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Introduction. One can think of Eisenstein series as the spectral kernels for the 
Laplace-Beltrami operator on a certain class of noncompact Riemannian 
manifolds. They are the eigenfunctions corresponding to the continuous 
spectrum. In particular they are not square integrable. However, there is a 
natural way to truncate these functions so that they are square integrable. The 
object of this paper is to investigate the inner product of two such truncated 
functions. Our main result is an asymptotic formula for the inner product, as the 
variable of truncation approaches infinity. The formula, which is based on an 
inner product formula of Langlands for cuspidal Eisenstein series, is rather 
simple. It is given in terms of certain operators which are analogues of the 
classical scattering matrix. 

The most efficient way to work with Eisenstein series is through adele groups. 
The close connection between the analysis on adele groups and that on locally 
symmetric Riemannian manifolds is well known and will not be discussed here. 
Let G be an algebraic group defined over Q, which for the introduction we take 
to be semisimple, and let P = N p M p  be a standard parabolic subgroup of G .  If 
An is the split component of the center of the Levi component Mp, let Gp be the 
space of square integrable automorphic forms on 
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It has an important subspace &p,cusp consisting of those + in &p for which each 
function 

<^:++(mx),  mEMp(A) ,  xâ ‚¬G(A 

is a cusp form on Mp(A). The theory of Eisenstein series associates to every 
+ â &p and every A in a real vector space ia;, a smooth function E(<f>,A) on 
G(Q)\G(A). It is not square integrable. However, for every point T in a certain 
chamber, a t ,  there is a truncation operator AT which acts on functions on 
G(Q)\G(A). The truncated Eisenstein series,  AT^(+, A), is square integrable. Now 
suppose that P' is another standard parabolic subgroup and that A' E ia;.. 
Suppose that + and +' are restricted to lie in the respective subspaces &p,c,,sp c @p 

and <3,p,,c,,sp C ap,. Then Langlands has established the elegant inner product 
formula 

(ATE(+, A), ATE(+" X)) = Â, X, +, + I ) ,  (1) 

where for any + E &p and +' E eP1,  u ̂(A, A', +, +') is defined as the sum over all 
standard parabolic subgroups P ,  and all elements t and t' in the Weyl sets 
W(ap, a p )  and W(dp., ap) ,  of the functions 

(M (t, A)+, M (t', ~ ' ) + ' ) e ( ' ~ -  "A')(T ) 

vol(aP,/LPl) 
- t'A')(aV) 

(For any unfamiliar notation we refer the reader to the text.) In particular, if P 
and P' are not associated, the inner product is zero. 

It is important to study the inner product when the vectors (f> E ep and 
6' â &,,- are arbitrary. Then, unfortunately, the formula is false. In fact, for 
general + and +' the inner product of ATE(+,A) and ATE(+',A') is apparently 
quite complicated. The main result of this paper (Theorem 9.1) is an asymptotic 
formula. We will show that 

as T approaches infinity away from the walls in a:. In particular, if P and P' are 
not associated, the inner product is asymptotic to zero. 

There does not seem to be any direct way to prove the formula (I*). This is 
perhaps not surprising for there is at present no direct way to study the function 
E(+, A). Langlands was able to establish the analytic continuation and functional 
equations only by taking residues of cuspidal Eisenstein series E(Fg(A), A + A), 
where B is a standard parabolic subgroup which is contained in P ,  A is a point in 
a;,,-, and FB is an analytic function from to h,cusp. We must proceed this 
way also. By formula (I), we have 
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Thanks to Langlands' work, we know that the inner product 

which is what we are after, can be obtained as a sum of residues in A and A' of 
inner products on the left hand side of (2). Consequently, we are reduced to 
studying the corresponding sum of residues of the right hand side of (2). We will 
examine it as a function of T.  In $3 we shall show that it equals a sum 

where (t, 1') ranges over certain maps with domain ia; X ;'a;,, &(t, t') is a finite 
set of points in a:, and pJ(A, A', <?>, <?>') is a polynomial function of T. 

The elements (t, t') in the sum (3) will include pairs from products 

of Weyl sets. If (t, t') is not of this form, we will use a property of the truncation 
operator to show that each X E & ( t ,  t') is a nonzero point in the closure of the 
negative dual chamber of a: (Lemmas 7.1 and 7.2). Thus, as T approaches 
infinity, the contribution of any such pair can be ignored. 

Suppose then that (t, t') belongs to the product (4). Lemma 7.2 will still tell us 
that each X E G(t, t') lies in the closure of the negative dual chamber. However, 
X could equal 0. The remaining problem is to calculate the coefficient 

A', <f>, <?>I). Lemma 4.1 will enable us to relate pT(A, A', (j>, +') to a coefficient 

p w ,  t'A', M (t, A)<?>, M(t', \')if>'), ( 5 )  

in which the group G has been replaced by P, .  But M(t,A)<?> and M(t',A')<f>' are 
both functions in a p , ,  a space associated with the square integrable automorphic 
forms on Mp(Q)\Mp(A). It will not be hard to show that the inner product of 
truncated square integrable automorphic forms is asymptotic to the ordinary 
inner product. It will follow that the coefficient (5) actually equals 

(See Lemma 8.1.) It is in particular independent of T. This will enable us finally 
to prove our asymptotic formula in $9. 

Inner products of truncated Eisenstein series occur in the trace formula (see $3 
of [l(b)]). They are the main ingredients of the distributions which were denoted 
by J: in [l(b)]. In order to put the trace formula to use, it is essential to evaluate 
these distributions. The main result of this paper turns out to be just what is 
needed. We shall use it in another paper to establish an explicit formula for the 
distributions J:. 

As we have already suggested, this paper relies heavily on Langlands' work on 
Eisenstein series. We have summarized the results we require in $2. They can be 
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extracted, with patience, from Chapter 7 of Langlands' book [2(b)]. For more 
details, the reader can refer to [3]. 

(1. The problem. Let G be a reductive algebraic group defined over Q. We 
shall fix a minimal parabolic subgroup Po of G and a Levi component Mo of Po, 
both defined over Q. In this paper, a parabolic subgroup will mean a parabolic 
subgroup of G, defined over Q, which contains Po. Suppose that P is a parabolic 
subgroup. Let No denote the unipotent radical of P, and let Mp denote the 
unique Levi component of P which contains Mo. Let A p  be the split component 
of the center of Mp. If X(Mp)Q is the group of characters of Mp defined over Q, 

is a real vector space whose dimension equals that of Ap.  Its dual space is 

We shall write A. = A p ,  a. = a p  and a: = a ? .  Let Wo be the restricted Weyl 
group of (G,Ao). It acts on an and a$ in the usual way. If P and P '  are parabolic 
subgroups we write W(ap, a p )  for the set of isomorphisms from ap onto up,  that 
can be obtained by restricting elements in Wo to up. If t E W(ap, apI) we will let 
w, stand for a fixed representative of t in G(Q). 

Let K be a fixed maximal compact subgroup of the adelized group G(A), 
which satisfies the usual conditions. More precisely, we assume that K is 
admissible relative to My in the sense of [l(c)]. This is just the framework of the 
papers [l(a)] and [l(b)] on the trace formula. We shall freely adopt the notation 
and conventions from these two papers, often with additional reminders, but 
sometimes without further comment. 

