
The Selberg trace formula for groups 
of F-rank one 

Introduction 

An important tool for the study of automorphic forms is a non- 
abelian analogue of the Poisson summation formula, generally known as 
the Selberg trace formula. There have been a number of publications on 
the subject following Selberg's original paper [lo], the most recent being 
[2] and [7, 3 161. With the  exception of Selberg's brief account [ I l l ,  how- 
ever, most authors have restricted themselves to the groups SL(2) and 
GL(2). In this paper we develop the formula for a wider class of groups. 

We shall work in an ad& framework so our group G will be a reduc- 
tive algebraic group defined over a number field F .  We require tha t  the  
F-rank of the semisimple component of G be one. To simplify our intro- 
duction, let us assume tha t  G itself is semisimple. If A is the adele ring of 
F ,  let \ be the  regular representation of GA on L^G^/Gd. It is important to 
t ry  to decompose \ into irreducible representations. 

To begin with, \ splits into a sum of two representions \, and \ such 
that  kO is a direct sum of irreducible representations while hi decomposes 
continuously. The theory of Eisenstein series provides us with a fairly 
good understanding of the decomposition of \. However, virtually nothing 
is known about how to pick out the  irreducible components of \. I t  is a t  
this problem that  the Selberg trace formula is aimed. 

\ may be regarded as a representation of L1(G.^). Our first aim will be 
to prove that  the operator \( f )  is of trace class when f is a suitably regular 
function on GA. Besides imposing the usual conditions on j* we shall be 
forced to make an additional assumption. If GL is a product of groups of 
real rank one this assumption is harmless, but  in general i t  is unsatisfactory. 
After two preliminary sections, we s ta te  our assumptions in 3 3, where we 
also establish the desired properties of \( f ). 

Once we have proved tha t  the operator Lo(/) is of trace class, we can go 
about calculating its trace. To do this we must take the kernel, KO, of \(f), 
and integrate i t  over the diagonal. KO can be expressed as the difference 

* Partially supported by National Science Foundation Grants GP-24943 and GP-33893. 
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of the kernels K and Ki of h(f) and hi(f) respectively. To study Ki we 
shall need to quote a number of results from the theory of Eisenstein 
series. The basic references are  [5], [8], and [9] where the results are  
proved for discrete subgroups of real Lie groups. This covers our situation 
because any automorphic form on G\IGF can be regarded as a finite sum 
of functions, each of which is an automorphic form on the quotient of Go 
by some arithmetic subgroup. 

In Sections 4 through 8 we analyze the functions K(x, x) and Ki(x, x), 
breaking each one up into a number of components. Although neither of 
these functions is integrable, we find in 5 6 that  the non-integrable com- 
ponents of each function cancel. All the remaining terms turn out to be 
integrable, although in 5 8 we need to appeal to the integrability of Ko(x, x) 
itself to verify this. We integrate each term as we go along, leaving the 
results to be collected in 5 9 in our final formula. The treatment of these 
last five sections is strongly motivated by [7, pp. 526-5461. 

Most of the methods used in this paper originate with Selberg (see [Il l) ,  
including the ideas behind the  proof of Theorem 3.2 and the convergence 
of the integrals in 8 8. These were described to me by Robert Langlands 
whom I would like to thank for his encouragement. I am also grateful 
for the comments of Stephen Gelbart, who read through the original 
manuscript. 
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1. Preliminaries 

Let G be a connected reductive algebraic matrix group defined over a 
number field F. For any place v of F we shall write GÃ for GFv, the group 
of ^-rational points of G. We shall denote the adeles of F by A, and we 
write GA for the corresponding adelized group. If and f stand for the 
se t  of infinite and finite places of F respectively, we can write 

Our concern will be the study of certain complex-valued functions on 
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GA. If H is any F-subgroup of G, we write Cr(HA) for the space of linear 
combinations of functions 

f = I L f .  
tha t  satisfy the  following conditions: 

(i) If v is infinite, f, e C:(Hv); 
(ii) If v is finite, f,, is locally constant and has compact support; 
(iii) For almost all finite places v, fÃ is the  characteristic function of Gov. 
We shall also sometimes write CÃ£(HA for the  space of linear combina- 

tions of functions of the form 

f = f - f f  7 

where fÃ is a differentiable function Has and fr is a locally constant function 
on Hf. 

The radical of G is a torus which is defined over F. Let Z be its F- 
split component. Let X(G) be the group of rational characters on G, and 
let X(G)= be those characters in X(G) which are  defined over F. Define 

Then 

d i m 2  = dim3 = dimg* . 
We define a map 

Hti: GA - 3 

by 
e (%vH~( ' ' )  = 1 X(x) 1, E X(G)=, x E GA . 

Let GA be the kernel of HG. 

We shall define a subgroup Z2 of 2-. Fix a basis xi, . -, xr of -^(GIF. 
The restriction of these characters defines an F-homomorphism $ from Z  to 
GL(1)'. This in turn defines a homomorphism $- from the identity com- 
ponent of Zy, onto the  identity component of GL (1, m)'. For any positive 
real number X we let  [(k) be the idele such tha t  [(a = 1 for every finite 
place v of F and ?(k)m = k for every infinite place w of F. The collection 
{((k): k > O} defines a subgroup, GL+ (1, m), of the  identity component of 
GL (1, m). Let Z2 be the inverse image of GL+ (1, + under $-. 

The restriction of Hti maps Z2 bijectively onto 3. Therefore GA is the  
direct product of Z2 and G\. The group Z2 is independent of the basis 

XI, " ' 7  Xr. 
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We would like to specify Haar measures on certain subgroups of GA. 
On any discrete group we will use the Haar measure that assigns to any 
point the measure 1. On any quotient of unimodular groups to which we 
have assigned Haar measures we will use the corresponding quotient measure. 

Let dx be the Tamagawa measure on GA. We recall the definition. 
The representation a  of the Galois group g(F/F) on the vector space X(G) @F 
defines an Euler product 

u s ,  a} = J - J  u s ,  a)  . 
The order of the pole of L(s, a)  a t  1 equals the multiplicity of the identity 
representation in a, which is 

dim (X(G)p (x) 8') = r .  

Let + be a nontrivial character on A which is trivial on F. At each place 
v of F, + defines a nontrivial character +, of c. Let d& be the measure 
on F,,, self-dual with respect to h, and let dS = IJ dSi. Let a> be a left 
invariant form of highest degree on G, defined over F. For each v define 
the measure dx, on G, to be 

where 1 ft) It, is the measure defined by the form a> and d:,,. If Ar is the 
discriminant of F, dx is the Haar measure on Gs. which equals 

This measure is independent of the choice of + and u>. 

Any basis zi, - ., xr of X(G)F defines an isomorphism between 2: and 
(RE)". We take as measure on Za that which corresponds to the Euclidean 
measure on (RT)'". This measure is independent of the choice of zi, - ., x,. 
Our measures on Gs. and Zsa define a measure on GA which we also denote 
by dx. It is well known that the number 

is finite. r(G) is the Tamagawa number of G. 
Let P  be a parabolic subgroup of G defined over F. Let N  be the 

unipotent radical of P. N  is connected and defined over F. Fix a Levi 
component, M, of P. M is connected. It is known that M is defined over F 
and that P  is the semi-direct product of M and N. In particular the maps 

M x  N - P ,  
N x M - P ,  
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regarded as morphisms of algebraic sets, are isomorphisms defined over F. 
It follows that 

Pr = MrNr = NFMF . 
Let A be the F-split component of the radical of M. A contains 2. If 

we replace (G, 2) by (M, A) we can define the vector space a, the map H.y, 
the groups MA and A;, and the measures on MA, A2 and M l  as above. 

There is an isomorphism of affine varieties 

exp: n - N 

defined over F, from n, the Lie algebra of N, onto N. On nA choose the 
Haar measure d X  that makes the measure of nA/nF equal to 1. Let d n  be 
the Haar measure on NA which is the image of d X  under the above map. 
We define left and right Haar measures on PA by 

There is a homomorphism, Op: P A  -+ R:, such that 

We shall write PA for the group M m .  PA is unimodular and a Haar 
measure d p  on Pi is defined by our choices of Haar measures on M i  and NA. 
Pi, is a discrete subgroup of Pji, and the volume of P̂/Pp is T(M), the 
Tamagawa number of M. Finally, it is obvious that the group PA is a semi- 
direct product of A t  and PA. 

Suppose that O P  is a fixed minimal parabolic subgroup defined over F. 
It is known ([I, Theorem 4.131) that O P  is unique up to conjugation under 
F. Now for any finite place v, G o  is an open compact subgroup of GÃ£ I t  is 
known ([3, p. 101) that the double coset space 

(II, f GOV)\Gf/OPf 

is finite. It follows that for almost all finite v, G, = Go'Â¡Pv 
A recent unpublished theorem of Bruhat and Tits states that for any 

finite place v there is an open compact subgroup K, of GÃ which, among 
other things, has the property that 

For a statement of this theorem see [6 ,  Theorem 51. 
At any finite place v we shall define K, to be G o  if G, = Go-OPPv For 
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the other finite places we take K, to  be any open compact subgroup of G, 
that  satisfies (1.1). At  each infinite place v, we take Ky to be any maximal 
compact subgroup of Gv such tha t  the Lie algebras of Ky and A,  are 
orthogonal under the Killing form. If we define 

K = K K v  

then 

GA = K-OPp. . 
Let d k  be the normalized Haar measure on K. There is a positive 

constant cG such tha t  for all f e Cr(GA) 

We shall assume from now on tha t  the  F-rank of G/Z is 1, and we shall 
write P for the minimal parabolic subgroup OP. The dimension of A/Z  is 1, 
and W I M P  is compact. We fix for once and for all an isomorphism 

t-ht , t e R  

from R onto a subgroup T of A: such tha t  A: is the direct product of Z t  
and T and for any p e C;Â¡(A:) 

Any element of x e GA has the decomposition 

for M, m e MA, t e R, n e NA, and z e Z. The number t is uniquely 
determined. We shall denote i t  by H(x) .  There is a real number p such 
that  

2,oHlvl a p ( p )  = , p e p A .  

We can assume tha t  p is positive. For any f e CaGA/Z2)  we have the 
formula 

Let us agree upon some additional notation tha t  we shall later need. 
Suppose tha t  Y E  GF and tha t  H i s  a connected F-subgroup of G. We shall 
write H+(Y) for the centralizer of 7 in H. It is clear tha t  H^(Y)  is defined 
over F. It is also obvious tha t  H^(Y)* is the  centralizer of Y in HF. We 
reserve the notation H(7) for the identity component of H+('"/). H(7) is 
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also defined over F and i t  is a normal subgroup of finite index in H ( 7 ) .  In  
particular, the group of rational points, H ( Y ) ~ ,  has finite index in the  group 
H + ( Y ) ~ .  We shall write n T a  for this lat ter  index. 

We will be interested primarily in the  case where the  group H is 
reductive, and Y is a semisimple element in HF. Then i t  is known ([I, 
p. 701) that  H(Y) is reductive. 

