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The trace formula in invariant form 

By JAMES ARTHUR* 

Introduction 

The trace formula for GL2 has yielded a number of deep results on 
automorphic forms. The same results ought to hold for general groups, but so far, 
little progress has been made. One of the reasons has been the lack of a suitable 
trace formula. 

In [l(d)] and [l(e)] we presented a formula 

or, as we wrote it in [l(e), $51, 

G is a reductive group defined over Q, and f is any function in C;(G(A)l). The 
left hand side of (I*) is the trace of the convolution operator off on the space of 
cusp forms on G(Q) \ G(A)'. It is a distribution which is of great importance in 
the study of automorphic representations. One would hope to study it through 
the distributions o E O} and { 1;: x E X \ X(G)} . Unfortunately, these 
distributions depend on a number of unpleasant things. There is the parameter 
T ,  as well as a choice of maximal compact subgroup of G(A)' and a choice of 
minimal parabolic subgroup. What is worse, they are not invariant; their values 
change when f is replaced by a conjugate of itself. In any generalization of the 
applications of the trace formula for GL2, we would not be handed the function 
f. We could only expect to be given a function such as 

+(f 1: 77 - t r d f  1 7  

whose values are invariant in f. Here TT ranges over the irreducible tempered 
representations of G(A)'. The decomposition of trRcusp( f )  into the right hand 
side of (l*) would then be of uncertain value, for the individual terms actually 
depend on f and not just +( f ). 

0003-486X/81/01141/0001/074$03.70/1 
a 1981 by Princeton University (Mathematics Department) 

For copying information, see inside back cover. 

*Partially supported by NSF Grant MCS77-0918 and NSERC Grant A3483 
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The purpose of this paper is to modify the terms in (1) so that they are 
invariant. Under certain assumptions on the local groups G(Q_), we will obtain a 
formula 

in which the individual terms are invariant distributions. The definitions will be 
such that I = 1: if x belongs to X(G). We will therefore also have 

the analogue of (I*). 
The main assumptions on the local groups G ( Q )  are set forth in Section 5. 

One expects them to hold for all groups, but they are a little beyond the present 
state of harmonic analysis. They are, essentially, that any invariant distribution, I, 
on G(A)' can be identified with a distribution, f ,  on the space 

This will apply in particular to the invariant distributions I. and I .  In Section 13 
we shall show that fo and f are natural objects on G. They are independent of 
any choice of maximal compact subgroup, maximal split torus, or even Haar 
measure. In this sense they are similar to the terms in the trace formula for 
compact quotient. 

A formula akin to (2*) is proved for G = GL, in [10(b), 581. (See also [9].) 
The main step is the Poisson summation formula on the group of idkles. At the 
right moment a sum over the multiplicative group of the field is replaced by a 
sum over Grossencharakters. Likewise, our main step is to apply the trace 
formula to the Levi components, M, of proper parabolic subgroups of G. To do 
this, we need to derive a function in CX(M(Al1) from f. Therein lies the 
difficulty. We can always assume inductively that (2) is valid on M, and use it 
instead of (1). Then we need only produce a function in ^(M(A)l). However, 
this is difficult enough. It will not be done completely until Section 12. The main 
step is a splitting formula for some tempered distributions, I M ,  proved in 
Section 11. 

In the applications of the trace formula for GLn it is important to show that 
on certain functions, 6, many of the distributions vanish. In Section 14 we shall 
study this phenomenon on a group of higher rank. The group will be G L .  + will 
be the function in $(G(A)l )  one expects to associate to a function on the general 
linear group of a division algebra. Our main tool is again the splitting formula of 
Section 11. The reduction to this formula is an elementary exercise. 
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The formula (2) actually follows rather formally from the existence of some 
auxiliary data. We present the formal manipulations in Section 4, along with an 
attempt to motivate our definitions. It is the proof of Theorem 4.2 that contains 
the crucial application of (2) to Levi subgroups. The best way to first read this 
paper is to look at (2.5) and the statement of Theorem 3.2, and then go directly 
to Sections 4 and 5. Section 4 is in fact intended as a second, more technical 
introduction to the paper. After Section 5 the reader might return to the earlier 
sections. Section 6 contains some lemmas which are used frequently throughout 
the rest of the paper. They are best motivated by the calculations of Sections 2 
and 3. 

We shall conclude this introduction by illustrating how our methods apply 
to the trace formula of G = GL,. Let I  be the group of iddes (on Q) and let I 1  
be the subgroup of idkles of norm 1. We have subgroups 

and 

K = O,(R) X ~ G L , ( z . , )  = UK,. 
P v 

of G(A). Suppose that f is a smooth function of compact support on 

Let lo( f )  and &( f )  be the values of lJ'( f )  and J^( f ), respectively, at T = 0. 
Then the trace formula for GL, is 

Since we are in the special case of G = GL,, the distributions on the right can 
be evaluated explicitly (see [7], [4]). We shall copy them from [7], with minor 
modifications to fit our setting. 

Associated to each o E (9 is a semisimple conjugacy class {y}  in G(Q). Let 
6 ( G )  be the set of o for which the eigenvalues of y are not rational. For 
0 e (3(G), lo( / )  equals 

where G(A, y )  denotes the centralizer of y in G(A). If o belongs to 8 \ (2(G) we 

can take y = ( n  n . Then we can and do identify o with the set 
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{(a, fS),(fS, a)} (consisting of one or two elements) of ordered pairs of nonzero 
rational numbers. If o contains two elements, lo( f )  equals 

where if x = a (1 "k, for a M(A), k K ,  and u = IIuu,, in A, then 

If o consists of one element, (a ,  a), lo( f )  equals the sum of 

and 

( 4  

Here S is a sufficiently large finite set of valuations, 

and rs(u) is a certain smooth function on {u = II ,,-c u,,: uu e Qz - { l} } with the 
property that the expression in the brackets in (c) extends to a continuous 
function of u E I1 ,,esQz. 

An irreducible unitary representation of M(A) consists of an ordered pair 

of characters on I. There corresponds a representation 

J(P,  v) = fu ) ,  

induced from P(A) to G(A). If s e C, write 

P,(u)  = i i(u)IulS, 
and 

Note that the restriction, ji, of p to I1 can be identified with the orbit 
{p,: s iR} .  Let 

R ( p , v , s )  = @R(^" ,vu , s )  



TRACE FORMULA IN INVARIANT FORM 5 

be the normalized intertwining operator between I(p, v, s)  and I( v, p, - s) 
defined as in [7, p. 5211. (Here, as in the rest of the paper, we shall agree that 
I(p,  v, s )  acts on a space of functions on K .  The space is independent of s, so the 
derivative R'(p, v,  s )  makes sense.) If 

is the operator which arises in the functional equation of Eisenstein series. 
Suppose that x e 9C \ 9C(G). It corresponds to a Weyl group orbit of automor- 
phic representations of M(A)\ or as we prefer, a set {(ji, F),(v,^)} (containing 
one or two elements) of ordered pairs of characters on QX \ I l .  Then Jx( f )  equals 
the sum of 

(el - i e x t r ( ~ ( ^  p , 0 ) I ( w 3 0 ,  f )), 

and 

where ex = 1 if jix = F and is 0 if they are distinct. 
If we sum over o e 6 and x 9C\ 9C(G), the contributions to the trace 

formula from the expressions (a), (b), (c), (d), (e), (f), and (g) are the respective 
analogues of terms (ii), (iv), (v), (i), (vi), (vii) and (viii) in [7]. As distributions in 
f, the expressions (a), (d), (e) and (f) are invariant. They remain unchanged iff is 
replaced by the function 

This is not true of the other terms. If o belongs to (9 \ (9(G), J,,( f - f )  does not 
vanish, and can in fact be calculated explicitly. It equals 

where 
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Both fp and fp, are smooth functions on I 1  X J 1 .  Similarly, one can calculate 
the resi t  of replacing f  by f  Y - f i n  (g). It equals 

Suppose that /is any function in CP(G(A) )  whose restriction to G ( A ) l  is f .  
If p and v are characters on I set 

Then 

is a Schwartz function on fXf. It is the Fourier transform of a Schwartz 
function on I X I .  Let &( f )  denote the restriction of this latter function to 
I 1  X 1'. It depends only on f ,  and not f. The expression (g )  equals 

This is just the sum over (jii, F) e x of the values of the Fourier transform of 
<^u{ f )  at (w). We would like to apply the Poisson summation formula on 
1' X J 1  to ^(f). In this case it is enough to know that & ( f )  is a Schwartz 
function; however if there is to be any hope for the general case it will be 
essential to show that Kv( f )  is compactly supported. The proof of this fact for 
general G and M, as we have already noted, is the main goal of this paper. 

The proof for GLo is actually rather trivial. At first glance, it might appear 
hopeless, for the function 

certainly has poles. Remember, however, that <i>h( f )  is not a function on I X I ,  
but the restriction of a function to 1 X 1'. This is what saves the day. We can 
assume that 

Since R ( p ,  v, 0 )  is a restricted tensor product @uRu(p , ,  , v,, ,0 )  of local inter- 
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twining operators, (f>u( f, p, v) equals 

Almost all the terms in this sum over v equal 0. For any w ,  

( ~ ~ . v ~ )  -+ t r I ( u w , v w , f J )  

is the Fourier transform on Qz X Qz of the function 

It is clear that fw, is a smooth, compactly supported function on Q: X Q:. For 
any 0, 

is the Fourier transform of a Schwartz function on Q: X QE. It need not have 
compact support. However, if CW is any compact subset of lI1 ,̂, ,..+,% and 
C = Q: X Cw, the intersection of C X C with I1 X Z 1  is compact. The support of 
&( f )  is certainly contained in a finite union of such sets and is therefore 
compact. It depends only on the support off. 

Now apply the Poisson summation formula on I' X I1. The sum over 
x 9C\ %(G) of (g) equals 

If o belongs to 6 \ 6(G), define 

It follows from (b*) and (g*) that 

so that Zo is an invariant distribution. If x e 9C\ 9C(G), define ZJf) to be the 
sum of the expressions (e) and (f). Then Z is clearly an invariant distribution. 
Finally, set I = Jo if o 0(G). This of course is also an invariant distribution. 
Then we have 

This is our trace formula in invariant form for GLo. The reader familiar with the 
invariant trace formula for GL2 in [ lqb) ]  will observe that it is different from the 
formula we have just given. For in [lqb)],  Poisson summation was applied to 
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the contribution from terms (b) and (c) above, whereas we have applied it to the 
contribution from (g). While being more immediately suited for the applications, 
the formula in [ lqb)]  is harder to prove for GLo, and may be impossible to 
establish directly for arbitrary G. 

Contents 

1. A review of the trace formula 
2. The distributions JÃ and Jx. 
3. Noninvariance 
4. The main problem: Discussion and motivation 
5. Invariant harmonic analysis 
6. Convex sets and some related functions 
7. Some examples 
8. The distributions J^ and }^ 
9. The map C#IL 

10. The invariant distributions lM, 
11. A splitting property 
12. Compact support 
13. The invariant distributions lo and Ix 
14. An example 

1. A review of the trace formula 

Suppose that G is a reductive algebraic group defined over a field F of 
characteristic 0. More than anything else this paper concerns Levi components of 
parabolic subgroups of G defined over F ,  or as we shall call them, Levi subgroups 
of G. If M is a Levi subgroup, let A = AM be the split component of the center 
of M; set 

a = a ^ =  Hom(X(MIF,R), 

where X(M)F is the group of rational characters of M defined over F. Now a is a 
real vector space whose dimension equals that of the split torus A. Suppose that 
L is a Levi subgroup of G which contains M. Then L is also a reductive group 
defined over F, and M is a Levi subgroup of L. We shall denote the set of Levi 
subgroups of L which contain M by P ( M ) .  Let us also write T L ( ~ )  for the set 
of parabolic subgroups of L, defined over F ,  which contain M, and let 6fL(M) 
denote the set of groups in (~L{M) for which M is a Levi component. Each of 
these three sets is finite. If L = G, we shall usually denote the sets by Â£(M) 
F(M) and 9(M).  (In general, if a superscript L is used to denote the depen- 
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dence of some object in this paper on a Levi subgroup, we shall often omit the 
superscript when L = G.) 

We shall try to reserve the letters L and M for Levi subgroups of G, and to 
use the letters P, Q and R for parabolic subgroups. If Mo C L are Levi subgroups 
of G, and P e FL(Mo), there is a unique Levi component Mp of P which 
contains Mn. It is defined over F. The unipotent radical, Np, of P is also defined 
over F. We shall write Ap and a?  for A M  and a ^ .  Suppose that M C Ml C L 
are Levi subgroups of G. If Q l C P L ( ~ ^ )  and R e CPMl(~) ,  there is a unique 
group, Q(R), in v ( M )  which is contained in Q and whose intersection with M, 
is R. Notice that there is a natural map from a M  to a^.  We shall denote its kernel 
by a b  

Suppose for the moment that F is a local field and that Mo is a Levi 
subgroup of G. We will want to work with particular maximal compact sub- 
groups of G(F),  which we will call admissible relative to Mn. If F is Archi- 
medean we will take this to mean that the Lie algebras of A M  and K are 
orthogonal with respect to the Killing form of G. If F is non-Archimedean the 
vertex of K in the Bruhat-Tits building of G must be special and must belong to 
the apartment associated to a maximal split torus of Mn. Any K which is 
admissible relative to Mo has the following properties. 

(i) G = P(F)K for any P e CP(Mo). 
(ii) Any coset in G(F)/Mo(F) which normalizes Mo(F) has a representa- 

tive in K. 
(iii) K = (Np(F) n K)-(Mp(F) n K) for any P e  F(Mo). If L is a group 

in Â£(Mo) K n L(F)  is a maximal compact subgroup of L(F)  which is admissi- 
ble relative to Mo. 

For the rest of this paper G will be a fixed reductive group defined over the 
field Q of rational numbers. We fix a minimal Levi subgroup Mo of G. Then 
A. = AM, is a maximal Q-split torus of G. We shall say that a maximal compact 
subgroup 

of G(A) is admissible relative to Mn if for each valuation v on Q, K is a maximal 
compact subgroup of G ( Q )  which is admissible relative to Mn, and if for any 
embedding of G into G L ,  defined over Q, 

KL = GL,,(o,. n G(QJ 

for almost all v .  Fix such a K. Then K satisfies the conditions of [l(d)]. For any 
P e ?T( Mo) we can define the function 
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from G(A) to a p  as in [l(d), $11. Let Q be the Weyl group of (G, Ao). For any 
s e Q let w be a fixed representative of s in G(Q). w, is determined only modulo 
Mo(Q), but for any P e Hp(wS1) is uniquely determined. In [l(c)], 
thinking of the standard maximal compact subgroup of GL,,(A), we mistakenly 
stated that ws could also be chosen in K. However, we can chose an element 
Ws E K such that 

1 - WSaWsp - wSaws1 

for all a e An(A). It follows that w, belongs to KMJA) for every s e 0. 

LEMMA 1.1. There is a vector To E a n ,  uniquely determined modulo a r ,  
such that 

HpO(ws-l) = To - C I T n  

for any Po E 9(Mn)  and s e Q. 

