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Unique continuation for the vacuum Einstein equations.

Spyros Alexakis∗

Abstract

We derive a unique continuation theorem for the vacuum Einstein equations. Our
method of proof utilizes Carleman estimates (most importantly one obtained recently
by Ionescu and Klainerman), but also relies strongly on certain geometric gauge
constructions which make it possible to address this problem via such estimates. We
indicate how our method can be used more broadly to derive unique continuation
for Einstein’s equations from Carleman estimates for the wave operator.

1 Introduction.

The main result of this paper is a unique continuation theorem for the vacuum
Einstein equations across bifurcate horizons. For the reader’s convenience we start
with a rough description of the main theorem: Let (M,g), (M̃ , g̃) be two vacuum
space-times (meaning that Ric(g) = 0, Ric(g̃) = 0), both being the global hyperbolic
developments of space-like hypersurfaces Σ, Σ̃ respectively. Let B, B̃ be topological
open balls in Σ, Σ̃ and denote by F, F̃ the sets of points in M, M̃ respectively that can
be joined to B, B̃ by time-like curves (future-directed or past-directed). The regions
F, F̃ have boundaries which we denote by H, H̃. One can visualize H (resp. H̃) as
the consisting of the (non-smooth) union of two truncated null cones: One truncated
cone emanates from ∂B (resp. ∂B̃) towards the future and the other truncated cone
emanates from ∂B (resp. ∂B̃) towards the past. The region F (resp. F̃ ) can be
thought of as the “inside” of H (resp. H̃); the region M \ F (resp. M̃ \ F̃ ) can be
thought of as the “outside” of H (resp. H̃). In simple language, we then prove that
if the “insides” (F,g), (F̃ , g̃) are isometric then two open subsets of the “outsides”
(M \ F,g), (M̃ \ F̃ , g̃) must also be isometric.

Unique continuation problems for PDEs have a long history, see [5] for a general
discussion. However, such results for geometric equations (typically equations in
the curvature) have only received attention recently (see [1] where Biquard derived
unique continuation results for Einstein metrics of Riemannian signature). Such
theorems are often proven using Carleman-type estimates and indeed we will follow
this approach in the present paper. The relevant Carleman estimate that we use
comes from a recent paper of Ionescu and Klainerman [3].

In the rest of this introduction we state Theorem 1.1 in detail, and make some
remarks on certain extensions of this result that can be derived by a straightforward
modification of the proof (see Theorem 1.2). We then briefly outline some of the
arguments in the proof of Theorem 1.1. In section 2 we prove Theorem 1.1. For
completeness, in section 3 we present a derivation of the result of Theorem 1.1 under
a minimal set of hypotheses. It is worth noting the analogy of the calculations in
section 3 with the ones of Rendall in [4].

The main result: Our theorem deals with vacuum space-times which are max-
imal developments of incomplete initial data sets: We will be interested in C4 space-
times (M,g) which admit a Caucy hypersurface Σ0 ⊂ M where (Σ0,g) is a C4-
Riemannian manifold with boundary, ∂Σ0 = S is topologically a 2-sphere and g
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extends in a C4-fashion to ∂Σ0. It follows that in a small relatively open neighbor-
hood of S, M will have a boundary H consisting of the union of two null hypersurfaces
H+ and H− each of which is ruled by null geodesic rays, so that H+ and H− inter-
sect transversely at S. These two future and past horizons H+,H− are thus each
diffeomorphic to S

2 × [0,∞) and the metric g restricted to H+,H− is degenerate.
Following [3] we call S the bifurcate sphere and the union H+

⋃H− the bifurcate
horizon.

Our main theorem is then the following:

Theorem 1.1. Let (M,g), (M̃, g̃) be two vacuum space-times (Ric(g) = 0 and
Ric(g̃) = 0) as described above. Denote by S, S̃ their bifurcate spheres and by
H+

⋃H−, H̃+
⋃ H̃− their bifurcate horizons.

Assume that there exist points P ∈ S, P̃ ∈ S̃ and relatively open sets Ω ⊂ M, Ω̃ ⊂
M̃ with P ∈ Ω, P̃ ∈ Ω̃ containing S, S̃, and a diffeomorphism Φ : Ω → Ω̃ so that
g − Φ∗g̃ vanishes to third order on (H+

⋃H−)
⋂

Ω.1 Then the metrics g, g̃ are
isometric in some relatively open neighborhoods of P, P̃ in M, M̃ .

Remark 1: It turns out that the above result can be derived under substantially
weaker hypotheses on the diffeomorphism Φ: We will show in section 3 that it suffices
to only assume that the induced conformal structures of the horizons H, H̃ agree
near P, P̃ , along with certain requirements on the metrics g, g̃ restricted to the
spheres S

⋂
Ω, S̃

⋂
Ω̃. This will essentially follow by a careful analysis of the Einstein

equations on characteristic hypersurfaces, and is in complete analogy with [4].
Remark 2: We note that our methods can actually show the following extension

of the above: Assume that H+,H− are future/past-complete and also that the metric
g satisfies certain C1 bounds near the horizon H+

⋃H− (in the interest of brevity we
will not make this statement more precise); then if there exists a diffeomorphism Φ :
M → M̃ for which g−Φ∗g̃ vanishes to third order on the entire horizon H+

⋃H−, the
space-times (M,g), (M̃, g̃) will be isometric in open neighborhoods of the horizons
H+

⋃
H−. We will make a remark further down to point out why this is true.

Remark 3: In fact, the method we introduce to show Theorem 1.1 can be ap-
plied more widely to show unique continuation across other types of hypersurfaces;
we indicate how it can be readily adapted to prove unique continuation for the
vacuum Einstein equations across any smooth time-like hypersurface H, provided
Hörmander’s strong pseudo-convexity condition holds for H: The notion of strong
pseudo-convexity is defined for very general classes of operators (see the discussion
in [5]), but for simplicity we will explain it only for the wave operator across a smooth
time-like surface H: Consider a Lorentzian manifold (M,g) (with an associated wave
operator ✷g) and a smooth time-like hypersurface H ⊂ M which divides M into re-
gions M+, M−. We then say that M− is strongly pseudo-convex with respect to the
wave operator ✷g (or equivalently with respect to the metric g) near P ∈ H if there
exists an open neighborhood Ω of P so that every null geodesic in Ω which is tangent
to H at some point P ′ ∈ Ω

⋂H lies entirely in M+, and it only touches H at P ′,
with first order of contact.

The next theorem can be proven by a straightforward adaptation of the method
of proof of Theorem 1.1:

Theorem 1.2. Let g, g̃ be two C4 Lorentzian metrics defined over a domain Ω ⊂ R
4

satisfying the vacuum Einstein equations: Ric(g) = 0, Ric(g̃) = 0. Let H be a smooth
time-like hypersurface which divides Ω into two subdomains Ω1, Ω2, and assume that
g = g̃ in Ω2; assume also that Ω1 satisfies the strong pseudo-convexity condition with
respect to the metric g at P ∈ H. Then g, g̃ are isometric in some relatively open
neighborhoods of P into Ω1.

Remark 4: In the proof of Theorem 1.1 we introduce a general method which uses
Carleman Estimates for the wave operator to derive unique continuation for solutions

1By this we mean that the tensor g−Φ∗g̃ and all its first and second derivatives vanish on H+
S

H−.
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of the vacuum Einstein equations. Thus, Theorem 1.2 essentially follows by applying
this technique to the classical Carleman estimate of Hörmander (see Theorem 4 in
[5], or section 28 in [2] for more details). We will highlight (using separate remarks)
along the course of the proof of Theorem 1.1 the instances where the arguments must
be slightly altered in order to derive Theorem 1.2.

Discussion of the Proof of Theorem 1.1: There are several interesting as-
pects of applying a Carleman-type estimate for wave operators to solutions of Ein-
stein’s equations in vacuum; in particular, the geometric nature of the equations
comes starkly into play.

Clearly, in order to reduce the problem to applying a Carleman estimate we must
fix a “canonical” gauge in which to express the two metrics g, g̃ and then to use the
Einstein equations to derive a PDE on the difference of the two metrics. The problem
is then reduced to showing that this difference must vanish in an open neighborhood
of the bifurcate sphere by applying the Carleman estimate to this PDE.

Now, the Ricci curvature is a (non-linear) second order partial differential op-
erator acting on the metric; in wave coordinates the Ricci curvature has the wave
operator as its principal symbol. One would therefore ideally wish to fix the gauge by
picking wave coordinates for g, g̃ and then subtracting the corresponding equations
Ric(g) = 0, Ric(g̃) = 0. However this is not possible: Finding wave coordinates in
this setting is equivalent to solving a hyperbolic PDE which is ill-posed (in the sense
that it does not have a solution in general). Therefore a different choice of gauge
must be made, and also a way of circumventing the fact that the principle symbol of
the Ricci operator will not be the wave operator must be found.

Our remedy to these problems is to introduce double Fermi coordinates and to
work with a wave equation for the curvature tensors R, R̃ of the metrics g, g̃: ✷gR =

R ∗ R, ✷g̃R̃ = R̃ ∗ R̃.2 Double Fermi coordinates are constructed by considering a
particular null vector field V on H+ (obtained through parallel transport along the
null generators of H+) that points into M , and then constructing the (arc-length
parametrized) null geodesics that emanate from this vector field V . This choice of
gauge induces a canonical diffeomorphism Ψ between the space-times (M,g), (M̃ , g̃)
(locally near P, P̃ ) which reduces the problem to comparing the metrics g, Ψ∗g̃ over
M . We then subtract the two wave equations above and derive a wave equation,
(2.7), for the difference Tabcd of the curvature tensors Rabcd, R̃abcd of the metrics
g, Ψ∗g̃. However this equation (2.7) also includes terms involving the difference dab

of the two metrics g, Ψ∗g̃, the difference Gab,c of their connection coefficients,3 and
also the derivatives of Gab,c.