An important tool in analyzing the elements of GF is the  Bruhat de- 
composition. N(A), the normalizer of A in G, is defined over F. N(A)/M is 
a group of order 2, and the nontrivial coset of N(A)/M has a representative 
w which is rational over F. w normalizes M, and for a e A*, 

Then according to the Bruhat decomposition, Gp is the disjoint union of Pp 
and NF.  we PF. 

We shall need to appeal to some results from reduction theory. We 
refer to [3] where the results are proved for the case F = Q .  The results 
can be applied to our situation by restriction of the ground field F to Q .  

For any number c > 0, let  

S(c) = {x e GL H(x)  5 log c} . 
LEMMA 1.1. There i s  a constant  c > 0 such that  GA = S(c).GF. 

For a proof see [3, p. 161. 
From [3, Theorem 91 we also have 

LEMMA 1.2. For  a n y  c > 0 the set of al l  Y in Gp such that  

i s  finite modulo Pp .  

We write Az(c) for S(c) n A:. If a~ is a relatively compact subset of 
PA the set  

G(c) = K-A;(c) -OJ 

is called a Siege1 d o m a i n  for GA. By Lemma 1.2 we may choose a Siege1 
domain Â¤(c such that  

GA = S(C).GF 

In order to prove the above results one employs a strongly F-rational 
representation p of G. For a general account of such representations see 
[I ,  8 121. We shall also need to use a strongly F-rational representation, 
which we now describe. 
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Let A be a maximal torus of G which is contained in M. Let B be a 
Bore1 subgroup of G such that  

A S B S P .  
If A is the set  of simple roots of (G, A) associated to B let {Aa: a e A} be 
the corresponding set of fundamental weights. These are elements in 
x(A) (x) Q which lie in x(A) if G happens to  be simply connected. 

Any linear combination 

A = em& , em > 0, en â Z 

such that  A lies in x(A) is the highest weight of an irreducible representa- 
tion of G. This representation is strongly rational if and only if -V is the 
restriction to A of a character in X(M)i. 

We shall now take A to be any fixed character tha t  satisfies this property. 
Let p be the strongly F-rational representation of G whose highest weight 
is A and let  p act on the vector space V defined over F. If /3 e X(A) is the  
simple F-root of (G, A), then the restriction of the  character 2A. to A equals 
%./3 for a positive integer n,. We have a decomposition 

of V into a direct sum of subspaces defined over F such tha t  for 0 5 j 5 n,, 

The spaces VO and Vn3 are one dimensional and VO is stable under the 
restriction of p to P. 

p defines a representation of Gi. on Vi.. There is a positive rational 
number b such that  

Fix a basis {eo, -, e,} of Vp such that  
(i) each basis element lies in one of the spaces V3, 
(ii) e0 e VO, e, e V?, and 
(iii) p(w)eO = ed. 

If v is any finite place and tÃ e VI ., define 

where (2) are the co-ordinates of ti with respect to the above basis. If v 
is any infinite place, we make VI into a Hilbert space over F,, by demanding 
that  {go, -, ed} be an orthonormal basis. An element t e Vi. is said to be 
primitive if [ I  tÃ l i e  equals 1 for almost all v, in which case we write 

I I = II, It t" I / &  
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The function 1 1  1 1  is called the height function associated to the basis 

{en, , ed}. 
I t  is easy to verify tha t  if v e VA is primitive then p(x )v  is also primitive 

for any x e G A .  The map 

is continuous with respect to the topology defined by ) [  [ I .  I t  is also clear 
that  for any x e GA and p e PA, 

\\o(xp)eo I 1  = ebzrfpl \\ p(x)ea\l . 
LEMMA 1.3. There  is a posit ive n u m b e r  en 5 1 s u c h  t h a t  

e H f m w )  > - g - o 1  n c N A .  

Proof.  Define c to be the  supremum over k e K of 1 1  p(k)eo 1 1 .  For n e NA 
we may write 

n w  = k p  , k e K , p e P A .  

Then 

\\P(nw)eo I 1  = ebHfnu' )  I 1  p(k)eo I 1  
so that  

e b H f n w l  ^> Â£T I 1  p(nw)eo I 1  . 
On the other hand 

\\ p(nw)eo I 1  = \\ p(n)ed I 1  
Now ed is a lowest weight vector for p, and 

is contained in the  span of {en, , ed_,}.  From the definition of our height 
function, 

The lemma follows for cÃ equal to ( c , ) ~ / ~  . 
LEMMA 1.4. I f  g o  is the  cons tan t  of the  las t  l e m m a ,  suppose  t h a t  

e z f i x l  < co for  some x E GA. F i x  y e  GF. T h e n  H ( x 7 )  < 1 i f  a n d  o n l y  i f  Y i s  
in P F .  

Proof.  For Y E  P F  i t  is obvious tha t  

On the other hand, suppose tha t  7 is not in P p .  By the Bruhat decomposition 
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We can write 

x = knmhtz ,  k e K, n e Nn, m e MA, t e R and z e 22 . 
Then 

xvw = k - n l w a  w l m w -  h p z  , 
where 

n, = n- m l ~ p h l m - ~  

lies in N1,. It follows that 
e H ( x ) - )  = e H i x u w )  _ - e H ( n i w )  -t e .  

Now 

e - t  = e - H ( x '  > Â£ ; 
while by the last lemma 

e H ( n ; w )  > = Â £  . 
Therefore e" > 1. 

COROLLARY 1.5. For a n y  c > 0 there i s  a n  s with 0 < e < c0 such that 

if Y e GF and 

S (E)  n S(C)Y # 0 

then Y lies in PF.  

Proof. The corollary follows from Lemmas 1.2 and 1.4. 

Suppose that 8 is a Siege1 domain. A function f  on Gn is said to be 
slowly increasing on 8 if there are constants C and N such that 

1 f  (a; )  1 5 C e c ~ ~ ~ ( ' )  , x e 8 .  

f  is said to be rapidly decreasing on if for every N there is a constant Cv 
such that 

\ f  (x) 1 5 C.ye-vHIx) , x e Â ¤  

Suppose that h is a continuous function on G^/GFZa. The function 
defined on GJPJa by 

is called the constant term of h. 
Let 3 be the center of the universal enveloping algebra of the Lie 

algebra of Gm. I t  is clear how to define the action of S on Cm(GJ.  A func- 
tion h in Cm(GJGPZ2) is called an automorphic form if 
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(i) 11 is left  K-finitel 
(ii) h is Sfinitel  
(iii) h is slowly increasing on any Siegel domain. 
The following we11-known principle is basic to the theory of automorphic 

forms. 

LEMMA 1.6. S u p p o s e  t h a t  h  i s  a n  au tomorp l z i c  f o ~ m  o n  Gi/GrZz. T h e n  
tile f u n c t i o n  11 - l zp  i s  y a p i d l y  decreasing o n  a n y  Siegel  d o m a i n .  

A proof of this lemma can be extracted from (5, Lemma lo] .  

2. The spectral decomposition 

The left  regular representation, A, of GA on the  Hilbert space 
L2(GA/GFZi) is unitary. A fundamental problem in t h e  theory of auto- 
morphic forms is to decompose this representation into a direct integral of 
irreducible representation of GA. 

Let  L2({G}) be the  space of functions h in L2(Gi/GFZz) such tha t  for 
almost all x 

It is clear tha t  L2({G}) is a closed A-invariant subspace of L2(Gi/GFZ:). It 
is called the  space of c u s p  f o r m s .  Analysis of this space is the  deepest part  
of the  above problem. 

The theory of Eisenstein series provides an intertwining operator 
between the  restriction of to the orthogonal complement of L2({G}) in 
L2(Gi/GFZ;) and a direct integral of certain induced representations. In  
this section we describe this intertwining operator. 

Let  Z.* be the  center of the  universal enveloping algebra of the  Lie 
algebra of M-. Suppose tha t  T is an irreducible representation of K and 
tha t  is a homomorphism of SAlf into C. Let  L be the  vector space of 
functions qi in Cm(GA/MFA2Ni) such that  for  any x E GAl 

(i) qi(x; z) = ~ ( z ) # ( x ) ~  Z E  SJI1 
and 

(ii) the  function p(k) = # ( k l x )  is contained in a subspace of L2(K)  on 
which the  right regular representation of K is equivalent to  T. 

I t  is known tha t  L is finite-dimensional. We define an inner product 
on L by 

We shall refer to L as the  simple (K, STf)-type asociated to  (T, x). We 
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write V(P) for the collection of all simple (K, S.,J types. 
For any complex homomorphism x of ZAtf let  V(P, x) be the collection 

of simple (K, S.,J types associated to x. I t  is easy to see that  V(P, x) is not 
empty for only countably many x. We fix for once and for all an indexing 
of these homomorphisms by the natural numbers. Then 

V(P)  = u:=lv(P, x"J - 
Let :K(?z) and :K be the orthogonal direct sums defined by 

Then :YC may be identified with the space of measurable functions 

such that  

For any 2 E C there is a representation ~ ( 2 )  of GA/Z: on X defined by 

for 4 e X7 and x, y E G.k/ZL. ~ ( z )  is just an induced representation. Each 
space K(n) is invariant under ~ ( z ) .  

For f a measurable function of compact support on GA/Z:, define as 
usual 

~ ( z :  f )  is a bounded operator on -3C. 

LEMMA 2.1. Fo r  z E C and  y E GA, the adjoint  operator ~ ( z :  y)* equals 
T(- 2: y-I). 

Proof. Let Q be the group M F . A z e  NA. Our earlier normalization of 
Haar measures defines a left  Haar measure d l q  on Q. Since GA/Q is compact, 
we can find a real valued function p E C:(GA) such that  

x â ‚ ¬ G  

Then i t  is clear that  for 4, + E X ,  

(G, -,)) = e-2nH ' 
1 6 ~  

~ ( x ) 4 ( x ) r n d x  * 

In pzirticular, ( ~ ( z :  y)*, +) equals 
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Changing variables we can see that this expression also equals 
($6, z(-  z: y-I)+). 0 

COROLLARY 2.2. For a n y  compactly supported measurable function f 
0% G.Jz2 ,  

z ( z :  f ) *  = z(-z: f *) 

where f * ( y )  = f F ) ,  y E GA/Z:. 

For any f E C:(GA/Z2) and z E C, the function 

is continuous on the compact space (GA/MFA?NA) x (G.k/MFA?NA). For fixed 
x ,  y and f i t  is a Schwartz function of z in R. 

LEMMA 2.3. For f E C:(G.k/Z2), z E C ,  a ~ d  4 E X', ( ~ ( z :  f )$)(x)  equals 

COROLLARY 2.4. The operator z ( z :  f )  of the lemma i s  of Hilbert-Schmidt 
class. 

Proof. This is clear, since the kernel of z ( z :  f )  is square-integrable over 
( K -  M.k/MpA:) X (K .  MA/MFA&).  