Before discussing Eisenstein series we should agree on our choices of Haar 
measures. Fix a Euclidean norm 1 1  ]I on the space an which is invariant under 
W,,. For any parabolic subgroup P, take the Euclidean measure on ap  associated 
to the restriction of 11 [I to ap. This normalizes Haar measures on all the spaces 
{ap}. We can then normalize the Haar measures on the groups K, G(A), Np(A), 
Mp(A), A~(R)O, M,,(A)' etc. by following the prescriptions of #1 of [l(a)]. 

Let %,(G(R)) be the universal enveloping algebra of the complexification of 
the Lie algebra of G(R), and let Â be the center of %(G(R)). Suppose that P is a 
parabolic subgroup. We shall write ~ ? ( N ~ ( A ) M ~ ( Q ) A ~ ( R ) ~ \  G(A)) for the space 
of (Â£ K) finite functions on NP(A) M,,(Q)A~(R)'\ G(A) which are square 
integrable. It is, in other words, the space of smooth functions 

which satisfy the following two conditions. 
(i) The span of the set of functions 
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indexed by k E K and z E 2 ,  is finite dimensional. 
(ii) 

< f > l 1 2  = J J \<f>(mk)12dmdk< oo. 
K MP(Q) \MP(A) '  

(This definition is slightly different from that of [l(a)]. In the notation of [l(a)], 
@ 2 ( ~ p  (A) Mp(Q)Ap (R)'\ G(A)) is the direct sum @ ,^(w), where w ranges over 
all classes of irreducible unitary representations of Mp(A) which are trivial on 
A~(R)'.) Built into the definition is the property that for any x E G(A) and <f> as 
above, the function 

belongs to the subspace of L ~ ( M ~ ( Q ) A ~ ( R ) ' \ M ~ ( A ) )  on which the regular 
representation of Mp(A) decomposes discretely. In fact the closure of 
1 3 , 2 ( ~ p ( A ) ~ p ( Q ) ~ p ( R ) o \ ~ ( A ) )  is just the Hilbert space on which the correspond- 
ing induced representation of G(A) acts. If <f> belongs to &\Na(A)MP(Q) 
A~(R)'\G(A)) we have the Eisenstein series 

It converges for Re(A) in a certain chamber, and continues analytically to a 
meromorphic function of A E a;,o. 

In $3 of [l(a)] we described an orthogonal direct sum decomposition 

indexed by a certain set 5%. (One purpose for introducing this notation was to 
keep track of the source of any Eisenstein series as a cuspidal Eisenstein series.) 
Suppose that x Â 5%. We shall denote simply by the subspace of vectors <f> in 
g2(~.,(A) Mp(Q)Ap(R)'\ G(A)) such that for all x in G(A) the function 

belongs to L ~ ( M ~ ( Q ) \  MP(A)'). This subspace is infinite dimensional. It is often 
appropriate to further single out a finite dimensional subspace. To do so, let T be 
a finite set of equivalence classes of irreducible unitary representations of K. Let 
&p,x,Y be the set of vectors <f> in &p,x such that for all x in G(A), the function 

is a sum of matrix coefficients of classes in I'. Then this is a subspace of &p,x 

which is finite dimensional. 
For the rest of this paper Twill denote a point in a: which is suitably regular; 

recall that this means that a(T) is large for every root a of (Po,Ao). Then we 
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have the truncation operator 

acting on any continuous function h on G(Q)\G(A) ([l(b)], $1). Fix parabolic 
subgroups P, P ' ,  and also elements A E a^,-, \/ E a;,,,- and (j) E &\N/,(A)Mp(Q) 

(R)'\ G (A)), (j)' â & 2 ( ~ p  .(A) M ~ , ( Q ) A ~ , ( R ) ~ \  G (A)). We propose to investigate 
the inner product 

If (j) belongs to S p  the function 

will belong to L*(G(Q)\G(A)')~. Therefore, if <j>' E Sp,,x., with x' distinct from x, 
the inner product (1.1) will vanish. We can therefore fix x E 9C and assume that 
(j) E Sp.x,r and (j)' E Sp-,x,r for some fixed finite set T of representations of K. 

Corresponding to x is a class 9 of associated (standard) parabolic subgroups. 
Recall that % is the set of Wo conjugacy classes of pairs (Mg, rB), where B is a 
group in 9 and rg is an irreducible unitary representation of Mg(A)' which 
occurs in the space of cuspidal functions on M ~ ( Q ) \ M ~ ( A ) ' .  If B E 9 the space 
L ~ ( M ~ ( Q ) \  MB(A)') is easy to characterize. It is just the space of cuspidal 
functions in L*(M,,(Q)\M,,(A)') which transform under MB(A)' as a sum of 
representations rB for which (MB,rB) belongs to x. This makes the definition of 
& g  somewhat more concrete. For the general group P,  the space &p,x could 
vanish. In order for this not to happen, x will have to satisfy special conditions. 
First of all, there will need to be a group B E ' 3 '  which is contained in P. 
Secondly, any Eisenstein series 

must be obtainable as a sum of residues of Eisenstein series E(x, a, A) in which 
$ E S g r  and A is a linear function on ~ g , -  whose restriction to ap,Q is A. This 
point is one of the main results in Chapter 7 of Langlands' book [2(b)]. We shall 
discuss it in greater detail in the next section. 

Â§2 Residues of cuspidal Eisenstein series. Langlands' method for studying 
general Eisenstein series is to take residues of cuspidal Eisenstein series. We shall 
recall the features of his theory that are needed for this paper. 

Let B c P be parabolic subgroups. Suppose that 
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is a sequence of affine spaces 
., 

ti = A, + ti, 
where ti is a linear subspace of aj, and Ai is a vector in a: which is orthogonal to 
6. We assume that to = a t  and that for any i, 

for some root /? of ( B , A g )  such that /? does not vanish on ti. Suppose that for 
each i we have also chosen a unit vector v, in t, which is orthogonal to It is 
uniquely determined up to sign. Let us denote the sequence of affine subspaces, 
together with the choices of unit normals, by the letter S ;  we shall denote the 
smallest space to by 

Suppose that q is a meromorphic function on whose singularities lie along 
hyperplanes. Then we can obtain a meromorphic function on = As + at,c by 
taking successive residues with respect to 5. More precisely, let An be a point in 
is.c with the property that any singular hyperplane of 9 which contains An also 
contains Set 

Ao(u) = A,, + ulvl + . a . + urvr, 

for 

in C'\ Let TI, . . . , Fr be small positively oriented circles about the origin in the 
complex plane such that for each i, the radius of I?,+, is much smaller than that 
of r,. Then 

is a meromorphic function of A,,. We will denote it by Ress,,,4,9(A) or 
sometimes just Ress ^(A,,). 

Suppose that the class x and the finite set F are fixed, as in $1. In order to 
allow for induction arguments, Langlands treats Eisenstein series 

for any parabolic subgroup Q 3 P. (In [l(a)] and [l(b)] this series would be 
denoted by 8p(x)-'^EQ(x,<f>,A). It can be analytically continued in A; for any A 
in general position, 
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is a smooth function on NQ(A)Mp(Q)\G(A).) Now suppose that B is any group 
in 9 which is contained in P. Let FB be a meromorphic function from a;,c to 
&gXp  whose singularities lie along hyperplanes. Then for fixed x, EQ(x,  FB(A), 
A) is a meromorphic function on akc whose singularities also lie along 
hyperplanes. For S as above, 

is a meromorphic function on tsSc. Let ~((ai):) be the symmetric algebra on 
(a;);, the orthogonal complement of in a;,c. If FB is regular at a point A in 
tSqc, let 

d F ~  (A) = d.SF~ (A) 

be the linear map from ~((a i ) ; )  to &B,x,r obtained by expanding the analytic 
function 

as a Taylor series about = 0. Then R e s s ~ Q ( x ,  FB(A), A) depends only on the 
vector dFc(A). 