The problem then reduces to controlling the weighted L2-norms of these extra
terms by the weighted L2-norms of the terms T, ∂T and ✷T. Now, in the double
Fermi coordinates we have constructed, the metric is related to the curvature via an
ODE, (2.1). This allows us to control the weighted L2-norms of d and G in (2.13)
by weighted L2-norms of T and ∂T, which can then be absorbed into the Carleman
inequality (2.12). However, the equation (2.7) also contains certain “bad terms” in-
volving derivatives of Gab,c; in this setting a straightforward application of the ODE
relation would not allow us to control the norm of these terms by the norms of the
terms T, ∂T and ✷T. At this point we make use of the precise algebraic form of the
“bad terms” (two indices are traced) and another special property of our coordinate
system; in particular in double Fermi coordinates, the “bad terms” involve no second
derivatives of d in certain “bad directions”. This fact, coupled with standard elliptic
estimates on the level sets of the Carleman weight function fǫ and the algebraic iden-
tities of the curvature tensor, allow us to controll the weighted L2-norm of the “bad
terms” by quantities which are allowed in our Carleman estimate. This enables us to
close up the argument and derive that T = 0 (and then d = 0) from our Carleman

2These equations follow from the equation Ric = 0 via the Bianchi identities.
3I.e. the difference of their Christoffel symbols Γab,c, Γ̃ab,c.
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inequality by a standard argument (see [2] or [5]).

We now introduce some notational conventions.
Conventions: We wish to introduce a dichotomy between smooth tensor fields

defined over M, M̃ and the components of these smooth tensor fields. We will de-
note abstract tensor fields with bold letters e. g. A,B or if we wish to designate
their type or the position of their indices we will also include the indices: e. g. Aβ

α

is a (1, 1)-tensor field and Bαβ
γ is a (1, 2)-tensor field. On the other hand, once

we have constructed a frame field (say X0, X1, X2, X3) for our manifold below we
will denote by Ab

a or Bab
c the components of the above tensor fields with respect

to this frame. For example, g12 will stand for the component of the metric tensor
(which is a (0, 2)-tensor–with lower indices) evaluated for the vectors X1, X2; in
other words g12 = g(X1, X2).4 Furthermore, throughout the next section, we will
have many generic tensor fields appearing as coefficients in equations below (e.g. the
term L′yu

ab dyu in (2.3)); unless stated otherwise, these will be C2-tensor fields over
Ω. Also, unless we explicitly write out a different summation of indices, repeated
upper and lower indices (as in L′yu

ab in (2.3)) will mean that we apply the Einstein
summation convention and sum over all values 1, 2, 3, 4, 1, 2, 3, 4 that we can give
those indices. Finally, we introduce the convention that in section 2 all estimates
involving the parameter λ will hold for λ large enough, and all constants appearing
in the estimates will be independent of λ.

I am grateful to Mihalis Dafermos, Sergiu Klainerman, Alex Ionescu and Igor
Rodnianski for helpful conversations.

2 The proof of Theorem 1.1.

2.1 Double Fermi coordinates and a PDE-ODE system.

We will explicitly construct the desired (local, near P, P̃ ) isometry Ψ between (M,g)
and (M̃, g̃). In order to do this, we firstly construct a useful set of coordinates outside
the bifurcate horizon H+

⋃H−.
Consider the sphere S in (M,g) and let Ω be a small relatively open neighborhood

of P ∈ S; pick a pair of null vector fields U, V on S with the following two properties:
Firstly, U is future-directed and tangent to H+ and V is past-directed and tangent
to H−. Secondly, g(U, V ) = 1 on all of S

⋂
Ω. Now, consider the affine-parametrized

null geodesics emanating from U (these will correspond to the null generators of H+);
for each A ∈ S we denote by lA the null geodesic that thus emanates from P . Notice
that given any coordinate system defined on S

⋂
Ω, Y : S

⋂
Ω → R

2, we obtain a
coordinate system Y ′ : H+

⋂
Ω → R

2 × [0, 1).
Next, we parallel-transport the vectors V along the null geodesics lA: Thus,

for each point Q ∈ H+
⋂

Ω we obtain a past-directed outward pointing null vector
VQ. Finally, consider the (affine-parametrized) null geodesics emanating from the
vectors VQ. We have thus obtained a coordinate system of the form Y ′′ : Ω′ →
R

2× [0, 1)× [0, δ0), where Ω′ is some relatively open neighborhood of P in the space-
time M .5

Definition 2.1. For any space-time (M,g) as in the hypothesis of Theorem 1.1 we
call a system of coordinates as above “double Fermi coordinates”.

We now consider the vector fields Ũ , Ṽ in M̃ where Ũ = Φ∗U, Ṽ = Φ∗V and also
the coordinate system Ỹ = Y◦Φ−1 : S̃

⋂
Ω̃ → R

2. We perform the same construction
as above (for δ0 small enough) for the space-time M̃ , obtaining a new coordinate

4In fact in most cases below the frame fields we will construct will be the coordinate vector fields
defined by a system of coordinates.

5By slight abuse of notation we will denote Ω′ by Ω again.
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system Ỹ : Ω̃ → R
2 × [0, 1)× [0, δ0), where Ω̃ is a relatively open neighborhood of P̃

in the space-time M̃ . Consider the map Ψ : Ω → Ω̃ defined by the formula:

Ψ = Ỹ−1 ◦ Y.

Let us pull back the metric g̃ to M via this map: We define g′ = Ψ∗g̃. We will
show that g′ = g in an open neighborhood of P ∈ S. That will prove our claim.

Two remarks are in order here: Firstly, in view of the freedom of picking the
vector fields U, V over S (in particular since we are only imposing the requirement
g(U, V ) = 1, we could just as well replace these vector fields by τU, 1

τ
V ) our argument

below can be used to show that if there is a map Φ : M −→ M̃ for which g−Φ∗g̃ van-
ishes up to second order on all of H+

⋃
H−, then (M,g), (M̃, g̃) are isometric in an

open neighborhood of the whole horizon H+
⋃H−–the C1-bounds on g mentioned in

Remark 2 serve to ensure that the constant ǫ below can be picked independently of τ .

Now, we wish to study the components of the metrics g,g′ with respect to the
coordinate system over M that we have constructed.

Let x1, x2 be coordinate functions on S, defined near P ∈ S such that x1(P ) =
x2(P ) = 0; let x3 be the coordinate on H+ defined by the null geodesics emanating
from the vectors UP through the equation ∇ ∂

∂x3

∂
∂x3 = 0. Thus we have coordinates

x1, x2, x3 defined on H+, near P . Now consider the coordinate x0 in Ω defined by the
null geodesics emanating in the direction of VQ through the equation ∇ ∂

∂x0

∂
∂x0 = 0.

Thus we obtain coordinates x0, x1, x2, x3 in the open set Ω.
Consider the metric gab (where the lower indices can take values 0, 1, 2, 3 that

correspond to the above coordinate system). Given the equation ∇ ∂

∂x0

∂
∂x0 = 0 we

derive the equations: ∂0g0a = 0 for a = 0, 1, 2, 3. Thus for every point in Ω we get:
g00 = 0, g01 = 0, g02 = 0, g03 = 1. Analogously we derive that g′00 = 0, g′01 = 0, g′02 =
0, g′03 = 1.

Now, denote by Γab,c = 1
2 [∂agbc + ∂bgac − ∂cgab], Γ′

ab,c = 1
2 [∂ag

′
bc + ∂bg

′
ac − ∂cg

′
ab]

the Chiristoffel symbols of the metrics g, g′ in the coordinates of M that we have
constructed. Consider also the curvature tensors Rabcd, R

′
abcd (with 4 lower indices)

of the metrics g, g′ and also the Levi-Civita connections ∇,∇′ of the metrics g, g′.
We define the tensors d,T,G,D through the equations:6

dab = gab − g′ab, Tabcd = Rabcd − R′
abcd, Gab,c = Γab,c − Γ′

ab,c, Dab = ∂sGta,bg
st.

We will prove that in some open neighborhood Ω′ of S, Tabcd = 0 and dab = 0.
That will prove our theorem.

Our next goal is to derive a system of equations (both PDEs and ODEs) in the
tensors above.

Consider the components R0ab0, R
′
0ab0 of the curvature tensors for g, g′. By the

definition of curvature tensor we derive that in the double Fermi coordinates:

R0ab0 =
1

2
∂

(2)
00 gab +

1

4
∂0gas∂0gtbg

st, (2.1)

R′
0ab0 =

1

2
∂

(2)
00 g′ab +

1

4
∂0g

′
as∂0g

′
tbg

′st. (2.2)

Subtracting the above two equations we derive:

T0ab0 =
1

2
∂

(2)
00 dab + Lyuab∂0dyu + L′yu

ab dyu. (2.3)

6Note that a tensor is specified by specifying its components relative to a frame.
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Now, consider the two equations:

✷gR = R ∗ R, ✷g′R′ = R′ ∗ R′. (2.4)

We are going to subtract these two equations. We introduce some notation first;
We let ✷̃g be the “rough wave operator”: gab∂a∂b which acts on scalar-valued func-
tions. We also note that gab−g′ab = −gasdstg

′tb. Then, subtracting the two equations
in (2.4) we derive an equation which hold for any values a, b, c, d = 0, 1, 2, 3:

✷̃gTabcd = F yuvx
abcd Tyuvx + F ′yuvxb

abcd ∂bTyuvx + F ′′yu
abcddyu + F ′′′yuv

abcd ∂vdyu + F ′′′′yu
abcd Dyu.

