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An excellent introduction to the theory of automorphic

representations and the relations with number theory is the

Corvallis proceedings, Automorphic Forms, Representations and

L-Functions, Parts 1 and 2, Proc. Sympos. Pure Math., vol. 33,

1979. Although composed mainly of survey articles, the pro-

ceedings are already rather formidable. They are a measure

of the breadth of the field. They will be most useful to

mathematicians who are already experts in some branch of the

subject.
Our purpose here is to give a modest introduction to the

Corvallis proceedings. More precisely, our goal is to describe

the Langlands functoriality conjecture, a mathematical insight
of great beauty and simplicity. We will try to show both why
it is a compelling question, and how it arose historically
from Langlands' work on Eisenstein series. We hope that

mathematicians from diverse - or at least neighboring - fields

will find these notes accessible and will be encouraged to

read other survey articles [2], [6], or to plunge directly into

the Corvallis proceedings.
* Lectures given at the Canadian Mathematical Society Summer

Seminar, Harmonic Analysis, McGill University, Aug. 4-22, 1980.
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4 JAMES ARTHUR

We will discuss only the global functoriality conjecture,

and only that part of it which corresponds to the unramified

primes. It is then a statement about families of conjugacy

classes in complex Lie groups. The point of view is essentially

that of Tate's introduction to global class field theory [38,

§1-5].

§1. A problem in number theory

Suppose that f(x) is a monic polynomial of degree n

with integral coefficients. Let E be the splitting field of

f(x) over Q. If we were to order the roots of f(x) we

would obtain an embedding of Gal(E/Q), the Galois group of

E over Q, into a subgroup of S , the symmetric group on

n letters. There is no canonical way to do this, so we obtain

only a conjugacy class of subgroups of S . If p is a

prime number, we can reduce f(x) mod p. It decomposes into

a product of irreducible polynomials mod p of degrees

n1 , n2 , . n , where n1 +* * +nr = n. These numbers

determine a conjugacy class in S : the set of permutations
which decompose into disjoint cycles of lengths n , n2 , ...

and n . The intersection of this class with any of the

images of Gal(E/Q) in Sn may give several conjugacy classes

in Gal(E/Q). However, if p does not divide the discriminant

of f(x), there is a distinguished class among these, called

the Frobenius class of p. Incidentally, any finite Galois

extension E can be realized as the splitting field of such

an f(x). However, the Frobenius class in Gal(E/Q) depends
only on E and p, and not on f(x). The prime p is said

to split completely in E if its Frobenius class is 1;

that is, if p does not divide the discriminant of f(x) and



AUTOMORPHIC REPRESENTATIONS AND NUMBER THEORY 5

f(x) splits into linear factors mod p. Let S(E) be the

set of primes that split completely.

THEOREM 1.1: S : E -+ S(E) is an injective, order reversing

map from finite Galois extensions of Q into subsets of prime

numbers.

The difficult part is the injectivity. It is a conse-

quence of the Tchebotarev density theorem (see [38, p. 165]).

PROBLEM: What is the image of this map? i.e. what sets of

prime numbers are of the form S(E)?

A reasonable solution to this problem would constitute

nonabelian class field theory. One could parametrize the

finite Galois extensions E by the collections S(E). Any

kind of independent characterization of one of the sets S(E)

is often called a reciprocity Zaw for E.

2
Example: f(x) = x +1, E = Q(//T), Disc f(x) = -4, and

S(E) = {p : p = 1 (mod 4)}.
The problem has a solution in terms of such congruence

conditions if Gal(E/Q) is abelian. On the other hand, if

Gal(E/Q) is a simple group S(E) cannot be described by con-

gruence conditions alone.

It is convenient to embed the Galois group in GL (C),

since the conjugacy classes in GL (C) are particularly easy

to parametrize. Suppose then that

r : Gal(Q/Q) -+ GLn(C)n
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is a continuous homomorphism. Gal(Q/q) is the projective

limit lim Gal(E/Q) over all finite Galois extensions E of
E

0, so it is a compact totally disconnected group. Continuity
means that r has finite image. The kernel of r equals

Gal(Q/Er) for a finite Galois extension E of Q, and r

embeds Gal(E /Q) into GLn(C). Any finite Galois extension

E of Q equals Er for some r. If p is unramified in

E we have the Frobenius conjugacy class in Gal(E /Q), which

embeds into a unique semisimple conjugacy class p (r) in

GL (C). Thus

S(Er) = {p : %p(r) = I}.

A semisimple conjugacy class in GL (C) is completely determined

by its characteristic polynomial, so the characteristic poly-

nomial deserves to have special notation. In fact, one defines

Lp(z,r) = det(I - t (r)z)1 ,

the local L-function of r. If S is a finite set of primes
which includes the ones that ramify, one defines a global
L-function,

L (s,r) = n L (p r), s e C.p/S P

It can be shown that this infinite product converges for s
in some right half plane of C. An elementary lemma on Dirichlet
series implies the factors Lp(p S,r) are uniquely determined
by the analytic function Ls(s,r). So,therefore,are the semi-

simple conjugacy classes {fp(r) : p / S}. It is also known
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that Ls(s,r) can be analytically continued with a functional

equation relating Ls(s,r) with L (l-s,r), where

-1 tr(g) = r(g ) .

The location and residues of the poles of Ls(s,r) could be

determined from a conjecture of Artin, (see [16]. Artin's con-

jecture is referred to on p. 225).

27Tiv

Example: Fix N e I, and let f(x) = I- x-e N.
re(Z/NZ)*

f 2~i
Then f(x) is irreducible and Gal jIe NJ/ (Z/N})*

A prime p is unramified if it does not divide N. The Frobenius

class is the image of p in (Z/NZ)* [24]. To fit in with

discussion above we can take a character X of the (Z/N )*.
The functions LS(s,x) are called Dirichlet L-series.

At this point, we perhaps should recall the precise
definition of the Frobenius class. Let Q be the field of

p-adic numbers. Then Gal(Qp/0p) is naturally embedded in

Gal(Q/Q) up to conjugacy in Gal(Q/Q). There is a normal

subgroup Tp of Gal( p/Qp) (the inertia group) such that

the quotient group is isomorphic to Gal(Fp/Fp) and, in

particular, has a cyclic generator 4. Fp is a field with

p elements.) Suppose that H is a closed normal subgroup of

Gal(®/Q). It corresponds to a Galois extension E of Q.
The prime p is called unramified if the images of T in

Gal(Q/Q) are contained in H. Then 4 maps to a well

defined conjugacy class in

Gal(E/Q) = Gal(j/Q)/H.
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This is the Frobenius class of p. (The reader unfamiliar with

the facts from algebraic number theory discussed so far might
read [38], §1,2, and then go to [7], [10] or [24] for the

details.)