We shall later come across some functions 
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such that  for every $ E *X the integral 

equals ( ~ ( z :  f)$)(x) for almost all x. We will be able to conclude from the 
last lemma that  R(z: f :  x, y) and P(z: f :  x, y) are  equal for almost all x and 
y. If R(z: f :  x, y) happens to be continuous separately in x and y the  two 
functions will be equal for  all x and y, 

Fix L in V(P). For 6 E L i t  is known (15, Lemma 23, Cor. 31) tha t  the  
series 

E($: " x, = z6 eGF,pF 
$(xa)e(z-Piff(z8i 

converges uniformly for x in compact subsets of GA/Z: and z in compact 
subsets of D,, = {z: Re z < - p}. In fact  i t  can be shown ([5, Lemma 241) 
tha t  for  any Siege1 domain 3 there is a locally bounded function c on 
(- X ,  - p) and an integer N such tha t  for x E 3 and z in Do, 

ca eGF,pp  1 $(xa)e(z-o)ff 1 2 (Re ~ ) e ( - ~ y + R e z - ~ ~ H ( z )  

E($: z: x) is called the E i s e ~ s t e i ~  series associated to $. Let us review its 
basic properties. 

First of all, E($: z: x) is a left  K-finite eigenfunction of Z on GA/GpZ2, 
so i t  is an automorphic form. The constant term, Ep($: z :  x), equals 

,$(x)e(2-p)~(~1 + ( M ( ~ ) $ ) ( x ) e ( - ~ - ~ ~ ~ ( ' )  , 

where M(z) is a uniquely defined analytic function which maps Dp into the  
space of linear operators on L ([5, Theorem 51). M(z)*, the adjoint of M(z), 
equals M(Z) ([5, Lemma 481). 

For any x E GA and $ E L,  E($: z: x) and M(z)$ can be continued to mero- 
morphic functions on C which are regular on the imaginary axis. Any 
poles which lie to the  lef t  of the  imaginary axis are simple, and must occur 
on the interval [ -p,  0). All poles must occur simultaneousIy for E($: z: x) 
and M(z)$. If D is the  se t  of points in C where M(z) is holomorphic, E($: z: x) 
is continuous on D x Gk. In addition, for any Siege1 domain g, any compact 
subset u of D, and any $ in L, there a re  numbers C and N such tha t  

(2.1) 1 E($: z: x) 1 2 C 1 1  $11 e-xH(zl , Z E W ,  X E G .  

Finally E(+: z: x) and M(z) satisfy the following functional equations: 

M(z)M(-z)$ = $ , 
E(6: z: x) = E(M(z)$: - Z: X) , Q E L .  
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(See [5! Theorem 71 .) 

There is a useful formula for M(z). For m E Mal let mw = U ~ - ~ ~ Z U .  

LEMMA 2.5. F ix  L C  
Re z < -pl the integral 

is absolutely convergent. 

V(P) and $ E L. Then j%r k E K, m c Mtl and j % v  

Proof. For s E GA we have 

By the Bruhat decomposition, {e} U {NF0w} is a set of representatives for 

GF/PF. Therefore the above integral equals 

Suppose that 

x = kmhtnz , 
Then 

= e - ' - o ' ~ \  $(knwmU)e ' 
\ A  

Since t = H(x),  the integral 

must equal (M(z)$)(km). The absolute convergence of 
immediate consequence of the absolute convergence 
series. 

this integral is an 
of the Eisenstein 

0 
For any L E V(P) let :T(L) be the space of entire functions with values 

in L which are Fourier-Laplace tranf orms of functions in C:(iR) 8 L. Then 
on any vertical stripl functions in X(L) decrease a t  infinity faster than any 
polynomial. For any a E X(L) define 
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where zr  is any real number smaller than -p.  By an estimate quoted 
earlier the  integral is absolutely convergent, and i t  is independent of zn. It 
is known ([5, Lemma 26, Cor. 1 and Lemma 401) tha t  for a and b in X(L) ,  
Ea and Eb are in L2(G,/GFZa) and tha t  

for any zo < -p .  
Let  L2({P}, {L}) be the  closure in LyGA/G&) of the  vector space 

If L2({P}) is the  orthogonal complement of L2({G}) in L\G.JGrZa,), i t  is 
known tha t  L2({P}) is the  orthogonal direct sum 

@.e l -  P L2({P }, {Ll) . 
Fix L in V(P). For a ,  be  X ( L )  we shall examine the  integral 

The integrand is clearly meromorphic in z. Now i t  is known ([5, Lemma 
1011) tha t  the  norm of M(z) is bounded a t  infinity in the  str ip {z: z, 5 
Re z 5 O}. Therefore we can use the residue theorem to  shift  our contour 
of integration to the  imaginary axis. 

For z e [ - p ,  0) let p(z) be the  residue of -27rM(Q a t  S = z. p(z) 
vanishes for all but  a finite number of z. Our integral becomes 

The expression defines a positive semi-definite inner product on X(L) .  It 
follows from a simple approximation argument, which we leave to  the  reader, 
tha t  the  linear operators 

/i(z), z e  [ - p, 0) , 
are  all positive semi-definite. 

Let  V be the  vector space of functions from [-p, 0) to L .  Define a 
positive semi-definite inner product on V to  be 
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Factoring out by the space of null vectors, we obtain a finite-dimensional 
Hilbert space which we denote by Q({P},  {L}) .  

Let Â£?({P} {L})  be the space of square integrable functions a^ from iR  
to L such that 

ai( - 2 )  = M(z)al(z) , z e i R .  

We define our inner product on this space to be 

Let L2({P}, {L})  be the orthogonal direct sum of G({P}, {L})  and L ( { P } ,  {L}) .  
Any function a in X ( L )  obviously defines a vector a,, in L ~ { P } ,  {L}).  

We define a function a1 in Q{P}, {L})  by 

1 
al(z) = -(a(z) + M(- z)a(- z ) )  , z e i R .  

2 

Then the correspondence 

(a,,, 0 1 )  - Ea 7 

is a linear isometry between dense subspaces of P({P}, {L} )  and L2({P}, {L}).  
We extend this isometry to an isomorphism 

Let us denote the restrictions of E to G({P}, {L})  and Â£;({P} {L} )  by E,, 
and El respectively and we will write LI({P},  {L}) and L ~ ( { P } ,  {L})  'for the 
corresponding ranges in L m ,  {L}).  For i = 0 or 1 and a; e L:({P}, {L})  we 
need a formula for the function 

For p e L, z e  [ -p ,  O ) ,  and x e Gi^, define E&: z:  x) to be the residue, 

of E($: C :  x )  a t  C = z. I^,,($ z :  x) is clearly an automorphic form. I ts  constant 
term equals 
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This latter function is square-integrable over any Siege1 domain so i t  follows 
from Lemma 1.6 tha t  En($: z: x) is square-integrable on GA/GpZ2. 

Another poperty of E0($: z: x) is tha t  i t  is orthogonal to  LVG}). To see 
this, choose any automorphic form h in L2({G}). By Lemma 1.6 the function 

E(C: 6: x)h(x) 

is integrable for C e C. If C < -,Q, its integral equals 

This expression vanishes, since 
r 

By analytic continuation, 

Our assertion then follows from the well-known fact  that  there is an 
orthonormal basis of L2({G}) consisting of automorphic forms. 

LEMMA 2.6. Suppose that we are  given a pa i r  (an, a,) such that 

(9 an G({PI, {A}), 
(ii) a, i s  a function of compact support i n  m, {L}). 

Then for almost a l l  x the function 

Proof. Let f(x) be the function defined by (2.3). I t s  constant term, 

fp(x), equals 

This formula, together with a strengthened version of Lemma 1.6 ([8, 
Lemma 3.4]), insures tha t  f is square-integrable. It is clear that  f is 
orthogonal to L2({G}). 

Choose a sequence {b'} of functions in X ( L )  such tha t  as n approaches 
, (b?, by) approaches (a0, a J  in L2({p}, {L}). The constant term of EP 
equals 
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for any z,, < -p .  Changing the  order of integration we obtain 

{(bn(z))(x)e!z-,~;~'z! + ( (^ (*n(q(a ; )e ! -~mz;  } d l z \  9 

which equals 

1 -Ez r-p,o (/Wbn(z))(x)e - ' - O  " ' 
27T 

+ {(bn(z))(x)e '-' ' 
27T Re t=o  

+ (M(z)bn(z))(x)e - ^ - O  aÂ }d 1 z 

by the residue theorem. We rewrite this formula as 

$ E ~ ~ !  P,O (p(z)b;(z))(x)eÃ‘Ã‘~ +-'-( 7~ Rez=o (b;(z))(x)eÃ‘Ã‘ d 

By choosing the  sequence {bn} suitably we can force this last expression 
to  approach fp(x) for all x, as n approaches infinity. On the  other hand, since 
Ebn converges to  EoaO + E,a, in the  mean, the  constant terms of Enao + Ela, 
and f are  equal almost everywhere. Now the  function 

lies in L m G p Z ^ }  and is orthogonal to  L\{G}). Since its constant term 
equals 0 almost everywhere, the  function itself must vanish almost every- 
where. 

Fix i = 0, 1. Define 

Q({P}) = Qiw Ll({P}, {L}) 7 

G({P}) = @LeT.:P! L:({P}, {L}) 

By taking the  direct sums over V(P) of the  maps 

Et: Q({P}, {L}) - LyGJGpZ:) , L V(P) 7 

we obtain a map from q { ~ } )  into LyGJGFZ,;) which we denote again by 
Ei. The image of this map is L:({P}). Consider the  adjoint map 

Then the  map E^Ef is the  orthogonal projection of L2(G,4/GFZ:) onto 
L;({P}). The space L\{P}), which is the  orthogonal complement of L\[G}) 
in L\GJGi,Za), equals 

For any L, and z e [-,o, O), define an operator r(z) on L to  equal zero 
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on the kernel of p(z)  and to equal p(z)-' on the orthogonal complement in L 
of the kernel of ~ ( z ) .  

LEMMA 2.7 Suppose that  L e V ( P )  and  m. T h e n  for a n y  

h CC(G.k/GpZ^, 

(i) ((E.^)(z), (i) = ( h(x)E.(r(z)$: z: x )dx ,  for z e  [-,o, O), and  
G A / C ~ Z ~  

for almost all  z in iR. 

Proof. These formulas follow easily from the last lemma. Let us prove 
only (ii). 

Let ai be any continuous function of compact support in ~ Q P } ,  {L}).  
Form the inner product of E T h  and a,. On the one hand this equals 

while on the  other hand we obtain 

which is the  same as 

by Lemma 2.6. Since a ,  is arbitrary, we ge t  the  required formula. 
Our final task for  this section is to verify the intertwining property of 

the operators E and Er 

LEMMA 2.8. Suppose that  f is a left and  right  K-f ini te  func t ion  in 
C:(G JZÃˆ) F i x  L e V ( P )  and  $ e L. Then  

as  meromorphic funct ions of z. 

Proof. For Re z < - p  the  formula is a direct consequence of the  
definitions of n(z:  f )  and E(p: z: x ) .  The lemma follows in general by analytic 
continuation. 

COROLLARY 2.9. For  f a s  above, 

a s  meromorphic funct ions in z. 