(here the tensor fields F ′′, F ′′′ are C1, C0 respectively).
To derive the next set of equations, we will break the tensor Dab into the

symmetric part D(ab) (D(ab) = 1
2 [Dab + Dba]) and the antisymmetric part D[ab]

(D[ab] = 1
2 [Dab − Dba]). By the definition of the Christoffel symbols we see that

D(ab) equals: D(ab) = − 1
2 ✷̃gdab.

On the other hand we calculate: D[ab] = 1
2 [∂

(2)
sa dtb− ∂

(2)
sb dsa]g

st. Now, in order to
derive an equation on D[ab] we consider the equations: ∇sR0sab = 0, ∇′sR′

0sab = 0
and we subtract them. We derive an equation:

gst[∂s0adtb−∂s0bdta] = Cyu
ab dyu+C′yuv

ab ∂yduv+C′′yuvx
ab Tyuvx+C′′′yu

ab Dyu+C′′′′yuv∂0vdyu.
(2.5)

In fact, we observe that because of the form of the metric gab (with lower indices)
we must have g3a = ga3 = 0 for a = 1, 2, 3 and g03 = g30 = 1, therefore the above
gives us an equation:

∂0D[ab] = Cyu
ab dyu+C′yuv

ab ∂yduv+Cyuvx
ab Tyuvx+C′′′yu

ab Dyu+C′′′′yuv
ab ∂0vdyu+

2∑

i,j=1

cij∂iGj[a,b].

(2.6)
Thus our system of equations is as follows:

✷̃gTabcd = F yuvx
abcd Tyuvx + F yuvxb

abcd ∂bTyuvx (2.7)

+F yu
abcddyu + F yuv

abcd∂yduv + F yu
abcdDyu,

T0ab0 = 1
2∂

(2)
00 dab + Lyuab ∂0dyu + L′yu

ab dyu, (2.8)

Gab,c = 1
2 [∂adbc + ∂bdac − ∂cdab], Dab = gst∂sGta,b, (2.9)

D(ab) = − 1
2 ✷̃gdab, (2.10)

∂0D[ab] = Cyu
ab dyu + Cyuv

ab ∂yduv (2.11)

+Cyuvx
ab Tyuvx + C′yu

ab Dyu + C′yuv
ab ∂

(2)
0v dyu +

∑2
i,j=1 cij∂iGj[a,b].

Remark 5: The analogue of the double Fermi coordinates in the setting of Theo-
rem 1.2 is as follows: In this case we can pick a hypersurface S ⊂ Ω2 which touches
H to first order at P , and which is still strongly pseudo-convex. We then (locally
near P ∈ S) pick coordinates x1, x2, x3 on S, such that x3 is a time-like direction
and x1, x2 are space-like. Finally, we let ~ν be the (space-like) unit normal vector field
to S, which points towards Ω1 and consider the arc-length parametrized space-like
geodesics that emanate from ~ν. For each of the metrics g, g̃, this defines a fourth
coordinate function x0 in a relatively open neighborhood Ω̃ of P , on the side of S
that intersects Ω1. We have thus obtained a “canonical coordinate system” for both
metrics g, g̃. We then construct the map Ψ : Ω̃ → Ω̃ by identifying the coordinates
for the two metrics g, g̃. By hypothesis we know that Ψ fixes S and Ψ∗g̃−g vanishes
to third order on S (since g = g̃ in Ω2). They key feature is that we have that

6



g0i = g′0i = 0 for i = 1, 2, 3 and g00 = g′00 = 1 in Ω̃. This allows us to derive the
same system of equations as above. We note that as in [5], the function x0 will be
strongly pseudo-convex in a small enough neighborhood of P .

2.2 The Ionescu-Klainerman Carleman Estimate and our Main

Proposition.

To state our main Proposition we must recall some results from [3]. The reader is
referred to section 6 in that paper. Firstly recall the optical functions u+, u− defined
near S. We condider the coordinate system {u++u−√

2
, u+−u−√

2
, x1, x2} defined over Ω

and the function NP defined over Ω via N(P ) := [u2
+ + u2

− + (x1)2 + (x2)2];7 recall
also that that Bǫ10(P ) stands for the set of points in Ω for which (NP )2 ≤ ǫ20. Then
the Carleman weight function of Ionescu-Klainerman is: fǫ = ln{ǫ−1(u+ + ǫ)(u− +
ǫ) + ǫ10NP } (defined for some fixed small ǫ > 0) from Lemma 6.2 in [3].

For any scalar-valued function Φ defined on Bǫ10 we recall the weighted L2-norm
introduced in [3]:

||Φ||L2
λ

=

√∫

B
ǫ10

Φ2e−2λ·fǫdVg.

We introduce a cut-off function χ : R → [0, 1], defined to be smooth and supported
in [1/2,∞], and equal to 1 in [3/4,∞]. We then define ηǫ : M → [0, 1] to be
ηǫ(x) := 1 − χ(NP /ǫ10(x)). (In the setting of Theorem 1.2 we can pick any cut-off

function ηǫ(x
0) = 1 − χ(x

0

ǫ
), for ǫ > 0 small enough).

We denote by Vǫ a generic function (independent of λ) which is supported in the
set where 0 < ηǫ < 1. We then recall the first Carleman estimate of Ionescu and
Klainerman (see Lemma 6.2 in [3]): Setting φ = Tabcd · ηǫ we derive that there exist
a constants ǫ, C, λ0 so that for every λ > λ0:

λ ·
3∑

a,b,c,d=0

||Tabcd · ηǫ||L2
λ

+
3∑

a,b,c,d,e=0

||∂eTabcd · ηǫ||L2
λ
≤

C√
λ
{

3∑

a,b,c,d=0

||✷̃gTabcd · ηǫ||L2
λ

+ ||Vǫ||L2
λ
}.

(2.12)

Remark 7: In [3] this estimate is derived for functions φ in C∞
0 (Bǫ10); in fact, fol-

lowing the proof of this estimate in [3] we observe that that it holds for C2-functions
φ which vanish on ∂Bǫ10

⋂
(H+

⋃H−) and vanish along with their first derivatives
on ∂Bǫ10 \ (∂Bǫ0

⋂
(H+

⋃
H−). Thus we are allowed to set φ = Tabcd · ηǫ and derive

(2.12).
Remark 8: In the setting of Theorem 1.2 the analogous Carleman estimate for

functions which are compactly supported in a small enough neighborhood of P in Ω1

is classical, see [5]; in that setting the weight function can be chosen to be fǫ := x0,
and the estimate holds for compactly supported functions in a neighborhood of P
where the level sets of x0 are strongly pseudo-convex, and for ǫ > 0 small enough so
that all the intersections {x0 = ǫ′}⋂

Ω1, ǫ′ < ǫ, are compact.

Now, using the equation (2.7) we derive that there exists a constant C′ (indepen-
dent of λ) so that:

7The function NP is defined to be a distance function with respect to a Euclidean coordinate
system around P , in the exterior region. For our purposes, we choose the coordinate system
{

u++u−√
2

,
u+−u−√

2
, x1, x2} such that N(P ) := u2

+ + u2
− + (x1)2 + (x2)2.
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||✷̃gTabcd · ηǫ||L2
λ
≤ C′{

3∑

a,b,c,d=0

||Tabcd||L2
λ

+

3∑

a,b,c,d,e=0

||∂eTabcd||L2
λ

+

3∑

a,b=0

||dab||L2
λ

+

3∑

a,b,c=0

||∂cdab||L2
λ

3∑

a,b=0

+||Dab||L2
λ

+ ||Vǫ||L2
λ
}.

(2.13)

Our main Proposition is the following:

Proposition 2.1. We claim that there exists a (universal) constant C and a number
λ0 > 0 so that for every λ ≥ λ0:

3∑

a,b=0

||dab||L2
λ
≤ C√

λ
{

3∑

a,b,c,d=0

||Tabcd · ηǫ||L2
λ

+ ||Vǫ||L2
λ
}, (2.14)

3∑

a,b,c=0

||∂cdab||L2
λ
≤ C√

λ
{

3∑

a,b,c,d=0

||Tabcd ·ηǫ||L2
λ
+

3∑

a,b,c,d,e=0

||∂eTabcd ·ηǫ||L2
λ
+ ||Vǫ||L2

λ
},

(2.15)

3∑

a,b=0

||Dab||L2
λ
≤ C√

λ
{

3∑

a,b,c,d=0

||Tabcd · ηǫ||L2
λ

+

3∑

a,b,c,d,e=0

||∂eTabcd · ηǫ||L2
λ

+
3∑

a,b,c,d=0

||✷̃gTabcd · ηǫ||L2
λ

+ ||Vǫ||L2
λ
}.

(2.16)

Let us check how the above will imply Theorem 1.1: Using the above three esti-
mates and (2.13) we derive that there exists a λ0 > 0 and a constant C′ independent
of λ so that for every λ > λ0:

||✷̃gTabcd · ηǫ||L2
λ
≤ C′{

3∑

a,b,c,d=0

||Tabcd||L2
λ

+
3∑

a,b,c,d,e=0

||∂eTabcd||L2
λ

+ ||Vǫ||L2
λ
}.