Proof. The uniqueness follows from the fact that a r  is the set of fixed points 
of the group Q acting on a o. Since w, lies in KMn(A), Hp(wS1) is independent of 
Po e 9(Mn).  Fix Po. We have the set, Apo, of simple roots of (Po, An), the set 
{a": a E Ap} of co-roots, and the basis {G : a e Ap} of ( a  so)* which is dual to 
Apo. For each simple reflection sa, a E Apo, there is a real number ha such that 
Hp(wspl) = h a d  Define 

To = 2 ha& 
a=Al," 

The lemma will be proved inductively on the length of s. Suppose that 

and that the length of s1 is greater by one than the length of s. If we write 
w s l  = msWsl, for m, E Mo(A), we see that 

~ p ~ ( w - ' )  = Hpo(ms) + S - ' H ~ ~ ( W ; ~ )  = H,,(W;~) + s - l ~ ~ , ( w ; ~ ) .  

It follows by induction that Hp(wsl)  - (To - s l T o )  equals 

By the definition of To, this equals 0. The lemma follows. 

We will eventually end up with objects which are independent of any choice 
of Haar measures, as well as our choices of K and Mo. In the meantime, however, 
we had best fix some measures. Suppose that v is a valuation on Q. If M,, is any 
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Levi subgroup of G defined over Q ,  for which Kc is admissible, we assign 
Kc fl M ( Q )  the Haar measure for which the total volume is one. Suppose that 
L e Â£(Me and P E T L c ( M ) .  If u is discrete, we take Haar measures on Np(Qc) 
and M P ( Q )  such that the intersection of each group with Kc has volume one. 
Then if f E Cc(L(Q,)), 

Here, ap is the modular function of the group P ( Q ) .  If u is Archimedean, simply 
fix Haar measures on all groups {Np(Q),  Mp(Q)}  given as above, so that (1.1) 
holds, and so that groups which are conjugate under K have compatible Haar 
measures. Now suppose that S is a set, possibly infinite, of valuations on Q. 
Suppose that L e Â£(Mn and P e W M ~ ) .  We take the restricted product 
measures on all the groups IIeEs Mp(Q,;) and KcsNp(Q,;). Then the analogue of 
(1.1) holds for functions f on kEsL(Qu) .  In this way we obtain Haar measures 
on the groups Np(A) and Mp(A). By further restricting our choice of measure on 
Np(Qu), v Archimedean, we can assume that for each P, the volume of Np(Q) \ 
Np(A) is one. Then our measures on adkle groups satisfy the conditions of [l(d)]. 
We take the Haar measure on a O  = aMo associated to some Euclidean metric 
which is invariant under the Weyl group Q. The metric also gives us a measure 
on any subspace of a 0 .  If P e 9( MO), i a $ is isomorphic to the group of unitary 
characters on a p. We take the Haar measure on i a $  which is dual to that on a p. 

The measures on M(A) and a n  yield a measure on M(A)l, the kernel of the map 

defined in [l(d)]. M(A) is the direct product of M(A)l and A(R)O, so we also 
obtain a Haar measure on A(R)O, the identity component of A(R). 

In the first three sections of the paper we shall examine the trace formula 
presented in [l(d), (e)]. In these sections we will try to use the notation of [l(d), 
(e)], so any undefined symbols will have the meaning assigned there. In particu- 
lar, if P and Q are groups in %( MO), with P C Q, a ^  is the subspace a z; of ap.  
To the set, A$, of simple roots of ( P  n My, Ap) there was associated a basis {a": 
a e A$} of a 9; A$ was defined to be the corresponding dual basis of ( a f ) *. Then 
A$ and A$ are naturally embedded subsets of a :. Remember also that rf and Tf 
denote the characteristic functions of { H E an:  a( H )  > 0, a e A$} and { H e a ̂ : 
G(H) > 0, G e A$}. When there is an obvious meaning, we shall allow notation 
established for parabolic subgroups of G to carry over to parabolic subgroups of a 
Levi subgroup of G. For example, if R Z) Q, and Q, and P, are the intersections 
of Q and P with M R ,  A% = A$, rfl= r$', a yl = a y, etc. 
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As it is given in [l(d), (e)], the trace formula depends on a fixed minimal 
parabolic subgroup Po O(Mo). Until we remove this dependence at the end of 
Section 2, Po will be fixed, and the letters P, Q or R will denote groups in O(Mo) 
which contain Po. The terms in the formula are indexed by sets 0 and X .  O can be 
defined as the set of semisimple conjugacy classes in G(Q). The elements in X are 
Weyl orbits of irreducible cuspidal automorphic representations of Levi sub- 
groups of G ( Q  clearly acts on the set of pairs {(M, p)}, M a group in Â£(Mo and 
p a cuspidal representation of M(A)'). The trace formula is an identity 

associated to functions f in C?(G(A)'). T is any suitably regular point (depend- 
ing on the support of f )  in a:, the positive chamber in a n  defined by Po. /: and 
I,!' are distributions whose definitions we will recall in the next section. 

Many of our arguments will be inductive, so we will need to keep track of 
distributions on Levi components L = Mp of parabolic subgroups P, Po C P. We 
can certainly define the sets of equivalence classes a L  and 36 associated to L. If o  
is a class in (9, o fl L(Q) is a union, possibly empty, of classes o1, .  . . , o n  in O L .  
Po fl L is a fixed minimal parabolic subgroup of L and T remains a point in the 
associated positive chamber of a o .  We therefore have the distributions 1:' on 
CT( L(A)'). Define 

Similarly, suppose that x belongs to X .  Then x is a G-Weyl orbit of irreducible 
cuspidal automorphic representations on Levi subgroups. This decomposes into a 
finite union, again possibly empty, of L-Weyl orbits x i , .  . . , xn in 36 L. Again 
define 

The trace formula for L then implies that 

for all f E C^L(A)l), 

2. The distributions lo and JX 

In this section we shall show that Ĵ ( f )  and I:( f )  are polynomials in T; that 
is, as functions of T they belong to the symmetric algebra on a;5,c. We will also 
take the opportunity to recall the definitions of the distributions. Fix f e 
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C F ( G ( A ) l )  and o 0. Then J ^ f )  is the integral over x  in G ( Q )  \ G ( A ) l  of 

where Z = AG, and 

Suppose that T1 is a fixed suitably regular point in a n .  We shall let T  vary 
freely in Tl + a:, and try to relate J r  with the distributions JF,Tl .  It evidently 
will be a question of expressing T p ( H p ( 8 x )  - T )  in terms of the functions 
TF(Hp(8x )  - T,) ,  Q  ranging over parabolic subgroups that contain P. This 
suggests making the following inductive definition: 

If X  is a point in a n ,  define functions 

on a n ,  indexed by parabolic subgroups Q 3 Po, by demanding that for all 

Q ' Po, 
T y ( H - X ) =  2 ( - 1 )  dim(AR/Z)  T [ ( H ) r ; ( H ,  X ) .  

{ R :  R^Q]  

The definition is indeed inductive; if r n ( H ,  X )  has been defined for all 
R f  Q ,  then I ; (H,  X )  is specified uniquely by the formula. K ( H ,  X )  depends 
only on the projections of H  and X  onto aQ and it is invariant under aG.  To 
express it in another way, consider the sum 

It is easy to verify that if QZ R l ,  the sum over R  vanishes (see the remark 
following [l(d), Corollary 6.21). It follows that r b ( H ,  X )  equals (2.1). 

If G  = GLg, a p  / a c  is two dimensional. If X  is in a  :, rp( - , X )  is the 
characteristic function of the shaded region. 
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It is the algebraic sum of the characteristic functions of the chambers at each of 
the four vertices. In general we have 

LEMMA 2.1. For each X in a fixed compact subset of d p  /ag, the support of 
the function 

H -. Tp(H, X),  H fE a p / a c ,  

is contained in a fixed compact set, which is independent of X. 

Proof. If Q Z) P, set ^ (̂ H )  equal to the characteristic function of 

(H: S(H) > 0, s E i p \ i o ] .  

Mimicking the construction of T̂ { H, X), we define functions ?r/ H, X) induc- 
tively by demanding that for all Q 3 Po, 

f y ( H - X ) =  2 (-1) d'm(AR / Z )  F / Q ( H ) ? ~ ( H ,  x ) .  

{ R :  R 3 Q ]  

Then 

The values of these functions are easily seen from inspection. Modulo sign, - 
rQ(. , X) is just the characteristic function in a Q  /ag of a parallelepiped with 
opposite vertices 0 and X. In particular, FQ(H, X) is compactly supported as a 
function of H e a /ag. 

The lemma will be proved by induction on dimG. We have 

We have already noted that if P # G, 

2 (- l )d im(Ap/Z)  rp Q (H) fy (H)  = 0. 
{ Q :  P C Q C G )  

Therefore the outer sum may be taken over only those R not equal to G. For a 
given R # G, and H E a:, put 

H= H* + H., H* E a:, H* e a:. 

Then fs( H, X) = t R (  H*, X). Moreover, 

where 
H* -. L H * )  
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is a linear map from a: to a h h i c h  is independent of Q. If the summand 
corresponding to R does not vanish, H* will lie in a fixed compact set. So, 
therefore, will L ( H * ) .  Applying the induction assumption to the group M n ,  we 
see that H* must lie in a fixed compact subset of a:. It follows that H is 
contained in a fixed compact subset of a:. 

The Fourier transform of Ti(., X )  will be an entire function on a;,c.  It is 
easy to calculate. Let A be a point in a  ;, whose real part belongs to - ( a  "p + . 
Then 

In this integral set 

With this change of variables we must multiply by the volume of a: modulo 
L$ X L y ,  where L$ and Ls are the lattices generated by (3: Â A?} and 
{av :  a  As} respectively. The result is the sum over Q 2) P of the product of 

Here, Â£ is the element in Ay dual to a". Let A y  denote the projection of A onto 
a?,,c. Then 

Define 

and 

if R 2) Q. (As suggested in $1, we sometimes write 06 as OS if R = G.) We have 
proved 

LEMMA 2.2. The Fourier transform of the function 

H  ^ T p ( H ,  X), H  fz a p / a r .  
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To evaluate the integral over CI /aG of Tp(. , X ) ,  replace A by t A ,  t > 0, in 
the formula and let t approach 0. The resulting limit must exist and be 
independent of A. Since @ ( A ) l O p ( A ) l  is homogeneous of degree 9 
dim( A p / Z ) ,  the result is 

1 
- 2 ( - 1 )  

d i r n ( A P / A Q ) ^  ^ ( ) - I e  - 1  ,( )"A QO . 
91 { Q :  Q 3 P )  

It is a polynomial in X which is homogeneous of degree 9. 
Now we can return to our discussion of JA f ). In the expression for J3 f ) ,  

make the substitution 

Take the sum over Q outside the sum over P ,  and write the integral over ( x ,  8 )  in 
(G(Q)\G(A)l) X(P(Q)\G(Q)) as an integral over (Q(Q)\G(A)l) x (P(Q)\Q(Q)). 
Then J ^ f )  is the sum over {Q: Q Z) Po}, and the integral over x in Q(Q) \ G(A)l,  
of 

Decompose the integral over x into an integral over n in AQ(Q) \%(A), 
m E MQ(Q) \ MQ(A)l, a E AQ(R)' f l  G(A)l and k K .  Since 

for 8 f~ MQ(Q), JAf)  equals the sum over Q Z) Po of the product of 

with 

2 ( - l ) d i ~ n ( A ~ / A Q )  

{ P :  Po C P C Q )  
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If u l ,  u2 belong to Mp(A)l, 

equals 

where 

a smooth compactly supported function on Mp(A)l. The sum over P can be 
regarded as a sum over standard parabolic subgroups of Mp. It follows that (2.2) 
equals Jp,Tl( fp).  We therefore have 

In particular, JA f )  is a polynomial in T. 
Next, take x e X .  Then J$ f )  is the integral over x in G(Q)  \ G(A)l of 

K p  ( x ,  y )  is the kernel of the restriction of the operator Rp( f )  to the invariant 
subspace L2(Nr,(A) Mp(Q) \ G ( A ) l ) x  of L2(Np(A) Mp(Q) \ G(A) l ) .  (See [ l ( d ) ,  $3, 
$41.) It can be obtained by projecting 

regarded either as a function of x or y, onto L2(Np(A) Mp(Q) \ G ( A ) l ) .  Then 
K p  x ( x ,  y ) ,  regarded as a function of either x or y, is smooth. The analogue of 
(2.3) is established as above. The argument for Ĵ  f )  follows that for IT( f )  
identically until we come to the integral 

However, if we allow u, ,  u2 to belong to G(A)l ,  this integral is just the kernel of 
the restriction of the operator 

to the invariant subspace L2(Np(A)Mp(Q) \ G(A)lx.  Suppose that Q 3 P. There 
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is a representation ~ 3 . ~  of Mn(A)l on the Hilbert space L~(N,(A)M,(Q) n 
M^A)l\MdA)l). Associated to x ,  we have a subspace L~(N,(A)M,(Q) n 
Mp(Al1 \ M/^A)')^ which is invariant under the operator ~ f n ' ~ ( , (  fQ). If we take 
ul  and u2 to be elements in Mp(A)l, we obtain the kernel of the restriction of 
~ ' % . ~ { f o )  to this subspace. We therefore have 

Analogues of (2.3) and (2.4) certainly hold for the distributions JbT and 
Jk, T .  In particular, we have 

PROPOSITION 2.3. Suppose L = L for Q 3 Po, and that f E C W ) l ) ,  
? o E (9, and x E X .  Then Jb '(  f )  and Jt, ( f )  are polynomial functions of T .  0 

These polynomials can be defined for all T. We shall denote the values 
assumed at To, the vector defined by Lemma 1.1, by J b ( f )  and Ja f )  respec- 
tively. It follows from [ l (d) ,  Theorem 7.11 and [ l (e ) ,  Theorem 2.11 that the series 
2 1 Jt( f )  \ and X X  1 I t (  f )  1 converge. We obtain the identity 

from (1.2). 
Suppose that Pl is another minimal parabolic subgroup in 9 ( M o ) .  There is a 

unique element s in Qi such that Pd = w l P p .  If P is a parabolic subgroup that 
contains Po, P' = w l P w  is a parabolic subgroup containing Pi. Suppose that 

y = nmk, n Ap(A) ,  m e Mp(A) ,  k E K ,  

is an arbitrary element in G(A). Writing 

- ws lY  = w s l n w s ~ w s l m w s ~ w s l k ,  

we see that 
- 

Hp,(ws l y )  = ~ , ~ ( w ~ ^ m w ~ )  + H p , ( w i l )  

= s - ^ H p ( y )  + H , ( w ; ~ ) .  

Therefore 
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It follows that JD) is the integral over G(Q)  \ G(A)l of 

= 1 (-1) 
dim(Ap./Z) 2 KP, o(ws8x9 ws8x) 

{ P I :  P ' ~ P O }  Sâ‚¬F'(Q)\G( 

Now 

We have shown that if Po and T are replaced by Pd and Hp( w s l )  + s l T  in the 
definition of Ĵ  f ) ,  the result is the same. By Lemma 1.1, 

It follows that Ĵ ( f )  = Jo( f )  is independent of Po. The same argument applies 
to J: ( f )  and also to the corresponding distributions on Levi subgroups. Thus, 
each of the distributions J f  and Jk depends on Mo and K, but not on a minimal 
parabolic subgroup of L. They are defined for any L in Â£ Mo). 

