull of 'y. Let HI_ be the projection of H onto a^. We must show 
for any S ? @(L) and a ? As that a{Yc - H )  is nonnegative. Let R be any 
group in @^(M). Any linear function a in As vanishes on a h ,  so that 
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Since As is a subset of As(^), this number is nonnegative by hypothesis. It 
follows that HL belongs to the convex hull of yL. 

Let d ( y )  be the smallest of the numbers 

Let us assume that d ( y )  is positive. This means that for each P, Y p  
belongs to the chamber aM(P). The next lemma provides a partial con- 
verse to the last one. 

LEMMA 3.2. There is a positive constant Cl ,  depending only on G, 
with the following property. Let H be a point in a~ whose projection, HL,  
onto aL belongs to the convex hull of yL. Then H belongs to the convex 
hull of 9, provided that 

Proof. We shall actually show how to choose Cl so that H belongs to 
the convex hull of 

a subset of 3. Let 

U = H - H L ,  

the projection of H onto ah. By hypothesis, 

H - S r s Y S ,  
- StS>(L) 

for numbers rs,  0 5 re <: 1, such that 

S r s = l .  
S â ‚ ¬ @ (  

Then 

H = HL i U = S rs(Ys  i U ) .  
Sâ‚¬(P(  
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It is clearly enough to show that Ys + U belongs to the convex hull of yu. 
Suppose this is not so. Then by [l(a), Lemma 3.21 there is a group 
R 6 < y L ( ~ )  and a linear function a 6 An such that the number 

is negative. It is well known that the chamber 

is contained in its dual chamber 

It follows that there is an a 6 AR such that a(Ys(R) - U) is also negative. 
Since AR is a subset of we have 

Let Cl be the smallest of the numbers 

Then if 1 1  Ull C i d ( y ) ,  the inequality above is contradicted. In other 
words, Ys + U belongs to the convex hull of yf,. 0 

The example we have in mind, of course, is the set 

defined in Section 1. With this example comes a fixed pair of groups 
P 6 @(M) and Po 6 @(Mo), with P 3 Po.  Suppose that Q 6 9(M) and that 
a 6 An. Remember that YQ(T) is the projection onto aM of t l ( ~  - To) 
+ To, where t is any element in Wo such that Pi = tQ contains Po. Now 

where f3 = t a  is a root in A P .  There is a unique root Po in A p  whose 
restriction to a p  equals f3 .  It is a simple exercise (which we leave to the 
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reader) to check that if X is any point in the chamber aO(PO), then O(X) 2 

&,(X). We always take T to be in this chamber, so that 

It follows that there is a constant CO such that 

We are assuming that T is suitably regular in ao(PO), so that d ( y ( T ) )  is 
positive. It follows easily that y ( T )  is a positive, AM-orthogonal set. In 
particular, the two lemmas above apply. 

4. Evaluation of P ~ ( B ) .  We continue with a fixed group 
PO 6 (P(Mo) and a function B 6 c ^ y / i a Z ) ^ .  We are going to find a for- 
mula for the polynomial P ~ ( B ) .  For the moment, P ^> Po, M = M p ,  TT, s 

and L will also remain fixed, as in Section 2. Consider, in the notation of 
Lemma 2.1, the integral 

We shall show that it is asymptotic to a polynomial in T ,  which we will 
calculate explicitly. This will allow us to obtain P ~ ( B )  simply by summing 
over P, TT and s. 

Let pA be the projection of X onto ;'(a&)*. Then X = + X L ,  and 

We shall decompose the integral (4.1) as a double integral over ('(a$)* and 
i a f / i a &  Notice that 

is a linear isomorphism of ?(a$)*. We can use it to change variables in the 
integral over {(a&)*, as long as we remember to divide by its determinant. 
It follows that (4.1) equals the product of 
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with the sum over S 6 7 ( M )  of 

Let S be a fixed group in 7 ( M ) .  We write &T, .) for the character- 
istic function in aM of the convex hull of the set Y ^ ( T ) .  The formula (3.1) 
becomes 

which we can substitute into the expression (4.2). We obtain 

where 

for any H ? a M .  The function d g X ,  p )  is smooth in each variable, and the 
function 

is smooth and compactly supported. It follows that &, which is clearly aJ. 
invariant, is a Schwartz function on aM/aL. We are going to study the 
behaviour of (4.3) as T approaches infinity strongly in ao(Po). To this end, 
we assume that 

for a fixed positive constant 6, and let 1 1  T 11 approach infinity. 
There are two cases to consider. Suppose first of all that S does not 

belong to 7 ( L ) .  This means that as is not contained in a,. In particular, 
there is a root a of (G, A M )  which vanishes on a/  but does not vanish on 
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as. In fact by choosing the sign of a  properly we can arrange that the 
restriction of a  to as is a root of ( S ,  As) .  It follows that a  is a root of 
(S (R) ,  A M )  for any group R in pMs(M).  Consequently 

for each R. Suppose that H is a point in aM such that X&(T, H )  # 0. Then 
H belongs to the convex hull of { Y S ( R ) ( T ) : R  6 pMs(M)} .  This implies 
that 

