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Abstract. We prove a unique continuation from infinity theorem for regular

waves of the form [�+V(t, x)]φ = 0. Under the assumption of no incoming and
no outgoing radiation on specific halves of past and future null infinities, we

show that the solution must vanish everywhere. The “no radiation” assump-

tion is captured in a specific, finite rate of decay which in general depends on
the L∞-profile of the potential V. We show that the result is optimal in many

regards. These results are then extended to certain power-law type nonlinear

wave equations, where the order of decay one must assume is independent of
the size of the nonlinear term. These results are obtained using a new family

of global Carleman estimates on the exterior of a null cone. A companion

paper to this one will explore further applications of these new estimates to
such nonlinear waves.
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1. Introduction

This paper presents certain global unique continuation results for linear and non-
linear wave equations. The motivating challenge is to investigate the extent to which
globally regular waves can be reconstructed from the radiation they emit towards
(suitable portions of) null infinity. We approach this in the sense of uniqueness:
if a regular wave emits no radiation towards appropriate portions of null infinity,
then it must vanish.
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The belief that a lack of radiation emitted towards infinity should imply the
triviality of the underlying solution has been implicit in the physics literature for
many classical fields. For instance, in the case of linear Maxwell equations, early
results in this direction go back at least to [17]. Moreover, in general relativity, the
question whether non-radiating gravitational fields must be trivial (i.e., stationary)
goes back at least to [14], in connection with the possibility of time-periodic solu-
tions of Einstein’s equations. The presumption that the answer must be affirmative
under suitable assumptions underpins many of the central stipulations in the field;
see for example the issue of the final state in [7].

We deal here with self-adjoint wave equations over the Minkowski spacetime,

Rn+1 = {(t, x) | t ∈ R, x = (x1, . . . , xn) ∈ Rn}.
Our analysis in performed in the exterior region D of a light cone. Roughly, we
show that if a solution φ of such a wave equation decays faster toward infinity in
D than the rate enjoyed by free waves (with smooth and rapidly decaying initial
data),1 then φ itself must vanish on D.

Straightforward examples in the Minkowski spacetime show that if one does not
assume regularity of a wave in a suitably large portion of spacetime, then then
unique continuation from infinity will fail unless one assumes vanishing to infinite
order. In the context of the early and later investigations in the physics literature,
one always made sufficient regularity assumptions at infinity to derive this vanishing
to infinite order. The vanishing/stationarity of the field can then be derived under
the additional assumption of analyticity near a portion of future of null infinity;
see, for instance, [4, 5, 14, 15, 16]. However, the assumption of analyticity can not
be justified on physical grounds; in fact, the recent work [10] suggests that the local
argument near a piece of null infinity fails without that assumption.

In earlier joint work with V. Schlue, [2], the authors were able to prove that the
assumption of vanishing to infinite order at (suitable parts) of null infinities does
imply the vanishing of the solution near null infinity. 2 This earlier result can thus
be seen as a satisfactory answer to the above question in the physics literature,
whenever the assumption of vanishing to infinite order can be derived (either by
assuming sufficient regularity towards infinity, or by the nature of the problem).

However, this leaves open the question of whether the infinite-order vanishing
assumption can be relaxed, if in addition one assumes the solution to be globally
regular (which rules out the aforementioned counterexamples). Obviously, one must
assume faster decay towards past and future null infinity (I− and I+, respectively)
than that enjoyed by free linear waves. The main theorems of this paper derive
precisely such results, for self-adjoint wave operators over Minkowski space.

Our first result in this direction applies to linear wave equations of the form

(1.1) [�+ V(t, x)]φ = 0.

Informally speaking, we show that if the potential V decays and satisfies suitable
L∞-bounds, and if the solution φ decays faster 3 on D toward null infinity than
generic solutions of the free wave equation, then φ must vanish everywhere on D.

1In other words, φ vanishes at infinity to a given finite order.
2In fact, it was shown that the parts of null infinity where one must make this assumption

depend strongly on the mass of the background spacetime.
3The rate of decay required for φ depends on the profile of V.
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Figure 1. The null cone N and the exterior domain D in the
Penrose diagram

A second result deals with the same equations, but shows that if V satisfies a
suitable monotonicity property, then it suffices to only assume a specific decay for
φ, which is independent of the size of V. Furthermore, this latter result generalizes
immediately to a class of nonlinear wave equations that includes the usual power-
law (defocusing and focusing) nonlinear wave equations.

The method of proof replies on new Carleman-type estimates for linear and
nonlinear wave operators over the entire domain D. In a companion paper, [3], we
will develop these estimates further to derive localized estimates for these classes
of wave equations inside time cones. These estimates are then applied toward
understanding the profile of energy concentration near singularities.

The precise statements of our unique continuation results are in Section 1.1. We
also discuss in Sections 1.1 and 3.5 how the results here are essentially optimal.

Both the results here and in [2] can be compared with results in the literature on
decay properties of eigenfunctions of elliptic operators. As discussed extensively in
the introduction of [2], the results there on (local) unique continuation from infinity
assuming vanishing of infinite order can be considered as a strengthening of classical
results on non-existence of positive or zero L2-eigenvalues of elliptic operators

L := −∆− V,

which go back to [1, 11, 12, 13, 18]. Indeed such an eigenfunction u(x), with
eigenvalue λ ≥ 0, would correspond to time-periodic (or static) solutions

v(t, x) := ei
√
λtu(x)

of the corresponding wave equation

[�+ V]v = 0.

The condition of infinite order vanishing can be derived for positive eigenvalues
and must be imposed for zero eigenvalues. For the latter case, there exist straight-
forward examples of static solutions Lφ = 0 over Rn which vanish to any prescribed
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order M > 0, yet are not zero. (We review such examples in brief in Section 3.5).
Yet, these examples make V large in proportion to the assumed order of vanishing
M . In particular, these static examples show that in order to use the decay of a
solution to (1.1) to derive the global vanishing of the solution, the L∞-profile of V
must in general depend on the assumed order of vanishing.

We can also see our results as a strengthening of known work on negative eigen-
values of elliptic operators L. Indeed, [13, Theorem 4.2] strengthens a result of
Agmon for L with V = O(r−1−ε), where ε > 0 and r is the Euclidean distance from
the origin, to derive that a non-trivial solution w of

Lu = −k2u

must satisfy

u = e−krr−(n−1)/2[f(ω) + ϕ(r, ω)],

where

f ∈ L2(Sn−1), f 6≡ 0,

∫
Sn−1

|ϕ(r, ω)|2dω = O(r−2γ), γ ∈ (0, ε).

These yield solutions v(t, x) of the corresponding wave equation defined via

v(t, x) := e±k·tu(x).

Note that such solutions will decay exponentially one of the halves

I+
0 := {u ≤ 0, v = +∞}, I−0 := {v ≥ 0, u = −∞},

of future and past null infinities I+, I−, while having a finite, non-zero radiation
field e−2vf(ω), e−2uf(ω) on the other. The condition f 6= 0 can precisely be seen
as a unique continuation statement: if the eigenfunction corresponded to a wave of
vanishing radiation, it would have to vanish itself. We remark that this discussion
also shows that one cannot hope to show uniqueness of solutions to wave equations
in the form (1.1) for general smooth potentials V by even assuming infinite order-
vanishing on the entire past null infinity.

1.1. The Main Results. Recall the Minkowski metric on Rn+1, given by

g := −dt2 + dr2 + rn−1γ̊, t ∈ R, r ∈ [0,∞),(1.2)

where r = |x|, and where γ̊ is the round metric on Sn−1. In terms of null coordinates,

u :=
1

2
(t− r), v :=

1

2
(t+ r),(1.3)

the Minkowski metric takes the form

g = −4dudv + rn−1γ̊.(1.4)

We use the usual notations—∂t, ∂r, ∂u, ∂v—to denote derivatives with respect to
these coordinates. For the remaining spherical directions, we use /∇ to denote the
induced connections for the level spheres of (t, r). In particular, we let | /∇φ|2 denote
the squared (g-)norm of the spherical derivatives of φ:

| /∇φ|2 := g( /∇φ, /∇φ) = r2 · γ̊( /∇φ, /∇φ).(1.5)

Our main results deal with solutions of wave equations in the exterior of the
double null cone about the origin,

D := {ξ ∈ Rn+1 | |t(ξ)| < |r(ξ)|}.(1.6)
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In our geometric descriptions, we will often refer to the standard Penrose compact-
ification of Minkowski spacetime, see Figure 1, as this provides our basic intuition
of the structure of infinity. With this in mind, we note the following:

• D is the diamond-shaped region in Minkowski spacetime bounded by the
null cone about the origin and by the outer half of null infinity I±.
• This boundary of D has four corners: the origin, spacelike infinity ι0, and

the “midpoints’’ of future and past null infinity.

1.1.1. Linear Wave Equations. Recall if φ is a free wave, i.e., �φ ≡ 0, then the
radiation field of φ at null and spacelike infinities is captured by the limit of

R(φ) := (1 + |u|)
n−1
2 (1 + |v|)

n−1
2 φ.(1.7)

This can be seen, for example, via Penrose compactification by solving the corre-
sponding wave equation on the Einstein cylinder. These asymptotics also hold for
many linear waves with suitably decaying potentials, and suitable nonlinear waves
with small initial data; see [6].

Our first result deals with solutions of linear wave equations of the form

�φ+ Vφ = 0,(1.8)

with V satisfying suitable L∞-type bounds. We require decay of a power δ > 0
faster than in (1.7) for solutions φ of (1.8), with V satisfying δ-dependent bounds.
On the other hand, we make no assumptions on the sign or the monotonicity of V.