Embedded in the proof of Theorem 7.1 of [2(b)] is the construction of all 
Eisenstein series as residues of this kind. For each B â 9 ,  with B c P,  
Langlands constructs a finite set of affine subspaces 

of a;, and for each t, a finite set SB  (P, t) of sequences of affine spaces (with 
distinguished unit normals) as above, such that tc = t for each S E SB (P,t). If 

for Fg as above and A â tc, set 

for each group Q Z) P. Then ~ f 3  is a function on 

The collection 

is called an Eisenstein system associated to t. Langlands shows that the affine 
spaces {t} and the associated Eisenstein systems are canonical. On the other 
hand, the sets SB (P, t) are not canonical. That is, the Eisenstein systems can be 



INNER PRODUCT OF TRUNCATED EISENSTEIN SERIES 43 

expressed in different ways as residues. In this paper we shall simply fix a choice 
of sets S (P, t) for each B and t. 

For any group B â 9 ,  B C P, let SB (P) be the disjoint union over all t of the 
sets S (P, t). Suppose that for each such B, FB is a meromorphic function from 

to S-g+x%r, whose singularities lie along hyperplanes, and which is regular at 
each point As, 5 E So (P). Then 

belongs to the vector space 

Let L p r  be the subspace consisting of vectors of this form. It is a consequence 
of Theorem 7.1 of [2(b)] that the function 

belongs to kJ- and that G X , r  is generated by functions of this form. +(x) 
depends only on the vector a ,  so that 

is a surjective linear map from Lp,x,T onto &p,x,r. (Also implicit in [2(b)] is the 
construction of a positive, semidefinite inner product on L p r  which coincides 
with the natural pairing 

on &pvf. However, we will not need to use the inner product here.) More 
generally, suppose that Q 3 P and that and + are related as above. Then if A is 
a point in general position in Theorem 7.1 of [2(b)] tells us that the 
Eisenstein series EQ(x, +, A) equals 

Of course L p r  is naturally isomorphic to 
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is the corresponding decomposition of ?>, 

Thus the general Eisenstein series can be expressed in terms of the canonical 
Eisenstein systems. However, for this paper we must continue to express them in 
the noncanonical fashion as residues. 

Suppose that PI is a group which is associated to P and that t e W(ap, up]). 
There is a unique element tB E W(aB, a^) ,  for some group B ,  E 9 with B l  C P I ,  
such that the restriction of to to a p  equals t and such that tB(a) is a simple root 
of (B, ,AB) for every simple root a of (&AB) which vanishes on up. Suppose that 
S E SB (P). We can clearly transform S by tB into a sequence tS of affine spaces 
(with distinguished unit normals) associated to Bl and P,. It follows from the 
symmetry of the situation that we may take for S B ( P l )  the collection 

Assume that the collection 

of functions is given as above. Let A be a point in general position in a;*c. Then 

is a meromorphic function from a Z C  to @B,,x,r. By choosing A properly we can 
be sure that & is regular at each point As,  Sl E tSB (P). (Recall that M(tg, A), 
A E is a meromorphic function on a^,c. It takes values in the space of 
linear maps from &B,x,r to @Bl,x,r. Similarly, M(t,A) is a meromorphic function 
on with values in H 0 r n ( & ~ , ~ , ~ , 6 i ? ~ ~ , ~ , ~ ) . )  

LEMMA 2.1. Suppose that the vector 

in L p Y  corresponds to the function <js in &pi,,r. Then the vector 

in L p r  corresponds to the function M(t,\)<p in 

Proof. Suppose that 

for every simple root a of (P,Ap). Then (M(t,A)<js)(x) equals the integral over n 
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But + ( w  nx)  is a sum of residues of Eisenstein series 

Substitute this latter function for + in the integral over n. For A in the domain of 
convergence of the Eisenstein series we obtain the integral over n of 

2 t(8w; ' nx )exp ( (~  + A + p B ) ( H B  (8w; 'nx)) 
~e B ( Q )  n MP(Q) \  M P ( Q )  

A routine change of variables yields 

If Al = toA, the last expression is just 

The lemma follows by summing the residues in A, with respect to all S ,  in 
t S B  

g3. Exponents. We can now return to our study of the inner product (1.1). 
The class x â 9C, the finite set r of representations of K, and the parabolic 
subgroups P and P' will remain fixed for the rest of this paper. We do assume 
that P and P' each contain groups in TX. 

It is convenient to study a slightly more general inner product than (1.1). For 
the rest of this paper, Q will be a parabolic subgroup which contains P and P'. If 
U is any point in aQ define 

It is a closed subset of MQ(A). Notice that MQ(A,O) = M ~ ( A ) ' .  In fact, 
MQ(A, U) is the translate of M^(A)' by a unique point in A~(R) ' .  We can 
accordingly translate our Haar measure on M ~ ( A )  to a measure on M A, U). 

Q ( 
With its left action on MQ(A, U), MQ(Q) becomes a properly discontinuous 
group of measure preserving transformations of MQ(A, U). The space of orbits, 
MQ(Q)\MQ(A, U), has finite volume. Let TQ be the projection of the point T 
onto aQ. If h and h' are functions on NQ(A)MQ(Q)\G(A), define 
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provided that both integrals exist. This is actually the inner product which is best 
suited for us. Let ATqQ be the partial truncation operator on functions on 
Q(Q)\G(A) introduced on p. 97 of [l(b)]. We are going to study the inner 
product 

for A â a;,c, A' â a;.,c, <?> E ffp,x,r and <?>' â @p,,x,r. Our starting point will be an 
explicit formula of Langlands' for the special case that P and P' belong to the 
associated class 9 .  

Suppose that P,  is any parabolic subgroup which is contained in Q. As in [l(c), 
$21 we write 

where L$ is the lattice in a^, generated by the co-roots {a^ : a â A^,}. (For the 
definition of the elements a^ see [l(a), p. 9161.) Let wQ(ap, a,,) be the set of 
maps in W(ap,ap) which leave the space ag pointwise fixed. ~ e f i n e  a function 
u '^(A, A', +, +') to be the sum 

where ul,'f''Q(A,A', +, +') is the expression 

( [ A -  A"( T )  ( f^  (t, A)+, M(tt, -F)+i,')9(tA - t fx)-  '. 

This function will be of basic interest for the rest of the paper. It is meromorphic 
in A E a;,c and A' E it is linear in + E ffp,x,r and conjugate linear in 
<f>' â dp,,x,r. Then if P and P' belong to 9 ,  Langlands' inner product formula is 

(A T Â ¥ Q  Q(+, A), Q(#, - F)) = u T , Q ( ~ ,  A', +, +'). 
Q, T 

(3.2) 

(See [2(a), $91 and [l(b), Lemma 4.21. Actually the formula proved in [l(b)] is the 
special case of (3.2) in which Q = G and the points A and A' are orthogonal to 

(We carelessly omitted these conditions on A and A' in [l(b)].) However it is 
trivial to extend the formula from G to arbitrary Q. Moreover, if A and A' are 
translated by points \o and Ah in a b  both sides of (3.2) are multiplied by 
e ( h w ) .  In other words, (3.2) is valid as originally stated.) If P and P' do not 
belong to 9 ,  (3.2) is no longer true. Our goal in this paper is to show that it 
nevertheless holds asymptotically in T. 