(2.17)

Thus, replacing the above into (2.12) we derive that for λ large enough:

λ ·
3∑

a,b,c,d=0

||Tabcd · ηǫ||L2
λ

+

3∑

a,b,c,d,e=0

||∂eTabcd · ηǫ||L2
λ
≤ C√

λ
||Vǫ||L2

λ
. (2.18)

Now, the argument from page 35 in [3] implies that Tabcd = 0 for all {a, b, c, d} ∈
{0, 1, 2, 3, } and for every P ∈ Bǫ40 .

8 Then, using (2.8) we derive that dab = 0 for all
{a, b} ∈ {0, 1, 2, 3, } in Bǫ40 . This shows that g = g′ in Bǫ40 . Similarly, in the setting
of Theorem 1.2 we derive that dab = 0 in the region x0 ≤ ǫ

2 .

8The point here is that the maximum value of the weight function e−λfǫ in the support of Vǫ is
bounded above by minimum value of e−λfǫ in Bǫ40 .
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2.3 Proof of Proposition 2.1:

We now prove a main Lemma which will be very useful towards proving Proposition
2.1. Firstly let us make a note regarding the relation between the coordinate x0

and the function u+ introduced in [3]. Recall that H+ = {x0 = 0} = {u+ = 0}.
Moreover there is a function ρ defined over Bǫ10 so that for every point P ∈ Bǫ10 :
∂
∂u+

= ρ(P ) ∂
∂x0 . There clearly exist numbers 0 < µ ≤ M so that for every P ∈ Bǫ10 ,

0 < µ ≤ ρ(P ) ≤ M . We now state our main claim:

Lemma 2.1. Let φ be a function defined in Bǫ10 which vanishes on Bǫ10
⋂H+.9

Then we claim there exists a C > 0 so that for λ large enough:

||e−λ·fǫφ||L2(B
ǫ10

) ≤
C√
λ
||e−λ·fǫ∂0φ||L2(B

ǫ10
). (2.19)

Proof: Firstly a note about the volume form: The volume form dVg is defined by
a function ω(u+, x1, x2, u−) defined over Bǫ10 so that:

dVg = ω(u+, x1, x2, u−)du+ ∧ dx1 ∧ dx2 ∧ du−.

Note that there exists constants µ′, M ′ so that 0 < µ′ ≤ ω(P ) ≤ M ′ for every
P ∈ Bǫ10 . By definition:

||e−λ·fǫφ||2L2(B
ǫ10

) =

∫

B
ǫ10

e−2λ·fǫφ2ωdu+ ∧ dx1 ∧ dx2 ∧ du−.

We observe that e−2λfǫ = [ǫ−1(u+ + ǫ)(u− + ǫ) + ǫ10(u2
+ + u2

− + (x1)2 + (x2)2)]−2λ.
Given fixed values for u−, x1, x2, we set wǫ(t) := [ǫ−1(t + ǫ)(u− + ǫ) + ǫ10(t2 + u2

− +
(x1)2 + (x2)2)].10 Observe that for (t, u−, x1, x2) ∈ Bǫ10 we have a bound:

1 ≤ ∂twǫ(t) ≤ 1 + 2ǫ.

Now, given fixed vaues for x1, x2, u− such that (u−)2 + (x1)2 + (x2)2 ≤ ǫ20, we let
Max(u−, x1, x2) :=

√
ǫ20 − (u−)2 − (x1)2 − (x2)2; we claim:

∫ Max(u−,x
1,x2)

0

(wǫ(u+))−2λφ2ωdu+ ≤ C

λ

∫ Max(u−,x
1,x2)

0

(wǫ(u+))−2λ(∂0φ)2ωdu+,

with the constant C independent of x1, x2, u−. Clearly this will imply our claim.
We now prove the above. Some notational conventions: We write Max instead of

Max(u−, x1, x2) for short. Moreover, when we write ∂u+
we will be referring to dif-

ferentiation with respect to the vector field ∂
∂u+

, while ∂0 will stand for differentiation

with respect to the vector field ∂
∂x0 . We derive:

∫ Max

0

(wǫ(u+))−2λφ2ωdu+ ≤ M

∫ Max

0

(wǫ(u+))−2λφ2du+ =

∫ Max

0

(wǫ(u+))−2λ(

∫ u+

0

∂u+
φdt)2du+

≤ M

∫ Max

0

[(wǫ(u+))−2λ(

∫ u+

0

(wǫ(t))
−2λ(∂u+

φ)2dt)(

∫ u+

0

(wǫ(t))
2λdt)]du+ ≤

M ′[

∫ Max

0

(wǫ(u+))−2λ(∂u+
φ)2du+] ·

∫ Max

0

[(wǫ(u+))−2λ

∫ u+

0

(wǫ(t))
2λ(∂twǫ(t))dt]du+ ≤

M ′[

∫ Max

0

(wǫ(u+))−2λ(∂u+
φ)2du+] ·

∫ Max

0

wǫ(u+)

2λ + 1
du+ ≤

M ′′

λ

∫ Max

0

(u+ + ǫ)−2λ(∂u+
φ)2du+ ≤ C

λ

∫ Max

0

(u+ + ǫ)−2λ(∂0φ)2ωdu+,

(2.20)

9Note that we are not requiring φ to be compactly supported in Bǫ10 .
10I.e. we are allowing the parameter u+ to vary, and label it s.
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QED. ✷

Remark 9: In the setting of Theorem 1.2 we can derive the exact same Lemma
(with a gain of a factor C√

λ
in the RHS), with the classical weight function e−λψ(x),11

in a small enough neighborhood of the point P .
We now use the above result to derive some estimates:

Lemma 2.2. We claim that there exist constants C, λ0 so that for every λ > λ0:

3∑

a,b=0

||dab · ηǫ||L2
λ
≤ C√

λ
{

3∑

a,b,c,d=0

||Tabcd · ηǫ||L2
λ

+ ||Vǫ||L2
λ
}, (2.21)

3∑

a,b,c=0

||∂cdab·ηǫ||L2
λ
≤ C√

λ
{

3∑

a,b,c,d=0

||Tabcd·ηǫ||L2
λ
+

3∑

a,b,c,d,e=0

||∂eTabcd·ηǫ||L2
λ
+||Vǫ||L2

λ
},

(2.22)

3∑

a,b,c=0

||∂(2)
0c dab·ηǫ||L2

λ
≤ C√

λ
{

3∑

a,b,c,d=0

||Tabcd·ηǫ||L2
λ
+

3∑

a,b,c,d,e=0

||∂eTabcd·ηǫ||L2
λ
+||Vǫ||L2

λ
},

(2.23)

3∑

a,b,c=0

||∂(3)
00cdab·ηǫ||L2

λ
≤ {

3∑

a,b,c,d=0

||Tabcd ·ηǫ||L2
λ
+

3∑

a,b,c,d,e=0

||∂eTabcd ·ηǫ||L2
λ
+||Vǫ||L2

λ
}.

(2.24)

Proof : We will prove (2.21). The other equations hold by the same argument.
To prove (2.21) we repeatedly use the Lemma 2.1. By applying it once we derive:

3∑

a,b=0

||dab · ηǫ||L2
λ
≤ C√

λ

3∑

a,b=0

||∂0(dab · ηǫ)||L2
λ
≤

C√
λ

3∑

a,b=0

{||(∂0dab) · ηǫ||L2
λ

+
C√
λ

3∑

a,b=0

||dab · ∂0(ηǫ)||L2
λ
}.

(2.25)

Analogously we derive:

3∑

a,b=0

||(∂0dab) · ηǫ||L2
λ
≤ C√

λ

3∑

a,b=0

||∂0[(∂0dab) · ηǫ]||L2
λ
≤

C√
λ

3∑

a,b=0

{||(∂(2)
00 dab) · ηǫ||L2

λ
+

3∑

a,b=0

||∂0dab · ∂0(ηǫ)||L2
λ
} ≤

C√
λ

3∑

a,b=0

{||2(T0ab0 − Lyuab ∂0dyu − L′yu
ab dyu) · ηǫ||L2

λ
+

3∑

a,b=0

||Vǫ||L2
λ
} ≤

C√
λ

3∑

a,b=0

{||T0ab0 · ηǫ||L2
λ

+

3∑

a,b=0

||∂0dab · ηǫ||L2
λ

+

3∑

a,b=0

||dab · ηǫ||L2
λ

+ ||Vǫ||L2
λ
}.

(2.26)

Now, we can control the term
∑3

a,b=0 ||dab · ηǫ||L2
λ

in the RHS using (2.25); fur-

thermore, for λ large enough the term C√
λ

∑3
a,b=0 ||∂0dab · ηǫ||L2

λ
in the RHS can be

absorbed into the LHS and thus we derive the equation:

11Here ψ(x) = x0, in the notation of remark 5.
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3∑

a,b=0

||(∂0dab) · ηǫ||L2
λ
≤ C√

λ
{

3∑

a,b=0

||T0ab0 · ηǫ||L2
λ

+

3∑

a,b=0

||Vǫ||L2
λ
}. (2.27)

Now, combining (2.27) with (2.25) we also derive (2.21). Equations (2.22), (2.23),
(2.24) follow by a straightforward adaptation of this argument. ✷

We now claim a more involved Lemma.

Lemma 2.3. We claim that:

3∑

a,b,c=0

||Dab · ηǫ||L2
λ
≤ C√

λ
{

3∑

a,b,c,d=0

||Tabcd · ηǫ||L2
λ

+

3∑

a,b,c,d,e=0

||∂eTabcd · ηǫ||L2
λ
+

3∑

a,b,c,d=0

||✷̃gTabcd · ηǫ||L2
λ

+ ||Vǫ||L2
λ
}.