346 JAMES ARTHUR 

Proof. Fix L and $. Using the functional equation for  E($: z: x) 
we observe tha t  

However, for + + 0, i>e L,  E(+: 2: x) is not identically 0 in z and x. 
Theref ore 

which proves the required result. 

COROLLARY 2.10. Li({P}) a n d  L w } )  are  &variant subspaces of 
L2(GA/GFz2). 

Proof. This is obvious. 

We shall sometimes write L:(GJGpZ^,) for L~({P}). We shall denote 
the direct sum 

by L w G F Z a ) .  (This notation is different from [5] and [9] where the  symbol 
L2, is used for the space of cusp forms.) For any x in GA/Z+ we denote the 
restrictions of \(x) to L2({G}), LI({P}), LKGJGFZ2), and LKG.JGpZ^) by 
\,({G}: x), \{{P}: x), \(x), and \(x) respectively. For f e C:(G.4/Z+) we can 
define the operators \({G}: f ) ,  \({P}: f ) ,  U f ) ,  and \(f). Lo(/) is the 
operator we shall be most interested in. I t  is the  sum of \({G}: f )  and 

\({PI: f ): 
I t  should be noted that  the results of this section are  but special cases 

of 18, 3 71, where the spectral decomposition is carried out for groups of 
arbitrary rank. 

3. The operator \(f) 

Suppose that  f is a complex-valued function on GA/Z; which is the  
convolution over GA/Z; of two left  and right K-finite functions f and f "  

in C3GA/Z:). \{f) is a bounded operator on LYGJGpZ:). I t  seems likely 
that  \(f) is of trace class. Our objective will be to prove this fact under 
an additional assumption on f and then to find a formula for the  trace. 

In calculating the trace of Lo(/) we shall integrate its kernel over the  
diagonal. This necessitates finding the integral kernels of L(f) and hi(/). 
While we are a t  it, we may as well find a formula for  the  kernel of \({P}: f).  
This will perhaps have to be studied to  prove that  \(f) is of trace class 
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without using the  additional condition (Assumption 3.5) tha t  we shall impose. 
For any function h in C3GA/GpZ^) 

The series 

K(x, Y) = CeGF f ( w - l )  

is finite for x and y lying in fixed compact subsets of GJZy,. Therefore 
\(f) is an integral operator with kernel K. 

I t  is clear that  K is a smooth function. In addition K is slowly increasing. 
In fact, given any Siege1 domain Â¤ and a K-finite function g in Cr(GJZ^), 
it is known ([5, Lemma 91) that  there are  constants C and M such tha t  

(3.1) 1 EyeGF g ( W )  1 ^ Ce-.lrH(zl , x, y e Â ¤  

In studying the operators \i({P}: f )  and \(f) we must examine certain 
X-invariant subspaces of L'({P}) and L;({P}). For any positive integer N 
define 

LXN) = @zeUP,,nl I~ ({P} ,  {L}) , i = 0 , 1 .  

For T > 0 let C(N, T) be the subspace of elements al in U(N) such that  
the projection of a, onto any of the  direct summands 

{H({P}, {L}): L u:__,V(P, L)} 
is a function supported on the interval [-iT, zT\. Let Li(N) and L'[(N, T)  
be the  images of &N) and L[(N, T)  under the  maps Eo and El. Li(N) and 
LXN, T) are  binvariant subspaces of LyGJGpZ;). Let \(N: f )  and 
\(N, T: f )  be the compositions of \(f) with the  projections of L2(GA/GFZa) 
onto these subspaces. 

In order to ge t  a formula for the  integral kernels of these operators 
we shall fix for once and for all an orthonormal basis 

of X. We may assume that  each basis vector lies in some space L e V(P). 
For each positive integer n let I., be the  set  of indices a for which 

there is an L e V(P, yn) such that  pa lies in L .  Then 

For a ,  8 e I define 
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:T,,(z: f )  = ( 4 2 :  f )?,, ?,) . 
Then for any positive integer n we define functions on (GA/G&) x ( G J G J L )  

by 

Ko(n: z: f :  x, y )  

and 

Since f is left and right K-finite, ~ , ( z :  f )  vanishes for all but finitely many 
a and ,L? in In. It follows that  the above sums are finite. K o ( n :  z: f :  x, y )  
vanishes for all but finitely many z in [-p, 0) .  

LEMMA 3.1. \(N: f )  a n d  \(N, T: f )  a r e  i n t e g r a l  operators  whose 
kerne l s  a r e  

a n d  

Proof. The result follows from a routine use of Lemmas 2.6, 2.7, and 
2.8. 

We remark that the kernels defined by this lemma are both continuous 
functions on (GA/GpZ^)  x (GJGpZ-n) . 

THEOREM 3.2. G i v e n  a n y  Siege1 d o m a i n  w e  c a n  choose cons tan ts  C 
a n d  M such t h a t  for  a l l  x a n d  y in the expressions  

a n d  

a r e  both bounded by C e A r H ^ ) e - ' f H ( y l .  

Proof. Recall that f = f l * f "  where f '  and f" are both K-finite. For 
any n we fix a finite-dimensional subspace !^Cf(n) of X(n )  which contains 
the ranges, and the orthogonal complements of the kernels, of the restric- 
tions of both ~ r ( z : f ' )  and ~ ( z :  f " )  to X(n) .  For x e GA/ZL and z e [-p, O ) ,  
define a vector E { ( z :  x )  in X f ( n )  by 
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(6 ,  E{ ( z :  x ) )  = E ( # :  z: a;) , 6 e X f ( n )  . 
Then 

1 1 K,(n: z: f  : x ,  y )  \ = -1 Cars xa3(z: f  )Eo(va: z: a;)Eo(r(z)ya: z: y )  
2Tc 

= ̂ - \ ( r ( z )E{ ( z :  y) ,  ~ ( z :  f  )*E{(z:  x ) )  \ 
2 r  

1 
= -1 ( r ( z :  f  " ) r ( z )E{ ( z :  y) ,  T ( Z :  f  ' ) *E{ ( z :  x)} \ . 

2Tc 

We have used the  facts tha t  r ( z )  is self-adjoint and tha t  

r(2: f ) *  = Tc(z: f ' * f l ' ) *  = x(z :  f")*o^:  f ' )*  . 
It is readily seen from Corollary 2.9 tha t  

r ( z :  f l ' ) r ( z )  = r ( z ) x ( - z :  f " )  . 
Since z  is real, we have 

-̂Zf") = n ( z :  ( f ' r y  , 

by Corollary 2.2. Theref ore 1 K,(n:  z: f  : x ,  y )  \ equals 

(3.4) 
1 -1 ( r ( z ) ~ c ( z :  ( f " ) x ) * E l ( z :  y ) ,  ~ ( z :  f ' ) x E { ( z :  x ) )  1 .  

2 71 

If we apply Schwarz' inequality to  the  positive semi-definite form 

0 ,  x> = ( r ( z )6 ,  7) 9 P ,  x X f  (n) , 
we see tha t  (3.4) is bounded by the  product of 

1 -(Y(z)T~(z: ( f  ")*)*E{(z:  y ) ,  42: ( f  ")*)*E[(z:  Y ) ) ~ ' ~  
VVL 

and 

1 -(r(z)z(z: f ' ) * E l ( z :  x ) ,  ~ ( z :  f ' ) *E{ ( z :  % ) ) ' I 2  . v2  ̂
Define 

l f  = f ' * ( f ' ) * ,  2 f  = ( f " ) * *  f "  . 
Then the  above product equals 

Ko(n: z: 2/:  y, y)1/2Ko(n:  z: lfÂ¥ a;, x)'I2 . 
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Applying Schwarz' inequality to  the  sum over n and z in (3.2), we observe 
tha t  i t  is only necessary to  establish the  bound for (3.2) in the  case tha t  
f = '/and y = x. 

Now we have 

1 K,(n: z: \fÂ¥ x, x) 1 = Ko(n: z: \fÂ¥ x, x) . 
By Lemma 3.1 

is the  value on the diagonal of the kernel of \(N, '/). But \(N, '/) is the  
restriction of the positive, semi-definite operator \('/) to the  invariant 
subspace Ll(N). Therefore its kernel, which is continuous, can be bounded 
on the  diagonal by K(x, x). However, according to (3.1) this last function 
can in turn be bounded on a Siege1 domain by a function Ce^'-". But this 
function is independent of N. Consequently i t  majorizes 

C2 C z  e [-(,,, ~ , ( n :  z: x, x) for all x . 
We deal with (3.3) in exactly the  same manner. First  of all we show 

tha t  for z imaginary, 

is bounded by 

Consequently, i t  is enough to establish the  theorem when f is replaced by 
Yand y = x. We then resort to Lemma 3.1, verifying the  required result 
as above. 

COROLLARY 3.3. The functions 

and  

are  the integral kernels of \,({P}: f )  and  \( f )  respectively. 

Proof. This follows from Lemma 3.1 and Theorem 3.2. 

I t  follows from the corollary tha t  the  kernel of Lo(/") equals 

Now we turn to the  task of proving tha t  \(f) is of trace class. Let  
GÃ be the set  equivalence classes of irreducible unitary representations of 
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MJA;. Let \J,i be the regular representation of M J A ;  on L w M p A f ) .  
I t  is a well known that  there is a \,.-decomposition 

where for each a in &.=, the representation of M a  obtained by restricting 
\v to V ( a )  belongs to a nonnegative integral multiple of the class a .  Let 
X ( a )  be the space of functions in X such that  for any x e Gn the function 

$ d m )  = $(xm) , m e Mi/MFA2 , 

lies in V ( a ) .  I t  is clear that 

X @oee,r X ( 0 )  

We assume from now on that the basis {$a}aei ,  chosen earlier, is compatible 
with this decomposition. 

The element w, representing the nontrivial Weyl group element, 
defines a coset in the group of automorphisms of MA modulo the group of 
inner automorphisms. In this way w defines an involution on Sy. We say 
that a class a e & Ã  is unramified if a w  + a ,  and ramified if a" = 0. 

LEMMA 3.4. Suppose that 6 is unramified. For a n y  L e  V ( P )  
let L ( a )  = L fl X ( a ) .  Then for a n y  z e C the space L ( a )  + L ( a w )  i s  invar ian t  
under M(z). Furthermore the restriction of M(z) to this space i s  regular 
for z e  [ -p,  0). 

Proof. It is clear from the formula in Lemma 2.5 that M(z) maps L ( a )  
into L(aw).  Of course the formula is only true for Re z < -p ,  but our 
assertion follows by analytic continuation. Similarly M(z) maps L ( a w )  into 
L(a) ,  so that  L ( a )  + L(@") is an invariant subspace of M(z).  

For z e [ -p ,  0)  let ^{z) be the residue of -2rM(C) a t  < = z. Let I, be 
the subset of indices in I such that  {$̂sic is an orthonormal basis for 
L ( a )  + L(aw).  The trace of the restriction of p(z) to L ( a )  + L(a")  equals 

E J e I c ( ~ ( z ) $ j ,  $3) . 
We have assumed that  each p j  is either in L ( a )  or in LC@'), so since L ( a )  is 
orthogonal to L(a"),  this expression equals 0. On the other hand, we saw 
in Â 2 that p(z) was positive semi-definite. Therefore p(z) = 0, so M is 
regular a t  z. 