From now on, assume that the vector <?> â & p r  is the image under the map 
(2.1) of a vector 
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in L p r ,  for a collection {FB} of functions as in $2. Similarly assume that 
<f>' â <S'pt.x,r is obtained in the same way from the vector 

in L P , , , ~ .  

LEMMA 3.1. Let A and A' be points in general position in a*pQ and a;.,c 
respectively. Then the inner product (3.1) equals the sum over { B, B' E P : B C P, 
B' C P'}, over S â SB (P)  and over S' â SB.(P1) of 

Proof. If A E aZc and A' â the function 

equals 

These functions are clearly meromorphic in A and A'. The lemma will follow 
from (2.2). We need only show that the residue operators can be interchanged 
with the integrals over m and k and then with the truncation operators. 

We observed how to estimate truncated Eisenstein series in [l(b), p. 1081. For 
any positive integer N there is a locally bounded function c(A,A) on the set of 
points (A, A) at which EQ(x, FB(A), A + A) is regular, such that 

for all k and m in a given Siege1 set in M~(A)' .  (Here 1 1  11  is a suitable "norm" 
function on G(A) defined as, for example, in [l(a), $11.) The interchange o'f the 
residue operators with the integrals over m and k then follows from Fubini's 
theorem. 

In the formula 

for the partial truncation operator 
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the sum over 8 is really over a finite set ([l(a), Lemma 5.11). The set depends on 
x but is independent of h .  Since the sets NQ(Q)\NQ(A)  are compact, the residue 
operators can indeed be interchanged with the truncation operators. The lemma 
follows. r"] 

If A E and A' E a;..c are points in general position, let @@(A,A',<>,(i>') 
denote the sum over { B,  B' E 9 : B c P,  B' c P ' }  and { S ,  S '  : S E ̂ g(P), S' 
E S o - ( P ' ) }  of the expression (3.3). Then Lemma 3.1 becomes the formula 

( A ~ Â ¥ Q E Q ( + , A ) , A ~ Â ¥ Q E Q ( +  -q) Q. T = aT-Q@, A', +,@')a 

It is the analogue of (3.2) when P and P' are not restricted to lie in T X .  
Unfortunately, Q^(A, A',<>,<>') does not have as explicit a formula as 
^ ^ ( A ,  A',<>,<>'). However, Lemma 3.1 does tell us that SITq^(A,A',<>,(i>') is a 
genuine function of <> and A'; it is independent of the choice of functions { F B I  
and {FL.} .  

We would like to study SIT@(A,A',<>,(i>') as a function of T. It equals the 
sum over B,  B ' ,  S ,  S' and also over B ,  E 9 ,  s E W Q ( a B ,  d B , )  and s' E 

W Q ( a B ' ,  aBl)  of 

This last expression is clearly the product of a polynomial in T with the 
exponential e ^ s ' A ' + x x T ) ,  where 

a point in (a$,)* which is independent of A and A'. If 9 is any class of associated 
(standard) parabolic subgroups, let w Q ( a p  (B a p , , 9 )  be the set of linear 
transformations 

( t ,  t ' ) :  a p  Q ap .  + t a p  (B t f a p ,  

obtained by restricting the maps 

in any of the sets 

to a p @ a p , .  Take 9 = 9 and choose ( t , t l )  E ~ Q ( a ~ Q a ~ , , 9 ~ ) .  Let 
Q7",?(A, A', (i>, +') be the contribution to Q^(A, A', <>, +') from those terms in the 
multiple sum above for which the restriction to a p  Q a p -  of ( s , s f )  equals ( t ,  t'). 
Then by definition we have 
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Incidentally, if P and P '  are associated, and 9 is the class which contains these 
groups, we also have 

U TÂ¥ (A, A', <?>, @') = s X', <>, <?>'). 
( t ,  t ' )  â W Q ( n p S n p . ,  "?) 

(3.6) 

(If P and P '  are not associated, u T@(A,A',^,^') is by definition zero.) It is clear 
that there is a finite set & Q  (t, t') of points in (a,?)*, and for each X E & Q  (t, t') a 
nonzero function 

which is a polynomial in T, such that 

Thus, as a function of T, BT,Q(A,A',<?>, <?>I) is a finite sum of exponentials with 
polynomial coefficients. The polynomial 

is the coefficient of e^"A '+x^r \  so as the notation suggests, it depends only on 
@ and <?>'. It is independent of the choice of functions {FB} and {Fo.} .  Like 
V*Q(A,A1,<?>,<?>') it is meromorphic in A and A', linear in <?> and conjugate linear 
in @'. 

p. A comparison between two groups. For this section we assume that P and 
P' belong to the same associated class 9. Suppose that P I  is another group in 9 
which is also contained in Q. If t is in WQ(ap, apl)  we have defined an element 
tB E ^(aB, aB  ) for each group B E 9 with B c P.  The restriction of tB to a p  
equals 1. similarly, given tr E wQ(aP,,  a p )  and B' ? 9 ,  5' c Pf ,  there is an 
element t i .  E WQ(aB,, aB.) whose restriction to ap. equals t'. In fact, it is possible 
to choose B' so that B{ B,. It follows that the map 

(t, t'): ap  Q a/,,+ tap Q tlap. 

belongs to the set wQ(ap  Q ap,,  6f̂  defined in 33. Thus, ^(ap Q a/,,, 9 )  
is naturally embedded as a subset of wQ(aP Q ap., 9 ) .  

Fix a group PI E 9 ,  P I  c Q, and elements t ? wQ(aP ,  apl),  t' in 
wQ(ap, ,  a p  ). In this section a formula which relates Q7',? to the function 

will be found. The group B, for which to belongs to wQ(aB,  aB  ) is uniquely 
determined by B. In fact 
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is a bijection between the sets { B  E q X : B  C P }  and { B l  E T x : B 1  C P I } .  
Suppose that B and B2 are groups in these respective sets. Then the set of 
elements in wQ(aB, a B )  whose restriction to ap  equals t is just the set 

It follows that Q^(A,A',if>,<i>') can be written as the sum over { B ,  B' E 9 :  B 
C P, B' C P'} ,  S E S p ( B ) ,  S' â Sp, (B ' )  and also over { B 2  â q X :  B2 c P I ) ,  
s â w P 1 ( a B , ,  aB2) and s' E Wpl (aB i ,  a B )  of 

(51 and Bi are of course the groups such that tB E W Q ( a m a B , )  and 
t'g. E wQ(aDa4).)  The last expression in the brackets we will write as the 
product of 

and 

We are going to take a certain derivative of ^^(A, A', if>, if>') with respect to T.  
It will simply entail differentiating (4.1). Suppose that R is any parabolic 
subgroup contained in Q. Recall that A: is the set of simple roots of the Levi 
component Ma. It is a subset of A,?. If 4 is any smooth function on an, define 

for each root @ in the complement of At in A,?, and set 

In this section we will let R be the group PI .  Let A l  = t B A  and A', = t'g,Af. 
Then (4.1) equals 

exp{ ( s (A ,  + tA) - st(-A\ + t lA ' ) ) (T)} .  (4.1 ') 

Operating on this function by DQ,  serves only to multiply it by 
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If /3 belongs to Af\A:l, its restriction /3, to of2 is a root in Af2. In fact /3 + /3, is a 
bijection from A$\A$'l onto Af\A;;. If { is any point in sic, then ?(/3 " ) equals 
!;(@," ). The product (4.4) can therefore be taken over Af\A;;. Next consider the 
expression (4.3). It equals 

(4.3) can be written as the product of 

vol(a^, / L^)? 

