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The decomposition of Global Conformal

Invariants V.

Spyros Alexakis∗

Abstract

This is the fifth in a series of papers where we prove a conjecture of
Deser and Schwimmer regarding the algebraic structure of “global confor-
mal invariants”; these are defined to be conformally invariant integrals of
geometric scalars. The conjecture asserts that the integrand of any such
integral can be expressed as a linear combination of a local conformal
invariant, a divergence and of the Chern-Gauss-Bonnet integrand.

The present paper complements [6] in reducing the purely algebraic
results that were used in [3, 4] to certain simpler Lemmas, which will be
proven in the last paper in this series, [8].
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1 Introduction

This is the fourth in a series of papers [3, 5, 6, 7, 8] where we prove a conjecture
of Deser-Schwmimmer [18] regarding the algebraic structure of global conformal
invariants. We recall that a global conformal invariant is an integral of a natural
scalar-valued function of Riemannian metrics,

∫

Mn P (g)dVg , with the property
that this integral remains invariant under conformal re-scalings of the underlying
metric.1 More precisely, P (g) is assumed to be a linear combination, P (g) =
∑

l∈L alC
l(g), where each Cl(g) is a complete contraction in the form:

contrl(∇(m1)R⊗ · · · ⊗ ∇(ms)R); (1.1)

here each factor ∇(m)R stands for the mth iterated covariant derivative of the
curvature tensor R. ∇ is the Levi-Civita connection of the metric g and R is
the curvature associated to this connection. The contractions are taken with
respect to the quadratic form gij . In this series of papers we prove:

Theorem 1.1 Assume that P (g) =
∑

l∈L alC
l(g), where each Cl(g) is a com-

plete contraction in the form (1.1), with weight −n. Assume that for every
closed Riemannian manifold (Mn, g) and every φ ∈ C∞(Mn):

∫

Mn

P (e2φg)dVe2φg =

∫

Mn

P (g)dVg .

We claim that P (g) can then be expressed in the form:

P (g) = W (g) + diviT
i(g) + Pfaff(Rijkl).

Here W (g) stands for a local conformal invariant of weight −n (meaning that
W (e2φg) = e−nφW (g) for every φ ∈ C∞(Mn)), diviT

i(g) is the divergence of
a Riemannian vector field of weight −n+ 1, and Pfaff(Rijkl) is the Pfaffian of
the curvature tensor.

Before we discuss the position of the present paper in the series [3]–[8], we
digress to describe the relation between the present series of papers with classical
and recent work on scalar local invariants in various geometries.

Broad Discussion: The theory of local invariants of Riemannian structures
(and indeed, of more general geometries, e.g. conformal, projective, or CR) has
a long history. As discussed in [3], the original foundations of this field were
laid in the work of Hermann Weyl and Élie Cartan, see [28, 17]. The task of
writing out local invariants of a given geometry is intimately connected with
understanding polynomials in a space of tensors with given symmetries; these
polynomials are required to remain invariant under the action of a Lie group
on the components of the tensors. In particular, the problem of writing down
all local Riemannian invariants reduces to understanding the invariants of the
orthogonal group.

1See the introduction of [3] for a detailed discussion of the Deser-Schwimmer conjecture,
and for background on scalar Riemannian invariants.
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In more recent times, a major program was laid out by C. Fefferman in
[20] aimed at finding all scalar local invariants in CR geometry. This was mo-
tivated by the problem of understanding the local invariants which appear in
the asymptotic expansion of the Bergman and Szegö kernels of strictly pseudo-
convex CR manifolds, in a similar way to which Riemannian invariants appear
in the asymptotic expansion of the heat kernel; the study of the local invariants
in the singularities of these kernels led to important breakthroughs in [11] and
more recently by Hirachi in [25]. This program was later extended to conformal
geometry in [21]. Both these geometries belong to a broader class of structures,
the parabolic geometries; these admit a principal bundle with structure group a
parabolic subgroup P of a semi-simple Lie group G, and a Cartan connection
on that principle bundle (see the introduction in [15]). An important question
in the study of these structures is the problem of constructing all their local
invariants, which can be thought of as the natural, intrinsic scalars of these
structures.