If a e Sw and g is any function in C^GJZ^) ,  we shall denote the restric- 
tion of r ( z :  g )  to X ( a )  by ~ ( 0 :  z: g) .  At this point it is necessary to place an 
additional restriction on our function f .  We summarize all the requirements 
in the following: 
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ASSUMPTION 3.5. f i s  the convolution of two func t ions  f and  f" in 
CZGJZ; ) .  f and  f"  are left and  right  K-f ini te  and  in addi t ion  

*: z: f )  = x(a: z: f " )  = 0 ,  z e c ,  

for almost all  ramified classes a E iSx. 

We remark that this last condition is always true if the Lie group 
MJA^ is compact. 

THEOREM 3.6. Suppose that  f satisfies Assumpt ion  3.5. T h e n  \ ( f )  i s  
of trace class. 

Proof. Lo ( / )  is the sum of \{{G}: f )  and \{{P}: f ). \({G}: f )  equals 

\({G}: f ')ho({G}: f ") . 
I t  is known ([5, p. 141) that the operators \({G}: f ') and \({G}: f ") are of 
Hilbert-Schmidt class. Therefore \)({G}: f )  is of trace class. 

Since f '  and f" are left and right K-finite, the operators ~ ( a :  z: f )  
and ~ ( a :  z: f " )  are of finite rank for any z e  C and a e &. Therefore, by 
Assumption 3.5 and Lemma 3.4, both &({P}:  f ') and \ ) ({P}:  f ") are of finite 
rank. I t  follows that \ ) ({P}:  f )  is of trace class. 

Now that we have proved that \( f )  is of trace class, we would like to 
be able to say that KO(%, y)  is integrable over the diagonal, and that its 
integral yields the trace of h o ( f ) .  However, we have not shown that  the 
kernel KO(%, y)  is continuous, so we must proceed cautiously. 

LEMMA 3.7. The func t ion  KO(%, y)  i s  continuous in each variable 
separately. 

Proof. Following the notation of the proof of Theorem 3.2, we know 
that 

1 K l ( n :  z: f :  x, y)  1 
is bounded by 

Then for any N a n d  T the integral 

is no greater than 

For y lying in any Siege1 domain this last expression can be bounded by 
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by Theorem 3.2. I t  follows tha t  for any fixed x the  integral defining 
Kl(x, y) converges uniformly for  y in compact subsets of GJGpZt. There- 
fore Kl(x, y) is continuous in y. Since K(x, y) is continuous, 

KO(%, Y) = K(x, Y) - K1(x, Y) 

is also continuous in y. Similarly, Ko(x, y) is continuous in x. 

Our operator \(f) is the  product of the  two Hilbert-Schmidt operators 
\(f) and Vf" ) .  Recall that  for any Siege1 domain 8 we may choose con- 
stants C and M such tha t  for x and v in 8, 

1 GF f '(mv-l) 1 5 C~-L'"'('~ . 
If follows that  for any x there  is a unique function hk(v) in LKGJGFZ~) ,  
such t ha t  for any <^> e LXG.JGFZ2), 

Combining the  dominated convergence theorem with the  above inequality 
we see that  for any <^> e LKGJGFZ2) the  function 

is continuous. Let 
H'(x, v) = hxv) . 

Then H1(x, v) is a Hilbert-Schmidt kernel for \(f). 
Suppose that  H"(v, y) is a fixed Hilbert-Schmidt kernel for our second 

operator \(f"). We may assume tha t  for every y, H1'(v, y) is square- 
integrable in v. Then 

is well defined for each x and y. I t  is a Hilbert-Schmidt kernel for Lo(/"), 
and for any fixed y i t  is continuous in x. 

LEMMA 3.8. The kernel H i s  integrable over the diagonal and  i ts  
integral  equals the trace of \r(f). 

Proof. The integrability follows from Schwarz' inequality. Now 
suppose tha t  {*a} is an orthonormal basis for LxGJGFZ;). 

Define 

h'ab = (Mf ')A, 
and 
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Then 

equals 

where the convergence of the infinite sums is in the mean. We may 
interpret this integral as as the inner product on LyGA/GFZL x GA/GFZ:). 
Since the inner product is continuous on any Hilbert space we may inter- 
change the integral and summation signs. The result is 

Em,,; ^̂m , 
which is just the trace of \( f ) .  

THEOREM 3.9. The kernel KO(%, y )  is integrable over the diagonal and  
its integral  equals the trace of L o ( f ) .  

Proof. The functions H(x ,  y )  and KO(%, y )  are both Hilbert-Schmidt 
kernels for h 0 ( f )  so they must be equal almost everywhere on ( G J G Z ; )  x 
(GJGFZL).  For any positive integer n let S n  be the set of points y such 
that the measure of the set 

T y  = {x:  KO(%, y )  # H(x,  y)} 

is greater than 1 / n .  Then measure of S n  is 0. Therefore the measure of 

s = U" S %  

is also zero. 
For any y not in S ,  H ( x ,  y )  equals KO(%, y)  for almost all x. But these 

two functions are  continuous in x,  so they must be equal for all x. In 
particular, the set of points y such that 

m y ,  Y )  # KdY,  Y )  

has measure 0. Our theorem now follows from Lemma 3.8. 

4. An arrangement of the terms in the kernel 

From now on we require that f satisfy Assumption 3.5. We have just 
shown that 

KO(%, x )  = K ( x ,  x )  - K&, w) 

is integrable and that 
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Before we calculate this integral, we must group the terms in the integrand 
in a suitable manner. 

Recall that K(x, x) equals 

(W) . 
An element in Gp is said to be elliptic if it is not GF-conjugate to any 
element in Pp. Any such element is semisimple. Let G, be the collection 
of elliptic elements in Gr. Before classifying the remaining elements of 
GF we shall first prove a few simple lemmas. 

Suppose f-t E Mp. Then p is semisimple. Recall that G+(p), PT( /4 ,  
MT(p), and W ( p )  are the centralizers of /-< in G, P, M, and N respectively. 

LEMMA 4.1. For any [/Â E MF 

P+(p) = M+(u)N+(/-<) . 
Proof. I t  is obvious that M-(p)N+(p) is contained in P"(p). Suppose 

that 

p = m n ,  m e M ,  n e N ,  

is in P+(p). Then 

m n  = ppp-I . 
Since p normalizes both M and N, 

pmp-l = m and pn/' = n . 
For any such /!, G(p) is reductive, and P(p)  is a minimal parabolic 

subgroup defined over F. From the lemma, 

P(^)  = ML'w(!-i) 

is a Levi decomposition for P(p).  In the discussion of Â 1 we may replace 
(G, P, M, N )  by (G(p), P(p), M(p),  N(p))  and make all the corresponding 
definitions. We use them without further comment. 

It is known ( [ I ,  3 111) that NT(p )  is connected. I t  follows that  N ( P ) ~  
is the centralizer of p in NF.  

LEMMA 4.2. Fix pe Mr. Suppose that o is a compactly supported 
function on N1. Then 

Proof. Suppose that /9(/-<) is the simple F-root of (G(f-t), A) relative to 
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our ordering on X(A) (g) Q. Fix j = 1, 2. Let n(p)j be the set  of all X in 
n(p), the Lie algebra of N(p),  such that 

n(p)-' is a subspace of n(p), defined over F. Let us write n-' for n(e)-'. Then 
Ad ( p l )  is a semisimple linear operator on n3 which is defined over F. Let 
-. 
n ( ^ ) j  be a complementary subspace of n(p)-' in n-' which is invariant under 

-. 
Ad (p-I). n(p)-' is also defined over F. Notice that the linear operator 

Ad ( p )  - id 

is invertible on n(,Ã§V I t  is clear that 

N(p)j = exp n(;t)-' 

and 
w - 
N ( P ) ~  = exp 

are F-closed subsets of N.  
Define 

since Nk and N; commute. This in turn equals 

COROLLARY 4.3. S u p p o s e  t h a t  { N } F  is a n y  set of represen ta t i ves  o f  
N F / N ( P ) ~  in N p .  T h e n  the  m a p  

i s  a b i jec t ion f r o m  {N},( x N p̂ o n t o  N f , .  
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This corollary is just a restatement of the lemma. 

While we are a t  it, we may as well state an ad& version of the last 
lemma. 

LEMMA 4.4. For any compactly supported measurable function 
NA we have 

Proof. Fix j = 1, 2. Our Haar measures on n{ and n(p)i define a : 
-. 

measure d p  on n ( , ~ ) i .  I t  is an easy consequence of the product formula 
for F that 

6 on 

Haar 

( <)' (exp (Ad (p")Xj - X j ) ) d z j  = ( - p- (exp zj)<jzj "7. ) { "1/1)1 
w 

for any compactly supported measurable function oj on N(p){. 
To prove our lemma we just repeat the argument of Lemma 4.2, 

replacing each sum over a set of F-rational points with an integral over the 
corresponding adele space. 

LEMMA 4.5. Any element in Pp is Pi-conjugate to an element pv with 
p e My and v e N(p)p. 

Proof. Any element in PF can be written as pj for p e M,, and 11 e NF. 
By Corollary 4.3 there are elements 8 e N p  and v e N ( P ) ~  such that 

7 = p-'S^tv8-1 . 
In other words 

prj = Qpv8-I . 
Let Mr be the set of elements p in MF such that N(p) is trivial. Let 

Ms be the complement of Mr in Mp. 
Recall that M is a subgroup of index 2 in N(A),  the normalizer of A. 

Mr and M, are both stable under conjugation by elements in N(A)F. 

LEMMA 4.6. Suppose that and & are elements in G p  and that 

&pl"l = "p2"' 

for two elements pl and p2 i n  MT. Then 8' i s  in the same N(A)F-coset as 

Proof. Let e = Val. Then e e ~ ,  = e. Either e is in Pi, or i t  is in 
Np.w-Pp. In the first case 

& = m ,  w M F ,  v e N F l  

and 
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pv = prlpvpi = ̂ w W ^ P l  

I t  follows that v e N(pJF, so that v = e.  Therefore 8, = 8#. 
On the other hand, suppose that  

Then 

vw7T = p;lvw~pl = p;'vp,w ~-lp','~wÂ¥^:U . 
By the Bruhat decomposition, 

and 

Since N(ps)p = {e}, v must equal el so that  

6, = a2wr . 
However, by the same argument as above TT must belong to Mr. 

LEMMA 4.7. Suppose that 8, and  8, are  elements i n  GF and  that 

8,p1v18y1 = O,^,V,Â¤; 

for pl, pa e M,, and v, and  v, nontrivial elements i n  N(fi)? and  N(pJF 
respectively. Then 8, and  8, are  i n  the same PF-conjugacy class. 

Proof. Let e = O;'O1. Then 

V^?&/W = &. 

If e is not in PF, 

z = V W ~ T  , v e N F ,  T T E P ~ .  