Let Uu be the projection of H onto ah. Since a  vanishes on a / . ,  the or- 
thogonal complement of ah, a ( H )  is bounded above by a constant multi- 
ple of 11 UH 11 . On the other hand, 

by (3.2) and our restriction on T. Consequently there is a constant C such 
that 

whenever '^{T, H )  does not vanish. It follows, for any positive n ,  that 
(4.3) is bounded by 

It is of course finite, t f ) s  being a Schwartz function on aM/aL = ah. Now 
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is a polynomial in T .  It follows that (4.3) approaches zero as 1 1  TI1 ap- 
proaches infinity. 

Next suppose that S belongs to q L ) .  Then 

Since the function (j>s is ar invariant, we can write (4.3) as 

We shall apply the lemmas of the last section to the set '^^{(T) (with the 
role of G taken by Me).  Let x f ( T ,  e )  be the characteristic function in a~ of 
the positive Ar-orthogonal set ' y f  ( T ) .  Lemma 3.1 tells us that the function 

is nonnegative. Since it is the difference of two characteristic functions it 
must vanish whenever the first one, x f ( ~ ,  H ) ,  equals zero. Lemma 3.2 
tells us that it also vanishes whenever 

However, 

We are letting 1 1  T 1 1  approach infinity, so we essentially can discard Co. In 
fact, we can find a constant C with the property that &(T, H + U )  
vanishes unless \;(T, H )  = 1 and \\ U \\ 2 C 1 1  T 1 1  . It follows that the dif- 
ference between (4.4) and 

is bounded in absolute value by 
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This, for any n >. 0, is in turn bounded by 

where 

Now formula (3.1) asserts that 

This is a polynomial in T .  It follows that the difference between (4.4) and 
(4.5) approaches zero as 1 1  T 11 approaches infinity. 

It is easy to evaluate (4.5).  The definition of cf>f is given as a Fourier 
transform of a certain smooth, compactly supported function on /(a&)*. 
The integral 

is just the value of that function at zero. It equals 

Therefore (4.5) equals 

Since the function c f ( T )  is a polynomial, this last expression is a 
polynomial in T .  To calculate its contribution to the asymptotic value of 
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(4.1) we need only take the sum over S 6 7(L). Our net result is that (4.1) 
differs from the polynomial 

by a function which approaches zero as T approaches infinity strongly in 
~oCPO). 

Suppose that X 6 iaf . Then 

is a product of (G, L )  families. It follows from (2.2) that 

equals 

The integrand in (4.6) is the product of BJX) with the value of this expres- 
sion at A = 0. To obtain an explicit formula we need to look back at the 
definitions of Section 2. Since X and A lie in the subspace iaf of i a&,  XL 
equals X and 

It follows from the definition (2.4) and the functional equation (1.2) that 

for any Q 6 (P(M). To get dQl(X, A), Q i  6 (P(L), we have only to choose 
Q c Q l .  Notice that the projection of X + A onto (a&)^ is zero, so by 
(1.3) 

We shall usually denote this operator by M(P, s).  



1310 JAMES ARTHUR 

If X and A are general points in i a s ,  define 

for any Q 6 @(M). Suppose that Q and Q'  are adjacent groups in @(M) 
and that A lies on the hyperplane spanned by the common wall of their 
chambers. Then 

by (1.2) and (1.3). In other words 

is a (G, M )  family with values in the space of operators on Q.(P). (The 
discussion of Section 2 applies equally well to vector-valued (G, M )  
families.) Since it is a product of (G, M )  families, 

is also a (G, M )  family. Now, again take X and A to lie in the subspace i a f .  
Then 
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Consequently (4.7) equals 

Its value at A = 0, which we know is a polynomial in T, equals 

by definition. 
We can now give our formula for PT(B). If L 3 M is any pair of Levi 

subgroups, let w L ( a d r e g  be the set of elements s 6 W(aM) such that 

@ 6 aM:sH = H}, 

the space of fixed vectors, equals ar. We have essentially proved 

THEOREM 4.1. The polynomial PT(B) equals the sum over {P 6 
S'(Mo) : P 3 Po}, TT 6 II(M~(A)'), L 6 Â£(Mp and s ~ ~ ( a ~ ) ~ ~ ~  of the prod- 
uct of 