Theorem 1.1. Fix 0 < p < δ, and let φ ∈ C2(D) such that:

• φ satisfies the following differential inequality on D,

|�φ| ≤ |V||φ|,(1.9)

where V ∈ C0(D), and where V satisfies

|V| ≤ ε · p 3
2

√
min(δ − p, p) ·min(|uv|−1+ p

2 , |uv|−1− p2 ),(1.10)

for some universal small constant ε (that can be determined from the proof).
• φ satisfies the following decay conditions: 4

sup
D

{
[(1 + |u|)(1 + |v|)]

n−1+δ
2 (|u · ∂uφ|+ |v · ∂vφ|)

}
<∞,(1.11)

sup
D∩{|uv|<1}

{
[(1 + |u|)(1 + |v|)]

n−1+δ
2 |uv| 12 | /∇φ|

}
<∞,

sup
D

{
[(1 + |u|)(1 + |v|)]

n−1+δ
2 |φ|

}
<∞.

Then, φ vanishes everywhere on D.

Remark. We note that if one knows that φ is C2-regular on all of R1+n and thus
vanishes on D, one can derive that φ vanishes in the entire spacetime by standard
energy estimates. We also note that the assumed decay (1.11) of φ in D is a
quantitative assumption of no incoming radiation from half of past null infinity,
and no outgoing radiation in half of future null infinity.

Remark. Note that (1.10) implies V decays like r−2−p at spatial infinity. Yet the

condition is weaker at null infinities, where V decays like r−1− p2 .

4The assumption (1.11) can be replaced by corresponding conditions for weighted fluxes
through level sets of f . This will become apparent from the proof of the theorem.
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The necessity of assuming this decay for V to obtain any sort of uniqueness
theorem is already well-known in the elliptic setting, which corresponds to time-
independent solutions of (1.8); see [2] for a discussion. Moreover, the smallness
of the potential V in Theorem 1.1 is necessary. This is proved in Section 3.5 by
construction of a counterexample.

On the other hand, if V in (1.8) has a certain monotonicity (and we return to
the setting of a differential equation rather an inequality), then in fact no smallness
is required of V. The precise statement is given in the subsequent theorem:

Theorem 1.2. Fix δ > 0, and let φ ∈ C2(D) such that:

• φ satisfies

�φ+ V φ = 0,(1.12)

where V ∈ C1(D) ∩ L∞(D) satisfies

V > 0, (u∂u + v∂v)(log V ) > −2 + µ,(1.13)

everywhere on D for some constant µ > 0.
• φ satisfies (1.11), as well as the following decay condition:

sup
D∩{|uv|>1}

{
[(1 + |u|)(1 + |v|)]

n−1+δ
2 |uv| 12V 1

2 |φ|
}
<∞.(1.14)

Then, φ vanishes everywhere on D.

Remark. Note that u∂u + v∂v = t∂t + r∂r is precisely the dilation vector field on
Rn+1, which generates a conformal symmetry of Minkowski spacetime.

Remark. In particular, Theorem 1.2 applies to

�φ+ φ = 0,(1.15)

i.e., the negative-mass Klein-Gordon equations.

The above two results are proven using Carleman-type estimates that we obtain
in Section 2. While Theorem 1.1 is proved separately, Theorem 1.2 is a special case
of uniqueness results for nonlinear wave equations, which we discuss below.

1.1.2. Nonlinear Wave Equations. The Carleman estimates that we obtain in Sec-
tion 2 are of sufficient generality to be directly applicable to certain classes of
nonlinear wave equations. In fact, they yield stronger results for these equations,
compared to the general linear case. The stronger nature of the estimates is man-
ifested in the fact that the order of vanishing at infinity needs only be slightly
faster than a specific rate, irrespective of the size of the (nonlinear) potential. Sur-
prisingly perhaps, it turns out that one obtains these improved estimates in either
the focusing or the defocusing case, depending on the power of the nonlinearity as
compared to the conformal power.

The class of equations that we will consider will be generalizations of the usual
power-law focusing and defocusing nonlinear wave equations: 5

�φ± V (t, x)|φ|p−1φ = 0, p ≥ 1,(1.16)

with V ∈ C1(D) and V (t, x) > 0 for all points in (t, x) ∈ D.

5The case p = 1 yields linear wave equations with potential.
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Definition 1.3. We call such equations focusing if the sign in (1.16) is +, and
defocusing if the sign in (1.16) is −.

Definition 1.4. We refer to (1.16) as:

• “Subconformal”, if p < 1 + 4
n−1 .

• “Conformal”, if p = 1 + 4
n−1 .

• “Superconformal”, if p > 1 + 4
n−1 .

We now state the remaining unique continuation results, one applicable to sub-
conformal focusing-type equations, and the other to both conformal and supercon-
formal defocusing type equations of the form (1.16).

Theorem 1.5. Fix any δ > 0, and let φ ∈ C2(D) such that:

• φ satisfies

�φ+ V |φ|p−1φ = 0, 1 ≤ p < 1 +
4

n− 1
,(1.17)

where V ∈ C1(D) ∩ L∞(D) satisfies 6

V > 0, (u∂u + v∂v)(log V ) > −n− 1

2

(
1 +

4

n− 1
− p
)

+ µ,(1.18)

everywhere on D for some constant µ > 0.
• φ satisfies (1.11), as well as the following decay condition:

sup
D∩{|uv|>1}

{
[(1 + |u|)(1 + |v|)]

n−1+δ
p+1 |uv|

1
p+1V

1
p+1 |φ|

}
<∞.(1.19)

Then, φ vanishes everywhere on D.

Remark. In particular, taking p = 1 in Theorem 1.5 results in Theorem 1.2.

Theorem 1.6. Fix δ > 0, and let φ ∈ C2(D) such that:

• φ satisfies

�φ− V |φ|p−1φ = 0, p ≥ 1 +
4

n− 1
,(1.20)

where V ∈ C1(D) ∩ L∞(D) satisfies, everywhere on D,

V > 0, (u∂u + v∂v)(log V ) ≤ n− 1

2

(
p− 1− 4

n− 1

)
.(1.21)

• φ satisfies (1.11).

Then, φ vanishes everywhere on D.

Remark. Note that for defocusing-type equations, (1.20), one does not require the
extra decay condition (1.19) needed for focusing-type equations.

Remark. The Carleman estimates we employ are robust enough so that Theorems
1.5 and 1.6 can be even further generalized to operators of the form

�φ± V (t, x) · Ẇ (φ) = 0.(1.22)

Roughly, we can find analogous unique continuation results in the following cases:

• Focusing-type, with Ẇ (φ) growing at a subconformal rate.

• Defocusing-type, with Ẇ (φ) growing at a conformal or superconformal rate.

6Fixed sign error in monotonicity condition.
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For simplicity, though, we restrict our attention to equations of the form (1.16).

For example, by taking V (t, x) = 1, we recover unique continuation results for
the usual focusing and defocusing nonlinear wave equations:

Corollary 1.7. Fix δ > 0, and let φ ∈ C2(D) satisfy

�φ+ |φ|p−1φ = 0, 1 ≤ p < 1 +
4

n− 1
,(1.23)

as well as the decay conditions (1.11) and (1.19). Then, φ ≡ 0 on D.

Corollary 1.8. Fix δ > 0, and let φ ∈ C2(D) satisfy

�φ− |φ|p−1φ = 0, p ≥ 1 +
4

n− 1
,(1.24)

as well as the decay conditions (1.11). Then, φ ≡ 0 on D.

The main results—Theorems 1.1, 1.5, and 1.6—are proved in Section 3.

1.2. The Global Carleman Estimates. The main tool for our uniqueness results
is a new family of Carleman estimates which are global, in the sense that they
apply to regular functions defined over the entire region D. The precise estimates
are presented in Theorems 2.13 and 2.18.

Here, we approach Carleman estimates from the perspective of energy estimates
for geometric wave equations via the use of multipliers. As such, we mostly follow
the notations developed in [8] and adopted in [2]. Similar local Carleman estimates,
but from the null cone rather than from null infinity, were proved in [9].

From this geometric point of view, the basic process behind proving Carleman
estimates can be summarized as follows:

• One applies multipliers and integrates by parts like for energy estimates,
but the goal is now to obtain positive bulk terms.
• In order to achieve the above, we do not work directly with the solution φ

itself. Rather, we undergo a conjugation by considering the wave equation
for ψ = e−Fφ, where e−F is a specially chosen weight function.

For further discussion on the geometric view of Carleman estimates and their proofs,
the reader is referred to [2, Section 3.3].

The function F we work with here is a reparametrization F (f) of the Minkowski
square distance function from the origin,

f ∈ C∞(D), f := −uv =
1

4
(r2 − t2).(1.25)

Its level sets form a family of timelike hyperboloids having zero pseudoconvexity.
As a result of this, the bulk terms we obtain unfortunately yields no first derivative
terms. However, the specific nature of this f crucially helps us, as it allows us to
generate (zero-order) bulk terms that can be made positive on all of D.