In the context of conformal geometry, the first (modern) landmark in un-
derstanding local conformal invariants was the work of Fefferman and Graham
in 1985 [21], where they introduced the ambient metric. This allows one to
construct local conformal invariants of any order in odd dimensions, and up to
order n

2 in even dimensions. The question is then whether all invariants arise
via this construction.

The subsequent work of Bailey-Eastwood-Graham [11] proved that this is
indeed true in odd dimensions; in even dimensions, they proved that the re-
sult holds when the weight (in absolute value) is bounded by the dimension.
The ambient metric construction in even dimensions was recently extended by
Graham-Hirachi, [24]; this enables them to indentify in a satisfactory way all
local conformal invariants, even when the weight (in absolute value) exceeds the
dimension.

An alternative construction of local conformal invariants can be obtained
via the tractor calculus introduced by Bailey-Eastwood-Gover in [10]. This
construction bears a strong resemblance to the Cartan conformal connection,
and to the work of T.Y. Thomas in 1934, [27]. The tractor calculus has proven to
be very universal; tractor buncles have been constructed [15] for an entire class
of parabolic geometries. The relation betweeen the conformal tractor calculus
and the Fefferman-Graham ambient metric has been elucidated in [16].

The present work [3]–[8], while pertaining to the question above (given that
it ultimately deals with the algebraic form of local Riemannian and conformal
invariants), nonetheless addresses a different type of problem: We here con-
sider Riemannian invariants P (g) for which the integral

∫

Mn P (g)dVg remains
invariant under conformal changes of the underlying metric; we then seek to un-
derstand the possible algebraic form of the integrand P (g), ultimately proving
that it can be de-composed in the way that Deser and Schwimmer asserted. It is
thus not surprising that the prior work on the construction and understanding
of local conformal invariants plays a central role in this endeavor, in the papers
[4, 5].
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On the other hand, a central element of our proof are the main algebraic
Propositions 5.1, 3.1, 3.2 in [3, 4]; these deal exclusively with algebraic properties
of the classical scalar Riemannian invariants.2 The “fundamental Proposition
1.1” makes no reference to integration; it is purely a statement concerning lo-
cal Riemannian invariants. Thus, while the author was led to led to the main
algebraic Propositions in [3, 4] out of the strategy that he felt was necessary to
solve the Deser-Schwimmer conjecture, they can be thought of as results of an
independent interest. The proof of these Propositions, presented in the present
paper and in [8] is in fact not particularily intuitive. It is the author’s sincere
hope that deeper insight (and hopefuly a more intuitive proof) will be obtained
in the future as to why these algebraic Propositions hold.

We now discuss the position of the present paper in this series of papers.
The purpose of the present paper is to complete the part IIA in this series:

In [3, 4, 5] we proved that the Deser-Schwimmer conjecture holds, provided one
can show certain “Main algebraic propositions”, namely 5.2 in [3] and 3.1, 3.2
in [4]. In [6] we claimed a more general Proposition which implies Proposition
5.2 in [3] and Propositions 3.1, 3.2 in [4]; this new “fundamental Proposition”
2.1 in [6] is to be proven by an induction of four parameters. In [6] we also
reduced the inductive step of Proposition 2.1 to three Lemmas (in particular
we distinguished cases I,II,III on Proposition 2.1 by examiniming the tensor
fields appearing in its hypothesis, see (1.7) below; Lemmas 3.1, 3.2, 3.5 in [6]
correspond to these three cases). We proved that these three Lemmas imply the
inductive step of the fundamental Proposition in cases I,II,III respectively, apart
from certain special cases which were deferred to the present paper. In these
special cases we will derive Proposition 2.1 in [6] directly,3 in section 3. Now,
in proving that the inductive step of Proposition 1.1 follows from Lemmas 3.1,
3.2, 3.5 in [6] we asserted certain technical Lemmas, whose proof was deferred
to the present paper. These were Lemmas 4.6, 4.8, and 4.7, 4.9 in [6]; also, the
proof of Lemma 5.1 in [6] was deferred to the present paper. We prove all these
Lemmas from [6] in section 2.