(2.28)

Note that in view of Lemma 2.2, this Lemma will imply the main Proposition
2.1, and hence also Theorem 1.1.

Proof of Lemma 2.3: We will prove the above in two pieces. Firstly, recall that
D(ab) stands for the symmetric part of the 2-tensor Dab (so D(ab) = 1

2
[Dab +Dba])

and D[ab] stands for the antisymmetric part (so D[ab] = 1
2
[Dab − Dba]). We will

prove (2.28) separately for the symmetric part D(ab) and the antisymmetric part
D[ab] of Dab. Specifically we will prove:

3∑

a,b=0

||D(ab) · ηǫ||L2
λ
≤ C√

λ
{

3∑

a,b,c,d=0

||Tabcd · ηǫ||L2
λ

+

3∑

a,b,c,d,e=0

||∂eTabcd · ηǫ||L2
λ

+
3∑

a,b,c,d=0

||✷̃gTabcd · ηǫ||L2
λ

+ ||Vǫ||L2
λ
},

(2.29)

3∑

a,b=0

||D[ab] · ηǫ||L2
λ
≤ C√

λ
{

3∑

a,b,c,d=0

||Tabcd · ηǫ||L2
λ

+

3∑

a,b,c,d,e=0

||∂eTabcd · ηǫ||L2
λ

+

3∑

a,b,c,d=0

||✷̃gTabcd · ηǫ||L2
λ

+ ||Vǫ||L2
λ
}.

(2.30)

Proof of (2.29): Recall that D(ab) = − 1
2 ✷̃gdab(= − 1

2gyu∂
(2)
yu dab). Let us also

make an important observation: Since we have g0b = gb0 = 0 for b = 0, 1, 2 and
g03 = g30 = 1, we derive that g3b = gb3 = 0 for b = 0, 1, 2 and g03 = g30 = 1. We
now claim two useful estimates which we will prove later. First useful estimate:

3∑

a,b=0

||(∂0g
yu)∂(2)

yu dab · ηǫ||L2
λ
≤ C{

3∑

a,b=0

||✷̃gdab · ηǫ||L2
λ

+

3∑

a,b,c,d=0

||Tabcd · ηǫ||L2
λ

+
3∑

a,b,c,d,e=0

||∂eTabcd · ηǫ||L2
λ

+ ||Vǫ||L2
λ
}.

(2.31)
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Second estimate:

3∑

a,b=0

||(∂0g
yu)∂

(3)
yu0dab · ηǫ||L2

λ
≤ C{

3∑

a,b=0

||✷̃g∂0dab · ηǫ||L2
λ

+

3∑

a,b,c,d=0

||Tabcd · ηǫ||L2
λ

+

3∑

a,b,c,d,e=0

||∂eTabcd · ηǫ||L2
λ

+ ||Vǫ||L2
λ
}.

(2.32)

Let us check how the two equations (2.31), (2.32) will imply (2.29). We start by
applying Lemma 2.1:

3∑

a,b=0

||✷̃gdab · ηǫ||L2
λ
≤ C√

λ
[

3∑

a,b=0

||∂0[✷̃gdab · ηǫ]||L2
λ
] ≤

C√
λ
{

3∑

a,b=0

||gyu∂(3)
yu0dab · ηǫ||L2

λ
+

3∑

a,b=0

||(∂0g
yu)∂(2)

yu dab · ηǫ||L2
λ

+ ||Vǫ||L2
λ
}.

(2.33)

Therefore, using (2.31) and taking λ large enough we derive:

3∑

a,b=0

||✷̃gdab · ηǫ||L2
λ
≤ C√

λ
{

3∑

a,b=0

||gyu∂(3)
yu0dab · ηǫ||L2

λ

+

3∑

a,b,c,d=0

||Tabcd · ηǫ||L2
λ

+

3∑

a,b,c,d,e=0

||∂eTabcd · ηǫ||L2
λ

+ ||Vǫ||L2
λ
}.

(2.34)

Again applying Lemma 2.1 we derive:

3∑

a,b=0

||gyu∂(3)
yu0dab · ηǫ||L2

λ
≤ C√

λ

3∑

a,b=0

||∂0[g
yu∂

(3)
yu0dab · ηǫ||L2

λ
] ≤

C√
λ
{

3∑

a,b=0

||gyu∂(4)
yu00dab · ηǫ||L2

λ
+

3∑

a,b=0

||(∂0g
yu)∂

(3)
yu0dab · ηǫ||L2

λ
+ ||Vǫ||L2

λ
} ≤

C√
λ
{

3∑

a,b=0

||2gyu∂(2)
yu (T0ab0 − Lyuab ∂0dyu − L′yu

ab dyu) · ηǫ||L2
λ
+

3∑

a,b=0

||(∂0g
yu)∂

(3)
yu0dab · ηǫ||L2

λ
+ ||Vǫ||L2

λ
} ≤ C√

λ
{

3∑

a,b=0

||2gyu∂(2)
yu T0ab0 · ηǫ||L2

λ
+

3∑

a,b=0

||gyu∂(3)
yu0dab · ηǫ||L2

λ
+

3∑

a,b=0

||gyu∂(2)
yu dab · ηǫ||L2

λ
+

3∑

a,b,c=0

||∂(2)
0c dab · ηǫ||L2

λ
+

3∑

a,b,c=0

||∂cdab · ηǫ||L2
λ

+
3∑

a,b=0

||dab · ηǫ||L2
λ
+

3∑

a,b=0

||(∂0g
yu)∂

(3)
yu0dab · ηǫ||L2

λ
+ ||Vǫ||L2

λ
}.

(2.35)

Now, the terms
∑3
a,b,c=0 ||∂

(2)
0c dab · ηǫ||L2

λ
,
∑3

a,b,c=0 ||∂cdab · ηǫ||L2
λ
,

∑3
a,b=0 ||dab ·

ηǫ||L2
λ

can be controlled by virtue of Lemma 2.2. Then, combining (2.33) and (2.35)
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to also control the term
∑3
a,b=0 ||gyu∂

(2)
yu dab · ηǫ||L2

λ
(=

∑3
a,b=0 ||✷̃gdab · ηǫ||L2

λ
) and

absorb it into the LHS we derive:

3∑

a,b=0

||gyu∂(3)
yu0dab · ηǫ||L2

λ
≤ C√

λ
{

3∑

a,b=0

||gyu∂(3)
yu0dab · ηǫ||L2

λ
+

3∑

a,b=0

||✷̃gT0ab0 · ηǫ||L2
λ

+
3∑

a,b,c,d=0

||Tabcd · ηǫ||L2
λ

+
3∑

a,b,c,d,e=0

||∂eTabcd · ηǫ||L2
λ

+ ||Vǫ||L2
λ
}.

(2.36)

Therefore for λ large enough we can absorb the term ||gyu∂(3)
yu0dab · ηǫ||L2

λ
from the

RHS into the LHS; then, substituting in this estimate into the (2.34) we derive (2.29),
subject to proving (2.31), (2.32). We now prove these two equations:

Proof of (2.31): The key in the proof of this estimate is the fact that ∂0g
3b = 0

for b = 0, 1, 2, 3,12 and that we have already controlled the weighted L2-norms of the

functions ∂
(2)
0c dab. With these observations the desired estimate (2.31) will readily

be reduced to elliptic estimates on the level sets of the Carleman weight function fǫ:
Since g3b = 0 for b = 1, 2, 3, we derive that:

|(∂0g
cd)∂

(2)
cd dab|2 ≤

2∑

c,d=1

|(∂0g
cd)∂

(2)
cd dab|2 + 2

3∑

r=0

|(∂0g
r0)∂

(2)
0r dab|2.

Let us make a few notes that will be useful further down. Firstly recall that
the Fermi coordinate system we have introduced defines the coordinate vector fields:
Let {X0, X1, X2, X3} be the vector fields { ∂

∂x0 , ∂
∂x1 , ∂

∂x2 , ∂
∂x3 }. Then when we give

values 0, 1, 2, 3 to the lower indices α, β in ∂αβ those values correspond to these vector
fields X0, X1, X2, X3 above. In that notation, recall the “rough wave operator”:

✷̃g =
2∑

c,d=1

gcd∂
(2)
cd + 2

3∑

c=1

g0r∂
(2)
0r + g00∂

(2)
00 . (2.37)

We will consider the operator
∑2

c,d=1 gcd∂
(2)
cd separately and denote it by ∆̃g,1; we

call it the “first rough Laplacian”. We will now introduce a second basis for T (Bǫ10)
which will be useful: Recall the Carleman weight function fǫ. By virtue of the form
of fǫ and the fact that {x3 = C} = {u− = C}, we derive that there exist smooth
functions ρ1, ρ2 defined over Bǫ10 such that the vector fields X̃1 = X1 + ρ1X0 and
X̃2 = X2+ρ2X0 are tangent to the level sets of fǫ.

13 Thus, we obtain a new frame at
each point P ∈ Bǫ10 , {X̃0 = X0, X̃1, X̃2, X̃3 = X3}. When we refer to components

of tensors with respect to this new frame we will use indices with tildes e.g. 0̃,
2̃ etc.