Proof. The expression (4.8) is a polynomial in T. It equals the integral 
in (4.6). We have seen that (4.6) differs from (4.1) by a function which ap- 
proaches 0 as T approaches infinity strongly in ao(Po). The theorem follows 
fromLemma 2.1 and the asymptotic formula(1.6) forpT(B). 0 

5. A formula for Jx ( f ) .  The last theorem has given us an explicit for- 
mula for the polynomial PT(B). It leads immediately to a formula for J  ̂ f ). 
Choose the function B 6 ~ r ( z l j * / i a p  so that B(0) = 1, and set 

as in [l(g)]. Then if T any point in ao(Po), 



1312 JAMES ARTHUR 

J*) = lim p T ( B E ) ,  
Â£- 

by Theorem 6.3 of [ l ( g ) ] .  
In [ l ( e ) ]  we introduced a distribution J x .  Its interest stems from the 

fact that it is independent of the minimal parabolic subgroup Po. We know 
that J:( f )  is a polynomial in T .  Then J (  f )  is defined to be the value of J: at 
T = T o .  It follows that 

JJ f )  = lim pTO(BE), 
f -0 

for any B as above. 

LEMMA 5.1. Suppose that P 6 (P(Mo) and L 6 2 (Mn) .  Then 

for any X 6 ia&. 

Proof. By definition, 3 1 1 f Â ¡ ( ~  X )  is the value at A = 0 of the function 

The point Y Q ( T o )  is just equal to the projection of T o  onto a/, . The func- 
tion above therefore equals 

Its value at A = 0 is 

as required. 0 

If M is any Levi subgroup, let W F  be the Weyl group of ( M ,  A o ) .  

THEOREM 5.2. The distribution Jx( f )  equals the limit as e approaches 
zero of the expression obtained by taking the sum over M 6 Â£(Mo) L 6 Â£i(M) 
TT 6 H ( M ( A ) ' )  and s 6 wL(adreg of the product of 
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1 W P  1 w0 \ - ' \ de t ( s  - l).kl-' 

with 

Here, B is any function in ~ m / i a z ) ~  such that B(0) = 1. 

Proof. The function X ~ ( P ,  X )  is a polynomial in T. Its value at To 
equals XL(P, A). To obtain an explicit formula for 

JJ f )  = lim pTO(~')  
E-0 

we have only to replace X ~ ( P ,  X) by XL(P, X) in the formula for P~(B ' )  
given by Theorem 4.1. The resulting formula will contain a sum over 
{P  6 S'(Mo):P 3 Po}. The minimal parabolic subgroup Po no longer 
plays a special role, so we can sum the formula over Po 6 S'(Mo), as long 
as we remember to divide by 1 @(Mo) 1 = 1 Wo 1 . The resulting expression 
will contain a sum over {Po, P :  Po C P}. However, each summand will be 
independent of Po. We can remove Po from the expression altogether, pro- 
vided that we multiply by 1 p ^ ~ ~ )  = 1 w }̂ . The theorem follows. Cl 

With this last theorem we have attained a plateau. We have found an 
explicit formula for J,(f). There is certainly room for improvement. It 
would be nice to be able to eliminate the test function B (and the limit over 
c).  To do so, we would need to prove absolute convergence of the resulting 
integrals. In addition, we would like our formula to hold for an arbitrary 
function f in C;(G(A)'), and not just a K finite one. To deal with these 
questions it is necessary to be able to normalize the intertwining operators 
on p-adic groups. Canonical normalizations are expected to exist, but so 
far have been established only for the group GL,,. (See [7(b)].) We shall 
discuss the problem in the next section, at the same time formulating the 
hypothesis that each group G(Qv) be one on which suitable normalizations 
exist. This hypothesis will apply to the rest of the paper. 

6. Normalized intertwining operators. We again fix a Levi sub- 
group M 6 Â£(Mo) Let Y(G, AM) denote the set of reduced roots of 
(G, AM), and for any P 6 (P(M) write En for the reduced roots of (P, AM). 



Then 

Let 0 be a root in Er(G, AM). Then 0 belongs to Ap for some P â @(M). If 
Po c @(Mo) is a minimal parabolic subgroup which is contained in P ,  then 
0 is the restriction to aM of a unique root Po in Ape. Given P and Po we 
defined 0" in [l(c)] to be the projection of the co-root 0; onto aM. We 
leave the reader to check that the "co-root" 0" depends only on 0 and not 
P o r  Po. 