For reference purposes, and for the reader’s convenience, we recall the precise
formulation of the “fundamental Proposition” 2.1 in [6], referring the reader to
[6] for a definition of many of the terms appearing in the formulation. First how-
ever, we will recall (schematically) the “main algebraic Proposition” 5.2 in [3];
this is a special case of Proposition 2.1 in [6], and provides a simpler version of it.

A simpler version of Proposition 2.1 in [6]: Given a Riemannian metric g
over an n-dimensional manifold Mn and auxilliary C∞ scalar-valued functions
Ω1, . . . ,Ωp defined over Mn, the objects of study are linear combinations of
tensor fields

∑

l∈L alC
l,i1...iα
g , where each Cl,i1...iα

g is a partial contraction with

2These “main algebraic propositions” are discussed in brief below. A generalization of
these Propositions is the Proposition 1.1 below.

3By this we mean without recourse to the Lemmas 3.1, 3.2, 3.5 in [6].

4



α free indices, in the form:

pcontr(∇(m)R⊗ · · · ⊗ ∇(ms)R⊗∇(b1)Ω1 ⊗ · · · ⊗ ∇(bm)Ωp); (1.2)

here ∇(m)R stands for the mth covariant derivative of the curvature tesnor R,4

and ∇(b)Ωh stands for the bth covariant derivative of the function Ωh. A partial
contraction means that we have list of pairs of indices (a, b), . . . , (c, d) in (1.2),
which are contracted against each other using the metric gij . The remaining
indices (which are not contracted against another index in (1.2)) are the free
indices i1 , . . . , iα

.
The “main algebraic Proposition” 5.2 in [3] (roughly) asserts the following:

Let
∑

l∈Lµ
alC

l,i1...iµ
g stand for a linear combination of partial contractions in

the form (1.2), where each C
l,i1...iµ
g has a given number σ1 of factors and a

given number p of factor ∇(b)Ωh. Assume also that σ1 + p ≥ 3, each bi ≥ 2,5

and that for each contracting pair of indices (a, b) in any given Cl,i1...iα
g , the

indices a, b do not belong to the same factor. Assume also the rank µ > 0 is

fixed and each partial contraction C
l,i1...iµ
g , l ∈ Lµ has a given weight −n+ µ.6

Let also
∑

l∈L>µ
alC

l,i1...iyl
g stand for a (formal) linear combination of partial

contractions of weight −n+ yl, with all the properties of the terms indexed in
Lµ, except that now all the partial contractions have a different rank yl, and
each yl > µ.

The assumption of the “main algebraic Proposition” 5.1 in [3] is a local
equation in the form:

∑

l∈Lµ

alXdivi1 . . . Xdiviµ
Cl,i1...iµ

g +
∑

l∈L>µ

alXdivi1 . . .Xdiviyl
C

l,i1...iyl
g = 0,

(1.3)
which is assumed to hold modulo complete contractions with σ+1 factors. Here
given a partial contraction Cl,i1...iα

g in the form (1.2) Xdivis
[Cl,i1...iα

g ] stands for

sum of σ − 1 terms in divis
[Cl,i1...iα

g ] where the derivative ∇is is not allowed to
hit the factor to which the free index is

belongs.7

Proposition 5.2 in [3] then asserts that there will exist a linear combination of

partial contactions in the form (1.2),
∑

h∈H ahC
h,i1...iµ+1
g with all the properties

of the terms indexed in L>µ, and all with rank (µ+ 1), so that:

∑

l∈L1

alC
l,(i1...iµ)
g +

∑

h∈H

ahXdiviµ+1C
l,(i1...iµ)iµ+1
g = 0; (1.4)

4In particular it is a tensor of rank m+4; if we write out its free indices it would be in the

form ∇
(m)
r1...rmRijkl.

5This means that each function Ωh is differentiated at least twice.
6See [3] for a precise definition of weight.
7Recall that given a partial contraction C

l,i1...iα
g in the form (1.2) with σ factors,

divisC
l,i1...iα
g is a sum of σ partial contractions of rank α − 1. The first summand arises

by adding a derivative ∇is onto the first factor T1 and then contracting the upper index is

against the free index is ; the second summand arises by adding a derivative ∇is onto the
second factor T2 and then contracting the upper index is against the free index is etc.
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the above holds modulo terms of length σ+1. The symbol (. . . ) means that we
are symmetrizing over the indices between prentheses.