One possible way to obtain collections in the image of S
is through algebraic geometry. Suppose that X is a non-

singular projective algebraic variety defined over Q. Fix a

nonnegative integer i. Grothendieck has defined for every

prime number k the k-adic cohomology group Hi(X,Q9), a

vector space over QQ whose dimension, n, equals thei

Betti number of X(C). It comes equipped with a continuous map

Pk : Gal(Q/Q) GL(Hi(X, QZ)).

Any choice of basis of H (X,I) identifies GL(Hi(X, Q9)) with

GLn(Q). Since Gal(Q/Q) is compact, it is possible to choose
a basis such that p (Gal(Q/Q)) lies in GLn (2), where ZQ
is the ring of 9-adic integers [33, p. 1]. It follows from
the work of Deligne on the Weil conjectures that the collection
p = {p I: 9 prime} is a compatible family of 9-adic repre-
sentations, in the sense that the following two properties
hold:

(i) There is a finite set S of primes such that if

p 4 Sp u {U}, p is unramified in p,(Gal(Q/Q))
(regarding this group as a Quotient of Gal(/Q?)), so

there is a Frobenius conjugacy class p(p) in GL (Z ).

(ii) For p ¢ Sp u {U}, the characteristic polynomial

det(I - p (p)z ) has coefficients in zc_ T Q and is

independent of k.
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If p 4 Sp , let p (p) be the unique semisimple conjugacy
class in GL (C) whose characteristic polynomial isn

det(I - p(pt)z), for any 2 p. As before, one can define

L-functions

L (z,p) = det(I - p(p)z) , L (s,p) = L (p sp).
P P S P

Again, the global L-function converges in some right half plane.

However, it is not known to have analytic continuation. It is

expected that the conjugacy classes p(p ) are semisimple,

although this is also not known. If it were so one could

construct a number of collections S(E) simply from a knowledge
of L (s,p). For suppose

N
N = p P. N > 0,

P P

is a positive integer. Set

N
Kp(N) = {k E GLn(~p) : k 1 (mod p P )},

and

K(N) = t2 prime K (N)

It can be shown that K(N) is a normal subgroup of

K(1) =
. primeGLn( ),

and that K(1)/K(N) is naturally isomorphic to GL (Z/NZ)

(see [36], Lemma 1.38). By composing the maps

PGalGal(Q/Q) > K(l) -> K(1)/K(N)
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one obtains a homomorphism

p(N) : Gal(Q/Q) , GLn(Z/N).

The image of p(N) corresponds to a finite Galois extension

Ep(N) of q; there is an injectionP (N)

Gal(Ep(N)/) -> GLn(Z/NZ)

If the conjugacy classes 0 (p) are all semisimple, the

image of the Frobenius class in GL (Z/NZ) will be determined

by the reduction modulo N of the characteristic polynomial
off (p). In particular,

S(EN)) = {P ¢ Spp4N : Lp(z,P) 1 E (-z)n (mod N)}.

This section is meant to serve as motivation for what

follows. The main theme has been that interesting data from

number theory or algebraic geometry can be encapsulated in a

family {p : p S} of semisimple conjugacy class in GL ().

§2. Automorphic representations of GL

In this section G will stand for the group GLn. Then

if A is any ring (commutative, with identity), G(A) is

the group of (n xn) matrices over A whose determinant is

a unit in A. One such ring is the adeles, A, the restricted

direct product

vQv = IR x pQp .v v p p



AUTOMORPHIC REPRESENTATIONS AND NUMBER THEORY 11

(We shall write v for a valuation over Q, and p for the

valuation associated to a finite prime.) Then G(A) is a

locally compact group. Embedded diagonally, G(Q) is a dis-

crete subgroup of G(A). One studies the coset space

G(Q)\G(A), with the quotient topology. The volume of this

space, with respect to the G(A) invariant measure, is not

finite. To rectify this, define

z 0
Z= ' : z > 0 ,

0 z

a central subgroup of G(R). Then modulo the subgroup Z *G(Q),

G(A) does have finite invariant volume. Let R be the regular

representation of G(A) on the Hilbert space

L = L2(Z ·G(Q)\G(A)),
so

(R(y)Q) (x) = 4(xy), E L, x,y e G(A)).

This is a unitary representation of G(A). One tries to

decompose it as a direct integral of irreducible representations.

Incidentally any irreducible representation X of G(a) can

be written as a restricted tensor product

SvRvi p p

of irreducible representations of the local groups [8].

At first glance the space Z-G(Q)\G(A) might seem unduly
abstract in comparison with, say, a quotient of a real Lie

group. However, it is really a very natural object. In §1 we
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N
defined,for each N = n p P, the compact subgroupp

K(N) = n K (N)

of G(GA). Set

LK(N) = L2(z.G(Q)\G(A)/K(N)),

the Hilbert space of K(N) fixed functions under R. Then

L = lim K(N)

N

so to understand L it is necessary and sufficient to under-

K(N) K(N)stand each of the spaces LK( Notice that LK(N) is

invariant under the normalizer of K(N) in G(A) , which

certainly contains SLn(3R). Now the determinant fibres

Z*G(Q)G(G()/K(N) over

N
R M\Ideles/Hn {y E*I: y = 1 (mod p Pmp)},

an abelian group which is isomorphic to (I/NZ)*. The fibre

of any point is SLn(3R)-invariant, and as an SLn(R) space

is isomorphic to

SLn(Q)\SLn(A)/(SLn(() n K(N)).

However, by strong approximation for SL ,

SLn(A) = SLn(Q)(SLn(A) n SLn(R)-K(N)),
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(see [36, Lemma 6.15]. The proof in general is the same as for

n=2). It follows that as an SL (R) space, the fibre is

diffeomorphic with F(N)\SL (JR), where

F(N) = {y e SL (2) : y = 1 (mod N)}.n

Thus, as an SL (IR)-module, LK(N) is isomorphic to

#[K/NZ)*] copies of L2 ((N) \SL (R)).
It is in the definition of Hecke operators that we can

see the utility of the adele picture most clearly. If

0 < i < n, define an element

t.
11

pi p

P.

in G(Q ). Let f i be the characteristic function in
p p,i

G(Qp) of K (N) t *iK (N). Define the ith Hecke operator,p p p,i p
K(N)Tp onL" ) by

Tp if P i fpi(i) (R(y).)dy,
G(Qp)

for E LK( . It is clear that T i. belongs to LK(N)P,1
How does Ti behave on the irreducible constituents of R?

P'i

Suppose that

(r,U) = (fv , vUv)

is an irreducible representation of G(A) which is equivalent
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to the subrepresentation of R on a closed invariant subspace

L of L. Then

LK(N) = L n LK(N)
7T iT

corresponds to the subspace

K(N) K® .X U P(
P P

r K (N)
|UpP is the space of K (N)-invariant vectors in U .