Any representation r â II(M(A)) is a restricted tensor product 

of representations of the local groups. We shall fix a valuation v on Q,  a 
representation rv in II(M(Qv)) and a representation r in II(M(A)) whose 
component at v equals rv. We shall also fix groups P and Q in @(MI. Any 
vector 4 â @.;,=(P) belongs to a closed linear subspace of g $ , T ( ~ )  on which 
the representations 

are equivalent to those induced from the representations 

of P(Qv). If x â G(A), define ( M Q l P ( r v ,  A ) ~ ) ( x )  to be 

The integral converges only for Re(A) in a certain chamber, but MQ l p ( r v ,  A) 
can be analytically continued to a meromorphic function of A c with 
values in the space of linear maps from @.;,=(P) to @.;,=(Q). Indeed, 
M Q  lp(rv, A) is equivalent to the usual (unnormalized) intertwining 
operator between induced representations of G(Qv), for which the cor- 
responding statement is well known. (131, [7(a)]). 

It is possible to normalize the intertwining operators on real groups 
(see [l(b)], 131). Let v be the real valuation. The normalizing factors are 
built out of certain meromorphic functions 
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n d r " ,  z),  2 c, 

of one complex variable, indexed by the reduced roots /3 of (G, A M ) .  Set 

where â @(M) is the group opposite to P. Then the operators 

defined by 

are normalized intertwining operators. If R is any other group in @(M), 

The adjoint is given by 

If L â 2 (M), S â @(L)  and R ,  R â p L ( ~ ) ,  then 

for any 4 â a $ , T ( ~ ( ~ ) )  and k â K. Finally, suppose that a function 
4 â a i , T ( ~ )  is invariant under the group K " .  Then 

We shall assume from now on that for any valuation v ,  the intertwining 
operators can be normalized in this way. In other words, we assume that 
there are normalizing factors, defined by (6.11, such that the operators 
defined by (6.2) have the properties (6.3)-(6.6). Let 4 be a function in 
@:,=(P). Then C#I is Kv invariant for almost all v. It follows from (6.6) that 
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is actually a finite product. We can therefore define 

We obtain another meromorphic function of A â with values in the 
space of linear maps from @ ; , T ( ~ )  to @ ; , T ( ~ ) .  This normalized global in- 
tertwining operator satisfies the properbies described by simply replacing 
every rv in the formulas (6.3)-(6.5) by T .  

It is clear that 

whenever the infinite product on the right converges. It follows that the 
function 

defined a priori in the domain of absolute convergence of the infinite 
product for M Q l p ( A ) ,  can be analytically continued as a meromorphic 
function of A â a$,c so that 

Moreover, by looking at adjacent groups in @(MI we see that 

where no(T,  z )  is defined by analytic continuation of an infinite product 

which converges in a half plane. It is clear that n Q I p ( r ,  A) has properties 
analogous to (6.3)-(6.5). 

The functions above give us two new (G, M )  families. Fix P â @(MI,  
r â I I (M(A))  and A â ia&. Define 
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and 

These two collections of functions of A â ia& are each ( G ,  M )  families. 
The verification, which uses the properties analogous to (6.3) and (6.5), is 
the same as for the collection { X Q ( P ,  A, A)} .  

7. Logarithmic derivatives. The (G, M )  family 

is of a special form. Each function is a product, over the reduced roots 
Eb, of functions of one complex variable. In this section we shall study 
such (G ,  M )  families. 

Let M be a fixed Levi subgroup. Suppose for each reduced root /3 of 
(G ,  A M )  that C B  is an analytic function on a neighborhood of iR in C such 
that cB(0)  = 1. Define 

for each group Q â @ ( M ) .  Suppose that Q and Q' are adjacent groups in 
@(MI and that A lies on the hyperplane spanned by the common wall of 
their chambers. There is a unique root a in Eb, n E b .  It is a simple root 
of (Q ' ,  A M )  and is orthogonal to A. We have 

since 
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It follows that {cQ(A)}  is a ( G ,  M )  family. In this case it is possible to 
express the number 

cM = lim E cQ(A)oQ(A)- '  
A-0 Q â ‚ ¬ @ (  

rather more explicitly. 