This global positivity of the bulk is important here primarily because the weight
e−F vanishes on the null cone N about the origin, i.e., the left boundary of D.
In practice, this allows us to eliminate flux terms at this “inner” boundary; in
particular, we do not introduce a cutoff function, which is commonly used in (local)
unique continuation problems. This is ultimately responsible for us only needing
to assume finite-order vanishing at null infinity for our uniqueness results. 7

7More specifically, in our current context, the lack of a cutoff function removes the need to
take a↗ ∞ in Theorems 2.13 and 2.18 when proving unique continuation.
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The first Carleman estimate, Theorem 2.13, applies to the linear wave operator
�. In this case, special care is required to generate the positive bulk. In particular,
we implicitly utilize that our domain D is symmetric up to an inversion across a
hyperboloid to construct two complementary reparametrizations F± which match
up at the hyperboloid. While this conformal inversion (see Section 3.2.2) is not
used explicitly in the proof, it is manifest in the idea that local Carleman estimates
from infinity and from a null cone are dual to each other.

For the nonlinear equations that we deal with, our second Carleman estimate,
Theorem 2.18, directly uses the nonlinearity to produce a positive bulk. This is
in contrast to the usual method of treating nonlinear terms by seeking to absorb
them into the positive bulk arising from the linear terms. In the context of unique
continuation, this results in the improvement (for certain equations) from Theo-
rem 1.1, which requires suitably small potentials (relative to the assumed order of
vanishing), to Theorems 1.2, 1.5, and 1.6, for which no such smallness is required.

Finally, we remark that Theorem 2.18 will also be applied in the companion paper
[3] to study nonlinear wave equations for different purposes. Thus, we present the
main estimates for more general domains than needed in the present paper.

2. Carleman Estimates

In this section, we derive new Carleman estimates for functions φ ∈ C2(D), where
D is the exterior of the double null cone (see (1.6)),

D := {Q ∈ Rn+1 | u(Q) < 0, v(Q) > 0}.

Throughout, we will let ∇ denote the Levi-Civita connection for (R1+n, g), and
we will let ∇] denote the gradient operator with respect to g. We also recall the
function hyperbolic square distance function f defined in (1.25).

2.1. The Preliminary Estimate. In order to state the upcoming inequalities
succintly, we make some preliminary definitions.

Definition 2.1. We define a reparametrization of f to be a function of the form
F ◦ f , where F ∈ C∞(0,∞). For convenience, we will abbreviate F ◦ f by F . We
use the symbol ′ to denote differentiation of a reparametrization as a function on
(0,∞), that is, differentiation with respect to f .

Definition 2.2. We say that an open, connected subset Ω ⊆ D is admissible iff:

• The closure of Ω is a compact subset of D.
• The boundary ∂Ω of Ω is piecewise smooth, with each smooth piece being

either a spacelike or a timelike hypersurface of D.

For an admissible Ω ⊆ D, we define the oriented unit normal N of ∂Ω as follows:

• N is the inward-pointing unit normal on each spacelike piece of ∂Ω.
• N is the outward-pointing unit normal on each timelike piece of ∂Ω.

Integrals over such an admissible region Ω and portions of its boundary ∂Ω will be
with respect to the volume forms induced by g.

Definition 2.3. We say that a reparametrization F of f is inward-directed on an
admissible region Ω ⊆ D iff F ′ < 0 everywhere on Ω.

Lastly, we provide the general form of the wave operators we will consider: 8

8These include all the wave operators arising from the main theorems throughout Section 1.1.
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Definition 2.4. Let U ∈ C1(D×R), and let U̇ be the partial derivative of U in the
last (R-)component. Define the following (possibly) nonlinear wave operator:

�Uφ(Q) = �φ(Q) + U̇(Q,φ(Q)), Q ∈ D.(2.1)

Furthermore, derivatives ∇U of U will be with respect to the first (D-)component.

We can now state our preliminary Carleman-type inequality:

Proposition 2.5. Let φ ∈ C2(D), and let Ω ⊆ D be an admissible region. Fur-
thermore, let U and �U be as in Definition 2.4. Then, for any inward-directed
reparametrization F of f on Ω, the following inequality holds,

1

8

∫
Ω

e−2F |F ′|−1 · |�Uφ|2 ≥
∫

Ω

e−2F (f |F ′|GF −HF ) · φ2(2.2)

−
∫

Ω

BFU −
∫
∂Ω

PFβ N β,

where:

• GF and HF are defined in terms of f as

GF := −(fF ′)′, HF :=
1

2
(fGF )′,(2.3)

• BFU is the nonlinear bulk quantity,

BFU := e−2F

(
n− 1

4
− fF ′

)
· U̇(φ)φ− e−2F∇αf · ∇αU(φ)(2.4)

− 2e−2F

(
n+ 1

4
− fF ′

)
· U(φ),

• N is the oriented unit normal of ∂Ω.
• PF is the current,

PFβ := e−2F

(
∇αf · ∇αφ∇βφ−

1

2
∇βf · ∇µφ∇µφ

)
(2.5)

+ e−2F∇βf · U(φ) + e−2F

(
n− 1

4
− fF ′

)
· φ∇βφ

+ e−2F

[(
fF ′ − n− 1

4

)
F ′ − 1

2
GF

]
∇βf · φ2.

The remainder of this subsection is dedicated to the proof of (2.2).

2.1.1. Preliminaries. We first collect some elementary computations regarding f .

Lemma 2.6. The following identities hold:

∂uf = −v, ∂vf = −u.(2.6)

As a result,

∇]f =
1

2
(u · ∂u + v · ∂v), ∇αf∇αf = f .(2.7)

Lemma 2.7. The following identity holds:

∇2f =
1

2
g.(2.8)
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Moreover,

�f =
n+ 1

2
, ∇αf∇βf∇αβf =

1

2
f .(2.9)

Remark. In particular, equation (2.8) implies that the level sets of f have exactly
zero pseudoconvexity.

We also recall the (Lorentzian) divergence theorem in terms of our current lan-
guage: if Ω ⊆ D be admissible, and if P is a smooth 1-form on D, then∫

Ω

∇βPβ =

∫
∂Ω

PβN β ,(2.10)

where N is the oriented unit normal of ∂Ω.

2.1.2. Proof of Proposition 2.5. We begin by defining the following shorthands:

• Define ψ ∈ C∞(D) and the conjugated operator LU by

ψ := e−Fφ, LUψ := e−F�Uφ = e−F�U (eFψ).(2.11)

• Let S and S∗ define the operators

Sψ := ∇αf∇αψ, S∗ψ := Sψ +
n− 1

4
· ψ.(2.12)

• Recall the stress-energy tensor for the wave equation, applied to ψ:

Qαβ [ψ] := Qαβ := ∇αψ∇βψ −
1

2
gαβ∇µψ∇µψ.(2.13)

The proof will revolve around an energy estimate for the wave equation, but for ψ
rather than φ. We also make note of the following relations between ψ and φ:

Lemma 2.8. The following identities hold:

∇αψ = e−F (∇αφ− F ′∇αf · φ), Sψ = e−F (Sφ− fF ′ · φ).(2.14)

Furthermore, we have the expansion

LUψ = �ψ + 2F ′ · S∗ψ + [f(F ′)2 −GF ] · ψ + e−F U̇(φ).(2.15)

Proof. First, (2.14) is immediate from definition and from (2.7). We next compute

LUψ = e−F∇α(F ′eF∇αf · ψ) + e−F∇α(eF∇αψ) + e−F U̇(φ)(2.16)

= �ψ + 2F ′ · Sψ + f(F ′)2 · ψ + fF ′′ · ψ + F ′�f · ψ + e−F U̇(φ),

where we again applied (2.7). Since (2.3) and (2.9) imply

f(F ′)2 + fF ′′ + F ′�f = f(F ′)2 + (fF ′′ + F ′) +
n− 1

2
F ′(2.17)

= f(F ′)2 −GF +
n− 1

2
F ′,

then (2.15) follows from applying (2.17) to (2.16). �

The first step in proving Proposition 2.5 is to expand LUψS∗ψ:

Lemma 2.9. The following identity holds,

LUψS∗ψ = 2F ′ · |S∗ψ|2 + (fF ′GF +HF ) · ψ2 + BU +∇βPFβ ,(2.18)
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Proof. From the stress-energy tensor (2.13), we can compute,

∇β(Qαβ∇αf) = ∇βQαβ∇αf +Qαβ∇αβf(2.19)

= �ψSψ +∇2
αβf · ∇αψ∇βψ −

1

2
�f · ∇βψ∇βψ,

∇β(ψ∇βψ) = ψ�ψ +∇βψ∇βψ.

Summing the equations in (2.19) and recalling (2.8) and (2.9), we obtain

∇β
(
Qαβ∇αf +

n− 1

4
· ψ∇βψ

)
= �ψS∗ψ.(2.20)

Multiplying (2.15) by S∗ψ and applying (2.20) results in the identity

LUψS∗ψ = 2F ′ · |S∗ψ|2 + [f(F ′)2 −GF ] · ψS∗ψ + e−F U̇(φ)S∗ψ(2.21)

+∇β
(
Qαβ∇αf +

n− 1

4
· ψ∇βψ

)
.

Next, letting A = f(F ′)2 −GF , the product rule and (2.9) imply

A · ψS∗ψ =
1

2
A · ∇βf∇β(ψ2) +

n− 1

4
A · ψ2(2.22)

=
1

2
∇β(A∇βf · ψ2)− 1

2
∇βf∇βA · ψ2 − 1

2
A · ψ2

=
1

2
∇β(A∇βf · ψ2)− 1

2
(fA)′ · ψ2

=
1

2
∇β(A∇βf · ψ2) + (fF ′GF +HF ) · ψ2.