Then 

vwx = vL1p;'- vw^.plvl = ~;~p ;~vp , .  we . 
By the Bruhat decomposition, we have 

q1,q1vp2 = v . 
This implies that v, = @uy-'. By Corollary 4.3, v, equals the identity 
element. This is a contradiction, since we assumed that v, was nontrivial. 
Therefore Ŝ S, e PF. 

We shall write {G,} for a fixed set of representatives of Gp-conjugacy 
classes in G,. Let {Mr} and {ME} denote fixed sets of representatives of 
Mr-conjugacy classes in Mr and Ms respectively. Finally, fix a set {{M,}} of 
representatives in {ME} of those GF-conjugacy classes in GF which intersect 
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Ms. It is clear tha t  the contribution to K(w, x )  from elements which are 
GF-conjugate to an element in M. is 

I ~ " ( f :  = Z;<E [[,~18]] (nP3G)- '  f (x '~ '- 'x- l)  . 
In this formula we have had to include the integer n,u,g which, as we recall, 
is the index of G(& in G + ( P ) ~ .  The contribution from the elliptic elements is 

I e ( f :  3) = Ere { G e l  ( n r , ~ ) - ' E a â ‚ ¬ G ~ / G ( r  f ( x ~ ^ x - l )  . 
Lemmas 4.6 and 4.7 account for the contribution from the remaing elements. 
K(x,  x )  becomes the sum of 

I . ( f :  x )  + I - ^ f :  x) 

together with 

(4.1) Ei eoF/.v(A)F E p e . , I T f ( ~ ^ ^ ' )  

and 

(4.2) ZiEGFIP&E lf8 E . e y w F f ( x a ~ v a - l ~ - l )  . 
u # e  

Suppose that co is the positive number defined by Lemma 1.3. Fix a 
number e between 0 and c0. Let y, be the characteristic function of the 
set S(e) .  Since M y  is stable under conjugation by w, the term (4.1) equals 

which we decompose into the sum of 

and 

and 
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We have used the equality of the integers n,, ,v and np p ,  which follows 
from Lemma 4.1 and the fact that  N L ( p )  is connected. 

Next we shall break up the function Kl (x ,  x) .  Suppose that 0 belongs 
to some L e V(P) .  Recall that Ep(p: z: x ) ,  the constant term of E(p: z: x ) ,  
equals 

o(x.ei~-,o)~~~) -t ( M ( z ) p ) ( ~ ) e ( - ^ - p ) ~ ( ' )  . 
For any number e between 0 and q, we define E,(o: z: x) to be 

where, as before, yt  is the characteristic function of the set S(e) .  For any 
x the sum is finite by Lemma. 1.2. We set E m :  z: x )  equal to E(6: z'. x )  - 
Ei((>: z: x) .  

For convenience, set H p ( n :  z: f :  x )  equal to 

Now Ep((>: z: x )  is obtained by integrating the function 

h ( n )  = E ( p :  z: x n )  , n e  NA 

over the compact set NJNr.. Therefore by Torelli's theorem and Theorem 
3.2 we can associate constants C and N to any Siegel domain 6 such that the 
inequality 

holds for all x in 6. 

We define K '( f :  x: s) to be 

I t  is easy to see from Lemma 1.4 that  K ' ( f :  x: e) also equals 

LEMMA 4.8. Given  a n y  Siegel d o m a i n  G there are constants  C and  N 
such that  for al l  x e 6 the expression 

is bounded by Ce--vH!x'. 
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Proof. I t  is clear from Lemma 1.4 that our expression equals 

By Lemma 1.2 the number of terms in the sum over GF/PF is no greater 
than some integer which is independent of x e 2. The lemma then follows 
from (4.3) and Corollary 1.5. 

Let us define K"( f :  x: e) to be 

Kl(x, x) - K\f :  x: e). 

Then we may write K(x, x) - K1(x, x) as the sum of the following five 
terms: 

and 

We shall refer to these terms respectively as the elliptic, singular, and 
first, second, and third parabolic terms. 

We would like to evaluate the integrals over GJGFZ2 of each of these 
five terms. However, integrals arise in the third parabolic term whose 
convergence is not a t  all obvious. One way to surmount this difficulty is to 
prove that each of the first four terms is integrable over GA/GFZ2. This 
would verify the integrability of the fifth term. 

I t  will be sufficient to prove a weaker result. Let us say that a function 
h is weakly integrable over GA/GFZ2 if 

(i) it is locally integrable, 
and 

(ii) for some c > 0 the integral 

is finite. 
When we come to the first parabolic term i t  will be easier to prove 

only that it is weakly integrable. Of course this will weaken our conclusion 
on the integrability of the third parabolic term, but that  will not matter. 
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5. The elliptic and singular terms 

Our first concern will be to prove tha t  the elliptic term is integrable 
over GA/GFZ2. The integral 

is bounded by the integral over GA/GpZL of 

Choose c > 0 and a Siege1 domain 

such tha t  

w is a relatively compact subset of PA. It is a simple matter to check tha t  

is also a relatively compact subset of Pi. 

Suppose that  S 2 GA is the  support off .  S is compact modulo 2;. Let 
C be the closure in G of the set  

w;'K-S-kw0 . 
C is compact modulo Z t .  

LEMMA 5.1. Suppose that C is a compact subset of G modulo 22. 
Then there is a number e > 0 such that i f  7 e  GF and hi7h2 lies in C for 
some t < log e, then Y is in Pp. 

Proof. Let p be the  strongly F-rational representation of G on the  
vector space V defined in 5 1. We use the  basis { g o ,  ., e A  and the  
height function on V introduced in 5 1. Now p is trivial 2:. I t  follows 
that  

is finite. We set  this supremum equal to e 2 ' ,  where b is the positive rational 
number defined in 5 1. 

If Y is not in PF, 

by the Bruhat decomposition. Then 
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2bH(hO I I ,o(ht7h;l)eo [ I  = ecwr ] I  p ^ v ) e ,  \\ 2 e- 1 [ e, 1 1  = ec2" . 
If ht7hr1 lies in C, 

e-2bt  < - E-2b 
- 9 

so that t 2 log e. The lemma is proved. 

It follows from this lemma that the function on G J G Z  defined by 
(5.1) has compact support. Therefore the elliptic term is integrable over 
GA/GFZ+. Its integral equals 

Now for y e  { G J ,  Z is the split component of the radical of G(7).  We 
have agreed to use the Tamagawa measure on G(7)^. However, we cannot 
immediately insert the Tamagawa number of G(7)  in the above formula be- 
cause our measure on Z t  does not define the appropriate quotient measure. 
We must correct by a factor which we define to be the index in X(G(7))F 
of the group obtained by restricting the characters in X(G)v to G(7). If 
we write ?(Y, G )  for the number 

(n^)-l(r^)-l^)) 9 

the integral of the elliptic term becomes 

Before discussing the singular term we shall prove two more lemmas. 

LEMMA 5.2. Let  C be a subset of G A  which i s  compact modulo Zt .  T h e n  
there i s  on ly  a finite number  of elements p in { M y }  U { M s }  such that  there 
is a n  x in G and a n  n in NA for which x p m l  lies in C. 

Proof. Let Cl = {kck-l: c e C,  ke K} .  Since P A  is closed in GAP Cl n P A  
is compact modulo Zt.  We can choose a subset Cv of M A  which is compact 
modulo Z: such that 

C1 n PA != C,rNA . 
Suppose that xpnx-I lies in C. Then if 

x = k p ,  h K ,  P ~ P A ?  

ppnp-I lies in C&. 
Let o> be a relatively compact set of representatives in PA for the 

compact double coset space A+\PA/PF. If 
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then the element v7c. p n  n ^ v l  lies in the set 

a-'.CjrN*.a = CvN* . 
Choose a subset C.̂  of MA, compact modulo Zt ,  such that w 1 o C M N A 0 ~  is 
contained in C^fNA. Then np.nn-' lies in C'vN,.. In particular p is MF- 
conjugate to an element in C.{v. However, the projection of MF onto MJZt 
is a discrete subgroup of MJZt so that MF C',, is finite. Certainly only 
finitely many MF-conjugacy classes in MF meet C.{v. The lemma is proved. 0 

LEMMA 5.3. Fix  p e {M,.} U {Ms}. Suppose that C is a compact subset 
of PA. Then there i s  a compact subset Ci of PA/P(p)A such that if p e P^P{^)\ 
and 

(P *pN(p)A' P-') n ^ 0 9 

then p lies i n  Cl. 

Proof. Let ft) be a relatively compact fundamental set in Pi for PI/Pp. 
Denote the closure in PA of wlCw by C'. Let 7 be the collection of cosets 
8 in PF/P(p)F such that 

( 8 0 p N ( p ) ~ - V  n C' + 0 . 
The main point of the lemma is to show that 7 is finite. Assuming this 
fact for the moment, we let C D e  the closure in PA/P(P)~ of the set 

\Js^wÂ . 
Then if 

(P-PMPL-P-~) n C + 0 
for some p e  PA/P(,u)~, p must lie in CL If C, is the projection of C b n t o  
P p ( p ) A ,  then Ci is the required set. 

w 
It remains to show that 7 is finite. For j = 1, 2, define N(p)j, N(p)j, 

and N3 as in the proof of Lemma 4.2. If {ML is a set of representatives 
of MF/M(p)F in My, it is clear that 

/u w 
{ML * M & - W %  

is a set of representatives of P ~ / P ( P ) ~  in PFe 
Now there is a compact subset Calf of MS,, such that 

C' CvNA . 
Let be the set of all elements 8 in {M}y such that @8-' lies in CM.- 
Keeping in mind that M(& is of finite index in M+(P)~ ,  and using the fact 
that MF n Cu is finite, we conclude that & is finite. It follows that the 
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union over all 8 E Y M  of the sets PC 'O is a compact subset of PA and is 
certainly contained in 

M L ~ ~ - N ( ^ - N ;  
w 

for some compact subset of N(p)A. 
w 

Let Y'v be the set of all elements in NWp such that 

p-lv1,q E C;. Â  . 
7\i is finite. The union over all Ŝ 7y and 3:- of the sets v:lO-lC'h 
is compact and is certainly contained in 

M:. N; Ĉ  ~ ( p ) ;  

for some compact subset 6 of N(p): .  Let 7\- be the finite set of elements 

v2 e N ( p ) i  such that 

p-^pT^ â C^ N(/ t ) l  . 
Then the finite set 

Y,I.Y;T.Y; 

contains a set of representatives of our collection F of cosets. 

Let us now deal with the singular term. The integral 

is bounded by 

The function f is compactly supported on GA/ZL so by Lemma 5.2 the sum 
over p  is finite. 

For any p e  {M.}, G ( p )  is a reductive group defined over F. G ( p )  
contains A, but since p  lies in M,, A is not contained in the center of G(p) .  
Therefore the 8'-split component of the radical of G ( p )  is Z .  In particular, 
the volume of G(p)A/G(p)FZ2 with respect to the Tamagawa measure on 
G ( p )  is the quotient of r (G(p) )  and FftG, the correction factor introduced in 
our discussion of the elliptic term. 