LEMMA 7.1. 

where the sum is taken over all subsets F of Er(G, A M )  for which 

is a basis of a;, and Z (Fv )  stands for the lattice in a; generated by Fv 

Proof. Set 

t = ( ~ @ ) @ â ‚ ¬ E ~ ( G , * ,  9 

where each to  is a positive real variable. Define 

Then {cL(A) :Q  â @ ( M ) }  is a ( G ,  M )  family which is also of the form 
(7.1). In particular, 

is a regular function of A. To calculate its value, set 

and let z approach zero. We obtain 
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where m = dim(AM/Ac). The expression on the right is independent of 
. It is also a homogeneous polynomial of t = (ta) of total degree m. Let 

be a sequence of nonnegative integers which add up to m. Then the coeffi- 
cient of TIgtTO in the polynomial c h  equals 

where stands for the sum over those groups Q 6 (P(M) for which every /3 
with mo # 0 is a root (Q, AM), and c p  is the m p  derivative of cO. The 
expression (7.2) is also independent of t .  

Suppose that (mB) is such that for some P I ,  the integer mb, is greater 
than one. Since (7.2) is independent of t ,  we can set 

with orthogonal to E l ,  and let z approach zero. We can certainly choose 
t1 such that the set 

consists only of P1 and -PI .  It follows that each function 

is bounded away from zero as z approaches zero. On the other hand, 

as z approaches zero. It follows that the coefficient (7.2) approaches zero. 
Since it is independent of t ,  it must actually equal zero. Thus, we may 
restrict our consideration to sequences (?no) for which lnO equals 0 or 1, or 
to what is the same thing, subsets F C Er(G, AM) consisting of m 
elements. It is easy to see that if F is not linearly independent, the cor- 
responding coefficient (7.2) will vanish. Indeed, set 
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t = T; + t1, 

where T; is a point in general position in the span of F, and t i  is in general 
position in the orthogonal complement of the span of F. It is clear that 
(7.2) will approach zero if T; approaches zero. The coefficient must then 
actually equal zero. 

Now C M  is obtained from c L  by setting each to, = 1. We have there- 
fore shown that C M  equals 

where the summations are over those subsets F of V ( G ,  Am) for which Fv is 
a basis of a$ and those groups Q in @ ( M )  such that En contains F. Lemma 
7.1 is an immediate consequence of the following amusing formula. 

LEMMA 7.2. Take any subset F of F ( G ,  AM)  such that Fv is a basis 
of a$. Then 

Proof. If (3 is any root in Er(G,  A m ) ,  define d f s ( z )  to be ez  if (3 
belongs to F and to be 1 otherwise. Then 

is a ((7, M )  family of the form (7.1). It follows from what we have just 
shown that 

On the other hand, 

where 
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Recalling the remarks at the beginning of Section 3, we note that dM also 
equals the volume in a$ of the convex hull of 

However, {YQ: Q ? (P(M)} is just the set of vertices of the parallogram in 
a^ spanned by the basis vectors Fv.  The volume of the convex hull is 
therefore the volume of the parallelogram, which equals v o l ( a $ / ~ ( ~ ~ ) ) .  
This gives the required formula of Lemma 7.2, thereby completing the 
proof of Lemma 7.1. 

Suppose that {cQ(A):Q ? (P(M)} is of the form (7.1) and that L ? 

Â£(M) Then the associated (G, L )  family is also of the form (7.1). For sup- 
pose that is a reduced root of (G, A,). Define 

where the product is extended over those f 3  ? F ( G ,  AM) such that the pro- 
jection of p onto a~ is a positive multiple k a  of f l y .  Suppose that A is a 
point in iaf and that Ql ? (P(L). Taking any group Q c Ql in (P(M), we 
have 

This function is certainly of the form (7.1). 
If 13 is any root in Er(G, AM), write (3: for the projection of Pv onto a,. 

If F is a subset of r ( G ,  AM), let F: be the disjoint union of all the vectors 
(32, 13 6 F. (In particular, if Fx forms a basis of af,  the vectors G, 13 ? F,  
must all be distinct.) The number c, has a simple formula in terms of the 
original functions 
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COROLLARY 7.3. 

where the sum is taken over all subsets F of F ( G ,  A M )  such that Fx is a 
basis of a?. 

Proof. According to the lemma, 

the sum being taken over subsets Fl of F ( G ,  A;). Suppose that P I  is a 
root of F ( G ,  A^ ) .  Applying Leibnitz' rule to (7.3), we obtain 

where the sum is over those 13 which occur in the product (7.3). Let Fl be a 
subset of 17(G, A L )  such that Fy is a basis of o f .  Then 

equals 

where F ranges over the subsets of F ( G ,  A M )  obtained by choosing, for 
each f3, 6 F l ,  a root ;3 6 Er(G, A M )  such that 

Each set F/ will also be a basis of a^. Moreover, 

The corollary follows. 