Suppose that L' and L belong to Â £ ( M o )  and that L = w s l L w s  for s  S2. 
Suppose that f  Cx L(A)l) ,  and 

Then from the argument above we see that 

and 

J^n=w 
for all o and x. 

3. Noninvariance 

If f  is a function on G(A)' and y G(A)l ,  define 



20 JAMES ARTHUR 

A distribution J on G(A)l is said to be invariant if J( f y )  = J( f )  for all f and y. 
Our distributions Jo and Jx are definitely not invariant. In this section we shall 
evaluate them on functions of the form f y - f. 

The calculation is similar to that of the last section. Fix a minimal parabolic 
subgroup Po in 9'(Mn). Given f and y, fix a suitably regular point T in ci $. In the 
formula for I:( f Y), K p  ,,(ax, 8x) will be replaced by 

2 f f ~ ( x - l 8 - l ~ n 8 x ) d n  = K ,  , ( S X ~ - ~ ,  Sxy-l). 
= M P ( Q )  r }  o N P ( A )  

Thus, JA f ) equals 

which, after a change of variables, may be written as the integral over x in 
G (Q) \ G(A) of 

Let Kp(8x) be any element in K such that 8 x - K p ( 8 x ) l  belongs to P(A). Then 

f P ( H P ( k d  - T )  = fp(Hp(8x) - T + H ~ [ K P ( ~ ~ ) Y ) )  

is left Q(Q)-invariant. Set 

and 

for m e MQ(A)l. Then u'y(k, y) is a smooth function of k E K, and fQ is a 
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smooth compactly supported function on M,(A)l. The net result of the calcula- 
tion is the formula 

Next, take x X .  The analogous formula holds for .I.&?( f y). It is proved the 
same way. The only additional point is that 

RP( fY  = MY )r1RP(f  ) R P ( Y  1. 
Therefore the kernel of the restriction of Rp( fy) to L2(Np(A)Mp(Q) \ G ( A ) l )  is 

Modifying the discussion above (in the way we obtained (2.4) in the last section), 
we come to the formula 

Both sides of (3.1) and (3.2) are polynomials in T. If we take the values at 
T = To of each side, the resulting distributions are all independent of Po. 
However, the sums are still only over those Q which contain Po. Suppose that Q' 
is any parabolic subgroup in (̂ Mo). There is a unique Q containing Po such that 
Qr  = wS-'Qws for some s in a. Then uk,(G,-'k, y) equals 

If m belongs to M,(A)l, f,,, y(G7-1mG,,) equals 

It follows that Jp ( f,,, ) = J?( fn ) and ( fy-, y )  = J^(fn, ) for all 0 and 
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x.  Thus, the sums from (2.1) and (2.2) may be taken over all Q e ^ (Mn) .  The 
number of Q which are conjugate to a given parabolic subgroup containing Po 
equals the order of S2 divided by the order of the Weyl group of the given Levi 
component. The corresponding summands must then be multiplied by 1 B A ~ Q  l / l  S2 1. 

We summarize the results we have just established as a theorem. We want to 
leave room for future induction arguments, so we shall state the results for 
distributions on L(A)l rather than on G(A)l. 

THEOREM 3.2. Suppose that L Â£ Mn), that f CZ L ( A ) ~ ) ,  and that 
y E L(A)l. Then 

and 

forallo e 6 a n d x  e 36.  

Here f p  is defined in the obvious way. That is, fp, y ( m )  equals 

where 

This theorem is the basis of all that follows. We shall explain its role in the next 
Â 

section. 

4. The main problem: Discussion and motivation 

The object of this paper is to derive a trace formula whose terms are 
invariant. We want an identity which is of the form (2.5) but such that the 
distributions indexed by 6 and 36 are invariant. The computation of the last 
section gives a measure of the failure of the distributions Jg and J to be invariant. 
We will later use this information to construct the required invariant distribu- 
tions. 

Suppose that S is a fixed finite set of places in Q. Write Qc = 11 ,^sQ,. Then 
if H is any subgroup of G defined over Q, 
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Suppose that for every L E Â£(LV(,) U(L) is some vector space of functions with 
common domain a subset of L(Qs). We assume that U(L) is complete with 
respect to some topology. We assume in addition that for any y E L(QS)l = 
L(Qs) n L(A)\ the map 

f - f Y ,  f E U ( L ) ,  

is a continuous endomorphism of U(L); and that for any Q E gL(MO),  the map 

f + f ~ , y j  

given by the formula (3.3), sends U(L) continuously to U(Mp). By a distribution 
on U(L) we mean an element in U(LIr, the dual topological vector space of 
U(L). We suppose, finally, that we have been given a family of distributions 
{ JL E U(L)'} and a family of nonzero complex numbers {c( L)}, each indexed by 
Â£(M(,) such that for any L, y E L(Qs), and f E U(L), 

Our primary example of such a scheme comes from letting U(L) = 
C7(L(Qs)') and c ( L )  = I^). If S contains the Archimedean place, we can take 
{ JL} to be one of the families {I:} or {Jk} . For if f is a function in CT( L(Qs )I), 
the product off with the characteristic function of 

is a function in CZL(A)'). Conversely, any function in CZL(A)l) can be 
obtained in this way, for a large enough set S. It is in this sense that J: and J i  are 
regarded as distributions on CT(L(Qs)l). 

We would like to be able to associate a natural family of invariant distribu- 
tions to each family {JL}. This will be possible if we are given some additional 
data. Suppose that for every M E Â£ Mo), V( M)  is a second complete topological 
vector space. Suppose that for every pair LV C L, we are given a continuous map 

such that for every y E L ( Q ~ ) ~ ,  

We shall sometimes write + for +$. In this case, (4.2) says that +( f y  ) = +( f )  for 
each y and f. It follows that for every i in V(M)', the distribution 
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is invariant. We make the further assumption: 

(4.3) For every M E Â £ ( M o )  $I maps U ( M )  onto V ( M ) ;  the image of the 
transpose, +', is the space of all invariant distributions on U ( M ) .  

The first statement of (4.3) implies that $I' is injective; the second states that 
any invariant distribution on U ( M )  is of the form ($I ) ' ( i ) .  If I is any invariant 
distribution on U ( M )  we shall let f be the unique element i in V (  M)'  such that 
$I f ( i )  = I.  

PROPOSITION 4.1. Suppose that {&} satisfies (4.2) and (4.3). Then for 
every family { J L }  o f  distributions satisfying (4.1) there is a unique family 
{ I L  E U( L ) ' }  o f  invariant distributions such that for every f E U( L ) ,  

Proof. Fix { J L } .  Assume inductively that I ^  has been defined for all groups 
M E Â£ M o )  such that dim M < dim L .  Define 

for f E U ( L ) .  We want to evaluate IL(  f y  - f ) ,  for y E L ( Q s ) .  The function f 
equals f L  . Therefore JL(  f - f )  equals the sum on the right hand side of (4.1), 
but taken only over those Q # L .  The same observation gives a formula for 
&( f Y - f ). It follows that IL(  f Y - f )  equals the difference between 

and 

Now g L ( M )  is a subset of P ( M o ) .  A group Q E P ( M o )  belongs to ( ~ L { M )  if 
and only if M C M y .  Therefore I L ( f y  - f )  is the sum over all Q E T L ( M o ) ,  
Q # L ,  of the product of c( M& L )  with 

This last expression is 0 by our induction assumption. Thus, I L  is an invariant 
distribution, as required. 0 



TRACE FORMULA IN INVARIANT FORM 25 

Suppose that U ( L )  = C^(L(Qs) ' )  and that maps < ,̂ satisfying the hy- 
potheses of the proposition, have been defined. If S contains the Archimedean 
valuation, we can regard J^ and Ji as distributions on C^(L(Qs) l ) ,  as we 
noted above. Then by Theorem 3.2 we obtain two families { l f :  o E Q} and 
(1;: x e X} of invariant distributions on C;(L(QS)l).  Our invariant trace 
formula is a formal consequence of the definitions. 

THEOREM 4.2. Suppose that f (E C^(L(Qs)l) .  Then the series Z O l ^ f )  and 
Zy1;( f )  converge absolutely, and 

2 I f ( f  1 = 2 q f  1- 
0 x 

Proof. Assume inductively that the theorem holds if L is replaced by any 
group M E Â £ ( M p  with dim M < dim L. The series 

2 lW ) I  
0 

equals 

2 
0 

It is bounded by the sum of 

and 

The first term is finite (see the remark following Proposition 2.3). By the 
assumption (4.3) <t)L( f )  can be regarded as the image under & of a function in 
CX( M(Qs)') .  The second term is then finite by our induction assumption. Thus, 
Z 0  1 I f (  f)l is finite. The same argument shows that 

S m a r l y  SJ 1 3  f ) !  is finite and 

The required identity now follows from (2.5) and our induction assumption. 0 
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We have tried to motivate why we must define maps 

with U(M) = CT(L(Qs)l). It is a task which will consume the rest of the paper. 
We conclude the section with an attempt to motivate how we will make the 
definition. 

The first step is obviously to define the spaces V(M) and the maps <  ̂ = @:. 

There are two apparent possibilities. We could try taking <^( f )  to be what is 
sometimes called the Harish-Chandra transform of f ,  obtained by taking orbital 
integrals of f. Then V(M) would be a space of functions on the regular 
semisimple conjugacy classes of M(QS)l. This was the approach taken in [5(a)]. 
Alternatively, we might take V(M) to be a space of complex valued functions on 
the irreducible tempered characters of M(QS)l. Then <^( f )  would be defined by 
the character values of f. It is this second alternative that we will choose. The 
solution that it eventually yields seems quite natural. We will discuss our 
candidates V(M) and <  ̂ in Section 5, and the extent to which the hypothesis (4.3) 
is known. 

Once V(M) has been chosen we will define the maps &,. This amounts to 
associating distributions 

on C')c(L(QS)') to irreducible tempered representations TT of M, which vanish if 
L does not contain M, and for which (4.2) holds. The only distributions that we 
know at present which satisfy (4.2) are the families { Jk} and { 1:). But x can be 
represented by a cuspidal automorphic representation on a Levi subgroup of G 
(which is a Levi subgroup of L if J i  does not vanish). For certain x (those we 
called unramified in [l(e)]) Jx( f )  can be expressed explicitly in terms of these 
corresponding cuspidal representations [l(e), $41. We shall simply define /L ,, by 
the appropriate analogue of this formula. At the same time, we define distribu- 
tions 

for regular elements y in L(Qs). They are obtained from an appropriate analogue 
of a formula [l(d), (8.7)] proved for Jo( f )  for unramified classes o.  In Section 8 
we shall show that these distributions satisfy (4.2). 

We can then define the value of <  ̂at TT to be J ^ ,  ,,( f ). It is still necessary to 
show that <^k( f )  belongs to V(M). This can be regarded as the main problem of 
our paper. We will first solve the analogous problem for C(L(Qs)), the Schwartz 
space on L(Qs). For if U(L) is taken to be (?(L(Qs)), the spaces V(M) and maps 
<^: can also be defined by the prescription outlined above. In Section 9 we shall 
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show that <  ̂maps C?(L(Qs)) continuously to V(M). The distributions { J & , y }  
will all be tempered and satisfy (4.2), so Proposition 4.1 will provide us with a 
family { I ^  - , }  of invariant distributions on C?(L(Qi,)). In Section 11 we show how 
each I ^ ,  decomposes into distributions on the local groups L(Q, ). This allows 
us in Section 12 to prove finally that (̂ L maps CP(L(Qs)l) continuously into the 
associated space V( M). 

5. Invariant harmonic analysis 

We shall now discuss candidates for the spaces U(M) and V(M), and also 
for the map 

Condition (4.3) becomes a question in local harmonic analysis, which has not yet 
been answered in complete generality. It is possible that an affirmative answer is 
not too far distant. At any rate, we shall simply assume what is needed. 

If H is any locally compact group, let I I (H) denote the set of equivalence 
classes of irreducible (continuous) unitary representations of H. If the notion of a 
tempered representation is defined for H, we will let I I t ( H )  stand for those 
classes that are tempered. Suppose that v is a valuation on Q. If v is discrete 
there corresponds a rational prime p,. If v is real, set p, = e. Suppose that M is a 
Levi subgroup of G defined over Q, . Harish-Chandra defines the map HI*  from 
ML(QL) to CI , = Hom(X(M, ) ^ ,  R) by setting 

Suppose that E II( ML(Qc)). If is a vector in a *, c ,  we set 

Suppose that LVL is another Levi subgroup of G defined over Q ,  M{ C M and 
that a E n( Mi(QL)). If P E PC( M; ), we can lift aL to the parabolic subgroup 
PL(Q, ), and then induce up to M ( Q ) .  The class of the resulting representation 
of M ( Q )  is independent of P .  We denote it by a:~. It is convenient to define, 
in a noncanonical way, a "norm" function on I I ( M ( Q ) ) .  If v is discrete and 
7 7 -  E II(MJQL)), set 1 1  1 1  = 0. However, if v is Archimedean, let A be a fixed 
left invariant differential operator on M ( Q )  of order two. We assume that A is 
positive definite and that it commutes with right translations on M ( Q )  by 
K f? LV(Q,). For any T,  E II(M,(Q,)) we obtain an operator 77-(A) on the 
space on which 7 7 -  acts. Let I1 77-, I I  be its smallest eigenvalue. It is a positive 
number. We can follow the same prescription to define 1 1  W 1 1  for any W in 

n ( K i ) .  



28 JAMES ARTHUR 

Now suppose that S is a finite set of valuations on Q. Suppose that for each 
v e S, Mc is a Levi subgroup of G defined over Q .  We shall refer to 91L = II-s Me 
as a Levi S-subgroup of G ,  and we write 91Ls = IIwsMu(Qu). Any 7r II(xs) is 
a unique tensor product 8 > m s ~ u  of irreducible representations of the groups 
Mu(Qu) [3(a)]. If [ = @u.s[u is a vector in C y a  :,c we shall put 

We shall also put 

I T  l l  = sup I1 7ru 1 1 .  
ves 

If 9,' = IIuEsMu is contained in 911, and u = <S^suu belongs to II(%;), set 

Most of the time we will take each Mu equal to a fixed M e Â£(Mn) Then we 
shall write uM for 0%. In this situation, we shall sometimes want to embed a 
vector A e a diagonally into a E, by 

We shall then write TT\ for 7rl,  so that we have 

Our first candidate for U(M) will be the Schwartz space on M(Qs). 
Actually, only the Schwartz spaces <3(M(Qu)), v e S, appear in the literature. 
However, Harish Chandra's definition ([5(a)], [5(b)]) extends easily to M(Qs). 
Indeed, if v e S let Z r  and of be t h e  functions on M(Qu) used in [5(a)] and 
[5(b)] in the definition of <3( M(QJ). Given m = 11 uEsmu in M(Qs), set 

and 

If the Archimedean valuation v belongs to S, let X, and XR be operators on 
Cm(M(Qs)) which act, through Cw(M(Qu)), as left and right invariant differen- 
tial operators. If the Archimedean valuation does not belong to S, set X, = Xn = 
1. For any n 2 0 and f E Cw(M(Qs)), put 

1 1  f 11 xL,  x R ,  ,I = sup (1(xLxR / ) ( m ) l ~ ~ ( m ) ( l  + ~ l ' ( r n ) ) - ~ } .  
f f i  eM(Qs  ) 
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Now, for any open compact subgroup KO of 

Ks= n K, 
{uGS:  u discrete} 

let Q^(M(Qs)) be the space of smooth, KO ft M(Qs) bi-invariant functions f on 
M(Qs) such that 

1 f 1 XI., X,,, n < 00 

for all XL, X R  and n. The seminorms 1 1  - 1 1  ^ ,  ̂ ,  induce a topology on G(M(Qs)). 
The Schwartz space Q(M(Qs)) can then be defined as the topological direct 
limit, over all KO, of the spaces Q^(M(Qs)). 