[P P
If p does not divide N, K (N) = GLn(7 ), a maximal compactp np
subgroup of GLn(Q). Functions on GL((p), such as fplin n p p,i
which are bi-invariant under GL (Zp) are p-adic analogues of

the spherical functions for real groups [17], discussed in

Helgason's lectures. The theory is similar. In particular,
GL (Q )

the space U p has dimension at most one. If
p

K(N)LK(N) {O}, and p does not divide N, the dimension of

Kp(N)U
K )

must be exactly one. Now T leaves invariant the
p pri

space L (N ; relative to the equivalence of L with U, it
K (N)

acts through the one-dimensional space Up . Therefore, the

restriction of Tpi to LK(N) is a multiple of the identity

operator by a complex number c i(r).
p,if

The smooth vectors are dense in L. It follows that

for the representation (-r , U) of G (A) there is an

N such that UK(N) , {o}. Let N be the minimal such N,

and let S be the set of prime divisors of N . For any

prime p 4 S , we obtain (n+l) complex numbers {c i(() :

0 < i < n}. Define a semisimple conjugacy p (i) in GL (C)

by constructing its characteristic polynomial from these

numbers:

n
=

i( i(n-i) i)det(l - p(r)zj = Z(n-l)i=O (1p ci(ni)vp~()z.
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THEOREM 2.1 (Strong multiplicity one). The representation T

is uniquely determined by the family { p(i) : p 4 S } of

conjugacy classes in GL (C).

(See [21], [32]).

We have only defined the conjugacy classes { p(m)} for

representations that occur discretely in R. This restriction

is not necessary. In fact, if X E C, define the representation

R,(x) = R(x)Idet xl , x E G(A).

If X is purely imaginary, RX is unitary and it, also, has a

decomposition into a direct integral of irreducible representa-

tions of G(A). For the present we shall define an automorphic

representation informally as an irreducible representation of

G(A) which "occurs in" the direct integral decomposition of

RX , for some A. One can define the finite set S and the

conjugacy classes {p(D ):( p 4 ST} as above for any auto-

morphic representation T. We will not do so for we will give
a more general definition in §5. We do note, howevever, that

Jacquet, Piatetski-Shipiro and Shalika have recently shown that

with certain obvious exceptions, Theorem 2.1 holds for any

automorphic representation of G(A). If fT is any automorphic

representation of G(A), define

Lp(z, ) = det(l - p(7)z)- = (ino(-l) (Ti)=0p,

if p ST , and for any finite set of primes S D S , set

LS(s,) = n L (P S')
p4s P
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As in the examples of §1, the right hand side converges for s

in some right half plane.

Example: Let n = 1. Then G(Q)\G(A) is just the idle class

aroup of Q. For any N,

N

Kp(N) = {y EZp : y 1 (mod p PZ) }.P P

An automorphic representation X = vXp is just a character on

the idle class group and is known as a Grossencharakter. N

is the smallest positive integer such that X is trivial on

K(NX). If p does not divide N there is a complex number
X

s such that
P

s

Xp(V) = IpP , v c

s -s
It is clear that Cp,(x) = 1 and cp ,(X) = PIP = P

Therefore

f- s -

L(Xz) = l -p Pz

and

r - (s+s)
LS(Xz) = n l -p P

THEOREM 2.2: If f is an automorphic representation of G(A),

the function LS(s,7) can be analytically continued with

functional equation. Moreover, the location and residues of

all poles can be determined.

See [18].

We could say a word about the converse to this theorem.

Suppose that {p : p S} is a family of semisimple conjugacy
p
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classes in GL (C). Suppose in addition that

-1
-snp$S det(l- rpp)

converges in a right half plane to an analytic function which

has all the properties established in Theorem 2.2 (i.e. analytic

continuation, functional equation, predicted location of poles).

Is there an automorphic representation Tr of G( ) such that

p (r) = p for each p 4 S? The answer is no in general, but
p P

a partial solution is given for GL2 in [19], for GL3 in

[20] and indeed is expected for GLn. Rather than give

precise statements, let us simply say that these analytic

conditions on the family { p} are very strong, if not quite

strong enough to insure the existence of f.

CONJECTURE 2.3 (Langlands). Given a continuous representation

r: Gal(Q/2) - GL (C)

there is an automorphic representation T of GLn(A) such

that SW is the set of primes that ramify for r, and such

that p (r) = cp (r) for all primes p ¢ S . In particular
P p

S(Er) : {p : p(T) = I}.

This conjecture reduces the problem of §1 to the study of

automorphic representations of GLn(A). The collections S(Er),
which classify Galois extensions of Q, could be recovered from

data obtained analytically from the decomposition of R into

irreducibles. Notice that L (s,r) = L (s,r) for any finite

set S = S , so the location and residues of the poles of any
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function L (s,r) could be computed by Theorem 2.2. This is

the conjecture of Artin.

REMARK 1: It is easy to restate everything we have done so

far with the ground field Q replaced by an arbitrary number

field F.

REMARK 2: Suppose that n=l. For any N, LK(N) is iso-

morphic to the space of functions on (Z/NZ) . If p does not

divide N, Tp , is the identity operator while Tp
corresponds to multiplication in (Z/NZ)* by p. However

the image of p in (Z/NZ)* also corresponds to the Frobenius
2ri

class in Gal Q e /Q. Thus, the conjecture is true for any

one dimensional representation of Gal Q Ie /Q . So far,

this is quite elementary. But the conjecture asks more, even

for n = 1. Any one dimensional representation of Gal(Q/Q)

is to be associated to an automorphic representation of GL

by what we have just observed, this in turn corresponds to a

2Tri

one dimensional representation of Gal e / , for some

N. Thus, for any finite abelian extension E of Q the

character group of Gal(E/Q) is naturally a subgroup of the

2iri )

character group of Gal Q eN /lQ for some N. This means

that Gal(E/Q) is a quotient of Gal [(e N /Q. In other

271i

words E is contained in Q e . This is Kronecker's theorem,
and is certainly not elementary. If Q is replaced by a

number field F, the conjecture for n = 1 is also known. It

is just the Artin reciprocity law which is the heart of class

field theory (see [38], §3, 4, 5).
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Remark 3: Suppose that n = 2. Then for certain irreducible

representations r, Langlands solved the conjecture by

extending the work of Saito and Shintani on the base change

problem for GL2. See [28], [12].

This is a good point to describe the base change problem

for it is closely related to Conjecture 2.3. We shall state

it for GLn although it has been proved completely only for

n = 2. Suppose that E D F is a cyclic extension of number

fields of prime order Z. Let 6 be a generator of Gal(E/F).

If r is an n dimensional representation of Gal(F/F), let

R be the restriction of r to the subgroup Gal(F/E). Any

n dimensional representation R of Gal(F/E) will be of this

form if and only if R ~ R, where

R6(g) = R(6-1g6), g e Gal(F/E).