Suppose that L l  6 Â £ ( L  and that S 6 (P(L,). Then 
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&(A) ,  A ? i a f ,  Ql  6 @I(L) ,  

is an ( L l ,  L )  family. It is of the form (7.1). 

COROLLARY 7.4. 

where the sum is over all subsets F of 17(Ll, A M )  such that F]_ is a basis of 
a i l .  In particular, c f  depends only on L l  and not on the group S ? (P(Ll). 

Proof. For each Ql ? ( P L l ( ~ ) ,  c ~ ( A )  is the product of 

with a function which is independent of Ql and whose value at 0 equals 1. 
In calculating c f  , this last function can be ignored. The required formula 
then follows from Corollary 7.3. 0 

We return now to the setting of Section 6. Fix P 6 (P(M), 71- 6 I I ( M ( A ) ' )  
andX 6 ia&. Then if Q ?  (P(M) and A ?  ;a&, 

This function is clearly of the form (7. I ) ,  with 

if (3 belongs to 'L'p and cg( z )  = 1 otherwise. The last corollary translates to 

PROPOSITION 7.5. Suppose that L ? W), L l  6 &(L) and S .̂ (P(Ll). 
Then 

equals 
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where the sum is over all subsets F of F(L1,  A M )  such that F]r is a basis of 
a i l .  

8. Absolute convergence. In this section we shall show how to elim- 
inate the test functions B from our formula for JJ f ) .  We shall also do 
away with the restriction that f be K-finite. From now on, f will be an arbi- 
trary function in C:(G(A)') which need not be K finite. The operator 
px,,(P, A, f )  will no longer act on the vector space &:,,(P), but rather on 
its closure, d2 ,JP) .  The operators 

which appear in Theorem 5.2, also act on Q.",,(P). However, they are un- 
bounded. If A is any operator on d , ( ~ ) ,  let \ \A 1 1  denote the trace class 
norm of A .  

The proof of the following theorem will occupy us for the rest of the 
paper. 

THEOREM 8.1. Suppose that M 6 Â £ ( M o )  P 6 (P(M), L 6 Â £ ( M  and 
thatf 6 c ~ ( G ( A ) ~ ) .  Then 

is finite. 
If we assume the proof of this theorem for the moment, we can derive 

the following refinement of Theorem 5.2. 

THEOREM 8.2. Suppose that f 6 C; (G(A)~) .  Then J x ( f )  equals the 
sum over M 6 Â£ (Mo)  L 6 Â £ ( M )  IT 6 I I ( M ( A ) ~ )  and s 6 ~ ~ ( a ~ ) ~ ~ ~  of the 
product of 

with 

Remarks. 1. As an operator on d L ( p ) ,  
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is unitary. If A 6 iaj", we have sA = X .  Therefore 

The convergence of the sums and integrals in Theorem 8.2 follows im- 
mediately from Theorem 8.1. 

2. The formula for J ( f )  given by the theorem is quite concrete. Its 
dependence on f is through the operator pv,ir(P, A, f ) ,  which is really given 
in terms of the Fourier transform off. The operator 91ZL(P, X )  depends only 
on the M functions. It equals 

where A and X are constrained to lie in i a f ,  and for each Q l  6 @(L),  Q  is a 
group in @(M)  which is contained in Q l .  Consider the special case that 
L = M and dim a? = 1. If a is the unique root in AD, let s be the element 
in (a^)* such that s ( a v )  = 1, and set 

Then the function (8.1) equals 

This should be compared with the formulas from [6(a)] and [2]. 
3. The terms in the formula for which L = G are the most simple. 

For then there is no integral over A, and the operator 9TZL(P, A) reduces to 
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the identity. These terms will be of particular interest in the applications 
of the trace formula. 

Proof of Theorem 8.2. First suppose that f is a K finite function in 
c;(G(A)'). Then we can apply Theorem 5.2. Let B be a function in 
~ m / i u ; ) *  such that B(0) = 1. The functions 

are bounded uniformly in e > 0 and TT 6 I I(M(A)') .  Therefore, Theorem 
8.1 allows us to apply dominated convergence to the formula of Theorem 
5.2. In this formula we can take the limit in e inside all the sums and in- 
tegrals. The result is the required formula for Jx( f ) .  

Now take f to be an arbitrary function in C ~ G ( A ) ) .  If 7-1 and r2 are 
irreducible representations in II(K),  the function 

is K finite. Therefore J ^ f r r 2 )  is given by the formula of Theorem 8.2. 
But according to Proposition 2.3 of [l(g)], 

Setting T = T o ,  we obtain 

It follows that Jx( f )  can be obtained by substituting f r  into the formula 
of Theorem 8.2 and summing over ( r 1 ,  r2) .  Theorem 8.1 tells us that the 
sum converges to the required formula for Jx( f ) .  