When U( M) = Q( M(Qs)), we will take V( M) to be a space of functions on 
litemp(M(Qs)). If V is any real vector space, let Diff(V) denote the space of 
differential operators with constant coefficients on V. Now, suppose that d) is a 
complex valued function on lIwp(M(Qs)). If 7r is a finite sum of representations 
{7ri} in lItemp(M(Qs)), put <f)(7r) = Xî '). Suppose that 911= k E S M u  is a 
Levi S-subgroup of M and that D e Diff(@uEsiaz). If o e IItemP(911;,) and 
[ e @uEsia z ,  ( u ~ ) ~  is a finite sum of classes in TemP(M(Qs)). Then d)((ol)^) is 
defined. If it is a smooth function of L we shall denote its derivative with respect 
to D at [ = 0 by D&(o ^). Otherwise, put D&(o M,  = 00. Suppose that KO is an 
open compact subgroup of Kg. Let G(M(Qs)) be the space of complex valued 
functions d) on l I t P ( M ( Q s ) )  such that 

(i) $(7r) = 0 unless 7r has a (KO f l  M(Qs))-fixed vector. 
(ii) For any 911, D the n 2 0, the seminorm 

\ \ d ) H D , p  sup (1 + I I o I ~ ) " ~ D & ( u ~ ) ~  
a e ~ h p C x s )  

is finite. 
We topologize $( M(Qs)) with the seminorms 11 . I I  p, Ã£ Define 3( M(Qs)) to 

be the union over all KO of the spaces &(M(Qs)), equipped with the direct limit 
topology. 5(M(Qs)) is our first candidate for the space V(M). 

Given M and f e Q(M(Qs)), let +( f )  be the function on IItemp(M(Qs)) 
whose value, <f)( f, v), at v is the trace of the operator 

' ( f l  = { f ( x ) v ( x ) d x .  
M(Qs ) 

(For the existence of the integral and of trace class see [5(a)] and [12].) It follows 
fairly readily from the definition of Q(M(Qs)) that 

<= <f):f+<?>(f), f e e(M(Qs )), 
maps Q(M(Qs)) continuously into 5(M(Qs)), Then (4.3) is the following assump- 
tion, which we take for granted from now on. 
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ASSUMPTION 5.1. For every M e Â£(Mn) (b maps 6(M(Qs)) onto 5(M(Qs)). 
The image of the transpose, (b', is the space of all tempered invariant distribu- 
tions on M(Qs). 

The assumption will hold for S if it holds for each v in S. If v is 
Archimedean, it can be established from the results of [l(a)] and [8]. If v is 
discrete, the first statement of the assumption can probably be proved with the 
results of [5(c)], but the second statement is not known. However in the case that 
G = G L ,  the induced representations uA4 are all irreducible (see [2] and [6]), 
and the second statement of the assumption can presumably be proved from this 
fact. 

Important examples of invariant tempered distributions on M are the orbital 
integrals. Let M ( Q S )  be the set of regular semisimple elements in M(Qs). An 
element y belongs to M ( Q s )  if and only if M ( Q S )  the centralizer of y in 
M(Qs), is of the form = IIGsTo(Qo), where each To is a maximal torus M 
defined over Q .  Let 

be the coefficient of degree equal to the rank of M in the characteristic 
polynomial of 1 - Ad(m). If m = L s m , ;  belongs to M(Qs), set 

The orbital integral o f f  G(M(Qs)) at y e M ( Q S )  is then defined as 

1; is an invariant tempered distribution. In view of our assumption, we can 
identify I v t h  a uniquely determined linear function of f" on g(M(Qs)). 

Suppose that L E Â£ M) and that P e ̂( M). If f e 6 (  L(Qs)), 

is a Schwartz function on M(Qs). For TT e I I t e ( M ( Q S ) ) ,  it is a simple exercise 
to show that (b( f, r L ) ,  the character of the induced representation TT^ evaluated 
at f, equals <>( fp, TT). In particular, the element <^( fp) in $(M(Qs)) depends only 
on M and not on P. We denote it by fM. As a function off, fM(r )  is an invariant 
distribution. Assumption 5.1 then implies that the map f -> fM factors through a 
map (b -> GM from 5(L(Qs)) to 5(M(Qs)). It satisfies the formula 
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The map behaves well with respect to orbital integrals. If y belongs to 
L ( Q S )  n M, it is easy to show that 

for all +. 
As we suggested in Section 4, our second and main candidate for U(M) is 

the space C?(M(QS)l). It could be defined as the space of compactly supported 
functions on M(QS)l which are restrictions to M(QS)l of functions in (3(M(Qs)). 
The orbital integrals of a compactly supported function should differ from those 
of an arbitrary Schwartz function only by being of bounded support in the 
variables y. This suggests a definition for our corresponding candidate for V(M). 
It will be a space of functions on ~ e m p ( M ( Q s ) l ) .  Now I I t P ( M ( Q s ) l )  is the set 
of orbits of ia * in IItemp(M(Qs)) under the action 

( 7 7 9  A )  + 7 7 ~ 3  7' e ntemp(M(Qs)), A e ia*. 

Let Lat(S) = Lat(M, S) be the stabilizer in ia* of any 77. If T is as above, put 
= Ts n M(Qs)l and G8 = n M(Qs)reg. We can project any <f> e 

g(M(Qs)) onto a function 

on IItemp(M(Qs)l). If y belongs to s l ,  1 3 )  depends only on the function (5.3). 
We can define the notion of the support of a function in 5(M(Qs)), or as we 

prefer, of the function (5.3) on lltemp(M(Qs)l). If <  ̂ is the function (5.3), let 
supp(d>l) be the set of pairs ('T, ~ u p p ~ ( + ~ ) ) ,  where Tis as above and supper (+I) is 
the closure in Tsl of the support of the function 

Suppose that S = ( 9 ,  S(9) )  is any collection of pairs such that S(T) is a 
compact subset of Tsl for each 5 .  Let gS(M(Qs)l) be the set of functions <^>I of 
the form (5.3) such that supp(<f>l) C S; that is, such that suppT(<f>l) is contained 
in S ( 9 )  for every 9 .  The inverse image of gS(M(Qs)l) under the map (5.3) is a 
closed subset of g(M(Qs)). We give ^(M(QS)l) the topology induced by this 
map. We then define gC(M(Qs)l) to be the union over all such collections S of 
the spaces gS(M(Qs)l), equipped with the direct limit topology. Now if <f> = +( f ) ,  
for f e <3(M(Qs)), the function (5.3) depends only on the restriction of f to 
M(QS)l. In other words, for every f e C:(M(Qs)l) we obtain a function on 
IItemp(M(Qs)l), which we continue to denote by <?)( f) .  It follows from standard 
properties of orbital integrals that 
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is a continuous map from C;(M(QS)l) to 3,,(M(QS)l). Then with U(M) = 
C:(M(Qs)l), V(M) = $(M(Q_)l) and (fi equal to this map, (4.3) becomes the 
following assumption, which we also take for granted. 

ASSUMPTION 5.2. For every M e Â£(Mo) (fi maps C:(M(Qs)l) onto 
( M ( Q S ) l ) .  The image of the transpose, <}>', is the space of all invariant 
distributions on M(QS)l. 

This assumption, too, will hold for S if it holds for each v in S. For 
archimedean v, it is essentially the characterization of orbital integrals of smooth 
functions of compact support, a well known problem. It has been solved for 
G = GLn in [10(b)] but there has apparently been nothing established for other 
groups. However, it will certainly be needed in any of the applications of the 
trace formula, so there seems no harm in assuming it at this point. If v is discrete 
the assumption does not amount to anything new. The orbital integrals of 
compactly supported functions can be characterized in terms of their Shalika 
germs. Moreover, Harish-Chandra has shown that the linear span of the orbital 
integrals is dense in the space of all invariant distributions on a p-adic group. His 
unpublished argument also uses Shalika germs. 

In summary, Assumptions 5.1 and 5.2 each contain two assertions; the 
statements in each case apply separately to real and p-adic groups, so there are 
eight assertions in all. The two assertions of Assumption 5.1 are known for real 
groups and unknown for p-adic groups, although probably within reach of 
present methods. The two assertions of Assumption 5.2 are known for p-adic 
groups and unknown for real groups. 

6. Convex sets and some related functions 

Throughout this section, M will be a fixed Levi subgroup in Â£(Mn) We shall 
establish some elementary properties for smooth functions on the real vector 
space i a& Suppose that P q M ) .  We saw in Lemma 2.2 that for fixed 
X a ?  = a ̂ , the function 

2 (-1) 
dlm(A~/A~)\y(x)dQ p ( ~ ) ~ ' 6 ~ ( ~ ) - ' ,  

{Q:  Q 3 P )  

could be extended to a smooth function on in*. We proved this geometrically, 
by exhibiting the function as the Fourier transform of a compactly supported 
function. We could have proved the result directly by transcribing the proof of 
Lemma 2.1. We shall in fact do this. We will obtain a more general statement, in 
which eA(x) is replaced by an arbitrary function of A. 

In the discussion of the functions r$ ., X) we used the fact that if P$ R,  
yi - l ) d l m ~ ~ v / ~ ~ )  T p  <? (H)TR(H) = 0. 

{ Q :  P C Q C R )  



TRACE FORMULA IN INVARIANT FORM 33 

If the real part of A belongs to - a  :, we can integrate each summand against 
e A ( H )  (see the proof of Lemma 2.2). We obtain the formula 

(6.1) 2 ( - 1 )  
d im(Ap /AQ)^? ( ) , -  Q \1  = 0 l p " (  1 

{ Q :  P C Q C R )  

By analytic continuation, it is valid for all A a g c -  
Now, suppose that c p ( A )  is any smooth function on ia & = f a g .  If Q 3 P, 

define 

cn(A)  = cP(AQ),  

where, as before, AQ is the projection of A onto ia*_,. Copying our construction in 
Section 2, we define functions 

inductively by demanding that for all Q 3 P, 

They are each defined on the complement of a finite set of hyperplanes in ia; .  It 
follows from (6.1) and (6.2) that if Q 3 P, 

If c p ( A )  = e A ( \  c'p(\) is just the function mentioned above. 

LEMMA 6.1. If c p ( A )  is a smooth function on q, c;(A) extends to a smooth 
function on i a g . 

Proof. Any element A in ia 5 can be written 

2 c $ + A y  
sâ‚¬-^ 

where each cz is a complex number and Ay belongs to â ,̂ . If Q 3 P, A,, is a 
subset of A p .  Let An,p denote the element 

2 c-6 + Ax 
S E ~ ,  

in a ?,,c. If Go(\) is a function on i which depends only on A ,,, set 

We then have the function cylp and also the function TIP, for R 3 Q. Suppose 
that a is a root in A p ,  which does not belong to AT. If c$ denotes the projection 
of a" onto a y ,  
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Since 

whenever R 2) Q 2) P. Similarly, 6,$jp(A) = O&p(A)Qp(A)  if Rl 2) R 2) Q 2) P. 
Mimicking the construction of cp(A), we define functions $,p(A) on E 

inductively by demanding that for all Q 3 P, 

= 2 Ã ‡ ~ " ; ~ (  )"C-,~,~(A ) 2 ( -  l)"m(A~'Afl) 

{ R I :  R I ' Q )  { R :  R 1 3 R 3 Q }  
- 
- E Q / P ( A ) .  

Thus E Q I p ( A )  equals the product of O Q , p ( A ) l  with 

Now k p ( A ) '  is a product of linear forms defined by those roots a in Ap\ A$. 
Fix such an a. Then the parabolic subgroups R ,  with R 2) Q, occur in pairs 
( R ,  R'); if R is such that a does not vanish on a R ,  we define R' by setting 

If A(av) = 0, it is clear from the definitions that 

' R / P ( ~ )  = cR',/P(A). 

Since 

 dim(^^/^,.) =  dim(^^/^,) + 1,  

(6.4) vanishes whenever A(av) = 0. It follows from Taylor's theorem that (6.4) is 
divisible as a smooth function by the linear form A(av). Therefore, EQIp (A)  is a 
smooth function of A. 

The lemma will now be proved by induction on dimG. Notice that if 
R D Q 2 ) P ,  
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and 

Therefore, 

Suppose that R = G. Then p) equals cWp(\), and is independent of Q. In 
view of (6.1), the sum over Q will vanish. It follows that cg(A) equals the sum 
over {R: P C R$L G} of (?R,p)~Ã£,Ãˆ(A the function defined by (6.3), but with 
(G, cp(A),Q) replaced by (MR,Glp(A), P n MR). Since %^(A) is a smooth 
function on F, our lemma follows from the induction assumption. 

To motivate the next lemmas we turn again to the example 

where X is any point in a:. Then c'p(A) is the Fourier transform of the function 
rn ( - ,  X). Consider first the function r;(-, -X). If there is no Q 2 P with 
$(H)fQ(H + X) = 1, then Fp(H, -X) equals 0. Otherwise, let R be the largest 
group with this property. (R is defined by letting A 3 e  the union over all such Q 
of the sets A?.) As X is in the positive chamber, 73 H + X)TR(H + X) equals 1. 
This implies T (̂H + X)TR(H + X) = 1, from which one can verify that Tp(H + 
X) = 1 (see [l(b), Lemma 2.2 and the ensuing discussion]). Thus, S(H + X) > 0 
for all (5 An. It follows that 

for all Q with P C Q C R. Therefore rn(H, -X) equals 

which is ( -  l)c1i1niAp/Z) if R = P ,  and 0 otherwise. Thus, rp(- ,  -X) is the 

product of ( - l)dim(Ap/z) and the characteristic function of 

It follows from Lemma 2.2 that ( - D'^~P/~)I '^  -H, - X )  and Tp(H, X) have 
the same Fourier transforms. Therefore, modulo a set of measure 0, T i ( - ,  X) is 
the characteristic function of 

In other words, the figure drawn for GL3 in Section 2 is valid in general. 
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In [l(b)] we studied families of points {Xn: P e 9( M)} which we called 
A*,,-orthogonal. This means that for every pair (P ,  P') of adjacent groups in 
Â¥3'(M) Xn - Xp, is a multiple of the co-root associated to the unique root in 
A n  f' (-An-). Suppose that this multiple is always positive, and that, in addition, 
each point Xn lies in (a:)'. It follows from [l(b), Lemma 3.21 and what we have 
just shown, that the characteristic function of the convex hull of {Xn: P e  9(M)}  
equals the function 

almost everywhere. For G = GL3, the convex hull is the region 

In [l(b)] we calculated the Fourier transform of the characteristic function of the 
convex hull. It equals 

In particular, this function of A extends to a smooth function on id?,. 
Suppose that for each P E 9(M),  cp(A) is a smooth function on id?,. We 

shall call the collection 

a (G,  M)-family if the following condition holds: suppose that P and P' are 
adjacent groups in 9 (M) ,  and that A belongs to the hyperplane spanned by the 
common wall of the chambers of P and P'. Then 

c f i )  = cp,(A). 