We observe that g0̃ã = gã0̃ = 0 for a = 0, 1, 2 and also g0̃3̃ = g3̃0̃ = 1 thus again

we derive that g3̃ã = gã3̃ = 0 for ã = 0̃, 1̃, 2̃ and g3̃0̃ = g0̃3̃ = 1. In fact we observe

that gc̃d̃ = gcd for c, d = 1, 2. We now define the “second rough wave operator” with
respect to this frame:

✷̃g,2 =

2∑

c̃,d̃=1

gc̃d̃∂
(2)

c̃d̃
+

3∑

r̃=1̃

g0̃r̃∂
(2)

0̃r̃
+ g0̃0̃∂

(2)

0̃0̃
. (2.38)

Observe that:

12This remains true in the setting of Theorem 1.2.
13In the setting of Theorem 1.2 there is no need to modify the vector fieilds X1, X2–these are already

tangent to the level sets of the Carleman weight function.
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✷̃g = ✷̃g,2 +

3∑

i=0

Li∂i. (2.39)

(So the 2nd term in the RHS is a generic linear combination of first order operators

with C3 coefficients). We again separately consider the operator
∑2

c̃,d̃=1 gc̃d̃∂
(2)

c̃d̃
which

we will call the second rough Laplacian and denote it by ∆̃g,2. Observe that:

∆̃g = ∆̃g,2 +

2∑

i=0

Ri∂i +

2∑

i=0

R′i∂
(2)
0i . (2.40)

It then follows straightforwardly that there exists a constant C > 0 such that:

[

2∑

c,d=1

|(∂0g
cd)∂

(2)
cd dab|]2 ≤ C[

2∑

c̃,d̃,ẽ,r̃=1

gc̃d̃gẽr̃∂
(2)
c̃ẽ dab∂

(2)

d̃r̃
dab+

2∑

c=0

[(∂cdab)
2+(∂

(2)
0c dab)

2]].

(2.41)
Using the above we can now prove (2.31). Directly applying the above we obtain:

3∑

a,b=0

||(∂0g
yu)∂(2)

yu dab · ηǫ||2L2
λ
≤ C′ ·

2∑

c,d=1

∫

B
ǫ10

[gc̃d̃gẽr̃∂
(2)
c̃ẽ dab∂

(2)

d̃r̃
dab] · e−2λfǫη2

ǫ dVg

+

3∑

c=0

||∂cdab · ηǫ||2L2
λ

+

3∑

c=0

||∂(2)
0c dab · ηǫ||2L2

λ
.

(2.42)

(Here dVg is the volume form for the metric g on Bǫ10).

Now, the trick is to estimate the term
∑2

c,d=1

∫
B

ǫ10
[gc̃d̃gẽr̃∂

(2)
c̃ẽ dab∂

(2)

d̃r̃
dab]·e−2λfǫηǫdVg

in the first line of the RHS. We integrate by parts twice with respect to ∂d̃ and then

∂ẽ; since the vector fields X̃1, X̃2 (with respect to which we are integrating by parts)
are tangent to the level sets of fǫ, we will not bring out derivatives of the factor
e−2λfǫ . We derive:

2̃∑

c̃,d̃,ẽ,r̃=1

∫

B
ǫ10

[gc̃d̃gẽr̃∂
(2)
c̃ẽ dab∂

(2)

d̃r̃
dab] · e−2λfǫ · η2

ǫdVg =

∫

B
ǫ10

[∆̃g,2dab]
2 · e−2λfǫη2

ǫ dVg +

∫

B
ǫ10

Lyu∂ydab∂udab · e−2λfǫη2
ǫ dVg+

∫

B
ǫ10

Ly∂ydab∆̃g,2dab · e−2λfǫη2
ǫdVg +

∫

B
ǫ10

Vǫe
−2λfǫη2

ǫdVg .

(2.43)

Thus applying Cauchy-Schwartz to the above we deduce:

2̃∑

c̃,d̃,ẽ,r̃=1

∫

B
ǫ10

[gc̃d̃gẽr̃∂
(2)
c̃ẽ dab∂

(2)

d̃r̃
dab] · e−2λfǫη2

ǫ dVg ≤ C{
∫

B
ǫ10

[∆̃g,2dab]
2 · e−2λfǫη2

ǫdVg

+

2∑

c=0

∫

B
ǫ10

(∂cdab)
2e−2λfǫη2

ǫdVg +

∫

Su+,u
−

Vǫe
−2λfǫη2

ǫdVg.

(2.44)

Replacing the above into (2.42) we derive:
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3∑

a,b=0

||(∂0g
yu)∂(2)

yu dab · ηǫ||L2
λ
≤ C{

3∑

a,b=0

||∆̃g,2dab · ηǫ||L2
λ
+

3∑

c=0

||∂(2)
c0 dab||L2

λ
+

3∑

c=0

||∂cdab||L2
λ

+ ||Vǫ||L2
λ
}.

(2.45)

Now, using the formulas (2.37)–(2.40) we derive that |∆̃g,2dab| = |✷̃gdab+
∑3
r=0 Cr∂

(2)
0r dab+∑3

r=0 C′r∂rdab| for some C2 functions Cr, C′r. Thus substituting the above into
(2.46) we derive that:

3∑

a,b=0

||(∂0g
yu)∂(2)

yu dab · ηǫ||L2
λ
≤ C{

3∑

a,b=0

||✷̃gdab · ηǫ||L2
λ
+

3∑

c=0

||∂(2)
c0 dab||L2

λ
+

3∑

c=0

||∂cdab||L2
λ

+ ||Vǫ||L2
λ
}.

(2.46)

Thus, combining the above with Lemma 2.2 we derive our claim.

Proof of (2.32): The proof of this claim is very much in the spirit of the previous
one. We again use the formulas (2.37)–(2.40) to derive the analogue of (2.41):

[

2∑

c,d=1

|(∂0g
cd)∂

(3)
cd0dab|]2 ≤ C{

2̃∑

c̃,d̃,ẽ,r̃=1̃

gc̃d̃gẽr̃∂
(3)

c̃ẽ0̃
dab∂

(3)

d̃r̃0̃
dab+

3∑

c=0

[(∂cdab)
2+(∂

(2)
c0 dab)

2(∂
(3)
c00dab)

2]}.

(2.47)
Thus, using the above we derive an analogue of (2.42):

3∑

a,b=0

||(∂0g
yu)∂

(3)
yu0dab · ηǫ||2L2

λ
≤ C′ · {

2̃∑

c̃,d̃,ẽ,r̃=1̃

∫

B
ǫ10

[gc̃d̃gẽr̃∂
(3)

c̃ẽ0̃
dab∂

(3)

d̃r̃0̃
dab] · e−2λfǫη2

ǫ dVg

+

3∑

c=0

[||∂(2)
c0 dab · ηǫ||2L2

λ
+ ||∂(3)

c00dab · ηǫ||2L2
λ

+ ||∂(2)
c0 dab · ηǫ||2L2

λ
]} =

C′ ·
2∑

c,d=1

∫

B
ǫ10

[gc̃d̃gẽr̃∂
(3)

c̃ẽ0̃
dab∂

(3)

d̃r̃0̃
dab] · e−2λfǫηǫdVg

+

3∑

c=0

[||∂(2)
c0 dab · ηǫ||2L2

λ
+ ||∂cdab · ηǫ||2L2

λ
+ ||∂(3)

c00dab · ηǫ||2L2
λ
].

(2.48)

Then, performing the same integration by parts as for (2.44) we finally derive the
analogue of (2.46):

3∑

a,b=0

||(∂0g
yu)∂

(3)
yu0dab · ηǫ||L2

λ
≤ C′{

3∑

a,b=0

||✷̃g∂0dab · ηǫ||L2
λ
+

+

3∑

c=0

[||∂(2)
c0 dab · ηǫ||L2

λ
+ ||∂cdab · ηǫ||L2

λ
+ ||∂(3)

c00dab · ηǫ||L2
λ
] + ||Vǫ||L2

λ
}.

(2.49)

Then, again invoking Lemma 2.2 we derive our claim. ✷
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Proof of (2.30): Again we start by applying Lemma 2.1, and then use the
equation (2.10):

3∑

a,b=0

||D[ab] · ηǫ||L2
λ
≤ C√

λ

3∑

a,b=0

||∂0D[ab] · ηǫ||L2
λ

+ ||Vǫ||L2
λ
≤

C√
λ
{

3∑

a,b=0

||dab · ηǫ||L2
λ

+
3∑

a,b,c=0

||∂cdab · ηǫ||L2
λ

+
3∑

a,b,c,d=0

||Tabcd · ηǫ||L2
λ

+
3∑

a,b,c=0

||∂0cdab · ηǫ||L2
λ
+

3∑

a,b=0

||Dab · ηǫ||L2
λ

+

3∑

a,b=0

||
2∑

i,j=1

cij∂iGj[a,b] · ηǫ||L2
λ

+ ||Vǫ||L2
λ
}.

(2.50)

Now, observe that all the terms in the second line can be controlled by virtue of
Lemma 2.2. Furthermore, we straightforwardly obtain:

3∑

a,b=0

||Dab||L2
λ
≤

3∑

a,b=0

||D(ab)||L2
λ

+

3∑

a,b=0

||D[ab]||L2
λ
,

and now the term
∑3

a,b=0 ||D[ab]||L2
λ

can be absorbed into the LHS (when λ is large

enough), while we have already controlled
∑3
a,b=0 ||D(ab)||L2

λ
by virtue of equation

(2.29). Thus, matters are reduced to controlling the term
∑3
a,b=0 ||

∑2
i,j=1 cij∂iGj[a,b]||L2

λ
.

To do this we again will use the vector fields X̃1, X̃2 defined above (see the
discussion after (2.37)), and we will evaluate the tensor Gab,c against those vector
fields.

Using this observation we can again derive that:

|
2∑

i,j=1

cij∂iGj[a,b]|2 ≤ C·|
2∑

ĩ,j̃=1

2∑

z̃,q̃=0

gĩj̃gz̃q̃∂ĩGz̃[a,b]∂j̃Gq̃[a,b]+

3∑

c=0

[|∂0Gc[a,b]|2+|∂cG0[a,b]|2].