11 ((s(Al + A) - sf(- A{ + t'A'))(av ))-I, 
a E A ~ , \ A ^  

and 

The second of these three terms will cancel (4.4). The third one just equals 

Finally, the basic functional equations of the M functions allow us to write (4.2) 
as 

This in turn can be written 

( ~ ( s ,  A ,  + t \ ) f , , (~ , ) ,  ~ ( s ' ,  A; - t'A')F;i(x{)), (4.2') 

if 

F B I ( ~ , )  = M(tB, t ^ A ,  + \}F,(~B\A^) 

We have shown that if DQi is made to operate on the product of (4.1), (4.2) 
and (4.3) the result is the product of vol(a^,/Lf) with (4.1f), (4.2') and (4.3'). 
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Now the product of (4.11), (4.2') and (4.3') equals 

I ( A ,  + t ~ ,  -A; + PA', /,,(A~), F@i)). 

We have to take a residue of this expression. If 

Sl = tS, S E Sp(B),  

the residue operators ResSA4 and Ressl,Al+Asl are equal. Similarly 

R~~s- ,A,+A, , ,  = R ^ s ~ , A ~ + A ~ ~  

if 5'; = t 'Sf. It follows that 

equals the sum over {Bl,  B[ E 9 : 5, c P I ,  B[ c P I ) ,  Sl E tSp (B), Si 
â tlSp,(B') and also over { B2 E 9 : B2 c P,}, s E wp1(aB1, a,) and s' â Wpl 
(a,B;, a,*) of 

This is just the sum over Bl,  B[, S, and S ,  of 

Appealing to Lemma 2.1 and the definition in $3 we see that this last multiple 
sum equals 

We summarize this as a lemma. 

LEMMA 4.1. Suppose there is a parabolic subgroup PI which is associated to 
both P and P', such that t E WQ(ap, a p )  and t' E wQ(ap., ap) .  Then 

equals the product of 

vol(a^) 

with 
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The only element in ~ ' ~ ( a ~ ~  G3 u p ! ,  9J is the pair (1, 1). Then QT3'l = ~ ~ , ~ l .  1.1 

COROLLARY 4.2. Under the assumptions of the lemma, & Q ( t ,  t ' )  = &'l(l , l) .  If 
X is a point in & ( t ,  t'), 

equals 

Proof. The lemma tells us that 

p^(\, A',+,+')exp{(tA - t'A' + X ) ( T ) }  
x e s Q ( t ,  t') 

equals 

where j?Q(A, A', $, $') equals 

The function p!'Q(A, A', +, +') is also a polynomial in T. The corollary will follow 
if we can show that it does not vanish. The polynomial p^(A,A1,+,+') will 
actually have the same total degree as p?(A, A', +, +I), and will in particular not 
vanish, provided that the expression 

is not zero. We can clearly arrange this by choosing A and A' so that tA - t'\' is a 
point in in general position. Q 

It follows from the corollary (and its proof) that the functions p$Q(A,A', +, +') 
and ~f"'l(t\, tfA', M ( t ,  A), M(t ' ,  - \')+I), as polynomials in T ,  have the same total 
degree. 

$5. A property of the truncation operator. The last lemma suggests that a 
differential operator D Q ,  in T has something to do with our inner product. In 
the next three sections we shall pursue this lead, but along a different path. Only 
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in $8 will we return to take advantage of Lemma 4.1. In the place of the 
particular group P I ,  we will take an arbitrary parabolic subgroup R contained in 
Q. For any pair h and h' of rather general functions on NQ(A)MQ(Q)\G(A), 
a simple formula for the action of DQ R,T on (AT-Qh, AT@h')Q,T will be found. 

The result is actually quite easy to derive, at least formally. Under general 
conditions on h and h' (we will be more specific a little later), 

If we were able to differentiate inside the inner product, we could just let DQ R,T 

act on 

Now 

is a distribution on an. It is the translation by T of the distribution 

LEMMA 5.1. If Ql is not contained in R,  DQ Rql equals zero. If Q, is contained 
in R,  it equals 

where (Dir)f is the distribution on 

which is constant in the a t  and ag directions and equals the Dirac distribution (with 
respect to our fixed measure on ag) in the af direction. 

Proof. Suppose that Q, is not contained in R. Let /? be a root in the 
complement of A[ in A(?'. Then 

It follows that ~a~ = 0. Therefore DQ\ R+t, = 0. 
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Suppose then that Ql is contained in R. It is a consequence of the definitions 
that DQi R$g, is the product of DQ R$,$ with the characteristic function of 

To evaluate DQ we write an arbitrary point in a^ as 

In these co-ordinates, DQl is just a product of Dirac distributions in each 
variable um. Modulo the Jacobian factor vol(a^/L,$), it equals the Dirac 
distribution on a^. In particular, the distribution D~~ Rf ,$  is supported on 
a t  @ aQ. The restriction to this subspace of the characteristic function of (5.1) is 
just f". It follows that 

Let us argue heuristically for a moment. We see from the lemma that 
DQl R,T(AT'^h)(x) equals the product of vol(af/L,$) with the sum over { Ql : 
POc Q, c R }  of 

The result is 

v o l ( a w  ) 2 (~^h)(Sx)  . ( ~ i r ) m  (k) - T). 
8 R(Q)\Q(Q) 

This suggests a simple formula for Do R,dAT3Qh, It is just the formula we 
want; however, we need to make our argument rigorous. 

First we should be more precise about the functions h and h'. Suppose that N 
is a positive integer. If h is a smooth function on G(A) and u â ^L(G(R)), let 

where uh is the left invariant derivative of h with respect to u. Define 
Sl(NQ(A)MQ(Q)\G(A),N) to be the space of all smooth functions h on 
No(A)Mo(Q)\G(A) such that the seminorm ~~hl lu ,N is finite for each u in 
%.(G(R)). Let S/(NQ(A)MQ(Q)\G(A)) denote the union over all N of these 
spaces. We shall take our functions h and h' from this latter space. Lemma 1.4 of 
[l(b)], applied to the group My, then tells us that A ĥ is rapidly decreasing on 
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any Siege1 set in M ~ ( A ) ' .  In particular, the inner product ( ~ ~ * ^ h , h ' ) ~ , ~  is 
defined by an absolutely convergent integral. We would like to show that it is a 
smooth function of T. 

We shall let U be another point in a. and study (AT+"'Qh)(x) as a function of 
U. If we constrain U to lie in a small neighborhood of the origin in On, T + U 
will remain a suitably regular point in a:. We will be led through a discussion 
which parallels that of [l(c), $21. In particular, if Ql C Q, we define a function 

inductively on dim(AQ/AQ) by demanding that 

for all Q, C Q. (In $2 of [l(c)] we gave this definition, but only with Q = G. We 
denoted the function Ty,(H, U) instead of I'g1(H, U). The properties established 
for I p ( H ,  U) will all hold for I'$l(H,X); we would have only to replace G in 
any verification by the group My.)  The functions I'$(H, U) depend only on the 
projections of H and U onto a$). 