This condition is equivalent to the property that whenever P and P' are elements 
in 9 ( M )  which are contained in a given parabolic subgroup Q, and A belongs to 
i a 5 ,  then +(A) = cp.(A). In particular, there is a well defined function, @A), 
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on la?,. The collection {e^^} is a (G, M) family if and only if {Xp} is 
AM-orthogonal, in the sense defined above. 

LEMMA 6.2. If {cp(\): P E 9(M)} is a (G, M) family, 

can be extended to a smooth function on i a L. 
Proof. The only possible singularities are along hyperplanes Va") = 0 

where a is a reduced root of (G, AM). Such a singularity occurs only in the terms 
corresponding to those P for which either a or - a  is a simple root. But such 
groups in 9 ( M )  occur in pairs (P,  P') where P and P' are adjacent, and have a 
and -a  respectively as a simple root. If we multiply the corresponding pair of 
terms by \(av), and then take \ to be a point in general position on the 
hyperplane \(a") = 0, the result is 0, since cp(A) = co,(A). It follows from 
Taylor's theorem that cM does not have a singularity on the hyperplane. 

Fix a (G, M) family {cp(\)}. We shall often denote the value of cM(\) at 
\ = 0 simply by cM. To calculate it, set 

A = tA, t â ‚ ¬ R , A c =  

and let t approach 0. If p = dim(AM/AG) we obtain 

In particular, this expression is independent of A. Likewise, if Q contains some 
group in 9( M), we shall write cp for ~$0) .  It equals 

where 9 = dim(Ap/AG). Now, fix a group L in Â£(M) If Q E 9 (L) ,  P E 9(M) ,  
and P C Q, the function 

-+ cp(\), \(= ia;, 

depends only on Q and not on P. We have agreed to denote it by cP(\). Then 

is a (G, L )  family. Suppose that Q 9 ( L )  is fixed. If R p ( M ) ,  Q(R) is the 
unique group in 9 ( M )  such that Q(R) C Q and Q(R) f l  L = R. Define a 
function c$' on i a t, by 
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Then {c$(\): R e W M ) }  is an ( L ,  M )  family. In particular, we have functions 
c$(\) and (cf) ' ( \ ) ,  P c P ( M ) ,  and their values c$ and ( c f ) '  at \ = 0. In 
general, c$ depends on Q, and not just on L. If it is independent of Q, we shall 
sometimes denote it by c;. If each of the functions 

depends only on L, and not on Q, we shall denote it by c^(\), or even c,,(\), 
since R determines L uniquely. 

Suppose that {dp(\)} is a second ( G ,  M )  family. Then { ( ~ d ) ~ ( \ )  = 

cp(\)dp(\)} is also a ( G ,  M )  family. There is a very simple formula for 
(cd)^{\). For geometric intuition, consider the case that G = GL3, M = Mn,  
and cp(\)dp(A) = eA('p)eW). 

The volume of the shaded region equals c,%,. The volumes of the six hatched 
regions add up to d M .  Each of the other six regions has volume equal to c&, 
for a maximal parabolic subgroup Q. 

LEMMA 6.3. We have, in general, 

Proof. ( cd )^(A) equals 

Since {dp(\)} is a ( G ,  M )  family, each function d$\) is well defined, in that it 
depends only on Q and not on the group P C Q. Interchanging the order of 
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summation yields the sum over Q of the product of d b ( A )  with 

This last expression is just &(A) .  

Proof. Set 

for each P ^ ( M ) .  In view of our earlier remarks on convex hulls, c $ ( A )  will 
vanish if Q belongs to the complement of 9( M )  in 9( M ) ;  if Q belongs to 9( M ) ,  
c$ (A )  trivially equals 1. The corollary follows from the lemma. 

COROLLARY 6.5. Suppose that i f  L Â £ ( M )  

is  independent o f  Q. Then 

Proof. This follows from Lemma 6.3 and Corollary 6.4. 

We remark that all of the results of this section are valid if the functions 
c p ( A )  take values in a complete topological vector space, instead of just C. Of 
course for Lemma 6.3 we would need to assume the space was also an algebra. 

7. Some examples 

Examples of ( G ,  M )  families occur naturally in harmonic analysis. One 
elementary example is obtained from the Weyl group translates of a point. Take 
M = M o ,  fix Po 9 ( M o )  and let T be a point in u o .  Any P e ̂M y )  equals 

- 
w 'Pows for a unique element s B. Define X p  = s ' T .  Suppose that P' = 
( W ~ , ) P ~ W , ,  is adjacent to P. Then s' equals sas ,  sa the simple reflection 
corresponding to a e Ape. The point X p  - X p ,  equals s l ( T  - s i l T ) ,  which is a 
multiple of s l a " .  But s l a v  = / I v ,  where /I is the unique root in An ft ( A p , ) .  
Thus 

is a ( G ,  M o )  family 
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There is another elementary example, which we will use later, in Section 11. 
Fix M e Â£(Mn) If ft is any reduced root of (G, A), we can form the co-root f f .  
For any P 9(M),  set Xg = /?" if ft is a root of (P ,  A), and let ~ f ,  = 0 otherwise. 
Let {ro} be a set of real numbers, and define Xp  to be the sum over all reduced 
roots /? of %Xg. Suppose that P and P' are adjacent. If ft is a root of both (P ,  A) 
and (P', A), Xg equals X;,. If it is a root of neither, both vectors are zero. The 
only reduced root of (P,  A) which is not a root of (P', A) is the unique root ft in , 
A n  n (-Ap-). It follows that Xp - X p ,  is always a multiple of /?". Thus, 

is a (G, M) family. Suppose that L e Â£(M) and that Q <E 9(L).  We have the 
(L ,  M) family 

Write 

where Xp is the sum of r$& over those reduced roots /? which do not vanish 
on or,  and XR is the sum over the remaining /?, namely, the reduced roots of 
(L,  AM). It is clear from the definitions that XR is independent of Q and that Xp 
is independent of R. Therefore, 

It is independent of Q. If L, e Â£(L and Q e 9(L,),  the same is true of the 
(L,, L)  family 

That is, c? depends only on L, and L, and not on Q. We denote it by $1. 

For our next example, fix a finite set S of valuations on Q, and fix 
M <E Â£(MO) Now G(Qc) is a subgroup of G(A), so for any x e G(Qc) and 
P e 9(M),  we have the vector Hp{x) in a .  Suppose that P and P' are adjacent 
and that a is the unique root in An Fl (-Ap,). Then -Hp(x) + Hp,(x) is a 
multiple of a". For the case that S = { R }  this is [l(b), Lemma 3.61. The proof for 
general S is identical. Therefore, 

is a (G, M) family. Suppose that L Â£(M) For A e in? there are two possible 
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ways to define 

on(\, x ) ,  

There is the ( G ,  L )  family { e  m }  or there is the ( G ,  L) family derived as in 
Section 6 from the ( G ,  M )  family {up(\, x ) :  P  O ( M ) } .  The two are obviously 
the same. Notice also that if Q e O ( L )  and x belongs to L(Qs) ,  the functions 

depend only on R and not on Q. We denote them by u^A, x )  or vR(A,  x ) .  
Sometimes, however, we will take x to be a general point in G ( Q c )  and use the 
function 

As a function on G ( Q s )  it is left M(Qs) invariant. Indeed 

since H p ( m )  = Hu(m) is independent of P. Setting A = 0 we see that a m x )  

= ̂ ( X I .  
Our final three examples, which are all basically the same, are derived from 

the intertwining operators between induced representations. Let v  be a valuation 
on Q ,  and suppose that My is a Levi subgroup of G  defined over Q .  (From now 
on, unless we state otherwise, we will only consider groups My for which K  is 
admissible.) Take a representation ry e II (My(Qy) )  and a vector If 
P  e 9( Mu),  we can lift the representation I T  ( to P(Qv) ,  and then induce to 
G ( Q y ) .  This gives a representation Z p ( ~ , ( )  of G ( Q y )  on a Hilbert space 
'}Cp(ry). We take '^Cp(%) to be the space of square integrable functions <^> from 
K to the space on which I T  acts such that 

Then T p ( ~ y )  depends only on I T  and not on lo. 
Suppose that v is real. Then there are canonically normalized intertwining 

operators 

R P ~ ~ P ( ~ ~  1: x p ( ^ ) ^ % p , ( d 7  p ,  p' % M u ) ,  

The operators are unitary, and 
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whenever P, P' and Pf '  belong to ^(Me). Suppose that $o is a function in 
Kp(77-,,) such that &(k) = &(I) for all k K O .  (In particular, the representation 
T,, is of class 1.) Then the normalizations have the property that 

for all P'. Suppose that L,, e  Â £ ( M u  and R e P~(M,,) .  Consider the induced 
representation 

If $ is a continuous function in Xs(R)(77-,,) and k e  Kc> the function 

^: k ^ ^ k , k ) 7  k , e  K,, n L,,(Q,,), 

Finally, suppose that W e  II(K,,). The space, ' } C p ( ~ ) w ,  of vectors in Xp(77-,,) 
which transform under KO according to W, is finite dimensional. Let Rp,lp(77-1;)w 
be the restriction of Rp,lp(77-,,) to this space. Then for any D E Diff(iaz) there are 
constants C and N such that 

for all 77-,, e  I I ( M ( Q ) ) ,  and W I I ( K ) .  These properties were established in 

[l(f)l. 
Now take v to be a discrete valuation. There should also be a canonical way 

to normalize the intertwining operators between induced representations (see 
[ lqa) ,  p. 2821). However to check the required properties, or even make the 
definitions in full generality would require a better understanding of harmonic 
analysis than is now available. Shahidi [ l l ]  has introduced a normalization which 
applies to a large number of cases and is presumably the one of [lqa)].  At any 
rate, given Harish Chandra's work on the unnormalized intertwining operators 
(see [12]), it should be possible to define ad hoc normalizations with the right 
properties. From now on, we shall just assume the existence of operators 

for which properties (7.1)-(7.6) hold. 
Suppose that S is a finite set of valuations. Let M be a group in Â £ ( M o  and 

let 77- = @ v e s ~ c  be a representation in I I ( X S ) .  For P e T( M) we define the 
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induced representation 

which acts on the Hilbert space 

We have intertwining operators 

which satisfy the analogues of (7.1)- (7.6). 
Suppose that Po e 9 ( M )  is fixed. Then, with IT;, as defined in Section 5,  

is a family of operator valued functions of A e i a *. We can interpret each 
operator as a direct sum of operators on finite dimensional spaces. In fact, let K O  
be an open compact subgroup of Kc, and let W be an irreducible unitary 
representation of KR. Let ' 5 C p ( ~ ) K , w  be the space of vectors in Xp(77-) which are 
invariant under KO and which transform under Kn according to W. Then 
' }Cp(7r)Ko,w is finite dimensional, and is an invariant subspace of each operator 
Rp(A,  I T ,  Po). Suppose that Q <E ^ ( M ) ,  and that groups P, P' e 9 ( M )  are both 
contained in Q. Then P = Q ( R )  and Pf = Q ( R f )  for uniquely determined 
groups R ,  R f  qM'- ' (M) .  It follows from (7.5) that if A ia;, 

RP,\P('7r\ = RP'lP(r 1. 
Consequently for any such A,  

= R p ( A , r ,  Po). 

Therefore {Rp(\,7T, Po): P e M ) }  is a ( G ,  M )  family. More generally, if 
L e Â £ ( M  and Poâ P(M) we have the ( L ,  M )  family 

composed of the intertwining operators acting on %$IT).  We can form the 
operators R*, po) and R ~ I T ,  Po), Q ^ M ) ,  (the values of A = 0 of 
RL(A,  I T ,  Po) and Rb(A, I T ,  Po).) In general, each of these new operators is 
unbounded, but it can still be regarded as a direct sum of operators on finite 
dimensional spaces. It follows from the definition that if P, is a second fixed 
group in ^ ( M I ,  
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For any L (E Â £ ( M )  we can define a scalar valued ( L ,  M)-family. Fix 
f  e C?(L(Qs)), IT (E I I t emp(M(Qs) )  and P ~ M ) .  Define 

This is certainly an ( L ,  M)-family. That each function is smooth in A can be 
obtained from (7.6) and the differentiation variant of the dominated convergence 
theorem. In particular, any differentiation with respect to A can be interchanged 
with the trace operation. It follows that for any Q e g L ( M )  the number 
+ b ( f ,  I T ,  Po), obtained a priori from the family {+,(A, f ,  I T ,  Po): P  (E P ( M ) } ,  also 
equals tr(ZpJ I T ,  f  & ( I T ,  Po)). Similarly, 

Combining this last formula with (7.7), we find that (̂ f ,  I T ,  Po) is independent 
of Po. We shall denote it simply by &( f ,  IT ) .  The similarity to our notation of 
Section 4 is of course intentional. Incidentally, the same reasoning establishes 
more generally that for any Q e T L ( ~ ) ,  the number (̂ f ,  I T ,  Po) is independent 
of the group Po (E ( S I L ( ~ ) .  

It is obvious that each function +:(A, f ,  I T ,  Po) depends only on the unitary 
equivalence class of IT.  Suppose that M ,  (E P(M).  Fix Qo e 6 p L ( ~ , )  and Po e 
^ ( M I ,  with PoC QO-  Then Po= Q o ( R o )  for R o e  6pM1(M) .  Given I T E  

I I t emp(M(Qs ) ) ,  let r1 be the induced representation ^ ( I T )  of Ml(Qs ) .  If Q is 
any other group in 6 p L ( ~ , ) ,  and A e i a  Ll, 

for f  e (3( L ( Q s ) ) .  In other words, the ( L ,  M, )  family associated to ' n M 1  and Qo is 
the same as the one derived from the ( L ,  M )  family { & ( A ,  f ,  I T ,  Po): P  (E 6 p L ( M ) } .  
The ( M , ,  M )  families derived from ( L ,  M )  families are also related to intrinsi- 
cally defined ( M I ,  M )  families: 

Proof. Let R n  = Po n M,. Then Po = Q( R o ) .  We need to evaluate the trace 
of an operator on %;(IT). Now %$IT) can be regarded as the space of square 



TRACE FORMULA IN INVARIANT FORM 45 

integrable, K ("I Q(Qs) equivariant functions from K ("I L(Qc) to the Hilbert 
space ^ C ~ ; ( T ) .  Then I&( f )  is an integral operator with kernel K(kl ,  k 2 )  equal to 

By (7.4) the operator 

RQ^R)(^'7r, Po 1, R â ^ P ^ M ) ,  

on ' ~ C ^ ( T )  is just fiber multiplication by the operator 

on X ~ T T ) .  Therefore, the trace of 

equals 

This establishes the lemma. 