The integral (5.1) equals 

I t  follows from Lemma 5.3 that for a fixed p  the function on PA/P(v)^ 
defined by 
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is of compact support. We conclude that the singular term is integrable 
over GA/GFZa.  Its integral equals 

6. The first parabolic term 

The first parabolic term equals 

In this section we shall prove that this term is weakly integrable over 
G J G f Z a  and that its integral approaches 0 as e  approaches 0. 

J^f: a;: e) equals 

Now 

Therefore J ^ ( f :  x: e) equals 

E p e  lvTl(n~ TI)-' E a e G F , l f [ / i ) F  / (d,&~~)'/ ( x O )  . 
For , Ã §  {M?}, the group N ( p )  is trivial. I t  follows from Lemma 4.2 that 
JF( f :  x: e) equals 

= e  111~t ("P J I ) 'ES e ~ ~ , ~ ~  [ / i )F~TFEue~F f ( x W 1 x l ) ~ ~ ( ~  

Now J F ( f :  a;: e) equals the difference between 

(6.1) Z ^ t V e  ( V g l  (n!' l f ) l ~ S e G F / P I P ) F Z ^ i â ‚ ¬ . M / i  f  (d@- 'x^Y/Ax8)  

and 

(6.2) Eft. ,iISl \"'r l f ) - ^ l s . ~ r l ~ i . ! f ! ~  f (xdpc-lx-l)'/ (x8) . 
The integral over GJGFZ:  of the absolute value of (6.2) is bounded by 
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which we may write as the product of 

with 

I t  follows directly from Lemmas 5.2 and 5.3 that this last expression is 
finite. The integral 

is obviously finite and approaches 0 as e approaches 0. 
By Lemmas 4.1 and 4.2 the term (6.1) equals 

Since {M,.} U {MJ is a set of representatives of the conjugacy classes in Mp, 
we have shown that 

J ^ f :  x: e) + W: x: e) 

and an expression whose integral over G4/GFZ: approaches 0 as e ap- 
proaches 0. 

The space it4 is a locally compact abelian group under addition which 
contains v.r as a discrete subgroup. Let X. be the unitary dual group of 
n4 and let X p  be the subgroup of characters in X4 which are trivial on nF. 

Let 1 1  - 11 be the height function on XA associated to some fixed basis of 
XF.  I t  is easy to verify that there is an N such that 

For f e Xi and t e R, define 

y(Y) = E(Ad (ht) Y )  , Yen.. 

I t  is clear that there is a number d > 0 such that if f is primitive and t a, 
y \ \  2 edtllEll . 

For fixed y e GA and p e MF the function 
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f (Y - ,u exp Y-') , 
is of Schwartz-Bruhat type on IT.&. For f e XA, define 

Yen .  

Then by the Poisson summation formula, 

If we sum the absolute value of (6.5) over p e Mr and 8 e GF/PF, and 
then integrate over G.JGFZ2, the result is bounded by 

If a) is a relatively compact fundamental domain for P /̂Pr in PA, this 
integral equals 

We may assume that hta)h;' is contained in a) for every t <: 0. Then the 
above integral is bounded by 

Notice that 

T(6, p, h h t )  = e-2s0tT(f-t, fit, kv) . 
Keep in mind that T(-, /t, kv) is the Fourier transform of a Schwartz-Bruhat 
function and is continuous in kv. We observe by a slight restatement of 
Lemma 5.2 that there are only finitely many p e M such that 

T(f,  p, kv) # 0 

for some f e XA and some kve K x a). Therefore, for any N there is a 
constant rlv such that for any primitive f e XA, 

~ c . , f F  P, )̂ < :  9 k v e K x a ) .  

I t  follows that for every N, (6.6) is bounded by 
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which is in turn majorized by 

For sufficiently large N this last expression is finite and approaches 0 as e 
approaches 0. 

If we sum (6.4) over /a and 8 we arrive a t  the expression 

(6.7) f̂ie s r F E 8  e G ~ / P ~  TO P, &)x~(xÂ¤ 

For fixed x there are only finitely many 8 E G& such that xc(x8) + 0. 
Therefore the inner sum is finite. From this fact it is easily seen that the 
outer sum is also finite. 

To summarize what we have shown so far,  the expression 

equals the sum of (6.7) and a function whose integral over G^/GpZL ap- 
proaches 0 as e approaches 0. The function (6.7) is not integrable. We leave 
it for the moment. 

In the first parabolic term we still have to consider the contribution 
from - K'(f: x: e). The function K'( f :  x: e) equals 

We may formally write this expression as the sum of the following four 
terms: 
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In  order to  justify this step we need t o  prove the  following, 

LEMMA 6.1. F o r  a n y  y e  Gi the  expressions  

a n d  

a r e  a l l  finite. 

Proof.  Fix a positive integer n and an  imaginary number z. It is 
clear that  the  function 

R(n: z: f :  Y ,  4 = (* f)i,ft)(~)^o , 
which is continuous in y and v ,  is the  kernel of the  restriction of x ( z :  f )  t o  
3C(n).  Therefore, if we define ' f  and y a s  in the  proof of Theorem 3.2, t h e  
absolute value 

I R(n: 2: f :  Y ,  Y )  I 
is bounded by 

I R(n: z:  \fÂ¥ y, y )  1'1' 1 R(n: z: lfÂ¥ y, y )  \ ' I 2  . 
By Schwartz' inequality we need only show tha t  (6.12) is finite when f is 
replaced by Y. 

Now 

Therefore, for  every N, 

I;;=. I R ( n :  2: 'f: Y ,  Y )  I 
is bounded by the  function P ( z :  'f: y, y )  defined in 3 2. It follows tha t  the  
series 
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R ( n :  z: Y: y, v )  

is absolutely convergent and defines a function R ( z :  lf: y, v )  which is the 
kernel of ~ ( z :  l f ) .  By an argument similar to that used in the proof of 
Lemma 3.7, R ( z :  1/: y, v )  is continuous in y and v separately. Therefore, as 
we remarked in 3 2, R ( z :  1/: y, v )  equals P ( z :  1/: y, v )  for all y and v .  The 
formula for P ( z :  'Â¥f y, y) is given in 5 2. It is clear that the integral 

is finite. Therefore the expression (6.12) is finite. 
For any z and n, the set 

{M(z)pf}^ 1% 

is an orthonormal basis for X(n) .  It follows that the function 

is the kernel of the restriction of n ( - z :  f )  to X(n) .  The finiteness of (6.13) 
follows by the above argument. 

The function 

(6.16) E.. (M(z)@: f ) ^ ){~)^(v)  

is the kernel of the restriction of M(z)n(z :  f )  to X(n) .  We recall that 
~ ( z :  f )  = z ( z :  f  ' ) ~ ( z :  f  "). We have 

M{/-)z(z: f ' ) (M(z )n(z :  f t ) ) *  = M ( z ) ~ ( z :  f ' ) n ( z :  ( f ' )* )M(z) - I  
= M(z)n(z :  f l M ( z ) - '  = K ( - Z :  l f )  . 

Therefore the absolute value of the function (6.16) a t  v = y is bounded by 

I R ( n :  - z: lfÂ¥ y, y) \ ' I 2 .  1 R ( n :  z: 2/:  y,  y )  \112 . 
I t  follows that (6.14) is finite. Similarly (6.15) is also finite. 0 

The term (6.8) equals 

for all a". This expression is just 

which in turn can be written as 

by the Fourier inversion formula. Similarly, the term (6.9) equals 
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for all x .  This expression also equals (6.17). 
Therefore, the contribution to - K ' ( f :  x: e) from the terms (6.8) and (6.9) 

is the product of (6.17) with ( -2 ) .  The result exactly cancels out the term 
(6.7). 

LEMMA 6.2. The funct ions defined by  (6.10) and  (6.11) are weakly 
integrable over GJGpZ2, and  their  integrals  approach 0 a s  e approaches 0. 

Proof. I t  is easily seen from the proof of the last lemma that these 
functions are locally integrable. Let c be any positive number smaller than 
en and let h(x )  be the function on GJGFZL defined by (6.10). Then 

equals 

Our use of Fubini's theorem is justified by the compactness of K and 
P*. By Assumption 3.5 and the proof of Lemma 3.4 the function 

is zero for all but finitely many B E  I. 
Therefore, in the above integral over z, we can change the contour to 

a line {z: Re z = a}, for 8 < 0.  The assertions of the lemma for the function 
(6.10) follow immediately. The result for (6.11) is proved the same way. 0 

This lemma accounts for the last of the components in the first 
parabolic term We have completed the proof promised a t  the beginning 
of this section. 

7. The second parabolic term 

The second parabolic term equals the sum of I F ( f :  x: e) and I s p ( f :  x:  e).  
In this section we shall prove that both these functions are integrable over 
GJGFZ^,. We shall then calculate their integrals. 

The function I ^ f :  x :  e) equals 

The integral 
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is bounded by the expression 

which may be written as 

2 
r I f (kpup-'k-^ I 'E?â‚¬,V (n?3..f)-11K , T f ( p ) F A L  -- 

.(I - X â ‚ ¬ O ^  - 7^(phtw))dt drp dl? - 
For any p e Mp let rf,.II be the index in X ( M ( P ) ) ~  of the group obtained 

by restricting the characters in X(M)p  to M(p).  We define 

?(^, M )  = (n?,.Tr)-l-  (I\.Tr)-'. ̂ (M(,u)) - 
The above integral becomes 

By Lemma 5.2 the sum over p is finite. Since the function 

has compact support on PA/Z2, the integral over PÃˆ/M(v) can be taken 
over a compact set, by Lemma 5.3. Finally, it is clear that for any p the 
function 

t - 1 - xs(pht) - xs(phtw) 7 t e c - w ,  a ) ,  

has compact support. Therefore I f ( f :  x: e) is integrable over GA/GpZ^,. Its 
integral equals 

w 

- ( (1  - Â¥/,,(knmht - y,,(knmhtw))dt d m  d n  dll . 
- w 

For fixed m and n, 

(1  - '/^(llnmht) - ̂ (knmhtw)) 

is the characteristic function of the interval 

[loge - H(m),  H(nw)  - loge - H(m)]  
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Our integral is therefore the sum of 

and 

After changing the variable of integration on NA we may appeal to Lemma 
4.4, rewriting (7.2) as 

This in turn equals 

which is the same as 

We now consider the function I:(f: x: 6). Our discussion will include 
integrals over the groups P(f-t\ and P(p)A, for elements p in {Ms}.  We note 
that according to our understanding on the choice of Haar measures, the 
product measure on P(u}\ x At is a multiple of our right Haar measure on 
PWA by r,,.y. Define 

~pw(p)  = e 2 P ( P ) H ( p )  P e P(,U)A , 
to be the modular function of P(p)A. 

LEMMA 7.1. For p e {M.} and # ? C:(PA), 

where d p *  is the invariant measure on PA/P(p)A defined by our Haar 
measures on Pi and P(p)\. 
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Proof. 

\ I I p ( f : ~ : e ) \ d x  
~ , A / G F z L  

is bounded by 

This expression can be written as 

*(I - X ~ ( P ) ) ~ P ( P ) ~ ~ P  dk , 
which by the last lemma equals 

By Lemma 5.3 the integral over PA/P(/i}\ can be taken over a compact 
subset Cl of PA/P(p)A or equivalently, over a fixed compact set C(p) of 
representatives of Cl in Pi. 