Now as we have remarked the notions discussed in this section

all make sense if Q is replaced by F. The conjecture

suggests there should be a map r ->+ from automorphic

representations of GLn(AF) (AF being the adeles of F) to

automorphic representations of GL (AE). If I occursn E

discretely in the regular representation it is uniquely determined
by a family of conjugacy classes in GL (C). We need only
observe how the map r R behaves on Frobenius conjugacy
classes. Therefore the base change problem is:

(a) For each automorphic representation E of GL (AF) prove
that there is an automorphic representation n of GL (AE)n E

such that SI is the set of prime ideals that divide the
primes in S and such that for any prime i of E which
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divides the prime .. 4 S of F,

[¢ (n^() if o splits in E

vtl(70) if -, remains prime in E.

(b) Show that an automorphic representation H of GL (AE)n E

is of this form if and only if E = IE.

The solution of this problem for GL2 used the trace formula

for GL2 . For n = 3 progress has been made for Flicker [9].

The L functions of algebraic geometry should also

correspond to L-functions for GLn. Suppose that X,

n = dim Hi(XQ), and

p = {p : Gal(Q/Q) + GL(Hi(X,VQ))

are as in §1. Then there should be an automorphic representation

X of GL (A) such that S = S and such that p (o) =
P
(X)n T p p p

for all primes p 4 S . In particular, for any N,

S(Ep()) = {p 4 S, pi N: L (z,7)1) (l-z)n (mod N)}.

There is a statement of this last conjecture, in more general

form, at the end of §2 of [30]. For the solution in case

n = 1, see [33].

§3. Eisenstein series

The purpose of Eisenstein series is to describe the

direct integral of that part of R which decomposes continuously

The theory was begun by Selberg and completed by Langlands

[25]. We shall give a brief description of the main results

(see also [1] and [11]).
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We shall state the results for a reductive algebraic

group G. The reader unfamiliar with algebraic groups could

skip to the next paragraph where objects defined for general

G are described for GLn . Let P0 be a fixed minimal para-

bolic subgroup of G, defined over Q, and let M0 be a

fixed Levi component also defined over Q. If P is a standard

parabolic subgroup of G, we shall write N for the unipotent

radical of P and M for the Levi component of P which

contains M0. Let X(M) be the abelian group (written

additively) of maps from M to GL1 defined over Q. If

m E M(A) and X E X(M) , the value of X at m, mX, is

an idle so it has an absolute value. Define a map HM from

M(A) to the real vector space

Chp = Hom(X(M), R)

by

<X,H (x)>
e M = ImX , X E X(M) , m e M() .

Let Ap be the split component of the center of M, and let

ZM be the connected component of 1 in Ap(R)0 Then MA%)
is the direct product of the kernel of HM with Z . Finally, let

K = II K be a maximal compact subgroup of G(^), admissiblev
relative to Mo.

If G = GL , we can take

jRo·e *I
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* *..* * }nn
p = : :

, M = · .. | ,

*

'.M={e1}rLj}nr
and

:'*=|,*I i,N={.
*

where n + **+nr = n. Then X(M) is the group of maps

X|* * 1 + ri=1 (det mi)

lo X
where v = (vl, ..., Vr) ranges over Zr. The space tp is

isomorphic to R , and

'mll 01
<XV ,HM . = vi logidet mil, v e Zr

im
Also

{.Lj. 0

zI

ZM== .·'. : z.> 0

i I 1
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Finally, we can take

K = 0 OR) x npGLn().

If x is any element in G(A), we can write

x = nmk, n e N(A), m E M(A), k E K.

Define

H (x) = H (m).

If p = p p ) ip is one half the sum (with multiplicity) of

the roots of (P, Ap) then

(2p(H (p))
p + e , P P(A),

is the modular function of P(A). Finally let Ap c X(M) c p

be the simple roots of (P,Ap). Every a E Ap is the restriction

to tp of a unique simple root 6 in Ap .Let a be the

projection of the co-root S onto 'p. (If G = GL ,s- \ n

A= ai = X0 ,0,1-1,0 ...0) : 1<i< n}
i

V
and for each i, t. is the element in Cp such that

v --1 -1
Xv (i) vin. - v lni .

X 1 11 1i+ i+1

Let RM,disc be the subrepresentation of the regular

representation M(R) on L (ZM.M(Q)\M(.f))) that decomposes
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discretely. It acts on a closed invariant subspace,

L (ZMM() \M(A))disc, of L (ZMM(Q)\M(wA). If a is any

representation of M(A), and X belongs to p¢ (the

complexification of *p), set

X[HM(m))
(a(m) = o(m)e ,m e M(A).

Then RM,disc, is a representation of M(A) = P(A)/N(A),
which we can lift to P(A). Let Ip(A) be this representation
of P(A) induced to G(A). It acts on the Hilbert space of

complex valued functions, 4, on N(A)ZMM(Q)\G(GA) such that

(i) the function mi+ (mx), m E M(A), belongs to
2 (ZMM(Q)\M(A))disc for each x E G(A),

and

(ii) 11112 = j I I|l(mk) 2dmdk < o.

K Z M() \M(^)

Then

(1+p) (Hp(xy)) -(A+p) [Hp(x))(Ip(X,y)))(x) = f(xy)e e

If A is purely imaginary, Ip(X) is unitary.
We would expect to find intertwining operators between

these induced representations. Let Q be the restricted Weyl

group of G. It acts on A= A and also on Z' = p .P00 P 0

If P and P' are standard parabolic subgroups, T"p and VZp,
are both contained in Z0. Let Q(ip , fp,) be the set of

distinct isomorphisms from Znp onto Vp, obtained by

restricting elements in 2 to Yp. The groups P and P'

are said to be associated if (7p, 'p,) is not empty.
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If G = GL , Q is isomorphic to the symmetric group S ,

by

al 0 aa(1) o
· -- · *, C £ Sn

0
a

0
a* n l a(n)

The groups P and P' are associated if and only if the

corresponding partitions are such that r = r' and

(n h, ., n) = (nr , ..., n J } for some T E S.1 r T(1) T(r) r

For each s E Q(pi, DS,) let w be a representative of
p P s

s in the normalizer of A in G(Q). Define

(M(sX)f()(x)= J wnx)e e dn,'
s

-1N' () nw N(A)w1 \N'(A)5 s

for E Hp, X E ,i* and p' = pp,

LEMMA 3.1: There is a dense subspace Hp of Hp (the space

of functions in Hp whose right translates by K and left

translates by the center of the universal enveloping algebra

of M(R) span a finite dimensional space) such that if

H° and
P

(Re(X)-p) (ov) > 0, E Ap,

then the integral defining M(s,X)) converges absolutely.