LEMMA 5.2. The function (AT+ ̂ h)(x) equals 

S 2 ( A ~ ~ ~ I / ; ) ( S X )  r $ l ( ~ R , ( 8 x )  - T, U). 
{ Rl : P a  Q ) 6 eiR,(Q)\Q(Q) 

Proof. In the defining formula for AT+ u9Qh, express 

f 8 , ( ~ ~ , ( 8 x )  - ( T  + U)) = %((HQ1(8x) - T )  - U) 

in terms of the functions r$,. Then (AT+",Qh)(x) becomes the sum over 
{ Ql,  R ,  : Po C Ql  C R , C  Q }  and 8 <= Q,(Q)\Q(Q) of the product of 
r$,(HR,(8x) - T, U) with 

We obtain the required formula by replacing the sum over Ql(Q)\Q(Q) by a 
double sum over Ql(Q)\ R,(Q) and Rl(Q)\ Q(Q). Q 

Lemma 2.1 of [l(c)] tells us that the support of the function 

is contained in a compact subset of a x .  As long as U remains bounded, this 
subset can be taken to be independent of U. It follows that we may evaluate 
(AT+"*Qh, h')Q,T by the last lemma, taking the double integral (in the definition 
of the inner product) inside the sum over Rl .  Since Ri(Q)\Q(Q) equals 
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R ,(Q) r l  My@)\ Mp(Q), (AT+ "@h, h')y,T equals the sum over { Rl  :Po c R ,  
C Q I  of 

If H E ao, let a ( H )  denote the unique element in A~(R)O such that 
Hp,$a(H)) = H. Also, set 

hl(nx) dx. 
R . ( Q ) \ N R . ( A )  

Then (5.2) equals the integral over k CE K ,  m E M ~ ( Q ) \ M ~ ( A ) '  and H E a ^  of 

where p,$ is the usual vector in a ;  such that 

is the modular function of Rl(A) n MQ(A). The absolute convergence of this 
triple integral follows from Lemma 1.4 of [l(b)] (applied to the group M R )  and 
the compactness of the support of r $ ( . ,  U). 

We would like to show that (5.2) is a smooth function of U. To do so we use 
the inversion formula 

a simple consequence of the definition of Tg .  (See [l(c), $21.) Suppose that 4 is 
any smooth function on a^. Let Î Q be a smooth, compactly supported function 
on a $  which equals 4 on a large ball about the origin in a^. Then 

which in turn equals 

( -  l ) d im(A/~~ /~~)  q , O ( ~ ) T ; ; ( ~  - T 7^ i s *  ) R2(H - T -  U)dH. 
R 2  : R , C R > C Q }  

The smoothness of this function of U follows from the fundamental theorem of 
calculus. If DQ R , y  is allowed to act on (5.3), the value at U = 0 of the resulting 
function will be given by Lemma 3.1. It will be zero if R, is not contained in R. If 
Rl  is contained in R, the value is given by taking only those R-, in the sum in 
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(5.3) which are contained in R,  and replacing +^(H - T - U) by 

(We are writing the Dirac distribution as if it were a function.) Now 

vanishes if R ,  # R  and of course equals 1 if R l  = R. (See the remark in [l(a)] 
following Corollary 6.2.) Let Tf be the projection of T onto a$. Then the 
required value at U = 0 will be zero if R ,  + R, and will be 

vol((^/~^o(Tf ) = vol(a$/L^(Tf ) 
if R l  = R. 

Thus (5.2) is a smooth function of U. The same is therefore true of 
(AT+ "9Qh, h')Q T. Moreover the value at U = 0 of DQ , R,u(AT+ "Qh, h')Q,T, which 
of course is the same as DQl R,T(~T,Qh, h')Q,T, equals the product of vo l (a$ /~f )  
with 

This double integral is just 

We have essentially proved 

LEMMA 5.3. If h and h' are functions in SI(NQ(A)MQ(Q)\G(A)), the inner 
product (AT@h, AT*Qh')Q,T is a smooth function of T, and 

Proof. We have shown that (AT,Qh, is smooth and that 

Corollary 1.2 and Lemma 1.3 of [l(b)] imply that 

and 

(AT,'h, h;)^,^= (AT,**, AT,Rhr R 1 R, T' 

The lemma follows from the fact that Â hA = A^h'. 
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$6. The constant terms of Eisenstein series. The formula of Lemma 5.3 
becomes more concrete if we specialize to h = EQ(+,\) and h' = EQ(+', -p). 
The reason is that these functions are actually automorphic forms. Let us write 
simply &(Q) for the subspace of functions h in ,S7(NQ(A)MQ(Q)\G(A)) which 
are (Â£ K) finite; that is, such that the span of the set of functions 

indexed by k â K and z E 2, is finite dimensional. Any such function is also 
Ao(R)O finite; the space spanned by the set of functions 

indexed by a â AQ(R)O, is finite dimensional [2(b), Chapter 41. It is well known 
that the functions EQ(+,A) and EQ(+', - X ' )  belong to @(Q). 

Fix a parabolic subgroup R c Q and let h be a function in @(Q). Then the 
function 

hR'Â¥ = L w ,  h (nx) dn, x â G(A), 

belongs to (Â£(R) In particular, hR is AR(R)O finite. It follows that 

where {A,} is a set of distinct points in a h  and each hi is a nonzero function in 
S(R)  such that 

is a polynomial in HR(a). (See [2(b), Lemma 4.21.) It is an immediate 
consequence of the definition of the partial truncation operator that A^h 
= A^hR. Therefore if h' is a second function in (Â£ Q), and 

is the corresponding decomposition (6.1), the formula of Lemma 5.3 becomes 

Remember that To is the projection of T onto aR. Let ~f be the projection of T 
onto a:. Then T = TR + ~ f .  The partial truncation operator A^ depends only 
on Tf. Therefore 
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is a polynomial in TR. Thus, as a function of TR,  the right hand side of (6.2) is 
rather transparent. 

We shall presently use (6.2) to extract information about the exponents 
6 Q ( t ,  t ') .  We must first prove 

LEMMA 6. I .  Let 

h = EQ(+>A), 

where + @p,x,r and A is a point in general position in ia;. Suppose that hR # 0, 
and let A; be any of the points in the decomposition (6.1). Then 

Proof. Let @cusp( Q) be the space of functions g in @( Q) such that gQl = 0 for 
every parabolic subgroup Ql which is strictly contained in Q. Recall that a 
function f @( Q) is said to have cuspidal component zero if 

for all T and all g â &?cusp( Q), A basic result (Lemma 3.7 of [2(b)]) asserts that if 
the cuspidal component of fQl is zero for every Q l  c Q then f itself is zero. 