Finally, suppose that f  belongs to Cy(L(Qs) )  and that TT E ri(M(Qs)) .  Fix 
Po E 6 f  L ( ~ )  and consider the functions 

That they are smooth in A follows again from (7.6). Notice that 

depends only on the restriction of f  to L(QS)l and the orbit of TT- under i n  *. We 
denote this last function of A by 

where now f  is taken to be a function in C,Â¡c(L(QS)' and TT- is a representation in 
n ( M ( Q s ) l ) .  Then {<f ,p(A,  f ,  T T ,  Po): P E 6 f L ( M ) }  is an ( L ,  M) family which 
satisfies properties analogous to those described above. In particular, we can 
associate a number 
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8. The distributions JM, ,, and J^ 

In this section, S continues to be a finite set of valuations on Q, and M C L 
are fixed groups in Â£(Mn) We will use the examples of the last section to define 
two families of tempered distributions on L(Qs). They are to be regarded as local 
approximations to the distributions Jf and 1:. 

Our first distributions are similar to those studied in [l(b)]. They are 
obtained by taking orbital integrals on L(Qs), weighted by the function u i (x) .  
We need a lemma to guarantee that they are tempered. Recall the functions zL.  
and uL defined in Section 5. 

LEMMA 8.1. If y e L ( Q s )  f l  M and n is sufficiently large, 

is finite. (Since &(x) is left M-invariant, the integrand is L(Qs)-invariant.) 

Proof. Write the variable x as I1 L-EsxL- and let y = I1 %syL-. Since 

9 = dim(AM/AL), we can rewrite the above integral as a sum of products of 
integrals over L(QL-),,o\ L(QL-). If v is Archimedean, the convergence of the 
resulting integral can be proved as in [l(b), Lemma 7.21. If v is discrete one 
knows that any finite dimensional L(Q,,) module over Q has a basis of 
eigenvectors for any given split torus in L ( Q ) ,  such that the corresponding 
lattice is stabilized by K O .  This fact, together with [5(b), Lemma 131 (see also 
the proofs of Corollary 4.7.3 and 4.8.4 of [12]), allows us to transcribe the 
Archimedean proof. The argument is the same, so we need not present the 
details. 0 

If y e L(Qs)reg f l  M and f e 6( L(Qs )) define 

By the last lemma, the integral converges absolutely, and each Jh, ,, is a tempered 
distribution. If Q e gL(M),  we have 
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This follows from the change of variables formula 

Notice that if L = M ,  I;, is just the ordinary orbital integral I:, defined in 
Section 5. 

Proof. With a change of variables we see that J;, ( f ) equals 

where Kp(x )  is any element in Kc = HOES KO such that xKp(x) belongs to 
P(Qs) .  This equals 

is an (L,  M )  family. It follows from Lemma 6.3 that 

We see from the discussion of Section 6 that ub(x, y )  is same as the function 
defined in Section 2. As a function of x ,  ub(x, y )  is left Q(Qs)  invariant. We 
write 
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This equals 

The lemma is proved. 0 

Our second family of distributions has actually already been defined. We 
introduce new notation only to point out the analogy with the distributions we 
have just defined. If 77- e l I t e m p ( M ( Q s ) )  and f e ( 3 ( L ( Q s ) ) ,  define 

JM,Af}=W \̂ 
= tr(i^77-. f )~^(77-.  pi, I ) ,  

for any Po e T L (  M ) .  If Q e TL( M )  we have the analogue of (8.1),  

(8.2) @.(fQ) = tr(rt/77-. f )R%(77-, PO)), 

for any Po e F(M).  This formula follows from Lemma 7.1 along with the fact, 
noted in Section 7, that the right hand side is independent of Po. 

Proof. Fix F o e  p ( M ) .  Then J ^ ^ f )  = & ( 7 7 - ,  f y )  equals 

Substituting for 

and 

RPO,  7 7 - .  Po 1 = ~ P ~ P ~ ( 7 7 - ) - ~ ~ ~ ~ ~ ~ ( 7 7 - ~ )  

yields the trace of 

In this expression we can replace IpJ 77-, y ) -' by IpJ r A ,  y )  -' without changing 
the final limit. We obtain the trace of the operator 
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where 

One sees immediately from the definition of induced representation that for 
(fi E X p ( r )  = X ~ T T ) ,  and k K f l  L(Qs), 

In particular, any derivative in A of Up(A, TT, y) is a bounded operator. By (6.2), 

Substitute this expression in (8.3). Take the sum over P inside the sum over Q. 
We shall show that the limit in A can be taken inside the sum over Q. That is, 
that 

has a limit as A approaches 0. Suppose that Po C Q. If we can show that the limit 
exists in this case, then the limit will exist for an arbitrary Pi in TL(M). In fact, it 
will just be the conjugate by R p d l p ( ~ )  of the limit for Po. When we evaluate the 
trace, the two limits will be equal. Therefore, we may assume Po C Q. Now it is 
clear that if m MQ(A), 

It follows from this fact, (8.4), and (7.5) that if P E ̂ ( M), P C Q, 

(Recall that A Q  is the projection of A onto I a 6.) Therefore 

Our notation here is confusing. The operator Up(\, TT, y) on the left hand side 
has been obtained, via (6.3), from Up(AQ, TT, y), while on the right hand side, 
Ub(A, TT, y) is obtained from UPJAQ, TT, y), and is independent of P.  

Now the existence of the required limit follows from Lemma 6.2. It follows 
that ~ ( T T ,  f y ,  equals the sum over Q E TL(M) of the trace of the operator 

where Po can be taken to be any group in TL(M) with Po C Q. 
This operator acts on X P o ( ~ )  = X ~ ( T T ) .  But X p ( r )  can be interpreted as 

the space of square integrable, (K fl Q(Qs))-equivariant functions from 
K n L(Qs) to the Hilbert space X g ? , y ( ~ ) .  Now (7.5) and (8.4) tell us how to 
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interpret the operators R$(T, Po) and U ~ ( T ,  y) in this picture. Then (8.5) 
becomes an integral operator with kernel K(k,, k2) equal to 

R $ ( T ,  P, n M ~ ) .  

Therefore 

equals 

This is just J^'^( fo ,). The lemma is proved. 

9. The map & 
Given groups M C L in Â£(Mo) a function f i n  C?(L(Qs)) and a class T in 

ntenJ M(Qs )I, we defined 

in Section 7. Let <^( f )  be the map that sends T e qemp(M(Qs)) to < (̂ f, T). 
According to Lemma 8.3, 

t lLs(fY)= 2 Wfv,,) 
Q & M )  

for any y E L(Qs). In this section we shall show that 

is a continuous map from e{L(Qs)) to $(M(Qs)). This will establish all the 
hypotheses of Section 4 (modulo Assumption 5.1, of course) for the case that 
U(L) = C?( L(Qs)), V( M )  = ̂ ( M(Qs)) and <  ̂is as just defined. The proof of 
continuity is essentially a result in local harmonic analysis. In order not to stray 
too far afield, we shall be brief. The reader familiar with Harish-Chandra's work 
on the harmonic analysis on the Schwartz space will have no trouble with the 
details. (See [5(a)] and 1121.) 

Fix Po E ?PL(M). Given f e t\L(Qs)) and Q e TL(M), let +h(f, Po) be the 
map that sends T e I I t ( M ( Q s ) )  to 

fc ( f ,  T ,  Po) = tr(lP"(T, f ) R ~ T  PO)). 
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LEMMA 9.1. < (̂ f ,  Po) bebngs to $M(Qs)). In fact, 

f +  @ g f ? p o )  

is a continuous map from (3( L(Qs)) to 5( M(Qs)). 

Proof. Let 9TL = kcsM. ,  be a Levi S-subgroup of M. We need to show that 
for any n and any D Diff(@.,iaE), 

is a continuous seminorm on 6(L(Qs)). Now <>b( f, aM, Po) is the value at t = 0 
of a linear combination of functions 

with 9 = dim(Ap/Z), and A a fixed point in ia?,. We can take 

a = w a,,, 
LIE.5 0, nternp(M.,(QJ) 

Then <f)^(t\, f ,  aM, Po) equals the product over v e S of 

for groups P., and Pi in OL(M,,). We must show that for D e Diff(iaz) and q and 
n nonnegative integers, the value at t = 0 of 

is a continuous seminorm on (3(L(Q,,)). 
The case of v discrete poses no problem. For then, f is bi-invariant under an 

open compact subgroup of K,,. This means that the operator 

is of finite rank. Moreover, the operator vanishes unless a,, belongs to a subset of 
IItemp(M,,(Q.,)) which is compact (in the obvious sense). These facts are easy 
consequences of a result of Harish-Chandra [5(c), Lemma 31. The continuity of 
our seminorms follows from the definition of (3(L(Q,,)). 

Now suppose that v is Archimedean. For simplicity assume that L = G. If T 
is an operator on Xp(o.,) let 1 1  T 1 1  be the trace of its positive semidefinite square 
root. For W in Tl(K,,) let Pw be the projection of %p(a,,) onto ';)Cp(a,,)w, and 
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define 

For any n and any D e Diff(ia*), there is a continuous seminorm 1 1  - 1 1  on 
6 ( G ( Q , ) )  such that 

< l l  f  ll(1 + I I ~ ~ l l ) " ( l  + l I ~ ~ l I ) - " ( l  + 1IuJI)-", 1 1  D"!PJ(J,> A )w1,w2 1 1  1 - 

for all f 6 ( G ( Q , ) ) ,  0, e n t e m p ( M , ( Q u ) )  and W17 W2 e I I (K , ) .  This can be 
established fairly readily from the definitions. It is essentially the easy half of the 
theorem stated in [ l ( a ) ] .  The estimate we require then follows from this inequal- 
ity, (7.6), and the fact that 

is bounded independently of uy e & ( M , ( Q , ) )  for n sufficiently large. 

COROLLARY 9.2. &,, maps 6 ( L ( Q s ) )  continuously to 5 ( M ( Q s ) ) .  

Proof. By Lemma 6.3, 

for any Po e ̂ ( M I .  The corollary follows from the lemma. 

Now suppose Ml p( M )  and that Pl is a group in 6 f L ( ~ ^ )  which contains 
a given Po e ̂ ( M I .  Suppose also that Q e p ( M l ) .  Then for any f  e C ( L ( Q s ) ) ,  
<f>y( f ,  P i )  is a function in 5 ( M l ( Q s ) ) .  Then < (̂ f, PllM is a function in g (M(Qs ) ) .  
Its value at 77 e l l t e m p ( M ( Q s ) )  is < } > y ( f , ~ ^ ,  P i ) ,  which by (7.8) equals 
% ( f ,  7 ~ ,  Po). Thus 

( g e l )  <f'b(f^l ).M = W, ' 0  1' 
The map <̂; is particularly simple on spherical functions. I f f  is bi-invariant 

under the maximal compact subgroup K n L(Qs) of L ( Q s ) ,  it follows from (7.3) 
that < (̂ f )  vanishes if M # L. Finally, suppose that S is a disjoint union of S and 
{ v } .  Let f  be a function in 6 ( L ( Q s ) ) ,  and a Schwartz function on L,(Q,) 
which is bi-invariant under K O  n L J Q ,  ). Then if / = /Â¥A 

10. The invariant distributions 1 ̂ , y 

We have just seen that the maps 
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satisfy the assumptions of Section 4. Suppose that y is an element in L ( Q s )  n M. 
We defined the distribution J ^  , in Section 8. If MI e G L ( ~ o )  and does not 
contain M, define 121 to be 0. Then by Lemma 8.2, 

for all y in L(Qs). It follows from Proposition 4.1 that there are invariant 
tempered distributions 

~ e L ( Q s \ e g ^ M > ' , M e ^ ( M o ) ,  

on L(Qs) such that 

Jl, ,(f)  = 2 %,(Â¥&(f ) )  
M. E e L ( ~ " )  

for all L and M. Observe that I ^ ,  , will vanish unless M C L. Although they are 
defined by a simple formula, these distributions are in some ways rather 
complicated. For example, 

G , , ( f )  = L,,(fL f e ( G ( Q J ) ,  

depends only on the image of f  in 5(G(Qs)). However, as a distribution on 
$(G(Qs)) ,  I ^ ,  , has no simple formula. 

Notice that we could have used the distributions { J;, ,,} instead of { J&, } to 
obtain invariant distributions { I ^  ,,}. However, as the distributions J ^ , ,  were 
used to define the maps 'fi'y, this leads to nothing new. In fact, 1 5 ,  vanishes if 
M + L, and 

^ ( f  = J$ , , , ( f )  = ' f i ( f 7 7 7 )  = t r 7 r ( f  ). 

The rest of this section will be devoted to proving a useful property of the 
distributions. Suppose that M C MI C L,  are groups in Â£(Mo)  and that y 
belongs to Ll(Qdreg n M. We shall show that fk, ,(+) can be expressed as a 
linear combination of 

(f&,,(h): ~ 1 [ 7  'fi $ ( L , ( Q ~ ) ) .  

First, we shall prove two lemmas. Suppose that M e Â £ ( M o  is fixed, and 
that {cp(\): P E 6?(M)} is a ( G ,  M) family. We assume in addition that if 
M C L C Ll ,  and Q e 6?(Ll), the number c? is independent of Q. We denote it 
by cf-1. 
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for fixed Po e ̂ (M). Since cL = cg, the value of the left hand side of the 
required formula at TT is 

by Lemmas 6.3 and 7.1. This is just the value at TT of the right hand side. 

Proof. Let f be any function in C2(Ll(Qs)) such that <>( f )  = <>. -The left 
hand side of the required formula equals 

minus the expression 

We shall prove the lemma by induction on dim(L,/M). Apply the induction 
hypothesis to the sum over L in (10.2), and then add the result to the right hand 
side of the required formula. We obtain 

2 
( L ,  M , :  M C L C M , C L l }  

By Lemma 10.1, this equals 

On the other hand, (10.1) equals 
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The sum in the brackets equals 

by Lemma 6.3 and Corollary 6.4. It follows from (8.1) that the expression (10.1) 
equals 

Recalling the inductive definition of the distributions we see that this 
equals (10.3). 0 

We shall apply the last lemma with 

with 

as in Section 7. The constants rn are still to be chosen. Fix Ml E Â £ ( M )  Choose 
positive numbers lp for each of the reduced roots of ( M I ,  A )  such that for every 
R E V(M),  the sum over all reduced roots /? of ( R ,  A)  of ln/3" belongs to the 
chamber in a  associated to R. Fix t e R. For any reduced root /3 of (G, A)  
let rn = tla if /? vanishes on a ^ ,  and let rn = 0 otherwise. Now suppose that 
L e Â £ ( M )  We claim that c^ vanishes unless L C Ml. For as we saw in 
Section 7,  

It is the volume in a h  of the convex hull of the points { X R :  R e ̂ ( M I }  defined 
in Section 7. Each X R  is orthogonal to a ^ ,  and by our choice of {rn}, it is also 
orthogonal to a ^ .  Therefore, if L is not contained in Ml, the points { X R }  all lie 
in a proper subspace of a h .  The convex hull then has volume 0; c\, then does 
vanish. On the other hand, if L = Ml, each point X R  lies in the chamber of ah 
corresponding to R. The volume of the convex hull does not vanish by the results 
of Section 6. Therefore c,̂  # 0. 