For X in this range, M(s,X) is an analytic function with

values in Hom(Hp, Hp,) which intertwines Ip(X) and Ip,(sX).
In other words, if f belongs to C(G(A)) , the space of

functions such that f(k-xk) = f(x) for each k E K, and if
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Ip(A,f) = | f(x)Ip(X,x)dx,
G(A)

then

M(s,X)Ip(A,f) = Ip,(sAf)M(s,X).

See [25].

Next, define

(X+p) (Hp(6x))
E(x,4,X) = i f(6x)e

6EP(_)\G(Q)

for q E H , x E G(A) and X E 'p C.

LEMMA 3.2: If E H and

(Re(X) -p)(a ) > 0, a Ap ,

then the series converges absolutely. It defines an analytic

function of X in this range.

[See [25].

We can now state the fundamental theorem of Eisenstein

series.

THEOREM 3.3: (a) Suppose that f e Hp . Then E(x,cp,X) and

M(s,X)4 can be analytically continued as meromorphic functions

to .p . On icp, E(x,4,X) is regular and M(s,A) is

unitary. Iff E Cc(G(A))K and t E(p, , ) the following
functional equations hold:
functional equations hold:
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(i) E(x, Ip(X,f),X) = j f(y)E(xy,4,X)dy
C (A)

(ii) E(x, M(s,X)4,sX) = E(x,(,X)

(iii) M(ts,X)4 = M(t,sX)M(s,X) .

(b) Let P be an equivalence class of associated standard

parabolic subgroups. Let Lp be the set of collections

{FP: P E P} of measurable functions

Fp : ip + Hp

such that

(i) Fp,(sX) = M(s,X)Fp(X), s E ((prP),

(ii) ||F||112 = f Fp (X) 112 dX < .

Then the map which sends F to the function

Ep,. P E(x, Fp(X),X)dX,
i' P

defined for F in a certain dense subspace of Lp , extends to

a unitary map from Lp onto a closed G(A)-invariant subspace

Lp(G(Q)\G(A)) of L2(G(Q)\G(A)). Moreover there is an ortho-

gonal decomposition

L2 (G(Q)\G^)) = pL(G()\G(A))

The proof of this theorem is very difficult. See [25, §7

and Appendix II].

The theorem implies that the regular representation of

G-A) on L2(G(Q)\G(A)) decomposes as the direct integral over
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all (P,X), where P is a standard parabolic subgroup and A

belongs to the positive chamber in i§'p , of the representations

Ip(X). These representations, remember, were obtained by

induction from the discrete spectrum of M VA). The discrete

spectrum of G(A) corresponds to the case that P = G.

We have not burdened the reader with a discussion of

normalizations of Haar measures. All the measures used in this

section (and the following ones) are Haar measures which have

been normalized in natural (but unspecified) ways.

We can now give a precise definition of automorphic repre-

sentation. An irreducible representation of G(A) is said to

be automorphic if it is equivalent to an irreducible subquotient

of one of the representations

Ip(~), X P,

(See [4], [29]. Our definition is equivalent to the two

equivalent conditions of [29, Proposition 2]).

§4. Global intertwining operators

Langlands proved the fundamental results on Eisenstein

series before defining the functions L (s,7) of §2. In fact

the definition was suggested by the properties of Eisenstein

series, and in particular the global intertwining operators

M(s,X). A careful examination of these operators revealed a

whole family of new L-functions, some of which were seen to

have analytic continuation and functional equations [26].

Fix a standard parabolic P. Then RM disc, regarded
as a representation of M(A), is equivalent to a direct sum

( (oU) - (vav ,VUgv) ,
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where each o is an irreducible unitary representation of

M(V) on the Hilbert space Uv. Then

(Ip(X), Hp) - S(vIP(oavx,),' v P())

where Ip(Ov ,) is the representation G(Q) induced from the

representation

X(HM(m))
a, (nm) = a (m)e , n E N(v), m E M(Q ),

of P(Q ). It acts on Hp(av), the Hilbert space of measurable

functions

'v N( v)\G(Qv) - Uv
such that

(i) Tv(mx) = ^ (m)Y(x)

v~ v v(ii) I|I'VTI2 = iK IIYv(k)1t2 dk < a.
v

Suppose that a function T = v P in SHp(a ) is right
K-finite. This means that each TV is right K -finite and almost

V v

all T are right K -invariant. Then for each x E G(A), the
v v

vector T(x) e U corresponds to a smooth function in

L2 (MM(Q) \M(A) )disc. Let i(T(x)) be the value of this function

at 1. Then

(x) = i(T(x)), x E G() ,

belongs to H. Suppose that s E Q( , that w = w

and that x = vx . Then (M(s,X)) (x) equals

(X+p)(Hp(w-lnx)) -(st+p') (Hp (x)){i i(T(w lnx))e e dn

N' (6)nwN(wA)w \N'(A)

=i[^(R,(w, X)Y V) (x,),
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where (Rv(w,)v) (xv) equals

-1 ( w+((w'nx )) -(sA+p') IHp (v))
v(w- nv)e e dn

N' (Q)nwN(v)w IN' (v)

THEOREM 4.1: If Y is right K -finite and
v V

(Re(A)-p) (a ) > 0, a E A ,

the integral defining R (w,X)T converges absolutely. For

X in this range, R (w,X) is an analytic function which

intertwines I (Oav) and Ip,(wvX). It can be analyticallyP AvX p' vX
continued as a meromorphic function to lp. . Moreover, if

w' = w , , for s' c Q('pi,,jp,,), there is a meromorphic

scalar valued function pv(w, w', X, o )' which equals 1 if

length(s's) = length(s') + length(s),

such that

R (w'w, X) = p (W, w', X, o )R(W', sX)R (W,X).

For proofs of these statements see [35], [22], [23], [14]

and [15]. The functions Hv can be expressed in terms of

Plancherel densities.

The space Hp is spanned by the functions 4(x) = i(T(x))
described above. For almost all v, T (xv) belongs to

K
HP(oa) v the space of K invariant functions. As we

suggested in §2, the structure of this space is similar to that

of real groups. It has dimension at most one. (This follows

from the fact that the convolution algebra of K bi-invariantV
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functions in Cc(G(Qv)) is abelian, proved under general

conditions in [31].) There is a finite set of valuations, S,

including the real one, such that if p is not in S ,
Kr

Hp(o)P has dimension exactly one. For such a p, R (w,)
Pp~K K

clearly maps Hp(o ) P to Hp,(wap) P. The composition with
v~P
^

p K
the map which sends p e Hp,(wa ) P to the function

npmk - T (wmpkp), np E N(Qp), mp E M(Qp), kp E Kp

K
in Hp(o ) P gives a scalar m (w,X,a). Define

P P

mS(w,X,o) = nSp mp(w,X,o)
and

PS(ww' X ao) = I vS Pv(w,w' IX,).