Now 

h(x) = EQ(x,+,A) 

is a sum of residues of cuspidal Eisenstein series 

If Ql  C Q, the cuspidal component of fQl is zero unless Q, belongs to TX. The 
same is therefore true of h. If Q, is contained in R, we have 

The exponents { A i  + p f }  are all distinct. Therefore the cuspidal component of 
each function (hi)Ql will also be zero unless Ql E Tx.  Fix io, 1 < io < n. The 
function hfo is not zero so there must be a group B, â TX which is contained in R,  
such that (hi,JBl # 0. Now for each i we have 

for a set { pi,: 1 < 1 < ni} of distinct points in (a:,): and a set { gfl] of nonzero 
functions in @(Bl) such that 
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is a polynomial in HBl(a). Since p i l  + p$ = pf, the function hBl(x) equals 

Keep in mind that if i = io, the inner sum over I is not zero; that is, the set { pi"/} 
is not empty. 

On the other hand, there is a general prescription from [2(b)] for writing hBl(x). 
As in (2.3) we can write EQ(x, +,A) as 

According to formula (7.b) of [2(b)], 

equals 

where s ranges over the set of maps obtained by restricting elements in 
WQ(aB,aBl) to t. We needn't say anything about (N(s,At + A)at)(x) beyond 
noting that it is a function in @(B,) which is a polynomial in HBl(x). Let s be an 
element occurring in the sum above. Let b be :he set of points A E a$ such that 
A(m ") = 0 for every m in the intersection of A# and sa;. In the terminology of 
[2(b)], b is the orthogonal complement of the distinguished subspace of sa: of 
largest dimension. Let + b  be the set of points A E b such that A(m ") is positive 
for every m in the complement of sa; in A$. Now suppose that the function 
(N(s, At + A)Qt)(x) does not vanish. Then Lemma 7.5 of [2(b)] asserts that (-st) 
belongs to a certain collection of canonical affine subspaces of a;], a collection 
which by Theorem 7.1 of [2(b)] satisfies the geometric assumptions of the just 
quoted Lemma 7.5. The upshot is that the point ( -  sAt) belongs to +b. 

Let us group together all those terms in the sum over B and t of (6.4) for which 
the restrictions of s to a p  are equal. The result is a sum over all maps 

which can be obtained by restricting elements in any of the sets 

to up. For every such t we obtain a finite set 6Q( t )  of points in agl and for each 
( â & Q  (t) a nonzero function 
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in @ ( B , ) ,  which is a polynomial in HB1(x) ,  such that 

equals 

The points in & Q ( t )  are all orthogonal to fa; ,  Any [ E & Q ( t )  has the property 
that t ( ~  ') < 0 for all W in the complement of ta; in A,$?. 

The expressions (6.3) and (6.5) are equal, Comparing exponents we see that for 
every 1 there is a t and [ such that 

Suppose that W â A f .  Then 

since pie, vanishes on a$ and A is purely imaginary. Now A# is a subset of A$, so 
W belongs to either &Q n to: or h,$?\ta;. In the first instance, [(W ") = 0, and in 
the second, t ( ~  ') < 0. This proves the lemma. 

If the dim aR > dim ap, the set A$ will contain more elements than n fa; .  
It will have to contain an element which does not lie in to;. A similar statement 
holds if dimaR > dimapt. From the last part of the proof of the lemma we 
obtain 

COROLLARY 6.2. Suppose in addition to the assumptions of theA lemma that 
dim a R  > min{dim a p ,  dim a p r } ,  Then there is an element W in Af such that 
Re(Ai(u ')) is strict& negative. 

87. The negative dual chamber. Our goal in this section is to show that all the 
exponents in & Q ( t , t f )  lie in the closure of the negative dual chamber in (a,$?)*. 
Otherwise said, each exponent will be a linear combination, with nonpositive 
coefficients, of the roots A,$?. 

Set 

and 
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Take R c Q and consider the function 

It appears on the one hand in formula (6.2). However, it also equals 

which is in turn 
& Q ( t ,  t l )  of 

equal to the sum over ( t ,  t l )  in w Q ( a P  @ a p f ,  qX)  and X in 

As in the special case treated in Corollary 4.2, we write this last expression as the 
product of exp{(tA - tlX + X ) ( T ) }  with another function j $ Q ( A ,  A', +, +'), which 
is also a polynomial in T .  This second polynomial would conceivably vanish. In 
any case its total degree is at most that of pTQ(A, A', +, $0. The total degrees will 
be equal if and only if the expression 

does not vanish. In particular, if (7.1) does not vanish, jTQ(A, A', +, 6') is not zero. 
Thus for any R C Q ,  we have an equality between the function 

and 

the right hand side of (6.2). Consider these expressions as functions of T R .  
Suppose that X is any exponent in & Q ( t ,  t l )  for which (7.1) does not vanish. Then 
there will be an i and j such that the projection of tA - t'A' + X onto e q ~ a l s  
Ai + xj. (See the remarks preceeding Lemma 6.1.) If u is any element in A$, 
X(U ") equals 

since A and A' are purely imaginary. Lemma 6.1 tells us that X(U "IA< 0. If 
dim aR > min{dim a p ,  dim a p , }  its corollary affirms that there is a u E Af such 
that X(W ") < 0. 

LEMMA 7.1. Suppose that X is an element inA G Q ( t , t l ) ,  where ( t , t l )  is in 
w Q ( a P  @ a p , ,  9.J. Then X(U ") < 0 for each U â A$. 
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Proof. If a E Af, let 7iY a be the vector in A$ which is dual to a " .  Set 
ca = X(m :). We must show that no ca is positive. Let 

and 

Then 

We shall assume that the lemma is false. Then the set A l  is not empty. 
Suppose that 

for each a E A l ;  that is, the vector Eel E A l  calal  lies in the closure of the negative 
chamber in the space spanned by Al. It is well known that the negative chamber 
is contained in the negative dual chamber. This means that 

which is a contradiction. Thus there is an a l  E A,  such that ( x a l  E A l  tala " ) 
is positive. Now a 2 ( a V )  < 0 for each a2  â A2. Since each ca2 < 0, the number 
(2a2EA2 ca2a2)(a " ) is nonnegative. It follows that X(a " ) is positive. (We will 
only need to use the fact that X(a " ) is nonzero.) 

Define a parabolic subgroup R C Q by letting A: be the complement of a in 
A#. Since X(aV ) is a nonzero real number and A and A' are purely imaginary, 
the expression (7.1) $oes not vanish. Moreover, ZT a lies in a;; it is, in fact, the 
unique element in A:. According to the discussion preceeding the lemma, 
X(m :) < 0. This is a contradiction, since 

a positive number. 0 
A natural question is suggested by this last lemma. Can there be any exponent 

in &Q(t ,  t') which is zero? This is possible, it turns out, only in the situation 
discussed in 84. 

LEMMA 7.2. Suppose that for (t, t') â wQ(aP 63 ap,, qX) as in the last lemma, 
there is no parabolic subgroup PI associated to both P and P f  such that 
t E wQ(aP, ap l )  and t' E WQ(apj, apl). Then no exponent in & (t, t') is zero. 
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Proof. Let R be the parabolic subgroup of largest dimension which is 
contained in Q and such that a R  contains both tap and t'ap.. Then A[ is the set 
of roots in A$ that vanish on both tap  and /'ap.. Our hypothesis on t and t' is 
precisely that dim a R  > min{dim an ,  dim ap.}.  Fix X â & Q  ( t ,  t'). We can choose 
points \ E ia*nd A' â a;. such that for each a in the complement of A[ in A$, 

In other words, the expression (7.1) does not vanish. According to the remark 
preceeding the last lemma, there is a m  â A0 such that X(W ' )  < 0. In particular, 
X is not zero. 