Now fix L 1 â  Â£(Mi)  For <f> E 3(Ll(Qs)) ,  

is a polynomial in t ,  whose highest term is c 3 & ,  ^ (@) .  The right hand side of 
the identity in Lemma 10.2 is also a polynomial in t .  Equating the highest terms, 
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we find that b(<f>) equals the sum over those L e P 1 ( M )  such that dimfail)  
= dim( a El), of 

For any L in this last sum, there are natural maps 

The composition gives us a map from a31 to a i l .  Suppose that it is not an 
isomorphism. Then by our choice of {ro},  the images in a i l  of vectors 
{Xn: Q e '5""(M)} span a proper subspace of a i l .  It follows that c p  = 0. Thus 
we may include only those L in the sum for which the map is an isomorphism, or 
what is the same thing, for which 

a 3  = a$@ a$. 

We have established 

LEMMA 10.3. Suppose that M C Ml c Ll are groups i n  Â£(M(,) Then for 
every L e p l (  M) there is a constant d(  L), which vanishes unless 

a L l =  .M a^,@ aE1, 

such that for all <f> e 3(Ll(Qs)) and y e L 1 ( Q s )  fl M, 

f L 1  .MI, Y = 2 d ( ~ ) f i , , ( < f > L ) .  
L E E ^ ' ( M )  

11. A splitting theorem 

It is important to be able to express the distributions I^, on L(Qs) in terms 
of distributions on the local groups L ( Q ) .  As before, M C L are groups in 
Â£(M(, and S is a finite set of valuations on Q. 

THEOREM 11.1. Let <f> e 3(L(Qs)) a d  y e L(Qs)reg f l  M. Suppose that S is 
a disjoint union o f  two subsets S' and Sf' and that <f> and y decompose relative to 
the product L(Qs) = L(Qs,)L(QsÃˆ as <f> = +'+" and y = y'y" respectively. 
Then 

Proof. We shall prove the theorem by induction on dim(L/M). Suppose 
that 
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is any function such that @ ( f )  = @' and @(/") = @". Then Zb, ( @ )  is the 
difference between J;, ( f ) and 

Apply the induction hypothesis to each summand. Then 

where f^yl9 f-''2 M I ,  Y" stands for the invariant distribution on $ M d Q s - )  9 
9( M~(Q, ; , , ) )  that maps a function i f , '  9 if," to f$;,,.(if,;>)f$;, ,,,,(if,"). Therefore, 
( 1  1.1) can be written as the difference between 

and 

This last expression is just what we want. We will therefore be done if we can 
show that (11.2) equals J;, ( f ) .  

The value of <̂ ( f )  at TT e q e ( M 2 ( Q s ) )  is obtained from the ( L ,  M y )  
family 

o p ( L  f ,  r ,  P y ) ,  P E P ~ ( M ~ ) ,  
for a fixed group Po in V ( M ~ ) .  If -n- = TT' 9 T T " ,  

We can apply Lemma 6.3 to this product of ( L ,  M y )  families. It follows that 

Now @ b ( f ,  P2IM is an element in $ (Ml (Qs , ) ) .  As we observed in Section 9, 

for any group P, E 6 f L ( ~ , ) ,  contained in Po. Also, Lemma 7.1 allows us to write 
%(/", P2) as a( f;). Consequently, (f,'?;\V1@ c;, y , ) ( ^ , ( f  )) equals 

( 1  1.3) 2 &,(@(,(/'. p i ) ) &  y - ( * ( f { ) ) -  
Q E ' S ' ^ M Z )  

Substitute (11.3) for the summand in (11.2). Since lW^f, Pi) )  is 
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we obtain 

According to (8.1), the expression in the brackets equals the integral over y in 
L(Qs,,)^,,,\ L(Qst') of the product of 

1 ~ ~ ( ~ ~ ' ) l ~ / ~ f " ( ~ - - ~ ~ " ~ )  

with 

(11.4) 2 f ~ ~ . , , ( @ ( . ( f ' . P i ' ) ~ ~ ~ ( Y  1. 
Q E S - ~ ( M ~ )  

The value at TT' I Imp(M1(Qs , ) )  of the function 

by Lemmas 6.3 and 7.1. Therefore (11.4) equals 

Since v n ( y )  is independent of Ml,  (11.2) equals the integral over y in 
L(Qs,,).,,,\ L(Qs, ,)  of the sum over all Q E P(M) of the product of 

with 

This last expression is just /a,( fb), which by (8.1) equals the integral over x in 

L(Qs,)y,\ ' ( Q s , )  of 

1 DL(y')1 1 ' 2 f ( x - 1 Y ' x ) v $ ( x ) .  

But 
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Moreover, 

IDL(-y')] 112. 1 DL(y")]  ' I 2  = 1 D L ( y  )I ' I 2 ,  

and 

f '(x --\^Â¥z)f"{ -\^"Y) = f ( b y  )-ly(xy 1). 
It follows that (11.2) equals J ^  ( f ) .  This is what we were required to prove. 0 

If we combine the theorem with Lemma 10.3 we obtain 

COROLLARY 11.2. For every group 

there is a constant c ( Â £ )  which equals 0 unless 

such that for all 

and 

we have 

Proof. Let v be a valuation in S, and let S' be the complement of v in S. 
Then we can decompose <f> = <f>'<^, and y = y'yr relative to the product L(Qg)  = 
L ( Q s )  - L(Q,,). By the theorem, f&, ,,(+I equals 

where d ( L ) vanishes unless 

a^ a 2 0  a^. 

The corollary follows by induction on the number of elements in S. 
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We will need a slight generalization of this corollary. Suppose that v is a 
valuation. We have been studying the distributions 

on 6(L(Q^,)). It has always been understood that the Levi subgroups M C L 
were defined over Q. This is clearly not necessary. For any pair M C L of Levi 
subgroups of G defined over Q, for which K.,, is admissible (a condition we will 
assume for the rest of the paper), we could just as easily have defined distribu- 
tions 

L C  

1% yi..' Y, E Lu(Q, )reg n M,, 

on LJQ,). Lemma 10.3 would certainly continue to be valid. 
We will still, however, retain the fixed Levi subgroups M C L defined over 

Q. Then there is a surjective map 

for any m in M(Qs). Suppose that Â = 11, L is a Levi S-subgroup of L. There is a 
natural map from a = H o ~ n ( x ( L ^ ) ~ ,  R) onto = Hom(X( L)Q, R). We there- 
fore have a surjective map 

hL: @ c^-^ a/,. 
v c s  

Define a map Hc, with values in @,&a LL, by letting 

H,(x 1 = v c s  @ (1% P,  1^(x, 1 3  

Now fix an S-subgroup s)\i = kps M of M. We have the maps 
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defined above. Let us write EL(%, S)  for the set of levi S-subgroups Â = 11" Lo 
of L such that Mu C L for each v. If E is any group in P(̂Tl, S), we have a 
surjective map 

h: @ a M - +  @ a L L .  
v v 

This leads to a commutative diagram: 

All the maps are surjective. The kernels of h and ha equal @,a$ and a^ 
respectively. So we have a map 

(11.5) @ a$&+ a^ .  L 
cs-s 

We shall be most concerned with those Â E Â£^(u% S)  for which this map is an 
isomorphism. When this happens, we also have kerh fl kerhM = 0, and the 
equivalent property that ker He^ = ker Xg fl ker H>f. 

COROLLABY 11.3. For every Â = k,s L,, in EL(%, S )  there is a constant 
d(E) ,  which equals 0 unless the map (11.5) is an isomorphism, such that for all 

we have 

Proof. By the last corollary, f,:, ( A )  is the sum over all groups 
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4%') n 'sy{h.Ãˆ) 
v e s  

Now, apply Lemma 10.3 to each of the distributions 1^!(&, yL). We obtain the 
sum over Levi subgroups L in  EM^(^), defined over Q ,  of 

~(L") ' ;Â¥ , : .J@~ LL 1. 
The constant d ( L )  will be 0  unless 

(11.6) a"L M L  = a:&@ abL. 
This last condition means that the natural map 

L M' a MLL -+ a MM" 

is an isomorphism. Let Â = I I L .  In view of (11.6) 9TL' is uniquely determined 
by Â£ Define 

d ( Â £  = c(9R' )  n d ( ~ , ) .  
u e s  

The map (11.5) is the composition of 
L @ @ a z - a M .  

u e s  u e s  

If the first map is not an isomorphism, d ( L " )  = 0  for some v .  If the second is not 
an isomorphism, c( (%))  = 0. Therefore d ( Â £  is 0 unless the map (11.5) is an 
isonvo~hism. a 

If @ and y are as in the corollary, and Â belongs to EL(%, S ) ,  we shall write 

and 

'in. ,('fc = n '.!, Y b , .  LC 1 
u e s  

in the next section. Corollary 11.3 then is the formula 

'Ã̂ ,(<('I = 2 d ( & )  t l ^ , y ( @ e ) .  
e e e L ( a ,  s )  

12. Compact support 

We have studied the maps 

&: e ( L ( Q s ) )  -+ ! ^ (M(Qs) )?  

for groups M C L in Â£(Mn) and a finite set S of valuations on Q. In Section 7,  
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we also defined a number .̂{ f ,  TT) for f e C F ( L ( Q ~ ) ~ )  and TT TI(M(Qc)l). We 
will take TT to be a tempered representation. Then 

is a complex valued function on l l t e m p ( M ( ~ s ) l ) .  Our goal is to show that it 
belongs to M(Qs)l). From Corollary 9.2 and its very definition, we know that 
&( f )  is obtained from a function in 5(M(Qs)) by the projection (5.3). We have 
only to show that the orbital integrals of <^w( f )  are compactly supported. 

THEOREM 12.1. If M C L, < ^ h a p s  C z L ( Q S ) l )  continuously to 

W Q s I 1 ) .  

Proof. We shall prove the theorem by induction on dim(L/M). Suppose 
that TÃ HOSTL,  where for each v ,  T is a maximal torus of M defined over QL. 
Set Ts = ll LEsTL(QJ, and = M(Qs)l. We must show that for every 
compact subset C of L(QS)l there is a bounded subset D of q1 n M ( Q s )  such 
that whenever f  is a function in C:(L(Qs)l) which is supported on C, the 
function 

Y + 'fi<^W)7 Y % n M ( Q s  )reg? 

is supported on D. 

LEMMA 12.2. For each <  ̂ E SC(L(Qs)l) there is a compact subset C of 
Tsl n L(Qs)Rg, depending only on supp <  ̂ such that [if, ( < ^ )  = 0 i f  y does not 
belong to C. 

Proof. For v in S define A to be the split component of the torus Tc. Let 
M y  be the centralizer of A c  in M .  It is a Levi subgroup of M defined over QO,  so 
yii = II,,^Mc is a Levi S-subgroup of M ,  and Tsl f l  L(Qs)reg is contained in 
L ( Q s )  n as. Therefore, Corollary 11.3 tells us that for any 7 s1 17 L(Qs)reg 

and <  ̂ g(L(Qs)), 

'Ã̂ ,(+) = 2 d(Â£ÃˆI"  y ( < ! i E ) .  
e<=el-(a,  s) 

Now, 9,' n L(Qs)reg is also contained in L(Q,)'. This means that ,̂, ,(<^) 
depends only on the function 

on ri temp(L(Qs)l) .  We therefore may identify <  ̂ with a function on L(QS)l ,  
which we assume belongs to L(Qs)l).  

Fix Â e Â£^ OX, S). Then He maps the center of ES suqectively onto a L t .  

With this fact it is easy to show that the function 
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vanishes unless H&) belongs to a compact subset of e E s a L  which depends 
only on supp^). On the other hand, we can assume that d ( Â £  # 0, so by 
Corollary 11.3 the map (11.5) is an isomorphism. As we observed in the preamble 
to the corollary, this implies that 

ker Hy^ = ker Ht n ker HlV. 

Now & is a subgroup of ORs. The kernel of He^ in (& is compact. Ysl is by 
definition just the kernel of Hi, in ^Ts. Therefore, the restriction of He to is a 
proper map. Thus the map 

is supported on a bounded set, which depends only on supp ̂ ). This proves the 
lemma. 

LEMMA 12.3. For every compact subset C of L ( Q S ) l  there is a bounded 
subset D of Ysl n L(Qs)reg such that for any function f i n  C; (L(QS) l )  sup- 
ported on C,  the function 

is supported on D. 

If L = M, J M ,  .,( f )  equals f ) ,  the invariant orbital integral of f .  The 
lemma in this case is a well known result of Harish-Chandra. The proof for 
arbitrary L is no different. 

We can now finish the proof of the theorem. /"(&( f ) )  equals 

It follows from the last two lemmas and our induction hypothesis that if f is 
supported on C ,  f^&( f ) )  vanishes for y outside a fixed bounded subset of 

n L(Qs)reg.  But n L(Qs)^  is dense in f l  M(Qs)reg.  The theorem 
follows. 

13. The invariant distributions lo and I x  

With the completion of the proof of Theorem 12.1 we have reached our 
goal. We have shown that for every S the maps 

are continuous and satisfy (4.2). Assume that S contains the Archimedean 
valuation. Then there are invariant distributions { I t :  o e a} and {I:: x X }  on 
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L , ( Q ~ ) ~ ,  and by Theorem 4.2, 

for any f e C?(L(Qs) l ) .  
As we observed in Section 4, we can think of I f  and I: as invariant 

distributions on C?(L(A)l). However, we had better check that the final 
distributions are independent of S .  Suppose that S' is a larger set of valuations, 
the disjoint union of S and S , .  There is a natural injection of C 3  L ( Q S ) l )  into 
C T L ( Q s , ) l ) .  The image, f', of a function f i n  C x L ( Q s ) l )  is the product of f 
with the characteristic function of IIoEsKu.  We must verify that I ^ f )  equals 
I3f') .  By definition, J^f )  = J*). On the other hand we can map any 
function (f> in U L ( Q S ) l )  to the function in gc(L(QSr) l )  whose value at 

is + ( T T )  if 7r1 is of class one and is 0 otherwise. It follows from (9.2) that for any 
M P(M") the image of &(f) in ~ , ( M ( Q ~ , ) ~ )  equals W). Now 

It follows by induction on dim L that I t (  f )  = I t ( f ' ) .  Similarly I:( f )  = I:( f ' ) .  
Thus, the distributions I f  and I: are independent of S .  

We can therefore regard and as distributions on $ ( L ( A ) l ) ,  the direct 
limit over all S of the spaces g ( L ( Q s ) l ) .  Notice that C& extends to a continuous 
map from C"L(A)l) to g,(M(A)l). In fact, Xp(7r),  Ip{Tr, f ) ,  Rp^('n) and 
<^( f )  can all be defined directly for f CT(L(A))  and TT IItemp(M(A)). Iff is 
the restriction off to L(A)l, the value of <^( f l )  at a class in 13temp(M(A)1) is the 
integral over all TT in the associated orbit in IItelnp( M(A)) of 

As they are defined, 1: and {L appear to depend on all the arbitrary choices we 
made in Section 1. We shall show that, as distributions on $ ( L ( A ) ~ ) ,  they do not. 