Then Theorems 3.3 and 4.1 immediately yield

THEOREM 4.2: If the representation a of M(A) occurs in

R di there is a finite set S such that ifm,disc

(Re(X)- p) (a ) > 0, a E p ,

the infinite product defining mS(w,X,a) converges absolutely.
It can be analytically continued to a meromorphic complex

valued function of X in - C If w' = w , , s E(C,(,)PC 's ' P P

then

mS(w'wXa) = P(www',aXo)m (w',sXso)ms(w,X,o) .

Thus the theory of Eisenstein series leads to some interesting
meromorphic functions. Let us show how to express them more
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explicitly. They are already quite intriguing for their analytic
continuation and functional equations rely on the very deep
Theorem 3.3. For simplicity, assume that G splits over Q.

Then B = P0 is a Borel subgroup of G. Also

MO = AO = T

is a maximal torus in G and

X(MO) = Hom(T, GL1) = L0 1

is the dual module. (Recall that an algebraic torus is an

algebraic group which is isomorphic to (GL1) . The functor

T L = Hom(T, GL1)

defines an anti-isomorphism between the category of algebraic
tori defined over a field F and the category of Gal(F/F)-

modules which are finite and free over Z . Given L, T(F)

is Gal(F/F) isomorphic to Hom(L,F*). The case here is even

simpler since T splits over 0, so Gal(Q/Q) acts trivially

on L.) We will not define "splits over Q". We need only

know that (after having fixed a Chevalley lattice) it is

possible to speak of the group of integral points; as in the

case of GLn the groups G(Z), T(Qp) etc. are defined for

any p. We can take K = G(Z). Consider the map

Ho = Hp : G(A) +).
0

For any prime p, set

Hop(xp)= log p H0(xp), x E G(Qp).
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Then

<XX,H (t)>
ItXp = pP t E T(Qp), X X(T) .

The range of the valuation |p is the set of powers of p,

so <X, H (t)> is always an integer. Therefore H p is
0,p 0 ,p

a homomorphism from the multiplicative group T( p) to the

additive group L = Hom(L,2). The group T(Zp) is compact.

It follows easily that Hp maps T(p )/T(Zp) isomorphically01p p p
V

onto L

Suppose that a = vav is as above and that p ¢ S .
K

Then H (a ) P . {0}. This means that I (a ) is a constituent
p p p p

of a so-called class one principle series - a representation of

G(Qp) induced from the pull-back to B( p) of a quasi-

character on T(Qp) which is trivial on T(ip). Such a quasi-

character can be written

X(Ho (a))
a - p P op( , a e T(p),

where X is an element in
p

Hom(L ,C).

To construct a instead of a , we simply replace X byp,X p p
X + X. It follows that

(Xp++p0) (H0 p(W- n))
m (W,A,o) = J p ' dn,

N' (p) nwN(Qp)w \N' (p)

for A in the domain of absolute convergence of the integral, and
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PO = P = PP nM +

Incidentally, the measure dn is the quotient of those Haar

measures on N' (p) and N' (Q ) n wN(Qp)w for which the

intersection with G(Zp) of each group has volume 1.

Consider the special case that G = GL2 , w = I
1

and P = P . Then a will be an automorphic representation

of GL x GL;

a °
[aI a0 = xi (a)X2(a2)0 a2

with X1 and X2 Gr6ssencharakters. If p is unramified

for both X1 and X2, there will be complex numbers slp
and s2 p such that

xi(a) = |al| p a c Q

Identify L with Z2 in the canonical way. Then

a °
Ho0 l = (logplapa1 logpla2lp)

The quasi-character X corresponds to the pair (s , s )P 1ip 2,p
which acts on LV by the dot product. The dual space 'p*P,C
is identified with , and p0 becomes (2 Set

A = sp0 for a fixed complex number s. Then

(X +X+P) a°H '+IHSs(p p ) [HOp 0 a2 l2 la S2,p+22

If
1

x
n(x) = x c Q,

0 1
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let

r 0
wn(x) = n k, n N(p), r E p k

E
GL2(2p)

In order to evaluate the integral it is necessary to express

r|p as a function of x. Notice that if

v = (u1 , U2) ,1 , U2 E Qp
and

lvil = Max{lu lp, u21p},
then iIvkll = i|v|| for each k E GL2(2p). Therefore

Irlp1 = (0,1)wn(x)i| = Max{l, x|p }.

Thus,

f (p+X+p0)(H0,p(wn))mp(w,X,o) = J e p Hpw dn

N(<p)
= (Max{, xlp})-(t+l)dx

p
= I 1 dx+ I Ix-(t+l) dx

p p-p

where

t = sp - S2,p + s

We want the Haar measure on Qp such that vol(Zp) equals

one. p is the disjoint union of the sets {pnU : - <n<co},P
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where

Up = {x E p: xlp = 1},
so

1-= vol(Zp) =In=O vol(pnp)vlUpU p

=vol(Up) n=(0

= vol(Up) |1- .

In other words, vol(U ) equals 1 -p. It follows that

m (w,X,a) equals

1+ X1 p-n(t+l) pnl 11.

If Re(t) > 0 this converges and equals

r -t
1 [P+1 p-tp

-1 p (Sp 2,p -(s+l) p (1,p 2,pp1-p P1

_ V(s' 'X'-1L (s, X1X2

Lp(l+s, XX21

LS(s, x1X2 )
We have shown that the scalar mS(w,X,o) equals 12-1

-1 LS (l+s, X1X2 )
LS (s, X1X2 )

Theorem 4.2 implies that 1 can be analyticall-1 can be analytical5
LS(l+s, X1X2 )

continued as a mermorphic function. It also yields the

functional equation

LS(s, X1X21) - Ls(1-s, X2X1)--1- = Is(W, w spo ) -1
L (l+s, X1X2 ) LS(-s, X2X1
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(pS is a product of Plancherel densities, and is an elementary
function.) It follows that LS(s,X1x2 ) can also be analytically
continued. This was well known as was the functional equation.

(The usual function equation is of course stronger, for it

relates the functions Ls(s, X1X2 ) and Ls(1-s, X2X1 ). It

is the case n=1 in Theorem 2.2, which was established many

years ago by Hecke.) However, Theorem 3.3 applies to arbitrary
G where it certainly leads to nonclassical results.

In general, the integral

P ' dn

N' (Up)nwN( p)W \N' (Up
is evaluated by the method of Gindinkin and Karpelevic ([13], [26]).