Moreover, recalling (2.14), we can write

e−F U̇(φ)S∗ψ = e−2F U̇(φ)Sφ+ e−2F

(
n− 1

4
− fF ′

)
U̇(φ)φ.(2.23)

From the product and chain rules, (2.7), and (2.9), we see that

e−2F · U̇(φ)Sφ = ∇β [e−2F∇βf · U(φ)]− e−2F · SU(φ)(2.24)

−∇β(e−2F∇βf) · U(φ)

= ∇β [e−2F∇βf · U(φ)]− e−2F · SU(φ)

− 2e−2F

(
fF ′ − n+ 1

4

)
· U(φ).

Therefore, from (2.23) and (2.24), it follows that

e−F U̇(φ)S∗ψ = ∇β [e−2F∇βf · U(φ)] + BFU .(2.25)

Combining (2.21) with (2.22) and (2.25) yields

LUψS∗ψ = �ψS∗ψ + 2F ′ · |Swψ|2 + (fF ′GF +HF ) · ψ2 + BFU(2.26)

+∇β
[
e−2F∇βf · U(φ) +

1

2
A∇βf · ψ2

]
+∇β

(
Qαβ∇αf +

n− 1

4
· ψ∇βψ

)
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Thus, to prove (2.18), it remains only to show that

PFβ = Qαβ∇αf +
n− 1

4
· ψ∇βψ +

1

2
A∇βf · ψ2 + e−2F∇βf · U(φ).(2.27)

Note we obtain from (2.7), (2.13), and (2.14) that

Qαβ∇αf = e−2F∇αf(∇αφ− F ′∇αf · φ)(∇βφ− F ′∇βf · φ)(2.28)

− 1

2
e−2F∇βf(∇µφ− F ′∇µf · φ)(∇µφ− F ′∇µf · φ)

= e−2F

(
Sφ∇βφ−

1

2
∇βf · ∇µφ∇µφ

)
− e−2F fF ′ · φ∇βφ

+
1

2
e−2F f∇βf(F ′)2 · φ2.

Using (2.14), we also see that

n− 1

4
· ψ∇βψ =

n− 1

4
e−2F (φ∇βφ− F ′∇βf · φ2).(2.29)

Since the definition of A yields

1

2
A∇βf · ψ2 =

1

2
e−2F [f(F ′)2 −GF ]∇βf · φ2.(2.30)

then combining (2.28)-(2.30) yields (2.27) and completes the proof. �

Lemma 2.10. The following pointwise inequality holds,

1

8
|F ′|−1|LUψ|2 ≥ (f |F ′|GF −HF ) · ψ2 − BFU −∇βPFβ .(2.31)

Proof. From (2.18), we have

−LψS∗ψ = 2|F ′||S∗ψ|2 + (f |F ′|GF −HF )ψ2 − BFU −∇βPFβ ,(2.32)

The inequality (2.31) follows immediately from (2.32) and the basic inequality

−LψS∗ψ ≤
1

8
|F ′|−1|Lψ|2 + 2|F ′||S∗ψ|2. �

To complete the proof of Proposition 2.5, we integrate (2.31) over Ω and apply
the divergence theorem, (2.10), to the last term on the right-hand side of (2.31).

2.2. The Linear Estimate. We now derive Carleman estimates for the wave op-
erator � (with no potential). In terms of the terminology presented in Proposition
2.5, we wish to consider the situation in which U ≡ 0, so that we have no positive
bulk contribution from U , i.e., BFU ≡ 0.

Ideally, the reparametrization of f we would like to take is F = −a log f (corre-
sponding to power law decay for the wave at infinity), where a > 0. However, for
this F , we see that the quantities GF and HF , defined in (2.3), vanish identically,
so that (2.2) produces no positive bulk terms at all. Thus, we must add correction
terms to the above F in order to generate the desired positive bulk.

Furthermore, to ensure that these corrections remain everywhere lower order, we
must construct separate reparametrizations for regions with f small (f < 1) and
with f large (f > 1). We must also ensure that these two reparametrizations match
at the boundary f = 1. These considerations motivate the definitions below:
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Definition 2.11. Fix constants a, b, p ∈ R satisfying the following conditions:

a > 0, 0 < p < 2a, 0 ≤ b < 1

4
min(2a− p, 4p).(2.33)

Definition 2.12. With a, b, p as in (2.33), we define the reparametrizations

F± := −(a± b) log f − b

p
f∓p.(2.34)

In particular, F− will be our desired reparametrization on {f < 1}, while F+

will be applicable in the opposite region {f > 1}. By applying Proposition 2.5 with
F± and U ≡ 0, we will derive the following inequalities:

Theorem 2.13. Let φ ∈ C2(D), and fix a, b, p ∈ R satisfying (2.33). Let Ω ⊆ D be
an admissible region, and partition Ω as

Ωl := {Q ∈ Ω | f(Q) < 1}, Ωh := {Q ∈ Ω | f(Q) > 1}.
Then, there exist constants C,K > 0 such that:

Cbp2

∫
Ωl

f2(a−b)fp−1φ2 ≤ Ka−1

∫
Ωl

f2(a−b) · f |�φ|2 +

∫
∂Ωl

P−β N
β,(2.35)

Cbp2

∫
Ωh

f2(a+b)f−p−1φ2 ≤ Ka−1

∫
Ωh

f2(a+b) · f |�φ|2 +

∫
∂Ωh

P+
β N

β,(2.36)

where N denotes the oriented unit normals of ∂Ωl and ∂Ωh, and where

P±β := e−2F±

(
∇αf · ∇αφ∇βφ−

1

2
∇βf · ∇µφ∇µφ

)
(2.37)

+ e−2F±

(
n− 1

4
− fF ′±

)
· φ∇βφ

+ e−2F±

[(
fF ′± −

n− 1

4

)
F ′± −

1

2
bpf∓p−1

]
∇βf · φ2.

Furthermore, on the middle boundary {f = 1}, we have that

P−|f=1 = P+|f=1.(2.38)

2.2.1. Special Reparametrizations. We begin with some elementary computations.

Proposition 2.14. The following inequalities hold:

b <
a

2
, a± b ' a, a− b− 1

2
p > b.(2.39)

Proof. The first inequality follows from (2.33), and the comparison a±b ' a follows
immediately from this. For the remaining inequality, we apply (2.33) twice:

a− b− p

2
> a− 1

4
(2a− p)− p

2
=

1

2
a− 1

4
p > b. �

Proposition 2.15. The following identities hold for F±:

F ′± = −(a± b)f−1 ± bf∓p−1,(2.40)

Furthermore, recalling the notations in (2.3), we have that

GF± = bpf∓p−1, HF± = ∓1

2
bp2f∓p−1.(2.41)

In particular, on the level set F1 = {f = 1}, we have

F+|F1
= F−|F1

, F ′+|F1
= F ′−|F1

, GF+
|F1

= GF− |F1
.(2.42)
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Proof. These are direct computations. �

Proposition 2.16. The following comparisons hold:

• If 0 < f ≤ 1, then

fa−b < e−F− ≤ efa−b, − af−1 ≤ F ′− < −(a− b)f−1.(2.43)

• If 1 ≤ f <∞, then

fa+b < e−F+ ≤ efa+b, − (a+ b)f−1 < F ′+ ≤ −af−1.(2.44)

In particular, (2.43) implies that F− is inward-directed whenever f < 1, while (2.44)
implies F+ is inward-directed whenever f > 1.

Proof. The comparisons (2.43) and (2.44) follow immediately from (2.34), (2.40),
and the trivial inequality bp−1 < 1, which is a consequence of (2.33). The remaining
monotonicity properties follow from (2.39), (2.43), and (2.44). �

Proposition 2.17. The following inequalities hold:

• If 0 < f < 1, then

f |F ′−|GF− −HF− > b2pfp−1 > 0.(2.45)

• If 1 < f <∞, then

f |F ′+|GF+
−HF+

> b2pf−p−1 > 0.(2.46)

Proof. First, in the case 0 < f < 1, we have

f |F ′−|GF− −HF− = (a− b+ bfp)bpfp−1 − 1

2
bp2fp−1(2.47)

= bpfp−1

(
a− b− 1

2
p+ bfp

)
≥ bp

(
a− b− 1

2
p

)
fp−1.

Similarly, when 1 < f <∞, we have

f |F ′+|GF+ −HF+ = (a+ b− bf−p)bpf−p−1 +
1

2
bp2f−p−1(2.48)

≥ bp
(
a+

1

2
p

)
f−p−1.

The desired inequalities now follow by applying (2.39) to (2.47) and (2.48). �

2.2.2. Proof of Theorem 2.13. First, for (2.35), we apply Theorem 2.5 with F = F−
and U ≡ 0. Combining this with (2.39), (2.43), and (2.45), we obtain the inequality

Cb2p

∫
Ω

f2(a−b)fp−1φ2 ≤ Ka−1

∫
Ω

f2(a−b)f |�φ|2 +

∫
∂Ω

P
F−
β N

β ,(2.49)

where C and K are constants, and where N , PF− are as defined in Theorem 2.5.
Since U ≡ 0, then PF− is precisely the one-form P− in (2.37), proving (2.35).