For p e {Ma}  and n e N(p)A, define Op( f :  n)  to be 

The support, U(p), of this function is a compact subset of N(&. The ex- 
pression (7.4) equals 

Let w(^} be a relatively compact set of representatives of P(p);,P(p)y in 
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P ( p ) i .  We can choose a positive number to large enough so that the inter- 
section of the set 

{v-'h;'. n. h t v :  v E ~ ( p ) ?  t 2 to? n E U ( p ) }  

with N(p)F is just {e} .  Then our integral equals 

It follows that IF( f :  x :  c) is integrable over GA/GFZ2.  

For any z E C we define 16(z) to be 

LEMMA 7.2. F o r  a n y  z~ C the  i n t e g r a l  d e f i n i n g  Ie(z )  i s  absolute ly  
convergent .  I t ( z )  i s  a n  e n t i r e  f u n c t i o n  whose v a l u e  a t  z = 0 equals  
i n t e g r a l  

Proof .  All statements of the lemma are obvious conseqences of 
above discussion. 

t he  

the 

It remains to calculate 16(0).  Specifically, we shall express It(0) as a 
sum of an expression which is independent of c, and a term whose de- 
pendence on c is quite transparent. The idea? which we take from [7]? is to 
replace the integral over {t 2 log c} which appears in the definition of I&(z)  
by the difference of an integral over R and an integral over {t 5 log E } .  

Fix p~ {Ma} .  Let X(p)A be the unitary dual group of n(plA and let 
X(p)F be those characters in X(p)A which are trivial on ~ ( p ) ~ .  For any 
p E P (p lA  and t E X(p)A define 

By the Poisson summation formula? 

By choosing a height function on X(p)A we can repeat the argument of 
$ 6  to show that for any z E C the expression 
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is finite and approaches 0 as E approaches 0. 
The integral 

is absolutely convergent for Re z  > -1. I t  equals 

At z  = 0 this function approaches 0 as E approaches 0. 

Finally, the integral 

is absolutely convergent for Re z  > 0. I t  equals 

For Re z > 0 we define g(p:  z: f )  to be 

LEMMA 7.3. The  in tegra l  de f in ing  g(p:  z: f )  i s  absolutely convergent 
f o ~  Re z  > 0. I t  c a n  be analy t ica l ly  continued to a rnerornorphic f unc t i on  
o n  C whose o n l y  s i n g u l a ~ i t < e s  are  s imple  poles a t  z = 0 uwd z = -1. 
F i n a l l y ,  modulo a t e r m  which  approaches 0 a s  E approaches 0, I t (0 )  equals 
the l i m i t  a s  z  approaches 0 of 

Proof. This lemma follows from the above discussion and Lemma 

The constant term of the Laurent expansion about z  = 0 of the function 

we write simply as 

The constant term of the Laurent expansion of 
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It is clear that  
" 

equals 

If we write the integral over P i / P ( p ) i  as an iterated integral over 
P;/P(p);N* and P(p) iN* /P(p ) i  we arrive a t  the expression 

by virtue of Lemmas 4.1 and 4.4. It follows that (7.7) may be written as 

which is the same as 

Our discussion of the second parabolic term is now complete. We have 
shown that the integral over GA/GFZz of this term equals the sum of the 
expressions (7.1) and (7.6), the term 

obtained by combining (7.8) with (7.3), and an expression which approaches 
0 as & approaches 0. 

8. The third parabolic term 

We have proved that the first four terms in the kernel of h o ( f )  are 
weakly integrable. It follows that the final term, - K 1 ' ( f :  x: &), is also 
weakly integrable over GA/GFZ2. In this section we shall calculate its 
integral. 

For convenience we set H ( n :  2:  f: x )  equal to 
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We also define Hi(%: z: f :  x )  and H:'(n: z: fi x )  by replacing all the functions 
E ( 4 :  z: x )  in this definition by Es1(*: z: x )  and E!'($ z: x )  respectively. Then 
Kt ' (  f :  x: c) equals 

By Theorem 3.2 and Lemma 4.8 we can associate to any Siege1 domain g 
constants C and N such that for a11 x E i3 the inequality 

is valid. - 
For 0 < t < co let S ( t )  be the projection of S ( t )  onto GJGJ.2. Let G( t )  - 

be the closure of the complement of S ( t )  in GA/GFZL. G( t )  is a compact 
subset of GA/GFZz and our integral 

equals 

By (8.1) and F'ubini's theorem this second expression equals 

The integrand is the sum of 

Htr'(n: z: f :  s) 

and 

LEMMA 8.1. FOY a n y  a, B E  I, 

Proof. By Lemma 1.4, 

Ec'(4p: 2: $) = Ep(+$: 2: x )  

whenever x E S(c) .  Since E(*$: z: x )  is an automorphic form, EZ1'(@$: z: x )  is 
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rapidly decreasing on any Siegel domainl by Lemma 1.6. But E:(oe: z: x )  is 
slowly increasing on any Siegel domainl so that the function 

E:(oe: z: x)Es 'r($p:  z: x )  

is integrable over GA/GFZ:. Its integral equals 

which in turn can be written * 

The expression in the brackets equals zero identically in x. 
On the other hand, since t < E ~ ,  the integral 

equals 

1 EP(oe: z: z: x )x t (x )dx  , 
. S [ t )  

by Lemma 1.4. This second integral is equal to 

- 
an expression which equals 0. Since G ( t )  is the complement of S ( t )  in 
GA/GFZzl  our lemma follows. 

It follows from the lemma that (8.2) equals 

is finite. 

P~oof. The proof folIows the same idea as that of Theorem 3.2. For 
and as in the proof of Theorem 3.Z1 we can easily see that when z is 

imaginary 

1  H:'(n:  z: f :  x) 1  
is bounded by 

1 H:'(n: z: lj? x )  1 1 / 2 -  1  Hi1(%: z: x )  11/' . 
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By Schwartz' inequality we need only prove the lemma when f  is replaced 
by Y. From the fact that the operator ~ ( z :  Y )  is positive semi-definite it 
follows that 

H ' / ( n :  z :  x)^0 . 
On the other hand lf also satisfies Assumption 3.5, so tha t  

by (8.3). It follows that 

which completes the proof. 

This lemma enables us to conclude that the integral over GJGZ;  of 
- K 1 ' ( f :  x :  e )  equals 

L E M M A  8.3. F o r  a, B e I a n d  z a n o n z e r o  i m a g i m ~ r y  n u m b e r ,  t h e  i n n e r  
product  

i s  the  s u m  of  the  fo l lowing  three  t e r m s :  

(8.6) -2 log e - ( a , ,  0,) , 

a n d  

Proof.  First of all, suppose that  \ and ,G are distinct complex numbers 
whose real parts are both less than -p .  Then it is known that 
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(8.11) ( X  - M(p)&) - & ( A - r ) ( M ( ~ ) & ,  b)} . 
This formula is stated in [8] and proved in [9].  It follows from a straight- 
forward argument, which we will not reproduce, based on the formula (2.2). 

The functions defined by (8.9), (8.10), and (8.11) are all meromorphic in 
X and ,E. We set p equal to z and let approach z. The limit of (8.11) 
equals (8.8). The limit of (8.10) is the limit as t approaches 0 of 

which is the sum of (8.6) and (8.7). On the other hand, the limit of (8.9) 
is the required inner product, so the lemma follows from analytic 
continuation. 

LEMMA 8.4. For  z i m a g i n a r y  the operator 

is self-ad joint.  

Proof. The adjoint of this operator equals 

since z is imaginary. On the other hand 

by virtue of the fact that M(-z)M(z)  equals the identity. 

Let us write n(n: z: f )  for the restriction of the operator ~ ( z :  f )  to 
yC(n). . 

LEMMA 8.5. The integral  

is finite. 

Proof. For any E between 0 and E~ the given integral is bounded by 
the sum of (8.4) and the expression 

together with the integral over the imaginary axis of 
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The expression (8.4) is of course finite by Lemma 8.2. (8.12) is bounded 
by 

where Y and Yare  defined in the proof of Theorem 3.2. A glance a t  Lemma 
2.3 and the formula preceding it confirms that this expression is also finite. 

Finally, by Assumption 3.5 and the proof of Lemma 3.4, the sum over 
6 in (8.13) is finite. For any 6 the function 

is regular a t  z = 0, and is in fact integrable over the imaginary axis. This 
concludes the proof. 

To complete our calculation we substitute each of the three terms of 
Lemma 8.3 into the expression (8.5). The first one yields 

i- logs;-im t r  rk: f )d I 2 1 
which equals 

since our kernel P is continuous. After inserting the formula for P given 
in $ 2  and applying the Fourier inversion formula we obtain 

This expression cancels (7.9). 
The contribution of (8.7) to the formula (8.5) is 

The contribution of (8.8) equals the sum of 

and 

In both these terms the sum over ,6 is finite. As & approaches 0 the first 
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expression approaches 0 by the Riemann-Lebesgue lemma, while the second 
term approaches 

9. Concluding remarks 

Our computation is now complete. We have shown that the trace of 
xo(f) is the sum of a certain number of terms, each of which is independent 
of c, and an expression which approaches 0 as c approaches 0. Since we 
started off by letting e be any number between 0 and co this latter expres- 
sion must vanish. 

The remaining terms are scattered throughout the earlier sections. 
They are  

(i) The elliptic term, 

En ;G, ?(Y, G)( f (x~x-l)dx ; 
G'A/G'(i"A 

(ii) The singular term, 

and 
(iii) The total parabolic term, which is the sum of 

and 

1 - t r  {M(O)z(O: f)} . 
4 

We need hardly remark that our formula is not yet in a reasonable 
form. Considerably more work is required in several directions before we 
might hope to obtain information about the space of cusp forms. 

In the first place we have left the term (9.2) in an unsatisfactory 
state. What is needed is some sort of analysis on the orbit structure of 



SELBERG TRACE FORMULA 385 

P(p) in N ( p ) ,  for elements p in Ms. 
Once (9.2) has been put into a more tractable form we can s ta r t  

analyzing the various terms of the trace formula as distributions on G^. 
In view of Harish-Chandra's work on the Schwartz space, it makes sense 
to ask whether a distribution on any of the local groups Gv is tempered. 
Every term in the trace formula is, in all probability, a linear combination 
of products of tempered distributions on the groups Gv. The problem 
would be to calculate the Fourier transforms of these distributions. 

If v is a place of F, a distribution T, on G, is said to be invariant if 
for any pair of functions f and g in C:(G,) 

The distributions defined by the elliptic and singular terms are  all invariant, 
as are those defined by (9.4). On the other hand, the distributions defined 
by the remaining terms are not invariant. This complicates the problem 
of calculating the Fourier transforms. Of course the sum of the terms 
(9.1), (9.2), and (9.3) defines an invariant linear functional on f. However, 
i t  will not be possible to see how the noninvariant components of these 
terms cancel without calculating the appropriate Fourier transforms. 
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