Identify each s E Q(Z'L, ,) with the unique element in Q
P P

which maps each simple root of (M,A ) to a simple root. We

can certainly assume that w acts on A0 by this element in

Q. Then

N' ( p) n wN(Qp)w \1N' (Qp ) N (p) n wN (Qp)w \N(up )

For almost p, each element w belongs to K . We can there-

fore suppose this is so for p B S. Then m (w,X,a) equals

(Xp +X+pO) (Ho0dp)(n))
N(s)

where N(s) is the intersection of wN (Qp)w with N (p) ,

the unipotent radical of the parabolic subgroup opposite to

P'. Suppose that s s 1 sy, where s1 is some other element

in Q, and s is the reflection about a simple root y of

(G, Ao) such that
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length(s) = length(s ) + 1.

A simple change of variables exhibits the integral as the

product of

(sy(Xp+X)+po)(Hp(n)) _

N(sI)

with

(X +X+po )(H (n))
P p 0 O'p dn.

N(sy)

Since N(S ) is one dimensional, this last integral reduces to

the one on GL2, which we have just calculated. It equals

1 - p P

-(X +X) (y 1)
P

1 - p

Now if Z is the set of positive roots of (G,Ao),

{a eZ+ : s < 0} = sy { E+: sl < O}.

It follows by induction on the length of s that the integral

equals

-((A +X) (BV)+1)

P1 - p

This therefore equals m (w,X,o).P



AUTOMORPHIC REPRESENTATIONS AND NUMBER THEORY 39

§5. L-groups and functoriality

The history of representations of reductive groups has

often been of phenomena which generalize from GL2 to arbitrary

groups. The functions mg(w,X,o) could hardly be otherwise.

They must surely be quotients of L-functions which generalize
-1the functions Ls(s, X1X2 ) obtained for GL2. We would expect

them to arise from a family of semisimple conjugacy classes in

some complex general linear group. The connection is made

through the notion of an L-group, introduced by Langlands in

[27].

For the moment, we shall continue to take G to be a

reductive group defined and split over Q. Suppose that

= ('T is an automorphic representation of G. It is saidv

to be unramified at a prime p if p has a K -fixed vector.

Then p is a constituent of the class one principle series

associated to a quasi-character

X (H (a))
a + p p a E T(Qp)/T(r

The quasi-character is not uniquely determined by p . The situa-

tion is similar to that of real groups. The unramified repre-
sentations p of G(Vp) are in bijective correspondence with

the orbits of the Weyl group Q acting on quasi-characters of

T(Qp)/T(Zp) [3]. Now L is a finite free .:--module. It is

associated to a unique algebraic torus over C whose group of

complex points, denoted by LT0 is canonically isomorphic to

Hom(L , C*). The map

-X (H)
H + p P H L3P~~HEL,
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belongs to Hom(L , ¢) so it defines a point t in LT
that is

-H (H)tH = p , Hc L
P

The Weyl group Q acts on LT through its action on L .

There is thus a bijective correspondence between irreducible

class one representations of G( p) and orbits of Q in LT0

The set of roots, Z, of (G,T) is contained in L.

Similarly the co-roots, Z , are contained in L . Thus

associated to the pair (G,T), regarded only as algebraic

groups over C, there is the root datum (L, E, L , Z ) .

Associated to the triple (G,B,T) there is the based root

datum (L, A, L , A ), where A = Ap is the set of simpleP0
V V

roots and Ap = A the simple co-roots, defined by B.

(For formal definitions of root data and based root datum see

[37].) Conversely any root datum comes from a pair (G ,T) a:gd

any based root datum comes from a triple (G ,B , T), where G

is a reductive group over C, T is a maximal torus, and B

is a Borel subgroup containing T [37]. Both (G ,T) and

(G , B, T) are uniquely determined up to isomorphism. Now

(LV , A ,L , A) is a second based root datum. It therefore comes from

triple (LGO LB LT). By convention, LG will denote

the set of complex points of a reductive algebraic group over

C, and B will be a Borel subgroup of G. As above,

LT equals Hom(L, C*) and can be regarded as a Cartan sub-

group of GO. The set of simple roots of ( G , T ) is A,

and the set of simple co-roots is A. There is a bijective

correspondence P --> LpO between standard parabolic subgroups

of G and of LG. The Weyl group of (LG , LT) is

isomorphic to Q2, with its natural action on T . Someisomorphic to Q, with its natural action on T . Some
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examples are in the following brief table

G LGO
GL GL (C)n n

PGL SL (C)n n

SL PGL (C)

SP2n 2n+l (C)

PSP2n Spin2n+ (C)

SO2n+l SP2n (C)

Spin2n+l PSP2n (C)

Spin2 SO2 (C)/{+1}

S02n/{±1} Spin2n (C)

The semisimple conjugacy classes in LG are in one-to-one

L Ocorrespondence with the orbits of Q in T . It follows that

for every automorphic representation T of the split group G

there is a finite set S of primes, and for every p ~ S

there is a semisimple conjugacy class c (7) in LG. How
p

does this compare to the conjugacy classes defined in an ad hoc

manner for GL in §2? The Hecke algebra for G( p),
H(G( p)), is the space of compactly supported functions on

G(Qp) which are left and riqht invariant by K = G(Z ). It
P p P

is an algebra under convolution. If f H(G(Qp)), and

(p , Up) is an (irreducible) unramified representation of

G(Q ), the operator

ITp(f) = f(x)7 (x)dx

G(Qp)
G(Z)

on U leaves invariant the subspace U . It vanishes on
P G() P G( )

the complement of U P in U . Since dim U = 1, theP P P
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restriction of T (f) to this subspace is a scalar, say

Cpf(-p). It is clear that

CP fl*f2 Pfl2

We regard Cpf as a function on the semisimple conjugacy
classes in LG. It can be shown that the map f cp f is

an isomorphism from H(G(Qp)) onto the algebra of class

functions on LG generated by the characters of finite

dimensional representations [see [3] and either [5] or [31]).

In the case of G = GL , to what class function on GL (C)

does f. , defined in §2, correspond? It turns out to bepDi'
just the multiple by p -i(n i) of the character of the action

th n
of GL (C) on the th exterior power of C [39]. These

n

characters, evaluated on a conjugacy class in GL (C), are the

coefficients of the characteristic polynomial. We obtain the

formula for p (T) given in §2.