Similarly, for (2.36), we apply Theorem 2.5 with F = F+ and U ≡ 0, and we
combine the result with (2.39), (2.44), and (2.46), which yields

Cb2p

∫
Ω

f2(a+b)f−p−1φ2 ≤ Ka−1

∫
Ω

f2(a+b)f |�φ|2 +

∫
∂Ω

P
F+

β N
β ,(2.50)

Since PF+ is precisely P+, we obtain (2.36).
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Finally, (2.38) is an immediate consequence of (2.37) and (2.42)

2.3. The Nonlinear Estimate. We next discuss Carleman estimates for nonlinear
wave equations, in particular those found in Theorems 1.5 and 1.6. With respect
to the terminology within Proposition 2.5, we consider U ∈ C1(D × R) of the form

U(Q,φ) = ± 1

p+ 1
V (Q) · |φ|p+1, p ≥ 1,(2.51)

where V ∈ C1(D) is strictly positive. From Definition 2.4, this corresponds to

�Uφ = �φ± V · |φ|p−1φ, p ≥ 1.(2.52)

Since we will be expecting positive bulk terms arising solely from U (that is,
−BFU > 0 in (2.2)), we no longer require the correction terms used throughout
Section 2.2 for our reparametrizations of f . In other words, we can simply use

F0 = −a log f , a > 0.(2.53)

In particular, we need not consider the regions {f > 1} and {f < 1} separately.
This makes some aspects of the analysis much simpler compared to Theorem 2.13.

The Carleman estimate we will derive is the following:

Theorem 2.18. Let φ ∈ C2(D), and let Ω ⊆ D be an admissible region. Further-
more, let p ≥ 1, and let V ∈ C1(D) be strictly positive. Then,

± 1

p+ 1

∫
Ω

f2a · V ΓV · |φ|p+1 ≤ 1

8a

∫
Ω

f2af · |�±V φ|
2 +

∫
∂Ω

P±Vβ N β,(2.54)

where N is the oriented unit normal to ∂Ω, and where:

�±V φ := �φ± V |φ|p−1φ,(2.55)

ΓV := ∇αf∇α(log V )− n− 1 + 4a

4

(
p− 1− 4

n− 1 + 4a

)
,

P±Vβ := f2a

(
∇αf · ∇αφ∇βφ−

1

2
∇βf · ∇µφ∇µφ

)
± 1

p+ 1
f2a∇βf · V |φ|p+1 +

(
n− 1

4
+ a

)
f2a · φ∇βφ

+ a

(
n− 1

4
+ a

)
f2af−1∇βf · φ2.

The remainder of this section is dedicated to the proof of Theorem 2.18.

2.3.1. Positive Bulk Conditions. The main new task is to examine the bulk term
BF0

U (see (2.4)) arising from the U defined in (2.51). From a direct computation
using (2.4) and (2.51), we obtain the following:

Proposition 2.19. Let U and F0 be as in (2.51) and (2.53). Then,

−BF0

U = ± 1

p+ 1
f2aV · ΓV · |φ|p+1,(2.56)

where BF0

U is as defined in (2.4), and ΓV is as in (2.55).
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Proof. For an arbitrary reparametrization, we compute, using (2.4) and (2.51),

BFU = ±e−2F

(
n− 1

4
− fF ′

)
V · |φ|p+1 ∓ 1

p+ 1
e−2F∇αf∇αV · |φ|p+1(2.57)

∓ 2

p+ 1
e−2F

(
n+ 1

4
− fF ′

)
V · |φ|p+1

= ∓ 1

p+ 1
e−2F [∇αf∇αV − p∗V + (p− 1)fF ′V ] · |φ|p+1,

where

p∗ =
(p+ 1)(n− 1)

4
− n+ 1

2
.

Substituting F0 for F , and noting that

fF ′0 ≡ −a, e−2F = f2a,

we immediately obtain (2.56). �

As a result, −BF0

U is strictly positive D if and only if ±ΓV > 0.

Remark. The computations in Proposition 2.19 can readily be generalized. For
example, one can consider wave operators of the form

U(Q,φ) = ±V (Q)W (φ), �Uφ = �φ± V · Ẇ (φ),(2.58)

where we also assume V (Q) ·W (φ) > 0 for all (Q,φ). (These correspond to fur-
ther generalizations of focusing and defocusing wave operators.) From analogous

calculations, one sees that −BF0

U is everywhere positive if

• There is some p ≥ 1 such that ±ΓV > 0.
• W (φ) grows at most as quickly as |φ|p+1 when VW is positive.
• W (φ) grows at least as quickly as |φ|p+1 when VW is negative.

Such statements can be even further extended to more general U , but precise for-
mulations of these statements tend to be more complicated.

2.3.2. Proof of Theorem 2.18. This follows immediately by applying (2.2)—with

F = F0 = −a log f and U as in (2.51)—and then by expanding BF0

U using (2.56).

3. Proofs of the Main Results

The goal of this section is to prove the global uniqueness results—Theorems 1.1,
1.5, and 1.6—from Section 1.1. The main steps will be to apply the Carleman
estimates from the preceding section: Theorems 2.13 for the proof of Theorem 1.1,
and Theorem 2.18 for the proofs of Theorems 1.5 and 1.6.

Note first of all that the weight (1 + |u|)(1 + |v|) can be written as

(1 + |u|)(1 + |v|) = (1 + r + f).(3.1)

Thus, the decay conditions (1.11) can be more conveniently expressed as

sup
D

[
(1 + r + f)

n−1+δ
2 (|u · ∂uφ|+ |v · ∂vφ|)

]
<∞,(3.2)

sup
D∩{f<1}

[
(1 + r)

n−1+δ
2 f

1
2 | /∇φ|

]
<∞,

sup
D

[
(1 + r + f)

n−1+δ
2 |φ|

]
<∞,
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while the special decay condition (1.19) is equivalent to

sup
D∩{f>1}

[
(1 + r + f)

n−1+δ
p+1 f

1
p+1V

1
p+1 |φ|

]
<∞.(3.3)

From now on, we will refer to (3.2) and (3.3) as our decay assumptions.

3.1. Special Domains. The first preliminary step is to define the admissible re-
gions on which we apply our Carleman estimates. A natural choice for this Ω would
be domains with level sets of f as its boundary. We denote these level sets by

Fω := {Q ∈ D | f(Q) = ω}.(3.4)

Observe that the Fω’s, for all 0 < ω < ∞, form a family of timelike hyperboloids
terminating at the corners of D on future and past null infinity. 9

The Fω’s are useful here since they characterize the boundary of D in the limit.
Indeed, in the Penrose-compactified sense, Fω tends toward the null cone about the
origin as ω ↘ 0, and Fω tends toward the outer half of null infinity as ω ↗∞.

However, one defect in the above is that the region between two Fω’s fails to be
bounded. As a result, we define an additional function

h ∈ C∞(D), h := − v
u

=
r + t

r − t
,(3.5)

whose level sets we denote by

Hτ := {Q ∈ D | h(Q) = τ}.(3.6)

The Hτ ’s, for 0 < τ <∞, form a family of spacelike cones terminating at the origin
and at spacelike infinity. Moreover, in the Penrose-compactified picture:

• As τ ↗∞, the Hτ ’s tend toward both the future null cone about the origin
and the outer half of future null infinity.
• As τ ↘ 0, the Hτ ’s tend toward both the past null cone about the origin

and the outer half of past null infinity.

The regions we wish to consider are those bounded by level sets of f and h. More
specifically, given 0 < ρ < ω <∞ and 0 < σ < τ <∞, we define

Dσ,τρ,ω := {Q ∈ D | ρ < f(Q) < ω, σ < h(Q) < τ},(3.7)

We also define corresponding cutoffs to the Fω’s and Hτ ’s:

Fσ,τω := {Q ∈ Fω | σ < h(Q) < τ}, Hτρ,ω := {Q ∈ Hτ | ρ < f(Q) < ω}.(3.8)

3.1.1. Basic Properties. We begin by listing some properties of f and h that will be
needed in upcoming computations. First, the derivative of h satisfy the following:

Lemma 3.1. The following identities hold:

∂uh =
v

u2
, ∂vh = − 1

u
.(3.9)

As a result,

∇]h =
1

2
u−2(u · ∂u − v · ∂v), ∇αh∇αh = −u−4f , ∇αh∇αf = 0.(3.10)

9See Figure 1.
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In particular, observe that (2.7) implies the Fω’s are timelike, while (3.10) implies
theHτ ’s are spacelike. Furthermore, the last identity in (3.10) implies that the Fω’s
and Hτ ’s are everywhere orthogonal to each other.

Next, observe the region Dσ,τρ,ω has piecewise smooth boundary, with

∂Dσ,τρ,ω = Fσ,τω ∪ Fσ,τρ ∪Hτρ,ω ∪Hσρ,ω,(3.11)

hence it is indeed an admissible region. Also, from (2.7) and (3.10), we see that:

• On Fσ,τω and Fσ,τρ , the outer unit normals with respect to Dσ,τρ,ω are

N (Fσ,τω ) = N := f−
1
2∇]f , N (Fσ,τρ ) = −N = −f− 1

2∇]f .(3.12)

• On Hτρ,ω and Hσρ,ω, the inner unit normals with respect to Dσ,τρ,ω are

N (Hτρ,ω) = −T := u2f−
1
2∇]h, N (Hσρ,ω) = T = −u2f−

1
2∇]h.(3.13)

In view of the above, we obtain the following:

Lemma 3.2. If P is a continuous 1-form on D, and if N is the oriented unit
normal for ∂Dσ,τρ,ω, then the following identity holds:∫

∂Dσ,τρ,ω
PβN β =

∫
Fσ,τω

f−
1
2Pβ∇βf −

∫
Fσ,τρ

f−
1
2Pβ∇βf(3.14)

+

∫
Hτρ,ω

u2f−
1
2Pβ∇βh−

∫
Hσρ,ω

u2f−
1
2Pβ∇βh.