Now, we straightforwardly see that
∑3

a,b,c=0 |∂0Gc[a,b]|+|∂cG0[a,b]| ≤ C
∑3

a,b,c=0 |∂
(2)
0c dab|.

Thus matters are reduced to controlling
∑3
a,b=0

∫
B

ǫ10

∑2
ĩ,j̃=1

∑2
z̃,q̃=0 gĩj̃gz̃q̃∂ĩGz̃[a,b]∂j̃Gq̃[a,b]·

η2
ǫ dVg. We will prove:

3∑

a,b=0

∫

B
ǫ10

2∑

ĩ,j̃=1

2∑

z̃,q̃=0

gĩj̃gz̃q̃∂ĩGz̃[a,b]∂j̃Gq̃[a,b] · η2
ǫ dVg ≤

C{
3∑

a,b=0

||D[ab] · ηǫ||2L2
λ

+

3∑

a,b,c=0

||∂cd[ab] · ηǫ||2L2
λ

+

3∑

a,b,c=0

||∂(2)
0c d[ab] · ηǫ||2L2

λ
}.

(2.51)

We do this by first commuting indices using the relation:

∂α̃Gβ̃i,j − ∂β̃Gα̃i,j = Tα̃β̃ij + Lyur
α̃β̃ij

Gyu,r + L′yu
α̃β̃ij

dyu,

and then integrating by parts. Explicitly we derive:
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3∑

a,b=0

∫

B
ǫ10

2∑

ĩ,j̃=1

2∑

z̃,q̃=0

gĩj̃gz̃q̃∂ĩGz̃[a,b]∂j̃Gq̃[a,b]e
−2λfǫ · η2

ǫ dVg =

3∑

a,b=0

∫

B
ǫ10

2∑

ĩ,j̃=1

2∑

z̃,q̃=0

gĩj̃gz̃q̃∂z̃Gĩ[a,b]∂j̃Gq̃[a,b]e
−2λfǫ · η2

ǫ dVg+

3∑

a,b=0

∫

B
ǫ10

2∑

ĩ,j̃=1

2∑

z̃,q̃=0

gĩj̃gz̃q̃Tĩz̃ab∂j̃Gq̃[a,b]e
−2λfǫ · η2

ǫdVg+

3∑

a,b=0

∫

B
ǫ10

2∑

ĩ,j̃=1

2∑

z̃,q̃=0

gĩj̃gz̃q̃Lyur
ĩz̃ij

Gyu,r∂j̃Gq̃[a,b]e
−2λfǫ · η2

ǫdVg+

3∑

a,b=0

∫

B
ǫ10

2∑

ĩ,j̃=1

2∑

z̃,q̃=0

gĩj̃gz̃q̃Lyu
ĩz̃ij

dyu∂j̃Gq̃[a,b]e
−2λfǫ · η2

ǫ dVg.

(2.52)

To control the term in the second line of the RHS we apply the commutation
relation again to derive:

3∑

a,b=0

∫

B
ǫ10

2∑

ĩ,j̃=1

2∑

z̃,q̃=0

gĩj̃gz̃q̃Tĩz̃ab∂j̃Gq̃[a,b]e
−2λfǫ · η2

ǫ dVg =
1

2

3∑

a,b=0

{
∫

B
ǫ10

2∑

ĩ,j̃=1

2∑

z̃,q̃=0

gĩj̃gz̃q̃Tĩz̃abTj̃q̃abe
−2λfǫη2

ǫ dVg

+

∫

B
ǫ10

F yuqwzxv
ab TyuqwGzx,ve

−2λfǫ · η2
ǫdVg +

∫

B
ǫ10

F yuqwzx
ab Tyuqwdzxe

−2λfǫ · η2
ǫ dVg} ≤

C{
3∑

a,b,c,d=0

||Tabcd · ηǫ||2L2
λ

+
3∑

a,b,c=0

||Gab,c · ηǫ||2L2
λ

+
3∑

a,b=0

||dab · ηǫ||2L2
λ
}.

(2.53)

Now to control the last two lines in the RHS of (2.52) we apply Cauchy-Schwartz
to derive that for any ρ > 0:

3∑

a,b=0

∫

B
ǫ10

2∑

ĩ,j̃=1

2∑

z̃,q̃=0

gĩj̃gz̃q̃Lyur
ĩz̃ij

Gyu,r∂j̃Gq̃[a,b]e
−2λfǫ · η2

ǫ dVg+

3∑

a,b=0

∫

B
ǫ10

2∑

ĩ,j̃=1

2∑

z̃,q̃=0

gĩj̃gz̃q̃Lyu
ĩz̃ij

dyu∂j̃Gq̃[a,b]e
−2λfǫ · η2

ǫdVg ≤

1

ρ

3∑

y,u,r=0

∫

B
ǫ10

(Gyu,r)
2e−2λfǫ · η2

ǫdVg +
1

ρ

3∑

y,u=0

∫

B
ǫ10

(dyu)
2e−2λfǫ · η2

ǫ dVg+

C · ρ ·
3∑

a,b=0

∫

B
ǫ10

2∑

ĩ,j̃=1

2∑

z̃,q̃=0

gĩj̃gz̃q̃∂ĩGz̃[a,b]∂j̃Gq̃[a,b]e
−2λfǫ · η2

ǫdVg ,

(2.54)

where the constant C is universal (meaning that it does not depend on λ or ρ–
it merely depends on the norms of the tensors gab etc). We then replace the
two equations above into (2.52). Picking ρ small enough we can absorb the term∑2

z̃,q̃=0 gĩj̃gz̃q̃∂ĩGz̃[a,b]∂q̃Gq̃[a,b]e
−2λfǫ · η2

ǫ dVg in the above into the LHS of (2.52).

Thus, matters are reduced to controlling the term
∑3
a,b=0

∫
B

ǫ10

∑2
ĩ,j̃=1

∑2
z̃,q̃=0 gĩj̃gz̃q̃∂z̃Gĩ[a,b]∂j̃Gq̃[a,b]e

−2λfǫ ·
η2
ǫ dVg in the RHS of (2.52). This can be done by integrating by parts twice, first the
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derivative ∂z̃ and then the derivative ∂j̃ :
14

3∑

a,b=0

∫

B
ǫ10

2∑

ĩ,j̃=1

2∑

z̃,q̃=0

gĩj̃gz̃q̃∂z̃Gĩ[a,b]∂j̃Gq̃[a,b]e
−2λfǫ · η2

ǫ dVg =

∫

B
ǫ10

Vǫe
−2λfǫdVg+

3∑

a,b=0

∫

B
ǫ10

2∑

ĩ,j̃=1

2∑

z̃,q̃=0

gĩj̃gz̃q̃∂j̃Gĩ[a,b]∂z̃Gq̃[a,b]e
−2λfǫ · η2

ǫ dVg+

3∑

a,b=0

∫

B
ǫ10

gĩj̃Lyurab Gyu,r∂ĩGj̃a,be
−2λfǫ · η2

ǫdVg +
3∑

a,b=0

∫

B
ǫ10

Lyurab Gyu,rL
′yur
ab Gyu,re

−2λfǫ · η2
ǫ dVg.

(2.55)

Applying Cauchy-Schwartz to the expressions
∑3

a,b=0

∫
B

ǫ10
gĩj̃Lyurab Gyu,r∂ĩGj̃a,be

−2λfǫ ·
η2
ǫ dVg and

∑3
a,b=0

∫
B

ǫ10
gĩj̃Lyurab Gyu,r∂ĩGj̃a,be

−2λfǫ · η2
ǫdVg and then replacing (2.55),

(2.53), (2.54) into (2.52) we derive:

3∑

a,b=0

∫

B
ǫ10

2̃∑

ĩ,j̃,z̃,q̃=1̃

gĩj̃gz̃q̃∂ĩGz̃[a,b]∂j̃Gq̃[a,b]e
−2λfǫ · η2

ǫ dVg ≤

3∑

a,b=0

∫

B
ǫ10

|
2∑

ĩ,j̃,z̃,q̃=1

gĩj̃gz̃q̃∂ĩGj̃[a,b]∂z̃Gq̃[a,b]e
−2λfǫ · η2

ǫ dVg +

3∑

a,b,c,d=0

||Tabcd · ηǫ||L2
λ
+

3∑

a,b,c=0

||∂cdab||L2
λ

+

3∑

a,b,c=0

||∂(2)
c0 dab||L2

λ
.

(2.56)

Finally we again use the fact that g3̃ã = 0 for ã = 1, 2, 3 to derive:

3∑

a,b=0

∫

B
ǫ10

2̃∑

ĩ,j̃,z̃,q̃=1̃

gĩj̃gz̃q̃∂ĩGj̃[a,b]∂z̃Gq̃[a,b] · e−2λfǫ · η2
ǫ dVg ≤

3∑

a,b,c=0

||∂cdab||2L2
λ
+

3∑

a,b=0

∫

B
ǫ10

3̃∑

ĩ,j̃,z̃,q̃=0̃

gĩj̃gz̃q̃∂ĩGj̃[a,b]∂z̃Gq̃[a,b] · e−2λfǫ · η2
ǫ dVg +

3∑

a,b,c=0

||∂(2)
c0 dab||2L2

λ
.

(2.57)

Since gĩj̃∂ĩGj̃[a,b]∂z̃ = D[ab], combining this with (2.56) we derive (2.51) and thus our
claim. ✷

3 A derivation of Theorem 1.1 under minimal hy-

potheses.