Now, return to the problem of §4. Then a = iovis a

representation of M(A) that occurs in RMdisc If p S ,

-((X +X) (V)+l)
m (w,AX,) = 1cp+:sS<O} p(+-)(v

1-p P

1 - (tp)
= {13EC :sa<O} V v

+
1 - (tp)apx)'

Let Lp = N LM be the standard parabolic subgroup of LG
which corresponds to P. Then LM acts on , the Lieacts on theL i ie
algebra of N . Let Ap be the center of M . It is

The weights on of the representationcontained in T arThe weights on A ofthe representation
ofLO L V Lof M on Av are just the restrictions, , to A of
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roots Bv of (LG0 LT0); that is,

L 0 L 0- =
'

v ,' v
a >0 a

where

L 0 L (Y.L 01.L.0 = {X E :L Ad(a)X = a X for all a E LAO}
a

Each subspace L of L is invariant under M . Let

r v be the restriction of M to this subspace. The weights
of r on T are the set of 0 in Z whose restrictionLv +

to A is a. Now X is a linear function p . Therefore,
i V vif B restricts to a ,

-X(U ) _ -X( )e - e

It follows that

detI(- r(tp )p-k(X( )+1]
m (wX,o) = n

{ '>0,s <0} det(I -r (t )p- ))

detI -r v( (T))p(((V) +1))
a=1

{ct >Osc <0I} det I-r V( p-()pJ
ar nall aap iat

We are finally in a position to appreciate the definition

of a Langlands' L-function. Suppose that T = t v is an
v

automorphic representation of G(,A). Then if r is any finite

dimensional, complex analytic representation of G define

Lp(z,T,r) = det[I- r[(p(7())zJ , p S
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and

LS(s,7,r) = npS Lp(p ,,1r),

for any finite set of valuations, S, which contains S . If

G = GL and r is the standard n-dimensional representationn

of GL (C), the L-functions are just those defined in §2.

They are called standard (or principal) L-functions.

Returning once again to the case that o is a representa-

tion of M(A) which occurs in RM disc we see that

LS([(a ), a, r J
m (w,X,o) = n a

S(w,) {ala>OsaV<0} L$(X(av)+1, , r v
a

According to Theorem 4.2 this function has analytic continuation

and functional equation. If P is a maximal parabolic, and

there is only one root of (P,A), there will then be only one

a in the product. It will follow that LS(s, a, r v) has

analytic continuation. It also will satisfy a functional

equation, albeit weaker than the ones satisfied by classical

L-functions.

CONJECTURE 5.1 (Langlands): Suppose that T is an automorphic

representation of G(A) and that r is a finite dimensional

analytic representation of G . Then L (s,7,r) can be

analytically continued with a functional equation relating

Ls(s,T,r) with LS(1-s, , , r).

See [27, Question 1].

This conjecture suggests another one. Suppose one were

handed a split group G and a family {p : p S} of semi-

simple conjugacy classes in G . Suppose it happened that for
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every finite dimensional representation r of LG the function

-1
s + TpIS det(l - r(p)p)

was defined in a half plane and could be analytically continued

with functional equation. With the converse theorems for

GL2 and GL3 in mind, one would strongly suspect that the

family {p} arose from an automorphic representation of G.

Now, let G be another split group, and let

p : G + be an analytic homomorphism. If r is a finite

dimensional analytic representation of G ,

r = r op

is a finite dimensional analytic representation of G . Take

an automorphic representation 7 of G, and for each p 4 S

let p be the semisimple conjugacy class in L which
p

contains p(ip()). It is clear that

-1
L (s,T,r) = Hp4s det(I-r(,p)p )

The analytic continuation and functional equation of the function

on the right would follow from Conjecture 5.1. The family

{Ip} surely ought to be associated with an automorphic

representation of G.

CONJECTURE 5.2 (Langlands): Given an analytic homomorphism

p : LG LG and an automorphic representation Tf of G

there is an automorphic representation rT of G such that

S = S- and such that for each p 4 S , p() is the
iT
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conjugacy class in G which contains p(p (7)).

See [27], [2].

If G = GLn we could take r to be the standard representa-

tion of GLn(C). Then r equals p and Ls(s,7,r) clearly

equals L (s,7T), a standard L-function for GLn. Its analytic

continuation and functional equation would be assured by

Theorem 2.2. Therefore Conjecture 5.2 implies Conjecture 5.1.

For all of §5 and much of §4 we have taken G to be a

split group. This was only for simplicity. What happens if

G is an arbitrary reductive group defined over Q? We can

always choose a maximal torus T defined over 4 and a Borel

subgroup (not necessarily defined over 0) such that

A c T c B c P. The based root datum, (L, A, L, A ),0 a

associated as it is to the group G(C), is defined as above.

So is the triple (LG0C LB LT0) The theory of algebraic

groups yields in addition a homomorphism from Gal(Q/Q) to

Aut(G)/Int(G), the group of automorphisms of G defined over

Q, modulo the group of inner automorphisms. It follows from

a theorem of Chevalley that this quotient group is isomorphic
to the group of automorphisms of the based root datum

(L, A, L , A ). Every automorphism of (L, A, L ,A ) is clearly
V V

an automorphism of (L , A , L, A), so therefore gives an

element in Aut( G )/Int( G ). It is easily seen that the exact

sequence

1 - Int( LG) - Aut(G0) -+ Aut( LG)/Int(G) - 1

splits. This gives a homomorphism of Gal(Q/Q) into Aut( G ).

Inotherwords, Gal(Q/) acts on Define LG to beIn other words, Gal(Q/Q) acts on LG. Define to be
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the semidirect product

LGO X Gal (/).

It is a locally compact group, called the L-group of G. The

exact sequence above can be split in such a way that Gal(&/Q)
normalizes LB and LT. Then B = B X Gal(/Q) and

T = T X Gal(i./Q) are closed subgroups of G.

Suppose that T = r' v is an automorphic representation
v v

of G. Then r is said to be unramified at a prime p if

ip contains a K -fixed vector and if in addition, G is
P P

quasi-split over qp and splits over an unramified extension

of p. One shows that for each unramified p there corres-

ponds a natural conjugacy class D (i) in LG whose projectionp

onto LG0 contains only semisimple elements [3]. For finite

dimensional representations r of LG, the L-functions

LS(s,',r) are defined exactly as above. The computation of

the functions m (w,X,a) can be carried out for general G.

The resulting formula is similar to the one for split G (see

[34]).

Suppose that G and G are reductive groups over g.

An L-homomorphi.m is a continuous homomorphism

p LG -+ G

which is compatible with the projections of each group onto

Gal (Q/Q) and whose restriction to LG is a complex analytic

homomorphism of LG to GL ([3]). The generalization of

Conjecture 5.2 is
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CONJECTURE 5.3 (Langlands): Suppose G and G are reductive

groups over q which are quasi-split. Suppose that

LG L-
p : G G is an L-homomorphism. Then for every automorphic

representation X of G there is an automorphic representation

E of G such that S = S- and such that for each p 4 S,

p(r) is the conjugacy class in G which contains p(p (7r)).

See [27], [2].

This conjecture is known as the functoriality principle,

and is very far from being solved. It implies that all the

L-functions LS(s,7,r) can be analytically continued with

functional equation, and that the location and residues of all

poles can be determined. For an important special case, take

G = {1} and G = GL . Then an L-homomorphism is just a

continuous homomorphism

: Gal(Q/Q) GL (C).

The functoriality principle in this case reduces to Conjecture
2.3.
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