We must still prove Theorem 8.1. First we need a lemma, 

LEMMA 8.3. Suppose that f 6 c;(G(A)') and M ? Â£(Mn)  Then 
there are only finitely many TT 6 I I (M(A) ' )  such that the operators 

do not all vanish. 
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Proof. This result is in a sense implicit in Chapter 7 of [4(b)] .  Recall 
that x is a Wo-orbit of pairs ( M B ,  rB ) ,  where B  is a parabolic subgroup 
and r~ is an irreducible cuspidal automorphic representation of M ~ ( A ) ' .  
Langlands' construction gives rise to an intertwining map between any 
nonzero operator p.JP, A, f )  and a certain sum of residues in A of 
operators 

in which ( M B ,  Q) belongs to x ,  B  and B' are parabolic subgroups which 
are contained in P, t is an element in W(aB ,  O B , )  which leaves ap pointwise 
fixed, and A is a point in whose projection onto equals A. The 
residues are taken at points 

where X belongs to a fixed compact subset of (a&)*. As a function of A, 
(8.2) takes values in an infinite dimensional space. Only the K finite 
matrix coefficients are, a priori, meromorphic. It is in this sense that the 
residues are to be taken. However, we shall show that only finitely many of 
the singular hyperplanes of (8.2) meet any compact subset of a;,c. This 
will leave only finitely many choices for X. Since there are only finitely many 
functions (8.2), ( x  being of course fixed), there will be only finitely many 
choices for TT. 

In view of (1.4), we can replace the operator MBrIB( t ,  A )  by M B  ̂( A ) ,  
where Bl is t he  group t l ~ ' .  We can also assume that 

the operator 

is the product of the meromorphic scalar valued function n B  lB(rB, A )  
with 
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Almost all the operator valued functions in this last product are identically 
1. We have only to show that each of the other ones has only finitely many 
singular hyperplanes meeting any compact subset of age. If v is ap-adic 
valuation, f v  is Kv finite. Then the function 

takes values in a finite dimensional space, and there is nothing to prove. 
On the other hand, any irreducible representation of a real group can be 
embedded in one which is induced from a discrete series. Therefore if v is 
the real valuation, we may assume that rV itself belongs to the discrete 
series (modulo the center of Mn(R)) .  But then any of the associated inter- 
twining operators are meromorphic, as operator valued functions on the 
space of smooth vectors. (See [3].) In particular, only finitely many 
singular hyperplanes of 

and hence also of (8.2), meet any compact subset of The lemma 
follows. 

Fix TT 6 II(M(A)'). To prove Theorem 8.1 it is enough, given the last 
lemma, to show that 

Applying (2.2) to this product of (G, L )  families, we see that 
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Since v ~ ( P ,  TT, A)  is a scalar, (8.3) is bounded by the sum over S 6 7 (L)  of 

Now ffLW, T T ,  A) is built out of normalized intertwining operators on the 
local groups G(Q,,). It can be estimated by the methods of local harmonic 
analysis. By copying the proof of Lemma 9.1 of [l(e)], we can find a con- 
stant C N ,  for every positive integer N, such that 

for all X 6 ia*. Therefore Theorem 8.1 will be proved if we can find an N 
such that 

is finite for each S 6 TCL). 
Fix S 6 7(L) and set Li = Ms.  By Proposition 7.5 the integral (8.4) is 

bounded by the sum, over all subsets F of 17(Ll, An) such that Fx is a 
basis of ail ,  of the product of 

vol(af1 /Z(Fx)) 

with 

Fix such a set F .  We can write 
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where 

is the basis of (a;')* which is dual to F t .  The integral (8.5) becomes a 
product of integrals over i R  and an integral over i a f  /;'a$. The finiteness 
of (8.5), and hence the proof of Theorem 8.1, will follow immediately from 

LEMMA 8.4. There is an integer no such that for every root (3 in 
Er(G, AM),  the integral 

is finite. 
We will prove this lemma in the next section. 