@. Coefficients of the zero exponents. We want to consider the consequences 
of letting T approach infinity. We shall say that T approaches infinity strongly in 
a: if there is a 8 > 0 such that as 1 1  TI1 approaches infinity, 

for each a â Ao. Any T â an can be written 

where for each a E An, ra is a real number and m a is the vector in Lo which is 
dual to a".  If T approaches infinity strongly in a:, each r will be greater than 
8 11 T 11 .  The contributions to Q^(\, A',+, +') from the nonzero exponents will all 
be negligible. Thus, to have a precise asymptotic formula for Q^(\,X, +, +') we 
need only calculate the coefficients of any zero exponent. According to Lemma 
7.2, the set 

& Q(t ,  t ' ) ,  ( t ,  t f )  â w Q ( a P  @ a/,,, ĝ ), 

contains a zero exponent only if P and P' belong to the same associated class 9 ,  
and ( t ,  t ') is an element in w Q ( a p  @ ap . ,  9). For the rest of $8 we shall assume 
that this is so. That is, t E wQ(ap ,aP , )  and t f  â w Q ( a P i , a p , )  for some group 
P,  â 9. 

At this point we shall make a minor change in our notation. For t and t' as 
above, let us enlarge Â£ ( t ,  t') by adding the point 0, with the understanding that 
the coefficient pm, +, +') might vanish. We would like to calculate it. With 
Corollary 4.2 in mind, we first consider the special case in which Q = P,. In this 
case we also have P = P' = Q and ( t ,  t ') = (1 , l ) .  

LEMMA 8.1. Suppose that P = P' = PI = Q. Then 

the inner product on the right, of course, being that of the finite dimensional Hilbert 
space f f i ~ , ~ , i -  = @ ~ , , ~ , r -  
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Proof. Since P = P '  = Q, the sets ^(ap G3 a/,,, YX) and )̂ Â¡(a G3 apt,  9) 
are equal; they both consist of the single pair (1,l). Therefore 

As we know, this equals 

Now if k <= K and m <=. Mp(A, To), 

Â E '(mk, <?>, A) = ATsp<?>(mk) exp {A(Hp (m)) } 

Since Q = P = P', we obtain an equality between 

and 

In particular, the polynomials p?Q(A, A', <?>, +') are independent of A and A'. 
Now (8.2) also equals 

Our justification for the convergence of integrals of this sort has always been 
Lemma 1.4 of [l(b)]. If we look at the proof of this lemma we see that (8.4) 
actually equals 

modulo a term which approaches zero as T approaches infinity strongly in a:. 
Here 

FQ(mk, T), m e MQ(Q)\MQ(A)', k e K, 

is the characteristic function of a compact subset of MQ(Q)\~Q(A)'  X K .  This 
compact subset can be made arbitrarily large by taking T to be sufficiently 
regular. In particular, if T approaches infinity strongly in a:, FP(mk, T) 
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approaches 1 pointwise in mk. It follows from the dominated convergence 
theorem that (8.3) approaches 

u M Q  (0)\ MQ (A)' 
+(mk) <f>'o dm dk = (A, 4') 

Suppose that X is a nonzero element in 6 Q (1,l). Then 

By Lemma 7.1, each X(W^) is less than or equal to zero. Since X # 0, some 
X ( W ~ )  is strictly negative. Therefore if T approaches infinity strongly in a:, 

X ( T )  < a-cllTIl 

for some e > 0. The polynomial 

certainly has absolute value bounded by a power of 1 + 1 1  TI[, so 

p?Q (A, A', +,+')ex(T) 

approaches zero. All that remains of (8.3) is p:Q(A, A', +, A'). This must approach 
(A, +'). Remember that T can approach infinity anywhere within the set 

It follows that p p ( A ,  A', +, +I), a polynomial in T, is actually independent of T. It 
equals (A,<(>'). 0 

We return to the general case, in which Q is any parabolic subgroup which 
contains P, P '  and Pi .  Combining Corollary 4.2 with the lemma just proved, we 
see that 

Moreover p m , + , + ' )  is independent of T. (See the remark following 
Corollary 4.2.) It therefore equals 

If a E A$\$', the projection of a" onto a?, equals a," for a uniquely 
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determined root a, â A^,. Since tA - t'A' belongs to a.*pc, 

It follows that 

P ~ ~ ( A ,  A', i>, +') = ( ~ ( t ,  A)+, ~ ( t ' ,  -X')+')ffit\ - f X ) - I .  ( 8 . 5 )  

89. Conclusion. We can now put all our results together. We know that 

equals 

2 p p ( A , A ' , + , + ' ) e x p { ( t A -  t ' X +  X ) ( T ) } .  
( t ,  l ' ) â  W Q ( a p S a p , ,  9J X ~ 6 Q ( t ,  t ' )  

Let 

x 0 = o , x 1 , .  . . ,xn 
be the set of distinct points in the union over ( t ,  t') of the sets & Q  ( t ,  t ') .  Then (9 .1 )  
equals the sum, over 0 < k < n, of the product of e x h ( T )  with the function 

It is known from [2(b)] that the Eisenstein series EQ(x, i> ,  A) is regular on the 
imaginary space ia;. Consequently (9 .1) ,  which is a meromorphic function of 
(\,A') â a;,c X a;,,c, is regular on ia; x ia;. Since it is the coefficient of the real 
exponential in the decomposition of (9.1),  q J ^ ~ , A ' , + ,  +') is also regular 
for (\,\') E ia; x ia?. The individual functions ^^^(A, A', +, +') may not be 
regular on ia; x ia;.. However the poles of p%,̂,̂') which meet 
ia; x ia;, are all of bounded order. From this it is easy to show that there is an 
integer n such that 

is bounded for all 6, i>', T  and for (A,A') in any compact subset of ia; X i aF .  
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Let 8 and N be fixed positive numbers, with N large. Consider all T in the set 

Then T is suitably regular in a;. Moreover, 

since by Lemma 7.1 each number Xk(u ) is less than or equal to zero. If k > 1 
there is an a such that X& : ) is strictly negative. Therefore there is an e > 0 
such that 

is bounded for all +, A', k > 1 ,  T in the set (9.2), and @,A') in any compact 
subset of ia; X ;'a;,. 

The only remaining term corresponds to k = 0. According to Lemma 7.2 and 
formula (9.2), q^(A,A',^, '̂) is the sum over P I ,  t f= w Q ( a p , a p )  I ?  and t' in 
WQ(ap,, ap,) of 

This is just 

We have proved the following, which is our main theorem. 

THEOREM 9.1. There is a positive number and a locally bounded function p on 
ia; x ia;, such that 

is bounded by 

for all <f> @ P , ~ , P  <Sf' @ ~ , , ~ , r ,  A â ia*p, A' â ia;. and all T in the set (9.2). Q 

We will use a special case of this theorem in studying the trace formula. It is 
worth stating separately as a corollary. It is the case that Q = G ,  P = P', and 
\ = A ' .  As in the theorem, A will be taken to be purely imaginary. Then as a 
function of A, 
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is invariant by iaf,. It follows that 

equals the ordinary inner product 

We obtain 

COROLLARY 9.2. There is a positive number e and a locally bounded function p 
on ia; such that 

is bounded by 

for all +,+' â (Â£p,x ,r  A e ia; and all T in the set (9.2). 
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