Finally, we note that the level sets of (f, h) are simply the level spheres of (t, r),
and the values of these functions can be related as follows:

Lemma 3.3. Given Q ∈ D, we have that (f(Q), h(Q)) = (ω, τ) if and only if

v(Q) = ω
1
2 τ

1
2 , u(Q) = −ω 1

2 τ−
1
2 ,(3.15)

r(Q) = ω
1
2 (τ

1
2 + τ−

1
2 ), t(Q) = ω

1
2 (τ

1
2 − τ− 1

2 ).

3.1.2. Boundary Expansions. In light of Lemma 3.2 and the Carleman estimates
from Section 2, we will need to bound integrands of the form Pβ∇βf and Pβ∇βh,
where P is one of the currents P± (see (2.37)) or P±V (see (2.55)).

Lemma 3.4. Let P± be as in (2.37). Then, there exists K > 0 such that:

• In the region {f < 1},

−P−β ∇
βf ≤ Kf2(a−b)[f · | /∇φ|2 + (n+ a)2 · φ2],(3.16)

|u2P−β ∇
βh| ≤ Kf2(a−b)[(u · ∂uφ)2 + (v · ∂vφ)2 + (n+ a)2 · φ2].

• In the region {f > 1},

P+
β ∇

βf ≤ Kf2(a+b)[(u · ∂uφ)2 + (v · ∂vφ)2 + (n+ a)2 · φ2],(3.17)

|u2P+
β ∇

βh| ≤ Kf2(a+b)[(u · ∂uφ)2 + (v · ∂vφ)2 + (n+ a)2 · φ2].

Proof. Applying (2.6), (2.7), (3.9), and (3.10) to the definition (2.37) (and noting
in particular that ∇]f and ∇]h are everywhere orthogonal), we expand

P±β ∇
βf =

1

4
e−2F± [(u · ∂uφ)2 + (v · ∂vφ)2]− 1

2
e−2F±f · | /∇φ|2(3.18)

+
1

2
e−2F±

(
n− 1

4
− fF ′±

)
· φ(u · ∂uφ+ v · ∂vφ)
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− e−2F±

[(
n− 1

4
− fF ′±

)
fF ′± −

1

2
bpf∓p

]
· φ2,

u2P±β ∇
βh =

1

4
e−2F± [(u · ∂uφ)2 − (v · ∂vφ)2]

+
1

2
e−2F±

(
n− 1

4
− fF ′±

)
· φ(u · ∂uφ− v · ∂vφ).

Next, we note the inequality∣∣∣∣12e−2F±

(
n− 1

4
− fF ′±

)
· φ(u · ∂uφ± v · ∂vφ)

∣∣∣∣(3.19)

≤ 1

4
e−2F± [(u · ∂uφ)2 + (v · ∂vφ)2] +

1

2
e−2F±

(
n− 1

4
− fF ′±

)2

· φ2.

Applying (3.19) to each of the identities in (3.18) and then dropping any purely
nonpositive terms on the right-hand side, we obtain

P±β ∇
βf ≤ Ke−2F± [(u · ∂uφ)2 + (v · ∂vφ)2](3.20)

+Ke−2F± [n2 + (fF ′±)2 + bpf∓p] · φ2,

−P±β ∇
βf ≤ Ke−2F±f · | /∇φ|2 +Ke−2F± [n2 + (fF ′±)2 + bpf∓p] · φ2,

|u2P±β ∇
βh| ≤ Ke−2F± [(u · ∂uφ)2 + (v · ∂vφ)2] +Ke−2F± [n2 + (fF ′±)2] · φ2.

Now, recall from Propositions 2.14-2.16 that{
f2(F ′−)2 + bpfp . a2, e−2F− . f2(a−b) f < 1,

f2(F ′+)2 + bpf−p . a2, e−2F+ . f2(a+b) f > 1.
(3.21)

Combining (3.20) and (3.21) results in both (3.16) and (3.17). �

Lemma 3.5. Let P±V be as in (2.55). Then, there exists K > 0 such that:

P±Vβ ∇βf ≤ Kf2a[(u · ∂uφ)2 + (v · ∂vφ)2 + (n+ a)2 · φ2](3.22)

± (p+ 1)−1f2afV · |φ|p+1,

−P±Vβ ∇βf ≤ Kf2a[f · | /∇φ|2 + (n+ a)2 · φ2]∓ (p+ 1)−1f2afV · |φ|p+1,

|u2P±Vβ ∇βh| ≤ Kf2a[(u · ∂uφ)2 + (v · ∂vφ)2 + (n+ a)2 · φ2].

Proof. The proof is analogous to that of Lemma 3.4. Applying (2.6), (2.7), (3.9),
and (3.10) to (2.55) results in the expansions

P±Vβ ∇βf =
1

4
f2a[(u · ∂uφ)2 + (v · ∂vφ)2]− 1

2
f2af · | /∇φ|2(3.23)

+
1

2

(
n− 1

4
+ a

)
f2a · φ(u · ∂uφ+ v · ∂vφ)

+ a

(
n− 1

4
+ a

)
f2a · φ2 ± 1

p+ 1
f2afV · |φ|p+1,

u2P±Vβ ∇βh =
1

4
f2a[(u · ∂uφ)2 − (v · ∂vφ)2]

+
1

2

(
n− 1

4
+ a

)
f2a · φ(u · ∂uφ− v · ∂vφ).

Handling the cross-terms in (3.23) using an analogue of (3.19) yields (3.22). �
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3.2. Boundary Limits. In order to convert Carleman estimates over the Dσ,τρ,ω’s
into a unique continuation result, we will need to eliminate the resulting boundary
terms. To do this, we must take the limit of the boundary terms toward null infinity
and the null cone about the origin, i.e., the boundary of D. More specifically, we
wish to let (σ, τ)→ (0,∞), and then (ρ, ω)→ (0,∞).

3.2.1. Coarea Formulas. To obtain these necessary limits, we will need to express
integrals over the Fω’s and Hτ ’s more explicitly. For this, we derive coarea formulas
below in order to rewrite these expressions in terms of spherical integrals.

In what follows, we will assume that integrals over Sn−1 will always be with
respect to the volume form associated with the (unit) round metric γ̊.

We can foliate Fω by level sets of t, which are (n− 1)-spheres. In other words,

Fω ' R× Sn−1,(3.24)

where the R-component corresponds to the t-coordinate, while the Sn−1-component
is the spherical value (as an element of a level set of (t, r)). Furthermore, by (3.15),
restricting the correspondence (3.24) to finite cutoffs yields

Fσ,τω ' (ω
1
2 (σ

1
2 − σ− 1

2 ), ω
1
2 (τ

1
2 − τ− 1

2 ))× Sn−1.(3.25)

We now wish to split integrals over Fω as in (3.25): as an integral first over Sn−1

and then over t. For convenience, we define, for any Ψ ∈ C∞(D), the shorthands∫ h=τ

h=σ

∫
Sn−1

Ψ|f=ωdt :=

∫ ω
1
2 (τ

1
2−τ− 1

2 )

ω
1
2 (σ

1
2−σ− 1

2 )

[∫
Sn−1

Ψ|(f,t)=(ω,s)

]
ds,(3.26) ∫ ∞

−∞

∫
Sn−1

Ψ|f=ωdt :=

∫ ∞
−∞

[∫
Sn−1

Ψ|(f,t)=(ω,s)

]
ds,

with the second equation defined only when Ψ is sufficiently integrable. Note these
are the integrals over Fω and Fσ,τω , respectively, in terms of level spheres of t.

Proposition 3.6. For any Ψ ∈ C∞(D), we have the identity∫
Fσ,τω

Ψ = 2ω
1
2

∫ h=τ

h=σ

∫
Sn−1

Ψrn−2|f=ωdt.(3.27)

Proof. Let Dt denote the gradient of t on Fω, with respect to the metric induced
by g. By definition, Dt is tangent to Fω and normal to the level spheres of (t, r).
The vector field T , defined in (3.13), satisfies these same properties due to (3.10),
so Dt and T point in the same direction. Since T is unit, it follows from (3.13) that

|Dt|g = |g(T,Dt)| = 1

2

(√
−u
v

+

√
v

−u

)
=

1

2
f−

1
2 r.(3.28)

Applying the coarea formula and (3.15) yields∫
Fσ,τω

Ψ =

∫ ω
1
2 (τ

1
2−τ− 1

2 )

ω
1
2 (σ

1
2−σ− 1

2 )

∫
Sn−1

Ψ|Dt|−1
g rn−1|(f,t)=(ω,s)ds.(3.29)

From (3.28) and (3.29), we obtain (3.27). �

We define analogous notations for level sets of h. Any Hτ can be foliated as

Hτ ' (0,∞)× Sn−1,(3.30)
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where the first component now represents the r-coordinate, while the second is
again the spherical value. Moreover, by (3.15), the same correspondence yields

Hτρ,ω ' (ω
1
2 (σ

1
2 − σ− 1

2 ), ω
1
2 (τ

1
2 − τ− 1

2 ))× Sn−1.(3.31)

We also wish to split integrals over Hτ accordingly. Thus, for any Ψ ∈ C∞(D), we
define, in a manner analogous to (3.26), the shorthands∫ f=ω

f=ρ

∫
Sn−1

Ψ|h=τdr :=

∫ ω
1
2 (τ

1
2 +τ− 1

2 )

ρ
1
2 (τ

1
2 +τ− 1

2 )

[∫
Sn−1

Ψ|(h,r)=(τ,s)

]
ds,(3.32) ∫ ∞

0

∫
Sn−1

Ψ|h=τdr :=

∫ ∞
0

[∫
Sn−1

Ψ|(h,r)=(τ,s)

]
ds,

where the second equation is defined only when Ψ is sufficiently integrable.