9. Proof of Lemma 8.4. A part of the proof of Lemma 8.4 goes 
back to an idea of Selberg. He proved a similar lemma for groups of real 
rank one by using estimates obtained from the trace formula. (See [6(b)].) 
For general groups we established estimates of a similar sort. (See the ap- 
pendix of [l(g)].) Fix a group M e Â£(Mo and a representation TT 6 II(M(A)'). 
For the moment we shall also fix parabolic subgroups P 6 (P(M) and Po 6 

(P(Mo) such that Po is contained in P .  There are constants no and do  such 
that for every vector i f )  in $,JP), 

for a constant C A  depending on i f )  and for all T which are sufficiently 
regular in the chamber ao(Po). (See the remark following Lemma A.1 of 
the appendix of [l(g)].) This is the estimate we shall use. Recall that 
o ~ ( P ,  A)  is an operator on Q ~ , ~ ( P ) .  By definition, ( G ( P ,  A)^>, i f ) )  equals 
the value at A '  = k and i f ) '  = i f )  of 

The proof of Lemma 8.4 is more difficult in general than in the case 
that G has rank one. The problem is that the vector i f )  need not be 
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cuspidal. Then there is no simple formula for the inner product (9.2). It is 
necessary to use the results of [l(f)], where the inner product was studied 
in detail. 

In the notation of Section 9 of [l(f)], the inner product (9.2) equals 

where &'(A, A', 4 ,  <f>') is defined as a certain finite sum 

We recall that 

are distinct points which lie in the negative dual chamber of ao(Po) 
and p Y ( X ,  A', 4 ,  4 ' )  is a polynomial in T. If 0 5 k 5 n, the function 
q2G(X, X', 4 ,  4') is regular for all (A, A') in ia; X iaf .  We shall examine its 
dependence on T when X '  = X and 4' = 4.  Let 

be the set of distinct linear maps 

for which (t, t ') occurs in the sum above for q{'Â¡ Then there are functions 

which are polynomials in T ,  and are analytic at all points X 6 ia; for which 
the vectors 

are all distinct, such that 
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for all T 6 do and X 6 ;'a$. The case that k = 0 is of particular interest. In 
the notation of [l(g)], 

a function for which we have an explicit formula. We shall parlay the 
estimate (9.1) into an estimate for this latter function. 

Let $ be any vector in ao(Po). ThenXk($) < 0 for all k # 0. Let 6  = 6 T  
be the linear operator on the space of functions of T 6 an obtained by 
translating any function by the vector $. If a is a polynomial in T ,  and Y is 
a vector in a&-, the operator 

maps the function 

A power of the operator will clearly annihilate the function. Given X 6 ia;, 
define 

for some large integer d. This operator will annihilate all the functions 

We therefore have 
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We will operate on the function of T on the left hand side of the in- 
equality (9.1). Since 

the integral 

is bounded by 

for all k, j and all T which are sufficiently regular in ao(Po). Consequently, 
an estimate similar to (9.1) obtains for the integral of the function 

By combining these two facts we obtain a constant c i  such that 

for all T sufficiently regular in ao(Po). 
We can now begin the proof of Lemma 8.4. Fix a root /3 in 

F ( G ,  AM). Let L be the Levi subgroup in Â £ ( M  such that 

We shall use the estimate (9.3), but with ( G ,  M) replaced by ( L ,  M). Take 
P to be the group in ( P L ( ~ )  for which /3 is the simple root of (P ,  A M ) .  It is a 
maximal parabolic subgroup of L .  The only other group in @ ( M )  is P. Let 
a be the element in (ah)* such that a(/3") = 1, and set 
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Then the restriction of the operator Mpip ( \ )  to @-,&P) equals 

The explicit formula for (w;,JP, \)4>, 4>), discussed in Section 1, is 
given as a sum over the elements s 6 wL(aM). The summand correspond- 
ing to s = 1 is the product of v o l ( a ~ / ~ ~ )  with 

One sees that this limit equals the sum of 

(9.5) 

and 

(9.6) 

There is a most one nontrivial element s in ~ ~ ( u , , , ) .  If it exists, it maps za  
to -za. Its contribution to the formula for (w;,JP, A)$, 4) is the product 
of vol(ah/Zc^) with the sum of 

and 

provided that z + 0. (See Section 6 of [4(a)].) 
We have only to look at how Ay(za) acts on the five functions (9.4)- 

(9.8). For example, AT(za) acts on (9.8) by multiplying it by 
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a bounded function of z 6 iR. Moreover, the operators 

are all unitary, so that the absolute value of (9.8) is bounded whenever z 6 

iR is bounded away from zero. Similar assertions apply to the function 
(9.7). If @(z) is the sum of (9.7) and (9.8), ^(z) is regular at z = 0. It 
follows that 

for constants no, do and C A .  The integrals involving (9.4) and (9.6) have 
similar estimates. Combining these with (9.3), we find that there are con- 
stants no, do and such that 

However, the function 

is independent of T.  The operator AT(zm) simply multiplies it by 

a function which, for z 6 iR, is bounded away from zero. It follows that 

is finite. This is what was required in Lemma 8.4. 
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