We shall first consider changing the maximal compact subgroup K. Fix 
f C,Â¡Â¡(L(A) For the moment, write (̂ f ,  K )  for &( f ). We wish to study the 
dependence on K .  Given P E F ( M )  and TT E II telnp( M(A)), define 
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for 4 'XP(r), n Ap(A), m M(A) and k e K n L(A). Then yp(r )  maps 
'Xp(r)  isomorphically onto a Hilbert space k p ( r )  of functions on L(A). k p ( r )  
is what is usually taken for the underlying space of the induced representation. It 
is independent of K. Now 

and 

so the operator ip{r, f )  is independent of K .  It does, however, depend on our 
choice of Haar measure on L(A). For suitable A and $I, (/tplp(^)(.)(x) is the 
product of convergent intertwining integrals 

with some scalar normalizing factors. The integrals clearly do not depend on K .  
We will assume from now on that each scalar factor is also independent of K and 
that the normalized operators are independent of any choice of Haar measure. 
Then the only terms in our expression for $Ip(\, f ,  r ,  Po) that depend on K are 
the operators 

YPi")YPirA)-: ')CPirA) -+ ' X P ( 4 .  

Notice that 

( Y ~ ( T ) Y ~ ( T A ) - ' $ I ) ( X )  = <l>(~)e -~ ( "~ ( ' ) ) ,  - 
for any (. e 'XP(rA). 

Now suppose that K is replaced by another admissible maximal compact 
subgroup K*. The Haar measures fixed in Section 1 were tied, via (1.1), to our 
choice of K. We must therefore take a different set of Haar measures on all our 
groups, subject only to the restrictions of Section 1. If the new Haar measure on 
L(A) differs from the old one by a factor p(L), the operator ip(r, f )  will have to 



TRACE FORMULA IN INVARIANT FORM 67 

be replaced by i i . [ ~ ) i ~ { w ,  f ) .  For P E ̂ ( M )  and x L(A) we have the vector 
H*(x) in aM,  associated to the decomposition 

L(A)  = ̂ , (A)M(A)(K* f l  L(A) ) .  

We also have the Hilbert spaces ~ T T )  and the operators 

If + belongs to ~ ( T T ) ,  

where 

It follows that 

where Up(\, T T ,  K* )  is the operator on X P ( r )  defined by 

(13.2)  (Up(\ ,7T,  ~ * ) + ) ( k )  = up(\, k ,  K * ) + ( k ) ,  k  K  n L(A) .  

We can now calculate the analogue for K* of GP(A,  f ,  T T ,  Po). We need only 
replace Y ~ ( T T ) ~ ~ ( T T ~ ) ~  by the right hand side of (13.1) in the formula above for 
GF(A,  f ,  T T ,  Po), and then multiply by p ( L ) .  The result is 

To obtain & ( T ,  f ,  K*) ,  we multiply this expression by O p ( A ) l ,  sum over 
P v ( M ) ,  and let A approach 0. Now Up(A,  T T ,  K * )  is independent of P and its 
value at A = 0 is 1. Therefore & ( T ,  f ,  K* )  equals the trace of the operator 

We can now argue exactly as in the proof of Lemma 8.3. Formulas (13.2) 
and (13.3) take the place of (8.4) and (8.3). Notice that {up(\, x, K*):  P  
T L ( M ) }  is an ( L ,  M )  family. If Q e P(M)  and m E M p ( A ) ,  

up(\, mx, K * )  = up(\, X ,  K * ) .  

It follows from this fact, (13.2) and (7.5) that if Po and P are groups in P(M)  
which are both contained in Q, 

As in Lemma 8.3, we see that &( f ,  T T ,  K* )  equals the sum over Q e ̂ ( M )  of 
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the trace of the operator 

where Po can be taken to be any group in ^ ( M )  with Po C Q. The rest of the 
proof of Lemma 8.3 carries over without further difficulty. We obtain 

where fQ is the  function in CJÂ¡(M(A) whose value a t  m e M ( A )  is 

Next, suppose that I L  is one of the distributions 1: or 1;. Identify f  with its 
restriction to L(A) l ,  and write 

J L ( f 7  K )  = I L ( f )  
to denote the dependence on K. This dependence can be studied by transcribing 
almost verbatim the proof of Theorem 3.2. The result is the formula 

- 1  M 
J L ( f ,  K * )  P ( L )  2 c ( M Q ) c ( ~ )  J Q ( ~ ~ , K * ,  K ) .  

Q&Mo) 

Now let I L ( . ,  K )  be the invariant distribution defined by Proposition 4.1. We 
claim that its Fourier transform, !(-, K ) ,  is independent of K.  Indeed, arguing as 
in the proof of Proposition 4.1, we find that 

equals the sum over all Q e 6 > f L ( ~ ) ,  with Q # L ,  of the product of 
p ( L ) c ( M Q ) c ( L ) " l  with 

Now #(fQ,K*, K )  is an element in $(M(A)'). Therefore we may assume by 
induction on dim L that 

It follows that the above expression vanishes. We have shown that IL(  f ,  K*)  = 
^LVL( f7  K ) .  

Now suppose that instead of fixing f  we fixed an element <f> in g^,(L(A)'). 
Take f  to be any function such that d> = d>i( f ,  K ) .  The second choice of Haar 
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measures will necessitate replacing f by p(L) I f .  Therefore I^(+, K) equals 
fL(+, K*). We have established 

PROPOSITION 13.2. As distributions on $( L(A)'), I": and are independent 
of K. They are also independent of the Hoar measures chosen in Section 1. El 

In Section 1 we also fixed MO, a minimal Levi subgroup of G. The 
distributions I", and I "  are independent of this choice as well. Any other minimal 
Levi subgroup equals y  ' M 0  y ,  for some y  in G(Q). Then y  ' K  is a maximal 
compact subgroup of G which is admissible relative to y  ' M O  y .  If L is in Â£(MO) 
y  ^ L y  belongs to Â£(  ^ M O  y ) .  We can transfer all the Haar measures chosen in 
Section 1 by conjugating by y l .  It is a simple exercise to check that I (  f )  = 
I: l L y ( f y )  and I t ( / )  = I-) for f E C?(L(A)l). It follows that I", and I"̂  
are independent of MO. 

14. An example 

We shall conclude our paper with a look at the example of inner twistings of 
G L .  Special cases have recently been studied by Flath [3(a)] and by Deligne 
and Kazdan (unpublished). For simplicity of notation we will stick to GL.,(Q) 
although we could just as easily work, through restriction of scalars, with an 
arbitrary number field. Suppose that D is a division algebra of degree d over Q. 
Let G and G, be the general linear groups of ranks m and n = md over D and Q 
respectively. The local Langlands conjecture states that for every valuation v on 
Q there is an injection 

with certain properties. This would yield an injection 

For every f E C:(G(A)l) we could then define a complex valued function <  ̂on 
I I te lnp(~l (A) l )  by letting $ 1 ( ~ 1 )  equal tr(77-(f)) if is the image of TT E 

litelnp(G(A)l), and letting it equal 0 otherwise. The conditions on (14.1) are such 
that should belong to $(G,(A)l). The ultimate goal would be to establish a 
correspondence between the automorphic representations of G and G, by 
comparing the identity 

2 fol,<^l) = 2 ^(+i i .  
0 ~ 6 ,  x e s i  

the invariant trace formula for G,, with the trace formula for G. 
We will attempt something more modest here. Now (9 and ( 9 ,  can be 

identified with the semisimple conjugacy classes in G(Q) and Gl(Q) respectively. 
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The theory of division algebras gives an injection 

It is easy to describe the image; it is also easy to say what the image of the map 

should be. If <^), belongs to the expected image of (14.3) but o e 0, does not 
belong to the image of (14.2), ((<^),) ought to vanish. We will prove this when 
the class o is unramified, in the sense of [l(d)]. 

First of all let us recall some notions for the general linear group over a fixed 
field E. The characteristic polynomial identifies the semisimple conjugacy classes 
in G L ( E )  with the polynomials in E[X] of degree n and nonzero constant term. 
Regular semisimple conjugacy classes correspond to polynomials with distinct 
roots. If o is a regular semisimple class we define a partition 

of n from the degrees of the irreducible factors of the characteristic polynomial. 
A partition can also be defined for any Levi subgroup, M, of G L  defined over E. 
It is the unique partition 

p ( M )  = ( n l , . . . , n r ) ,  n l >  . - . s n r ,  

of n such that M is isomorphic to IILIGLn,. Note that r is the dimension of the 
space an .  We can partially order the partitions of n by setting p < p whenever 
there are Levi subgroups Ml C My of G L  such that t> = ̂ (MI) and p = f (  My). 
Then p(o) 5 NM),  for a given o and M, if and only if o intersects M(E). Notice 
that if 

^ ( k )  = (k,  k , . . . ,  k)  

for a given divisor k of n, t) (k) 5 ( n,, . . . , n,) if and only if k divides each integer 
n,. 

LEMMA 14.1. Suppose that M is a Levi subgroup of GLn and that a$ fl 
a 2  = {O} for groups Mi and My in Â£(M (defined, of course, over E). Suppose 
also that p(k) <: @(MI) and p(k) 5 ̂ (Mg) for some divisor k of n. Then 
O(k) 5 @(MI. 

Proof. The condition on Ml and M2 is equivalent to a M  = a M  + a v .  Now 
for i = 1,2, let 

@(Mi)  = (nil  , . . . ,n i r ,  ). 

Then k divides each n,,, and Mi = 11% , Mi,, where Mij is isomorphic to GLn,,. 
The intersection of a  and a is a space of dimension at least one. Therefore 
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Now M is the subgroup of Mi defined by a subset of the simple roots of M i  with 
respect to some ordering on a maximal split torus. It follows that 

We claim that one of the groups Mii is contained in M. Assume the contrary, and 
suppose that rl 5 r2. For each 1, M n M2i will be a proper subgroup of M2,. The 
length of p(M) will be no less than 2r2. Since this must also equal dim a M ,  we 
obtain a contradiction. We have shown that M2, C M for some i .  Therefore, 
M2{ C Mill for some h. Let n' = n - n2,. Then k divides n' and we have a 
partition ~ ' ( d )  of n'. There is clearly a unique subgroup G' of GLn, isomorphic 
to GLn,, such that M2 is contained in M2,G'. Then M' = M i l  G', Mi = Ml n G' 
and ML = M2 f l  G' are Levi subgroups of G' such that a:; f l  0%; = {O}. The 
partition p(Mi) is obtained by replacing n lh  by nlll - n2,. Since k divides 
nlh - n2,, ~ ' ( k )  5 @(Mi). Similarly ~ ' ( k )  5 @(ML). It follows by induction on n 
that ~ ' ( k )  5 p(M'). Since @(MI is obtained from p(M') by adjoining n2,, 
@(k)  5 @(MI. 0 

For each valuation v on Q we have the invariant, invo(D), of D at v .  It is an 
element in Q/Z, and 

2 invu(D) = 0. 
0 

Let d u  be the order of invo(D). Then d is the least common multiple of the 
integers {do}. The image of the map (14.1) should be the set of induced cuspidal 
representations 

where Mu is a Levi subgroup of Gl defined over Qo such that @ ( d o )  5 p(Mo). 
Said another way, the image of the map (14.3) will be 

where ~ F ( G ~ ( Q ~ ) ' )  is the space of functions in ~ ; ( G ~ ( Q ~ ) ' )  such that 
G1, % = 0 for any Levi Ssubgroup 9R = IIoEsMo of Gl for which the property 

fails to hold. Next, suppose that o is an unramified class in a1; in the present 
situation this means a regular semisimple conjugacy class in Gl(Q). For each v ,  o 
generates a regular semisimple conjugacy class in Gl(Qo) = GLn(Qo), so we 
obtain a partition &I Jo)  of n. It follows from the theory of division algebras that o 
is in the image of the map (14.2) if and only if @(do)  5 @Jo)  for all v .  
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THEOREM 14.2. Suppose that E $;(Gl(A)l) and that fo(+l)  # 0 for a 
given unramified c h s  o E Ol. Then o belongs to the image of the map (14.2). 

Proo$ Let fl be any function in C:(G1(A)l) such that +(fl) The 
results of [l(d), $81 allow us to express Jo( fl) as a weighted orbital integral. There 
are parabolic subgroups Po C Pl of Gl,  with Levi components Mo C Ml, a11 
defined over Q, such that Po is minimal and v(M1) = ~ ( 0 ) .  Let yl be a point in 
Ml(Q) n o.  If T is a suitably regular point in r~i, J:( fl) equals 

where o(x, T )  is the volume of the convex hull of the projection of 

= -HpO(ws-l) + HPi(x) 
- 

= s 'To - To + Hp(,(x), 

by Lemma 1.1. It follows easily that v(x, To) equals 

Choose a finite set S of valuations on Q, containing the Archimedean valuation 
and all the places at which D does not split, such that 

(i) fl belongs to C:(G1(Qs)l). 
(ii) lD(yl)Ic= 1 for all v not in S. 

(iii) {x E Gl(QL): x-lYlx E KL} = Gl(QL)yl.Ku for all o not in S. 
Then 

Moreover, the integral over G(AIYl\ G(A) above can be taken over 
G(QS),,> G(Qs). If we identify yl with its image in Ml(Qs), we obtain 

Jo(f l )  = V O ~ ( A . ~ ~ ( R ) ~ ~ G ( Q ) ~ ~  \ G ( A ) ~ ~  )JMl,yl(f l ) .  

It follows from the definitions of Section 4 that 

(14.4) f o b l )  z ~ O ~ ( A . ~ ~ ( R ) ~ - ~ ( Q ) ~ ~ \ G ( A ) ~ ~  ) fMl ,Yl(@l)+  
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We have not used any special properties of GL,, in deriving this formula. It holds 
for any reductive group. 

Our theorem will now be proved by combining the corollaries of Theorem 
11.1 with Lemma 14.1. The first corollary states that 

the sum being taken over groups 

By assumption, there is an C  such that 

so that 

and 

Fix v E S. For any prime p ,  let pr be the highest power of p which divides d o .  
Since the invariants of D sum to 0, there must be a w E S ,  distinct from v ,  such 
that pr divides d  w .  Therefore @( p r )  5 @ ( L o )  and p (  p r )  5 @ ( L w ) .  Since a 2, n 
a L c  = {O}, we can apply Lemma 14.1. We see that p ( p r )  5 @ ( M I ) .  It follows 

M I  

that P ( d " )  5 P(M1) .  
We have identified yl with its image in M l ( Q s ) ,  so we shall write 

For each v ,  choose a Levi subgroup Mo of G l ,  defined over Q", with yo E Me C M l ,  
and p ( M c )  = p " ( 0 ) .  Let 92, = M u .  By Corollary 11.3, fAfl, y j + l )  equals the 
sum over all !2 in !2(%, S )  of 

This summand will be nonzero for some e. The conditions for the nonvanishing 
of d( C )  and imply that 

and 

for all v E S .  Turning again to Lemma 14.1, we obtain 

P @ " )  5 @ ( M u )  = @ " ( o )  
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for all E S. Since S contains all valuations for which d o  > 1, o belongs to the 
image of (14.2). Our theorem is proved. 0 
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