Proposition 3.7. For any Ψ ∈ C∞(D), we have the identity∫
Hτρ,ω

Ψ = 2

∫ f=ω

f=ρ

∫
Sn−1

f
1
2 Ψrn−2|h=τdr.(3.33)

Proof. The proof is analogous to that of (3.27). Let Dr denote the gradient of r
on the level sets of h. By (3.10), both Dr and N , as defined in (3.12), are tangent
to the level sets of h and are normal to the level spheres of (t, r). Thus,

|Dr|g = |g(N,Dr)| = 1

2

(√
−u
v

+

√
v

−u

)
=

1

2
f−

1
2 r.(3.34)

The result now follows from the coarea formula, (3.15), and (3.34). �

3.2.2. The Conformal Inversion. While (3.27) provides a formula for integrals over
level sets of f , it is poorly adapted for the limit f ↗ ∞ toward null infinity. To
handle this limit precisely, we make use of the standard conformal inversion of
Minkowski spacetime to identify null infinity with the null cone about the origin.

Consider the conformally inverted metric,

ḡ := f−2g = −4f−2dudv + f−2r2γ̊.(3.35)

Furthermore, define the inverted null coordinates

ū := −1

v
= f−1u, v̄ := − 1

u
= f−1v,(3.36)

as well as the inverted time and radial parameters

t̄ := v̄ + ū = f−1t, r̄ := v̄ − ū = f−1r,(3.37)

The inverted counterparts of the hyperbolic functions f and h are simply

f̄ := −ūv̄ = f−1, h̄ := − v̄
ū

= h.(3.38)

From (3.35)-(3.37), we see that in terms of the inverted null coordinates,

(3.39) ḡ = −4dūdv̄ + r̄2γ̊.

In other words, ḡ, in these new coordinates, is once again the Minkowski metric.
Note that D has an identical characterization in this inverted setting:

D = {Q ∈ Rn+1 | ū(Q) < 0, v̄(Q) > 0}.(3.40)
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Moreover, by (3.38), the outer half of null infinity in the physical setting, f ↗∞,
corresponds to the null cone about the origin in the inverted setting, f̄ ↘ 0. Thus,
this inversion provides a useful tool for discussing behaviors near or at infinity.

We now derive a “dual” coarea formula for level sets of f :

Proposition 3.8. For any Ψ ∈ C∞(D), we have∫
Fσ,τω

Ψ = 2ωn−
1
2

∫ h̄=τ

h̄=σ

∫
Sn−1

Ψr̄n−2|f̄=ω−1dt̄.(3.41)

Proof. Recalling the relations (3.38), and observing that the volume forms induced
by g and ḡ on Fσ,τω differ by a factor of fn, we obtain that∫

Fσ,τω
Ψ = ωn

∫
(F̄σ,τ

1/ω
,ḡ)

Ψ,(3.42)

where right-hand integral is with respect to the ḡ-volume form. Applying (3.27) to
the right-hand side of (3.42) with respect to ḡ yields (3.41). �

Remark. In fact, one can obtain corresponding unique continuation results from
the null cone by applying the main theorems, such as Theorem 1.1, to the inverted
Minkowski spacetime (R1+n, ḡ), and then expressing all objects back in terms of g.

3.2.3. The Boundary Limit Lemmas. We now apply the preceding coarea formulas
to obtain the desired boundary limits. We begin with the level sets of h.

Lemma 3.9. Fix δ > 0 and 0 < ρ < ω, and suppose Ψ ∈ C0(D) satisfies

sup
D

(rn−1+δ|Ψ|) <∞.(3.43)

Then, the following limits hold:

lim
τ↗∞

∫
Hτρ,ω

|Ψ| = lim
σ↘0

∫
Hσρ,ω

|Ψ| = 0.(3.44)

Proof. First, for τ � 1, we have from Lemma 3.3 that

t|Hτρ,ω 'ρ,ω τ
1
2 , r|Hτρ,ω 'ρ,ω τ

1
2 .(3.45)

Applying (3.33), (3.45), and the boundedness of f on Hτρ,ω, we see that∫
Hτρ,ω

|Ψ| . τ−
1+δ
2

∫ f=ω

f=ρ

∫
Sn−1

(τ
n−1+δ

2 |Ψ|)|h=τdr(3.46)

. τ−
δ
2 sup
D

(rn−1+δ|Ψ|).

Letting τ ↗∞ and recalling (3.43) results in the first limit in (3.44).
For the remaining limit, we note from Lemma 3.3 that for 0 < σ � 1,

−t|Hσρ,ω 'ρ,ω σ
− 1

2 , r|Hσρ,ω 'ρ,ω σ
− 1

2 .(3.47)

If σ is small, then (3.33) and (3.47) yields∫
Hσρ,ω

|Ψ| . σ
1+δ
2

∫ f=ω

f=ρ

∫
Sn−1

(σ−
n−1+δ

2 |Ψ|)|h=τdr(3.48)

. σ
δ
2 sup
D

(rn−1+δ|Ψ|),

which vanishes by (3.43) as σ ↘ 0. �
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Next, we consider level sets of f , which we split into two statements.

Lemma 3.10. Suppose Ψ ∈ C0(D) satisfies

sup
D

[(1 + r)n−1+δ|Ψ|] <∞.(3.49)

Then, for any α > 0, the following limit holds:

lim
ρ↘0

lim
(σ,τ)→(0,∞)

∫
Fσ,τρ

f−
1
2 +α|Ψ| = 0.(3.50)

Proof. Applying (3.27) and (3.49), we see that∫
Fσ,τρ

f−
1
2 +α|Ψ| . ρα

∫ h=τ

h=σ

∫
Sn−1

|Ψ|rn−2|f=ωdt(3.51)

. ρα
∫ ∞
−∞

(1 + r)−1−δdt.

Since |t| < r on D, then (3.50) follows by letting (σ, τ)→ (0,∞) and ρ↘ 0. �

Lemma 3.11. Suppose Ψ ∈ C0(D) satisfies

sup
D

[(r + f)n−1+δ|Ψ|] <∞.(3.52)

Then, for any 0 < β < δ, the following limit holds:

lim
ω↗∞

lim
(σ,τ)→(0,∞)

∫
Fσ,τω

f−
1
2 +β |Ψ| = 0.(3.53)

Proof. The main idea is to convert to the inverted setting, in which the estimate
becomes analogous to Lemma 3.10. From (3.41), we obtain∫

Fσ,τω
f−

1
2 +β |Ψ| . ωn−1+β

∫ h̄=τ

h̄=σ

∫
Sn−1

|Ψ|r̄n−2|f̄=ω−1dt̄(3.54)

. ωn−1+β

∫ ∞
−∞

(r + f)−(n−1−δ)r̄n−2dt̄.

Recalling now (3.37) and (3.38) yields∫
Fσ,τω

f−
1
2 +β |Ψ| . ωn−1+β

∫ ∞
−∞

(r + f)−(n−1+δ)r̄n−2dt̄(3.55)

. ωn−1+β

∫ ∞
−∞

ω−(n−1+δ)(1 + r̄)−(n−1+δ)r̄n−2dt̄

. ωβ−δ
∫ ∞
−∞

(1 + r̄)−1−δdt̄.

Since |t̄| < r̄, then letting (σ, τ)→ (0,∞) and ω ↗∞ results in (3.53). �

3.3. Proof of Theorem 1.1. Let p be as in the theorem statement, and let

a =
δ

4
+
p

4
, b =

1

16
min(δ − p, 8p).(3.56)

Note in particular that 2a lies exactly halfway between p and δ, and that a, b, p
satisfy the conditions (2.33). In addition, we fix arbitrary

0 < ρ < 1 < ω <∞, 0 < σ < τ <∞.
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The idea is apply Theorem 2.13 to the domain Dσ,τρ,ω. To split into f < 1 and f > 1

regions, we partition the above domain into two parts, Dσ,τρ,1 and Dσ,τ1,ω.

First, applying (2.35) and then (3.14) to Dσ,τρ,1 yields

Cbp2

∫
Dσ,τρ,1

f2(a−b)fp−1φ2 ≤ Ka−1

∫
Dσ,τρ,1

f2(a−b)f |�φ|2 +

∫
Fσ,τ1

f−
1
2P−β ∇

βf(3.57)

−
∫
Fσ,τρ

f−
1
2P−β ∇

βf +

∫
Hτρ,1

u2f−
1
2P−β ∇

βh

−
∫
Hσρ,1

u2f−
1
2P−β ∇

βh.

Observe that the assumption (1.10) for V and (3.56) imply that

|�φ|2 ≤ |V|2φ2 . ε2 · bp3 · f−2+pφ2,(3.58)

whenever f < 1. Applying (3.58) to (3.57) and noting that p < 2a, it follows that
if ε is sufficiently small, then the first term on the right-hand side of (3.57) can be
absorbed into the left-hand side, yielding, for some other C > 0,

Cbp2

∫
Dσ,τρ,1

f2(a−b)fp−1φ2 ≤ −
∫
Fσ,τρ

f−
1
2P−β ∇

βf +

∫
Hτρ,1

u2f−
1
2P−β ∇

βh(3.59)

−
∫
Hσρ,1

u2f−
1
2P−β ∇

βh+

∫
Fσ,τ1

f−
1
2P−β ∇

βf .