We now show that the conclusion of Theorem 1.1 can in fact be derived under much
weaker assumptions. We will see that for two vacuum space-times (M,g), (M̃ , g̃)
with horizons H+

⋃H−, H̃+
⋃ H̃− to be isometric in some open neighborhoods of

P ∈ S, P̃ ∈ S̃, it suffices to assume that (near P, P̃ ) the conformal structures induced

14Since the vector fields ∂ẽ, ẽ = 1̃, 2̃ are tangent to the level sets of fǫ, we do not bring out derivatives
of the factor e−λfǫ .
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by g, g̃ onto (H+
⋃H−), (H̃+

⋃ H̃−) are equivalent,15 that the spheres S, S̃ with their
induced metrics from g, g̃ are isometric and moreover that the second fundamental
forms of the spheres S, S̃ also agree. The proof of this claim will rely only on an
analysis of the Taylor series expansion of the metrics g, g̃ on the bifurcate horizons,
followed by an application of Theorem 1.1. It is worth noting that this analysis of
free data is in complete agreement with the work of Rendall in [4]. Nonetheless we
are not able to invoke his work directly, since [4] considers the metric expressed in
wave coordinates, as opposed to our double Fermi coordinates.

In order to introduce the weaker requirements needed for our stronger version of
Theorem 1.1 we define:

Definition 3.1. We say that the two space-times (M,g), (M̃ , g̃) with horizons H+
⋃H−,

H̃+
⋃
H̃− are weakly equivalent near points P ∈ S = H+

⋂
H−, P̃ ∈ S̃ = H̃+

⋂
H̃−

if there exist two double Fermi coordinate systems Y, Ỹ for M1, M2 in open neigh-
borhoods Ω, Ω̃ of the points P, P̃ so that the map Φ = Ỹ ◦ Y−1 satisfies the following
properties:

1. There exists a function f ∈ C4(H+
⋃H−) so that Φ∗(g̃|H̃+

S

H̃−
T

Ω̃) = e2fg|H+
S

H−
T

Ω.

2. On S
⋂

Ω we have f = ∂
∂x0 f = ∂

∂x3 f = 0.

3. On S
⋂

Ω we also have k13 = k′
13, k23 = k′

23, where k, k′ stand for the second
fundamental forms of H+ for the metrics g, Φ∗g with respect to the null vector
field ∂

∂x3 .

Our strengthened theorem is then the following:

Theorem 3.1. Consider two vacuum space-times (M,g), (M̃, g̃) as in the discussion
above Theorem 1.1, with horizons (H+

⋃
H−), (H̃+

⋃
H̃−).

Then if these two horizons are weakly equivalent near the points P, P̃ , then the
map Φ in the definition above is an isometry, when restricted to a small enough open
neighborhood of P, P̃ .

Proof of Theorem 3.1: We only need to show that Φ∗g̃−g vanishes to third order
on (H+

⋃
H−)

⋂
Ω; Theorem 1.1 will then imply that (M,g), (M̃, g̃) are isometric

in open neighborhoods of P, P̃ . We first prove this claim on H+.
Proof of the claim on H+: We will show this in two steps: Firstly we will prove

that f = 0 on H+. Then we will show that the jets up to third order of g, Φ∗g̃
are uniquely determined given the values of k13, k23, k′

13, k
′
23. Given the hypothesis

of our Lemma, that will prove that Φ∗g̃ − g vanishes to third order on H+. We
introduce a notational convention to simplify our task: At each stage of our proof we
will denote by K(x1, x2, x3), K ′(x1, x2, x3), . . . (or just K, K ′, . . . for short) generic
known functions defined over H+.

We first show that f = 0 on H+: Consider the equation Ric33(Φ
∗g̃)−Ric33(g) = 0

on H+. We thus derive an equation:

∂
(2)
33 f − (∂3f)2 = K(x1, x2, x3)∂3f

Thus, given that f = ∂0f = 0 in S, we derive that f = 0 by the fundamental theorem
of ODEs.

Now, we recall that g00 = g̃00 = g01 = g̃01 = g02 = g̃02 = 0 throughout Ω.
Furthermore, since the integral curves of ∂

∂x3 in H+
1 are null geodesics, and the fact

that g33 = g13 = g23 = 0 on S, we derive that g33 = g13 = g23 = 0 throughout
H+. Finally, since integral curves are arc-length paramatrized geodesics, we derive
that ∂0g33 = 0 throughout H+. (The same relations are of course true for the
corresponding components of (Φ∗g̃)).

15This notion will be made precise below.
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Now we will show that the components ∂
(k)
0...0g13, ∂

(k)
0...0g23, ∂

(k)
0...0g11, ∂

(k)
0...0g12, ∂

(k)
0...0g22

for 1 ≤ k ≤ 2, and ∂
(2)
00 g33 on H+ can be uniquely determined by the above relations

given the equation Ric(g) = 0 and also the data ∂0g13, ∂0g23 on S. This will also
show that the corresponding components of Φ∗g̃, ∂(Φ∗g̃), ∂(2)(Φ∗g̃) are uniquely de-
termined by the equation Ric(Φ∗g̃) = 0 and the ∂0(Φ

∗g̃)13, ∂0(Φ
∗g̃)23 on S and we

will thus derive our claim on H+.
We determine the above components of the jet of g in stages: Firstly observe that

in the notation of Definition 3.1, for any point on S: k13 = 1
2∂0g13, k′

13 = 1
2∂0(Φ

∗g̃13)
and also k23 = 1

2∂0g23, k′
23 = 1

2∂0(Φ
∗g̃23). Next, we will derive ODEs involving the

unknowns ∂0g13, ∂0g23 in H+: Consider the equations Ric13 = 0, Ric23 = 0. We
derive:

∂3(∂0g13) = K(x1, x2, x3), ∂3(∂0g23) = K(x1, x2, x3).

Thus, again by the fundamental theorem of ODEs we determine the functions ∂0g13, ∂0g23

on H+. Now we use the equations Ric11 = 0, Ric12 = 0, Ric22 = 0 to derive:

∂3(∂0g11) = K∂0g11 + K ′∂0g12 + K ′′∂0g22 + K ′′′, (3.58)

∂3(∂0g12) = K(x1, x2, x3)∂0g11 + K ′∂0g12 + K ′′∂0g22 + K ′′′, (3.59)

∂3(∂0g22) = K∂0g11 + K ′∂0g12 + K ′′∂0g22 + K ′′′. (3.60)

Thus we again invoke the fundamental theorem of ODEs to conclude that the
functions ∂0g11, ∂0g12, ∂0g22 are uniquely determined on H+ by the data we have
prescribed.

Similarly, considering the equation Ric03 = 0 on H+ we calculate ∂
(2)
00 g33 and

then using the equations Ric01 = Ric02 = 0 we calculate ∂
(2)
00 g13, ∂

(2)
00 g13 on H+.

Finally, considering the equations ∂0Ric11 = 0, ∂0Ric12 = 0, ∂0Ric22 = 0 and re-
peating the argument we used for the equations (3.58), (3.58), (3.59) we calculate

∂
(2)
00 g11, ∂

(2)
00 g12, ∂

(2)
00 g22. This proves our claim on H+.

Proof of the claim on H−: Again, we only need to show that f = 0 on H− and
that the 2-jets of g are uniquely determined by the equation Ric(g) = 0 and the data
∂0(g13), ∂0(g23) on S.

Again, at each stage of our proof we will denote by K(x0, x1, x2), K ′(x0, x1, x2), . . .
(or just K, K ′, . . . for short) generic known functions defined over H−.

To show that f = 0 on H− we consider the equation Ric00(Φ
∗g̃) − Ric00(g) = 0

on H−. We derive an ODE on the conformal factor f :

∂
(2)
00 f + (Const) · (∂0f)2 + K∂0f = 0

Thus we derive that f = 0 on H− using the fundamental theorem of ODE and the
hypothesis that f = ∂3f = 0 on S.

Now, the unknowns we wish to determine are the components ∂
(k)
3...3g13, ∂

(k)
3...3g23, ∂

(k)
3...3g33

for every k, 0 ≤ k ≤ 2 and the components ∂
(k)
3...3g11, ∂

(k)
3...3g12, ∂

(k)
3...3g22 for every

k, 1 ≤ k ≤ 2.
Using the equations Ric01 = 0, Ric02 = 0 we derive:

∂
(2)
00 g13 + K∂0g13 + K ′g23 = K ′′, ∂

(2)
00 g23 + K̃∂0g13 + K̃ ′g23 = K̃ ′′.

Therefore by applying the fundamental theorem of ODEs to the above two equations
we derive that we can determine g13, g23 from the initial data on S. Now we also
consider the equations Ric11 = 0, Ric12 = 0, Ric22 = 0. We derive a system of three
equations:
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∂0(∂3g11) + K1∂3g11 + K2∂3g12 + K3∂3g22 = K4, (3.61)

∂0(∂3g12) + K̃1∂3g11 + K̃2∂3g12 + K̃3∂3g22 = K̃4, (3.62)

∂0(∂3g22) + K1∂3g11 + K2∂3g12 + K3∂3g22 = K4. (3.63)

Thus, we also derive that the values of ∂0g11, ∂0g12, ∂0g22 can be determined on
H− from our prescribed data.

Finally, using the equation Ric03 = 0 on H− we derive an equation:

∂
(2)
00 g33 + K1∂0g33 = K2.

Therefore, using the fact that ∂0g33 = 0 on S we derive that g33 can also be deter-
mined on H−. Finally considering ∂3-derivatives of the equations above, we can also
determine all the higher derivatives of the unknown functions. ✷
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