In a similar manner, we apply (2.36) and (3.14) to Dσ,τ1,ω. In this region, the

assumption (1.10) for V and (3.56) imply the estimate

|�φ|2 ≤ |V|2φ2 . ε2 · bp3 · f−2−pφ2,(3.60)

so that for sufficiently small ε, we have

Cbp2

∫
Dσ,τ1,ω

f2(a+b)f−p−1φ2 ≤
∫
Fσ,τω

f−
1
2P+

β ∇
βf +

∫
Hτ1,ω

u2f−
1
2P+

β ∇
βh(3.61)

−
∫
Hσ1,ω

u2f−
1
2P+

β ∇
βh−

∫
Fσ,τ1

f−
1
2P+

β ∇
βf .

Next, we sum (3.59) and (3.61). By (2.38), the two integrals over Fσ,τ1 , hence

Cbp2

∫
Dσ,τρ,1

f2(a−b)fp−1φ2 + Cbp2

∫
Dσ,τ1,ω

f2(a+b)f−p−1φ2(3.62)

≤
∫
Fσ,τω

f−
1
2P+

β ∇
βf −

∫
Fσ,τρ

f−
1
2P−β ∇

βf +

∫
Hτρ,1

u2f−
1
2P−β ∇

βh

+

∫
Hτ1,ω

u2f−
1
2P+

β ∇
βh−

∫
Hσρ,1

u2f−
1
2P−β ∇

βh−
∫
Hσ1,ω

u2f−
1
2P+

β ∇
βh

= I1 + I2 + J1 + J2 + J3 + J4.
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It remains to show that each of the terms on the right vanishes in the limit.
First, for J1, we apply (3.16), along with the fact that f is bounded from both

above and below on Hτρ,1, in order to obtain

|J1| .
∫
Hτρ,1

[(u · ∂uφ)2 + (v · ∂vφ)2 + φ2].(3.63)

An analogous application of (3.17) yields

|J2| .
∫
Hσρ,1

[(u · ∂uφ)2 + (v · ∂vφ)2 + φ2].(3.64)

Recalling our assumption (3.2) for φ and applying Lemma 3.9 yields

lim
τ↗∞

J1 = lim
σ↘0

J2 = 0.(3.65)

By the same arguments, we also obtain

lim
τ↗∞

J3 = lim
σ↘0

J4 = 0.(3.66)

For the remaining terms I1 and I2, we take limits first as (τ, σ) → (∞, 0), and
then as (ω, ρ)→ (∞, 0). First, using (3.16), we obtain

|I2| .
∫
Fσ,τρ

f−
1
2 +2(a−b)(f · | /∇φ|2 + φ2)(3.67)

Since a− b > 0, then Lemma 3.10 and the decay assumption (3.2) imply

lim
ρ↘0

lim
(σ,τ)→(0,∞)

I2 = 0.(3.68)

A similar application of (3.17) yields

|I1| .
∫
Fσ,τω

f−
1
2 +2(a+b)[(u · ∂uφ)2 + (v · ∂vφ)2 + φ2](3.69)

Since 2(a+ b) < δ, then Lemma 3.11 and (3.2) yield

lim
ω↗∞

lim
(σ,τ)→(0,∞)

I1 = 0.(3.70)

Finally, combining (3.62) with the limits (3.65), (3.66), (3.68), (3.70) and then
applying the monotone convergence theorem, we see that∫

D
α · φ2 = 0,(3.71)

for some strictly positive function α on D. It follows that φ vanishes everywhere
on D, completing the proof of Theorem 1.1.

3.4. Proofs of Theorems 1.5 and 1.6. The idea is similar to before, except we
apply Theorem 2.18 instead of Theorem 2.13. In particular, we let Ω = Dσ,τρ,ω (there
is no need to partition into two regions in this case), and fix

0 < a <
δ

2
,(3.72)

whose precise value is to be determined later. Let V be as in the statement of
Theorem 1.5 or 1.6. Choosing the sign depending on situation (“+” for Theorem
1.5, or “−” for Theorem 1.6), we have that �±V φ ≡ 0.
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As a result, applying (2.54), (3.14), and (3.22), we obtain∫
Dσ,τρ,ω

f2aV (±ΓV )|φ|p+1 ≤ L
∫
Fσ,τω

f2af−
1
2 [(u · ∂uφ)2 + (v · ∂vφ)2 + φ2](3.73)

+ L

∫
Fσ,τρ

f2af−
1
2 [f · | /∇φ|2 + φ2]

+ L

∫
Hτρ,ω

f2af−
1
2 [(v · ∂vφ)2 + φ2]

+ L

∫
Hσρ,ω

f2af−
1
2 [(u · ∂uφ)2 + φ2]

±
∫
Fσ,τω

f2af−
1
2 (fV · |φ|p+1)

∓
∫
Fσ,τρ

f2af−
1
2 (fV · |φ|p+1)

= I1 + I2 + J1 + J2 + Z1 + Z2,

for some L > 0. Moreover, by the same arguments as in the proof of Theorem 1.1,

lim
(ρ,ω)→(0,∞)

lim
(σ,τ)→(0,∞)

(I1 + I2 + J1 + J2) = 0.(3.74)

Suppose first that we are in the defocusing case of Theorem 1.6. Then, Z1 is
negative and hence can be discarded, and we need only consider Z2. Since V is
uniformly bounded, and since φ satisfies (3.2), then applying (3.50) yields

lim
ρ↘0

lim
(σ,τ)→(0,∞)

|Z2| . lim
ρ↘0

lim
(σ,τ)→(0,∞)

∫
Fσ,τρ

f2af
1
2 · |φ|p+1 = 0.(3.75)

On the other hand, in the focusing case of Theorem 1.5, we can discard Z2 due
to sign and consider only Z1. Since f ↗∞, the factor f in Z1 now becomes large,
hence the extra decay for φ in (1.19) is invoked to show the vanishing of this limit.
Indeed, applying the decay assumptions (3.2), (3.3) along with (3.53), we see that

lim
ω↗∞

lim
(σ,τ)→(0,∞)

|Z1| . lim
ω↗∞

lim
(σ,τ)→(0,∞)

∫
Fσ,τω

f2af
1
2V · |φ|p+1 = 0.(3.76)

Consequently, in both cases, we can do away with all the boundary terms:

lim
(ρ,ω)→(0,∞)

lim
(σ,τ)→(0,∞)

(I1 + I2 + J1 + J2 + Z1 + Z2) = 0,(3.77)

It remains only to examine the left-hand side of (3.73). In the defocusing case,
the monotonicity assumption (1.21) and (2.7) imply that

∇]f(log V ) <
n− 1 + 4a

4

(
p− 1− 4

n− 1 + 4a

)
,(3.78)

so that −ΓV , as defined in (2.55), is strictly positive. Similarly, in the focusing
case, we can further shrink a > 0 (depending on µ in (1.18)) to guarantee that

∇]f(log V ) > −n− 1 + 4a

4

(
1 +

4

n− 1 + 4a
− p
)

,(3.79)

so that ΓV is strictly positive. Consequently, in both cases, the factor ±f2aV · ΓV
on the left-hand side of (3.73) is strictly positive.
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Finally, we combine the above positivity of ±ΓV with (3.73) and (3.77), and we
apply the monotone convergence theorem. This yields∫

D
α|φ|p+1 = 0,(3.80)

where α is a strictly positive function on D. It follows that φ vanishes everywhere
on D, which completes the proofs of both Theorems 1.5 and 1.6.

3.5. Optimality via Counterexamples. Finally, we show that the condition on
the L∞-norm of V in Theorem 1.1 cannot be removed. More specifically, we show
that the small constant ε in (1.10) cannot be replaced by an arbitrary constant.
While this is well-known in the elliptic setting (and hence extends to the current
setting), for completeness, we provide an elementary example here.

This is achieved by constructing solutions φ of a wave equation

(�+ V)φ = 0,

which satisfy all the assumptions of Theorem 1.1 except for the factor ε in (1.10),
which vanish to arbitrarily high finite order, but which are not identically zero.

For this, we construct functions ψ ∈ C2(Rn) satisfying

(∆ + U)ψ = 0,(3.81)

where U ∈ C∞(Rn) is compactly supported, and where

|ψ(t, x)| . (1 + |x|)−p,(3.82)

where p > 0 is fixed but can be made arbitrarily large. Assuming this ψ, taking

φ(t, x) = ψ(x), V(t, x) = U(x)

results in the desired counterexample, as φ trivially satisfies (1.11), and V satisfies
(1.10) except for the constant. Consequently, it remains only to construct ψ.

3.5.1. Construction of ψ. Let P ∈ C∞(Sn−1) denote a spherical harmonic, satisying

∆Sn−1P = −aP , a > 0,

and let β ∈ C∞(0,∞) be an everywhere positive function satisfying

β(r) :=

{
rq+ r < 1,

rq− r > 2,
q± :=

−(n− 2)±
√

(n− 2)2 + 4a

2
.

Observe in particular that q− < 0 < q+, and that |q±| can be made arbitrarily large
by making a arbitrarily large. Thus, if we define, in polar coordinates, the function

ψ(r, ω) := β(r) · P (ω),

then for large enough a, this defines a C2-function on Rn satisfying (3.82).
Finally, we define

U(r, ω) :=
−∆ψ(r, ω)

ψ(r, ω)
=
−β′′(r)− (n− 1)r−1 · β′(r) + ar−2 · β(r)

β(r)
,

which extends to a smooth function on Rn\{0}. Furthermore, the chosen exponents
q± ensure that ∆ψ(r, ω) vanishes whenever r < 1 or r > 2. As a result, U is actually
smooth on all of Rn and has compact support, and (3.81) is satisfied.
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