In [6] we set up a multiple induction by which we will prove Proposition 5.2
in [3] (outlined above) and also the main algebraic Propositions 3.1, 3.2 in [4].
The generalized proposition 1.1 which we formulated in [6] deals with tensor
fields in the forms:

pcontr(∇(m1)Rijkl ⊗ · · · ⊗ ∇(ms)Rijkl⊗

∇(b1)Ω1 ⊗ · · · ⊗ ∇(bp)Ωp ⊗∇φ1 ⊗ · · · ⊗ ∇φu),
(1.5)

pcontr(∇(m1)Rijkl ⊗ · · · ⊗ ∇(mσ1 )Rijkl⊗

S∗∇
(ν1)Rijkl ⊗ · · · ⊗ S∗∇

(νt)Rijkl⊗

∇(b1)Ω1 ⊗ · · · ⊗ ∇(bp)Ωp⊗

∇φz1 · · · ⊗ ∇φzw
⊗∇φ′zw+1

⊗ · · · ⊗ ∇φ′zw+d
⊗ · · · ⊗ ∇φ̃zw+d+1

⊗ · · · ⊗ ∇φ̃zw+d+y
).

(1.6)

(See the introduction in [6] for a detailed description of the above form). We
remark that a complete or partial contraction in the above form will be called
“acceptable” if each bi ≥ 2, for 1 ≤ i ≤ p.8 This convention was introduced in
[6].

The claim of Proposition is a generalization of the “main algebraic Proposi-
tion” in [3]:

Proposition 1.1 Consider two linear combinations of acceptable tensor fields
in the form (1.6):

∑

l∈Lµ

alC
l,i1...iµ
g (Ω1, . . . ,Ωp, φ1, . . . , φu),

∑

l∈L>µ

alC
l,i1...iβl
g (Ω1, . . . ,Ωp, φ1, . . . , φu),

where each tensor field above has real length σ ≥ 3 and a given simple character
~κsimp. We assume that for each l ∈ L>µ, βl ≥ µ+1. We also assume that none
of the tensor fields of maximal refined double character in Lµ are “forbidden”
(see Definition (2.12)).

We denote by
∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, φ1, . . . , φu)

a generic linear combination of complete contractions (not necessarily accept-
able) in the form (1.5) that are simply subsequent to ~κsimp.

9 We assume that:

8In other words, we are requiring each function Ωi is differentiated at least twice.
9Of course if Def(~κsimp) = ∅ then by definition

P

j∈J · · · = 0.
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∑

l∈L1

alXdivi1 . . .Xdiviα
Cl,i1...iα

g (Ω1, . . . ,Ωp, φ1, . . . , φu)+

∑

l∈L2

alXdivi1 . . .Xdiviβl
C

l,i1...iβl
g (Ω1, . . . ,Ωp, φ1, . . . , φu)+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, φ1, . . . , φu) = 0.

(1.7)

We draw our conclusion with a little more notation: We break the index set
Lµ into subsets Lz, z ∈ Z, (Z is finite) with the rule that each Lz indexes tensor
fields with the same refined double character, and conversely two tensor fields
with the same refined double character must be indexed in the same Lz. For
each index set Lz, we denote the refined double character in question by ~Lz.
Consider the subsets Lz that index the tensor fields of maximal refined double
character.10 We assume that the index set of those z’s is ZMax ⊂ Z.

We claim that for each z ∈ ZMax there is some linear combination of ac-
ceptable (µ+ 1)-tensor fields,

∑

r∈Rz

arC
r,i1...iα+1
g (Ω1, . . . ,Ωp, φ1, . . . , φu),

where each C
r,i1...iµ+1
g (Ω1, . . . ,Ωp, φ1, . . . , φu) has a µ-double character ~Lz

1 and

also the same set of factors S∗∇(ν)Rijkl as in ~Lz contain special free indices, so
that:

∑

l∈Lz

alC
l,i1...iµ
g (Ω1, . . . ,Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ

υ−

∑

r∈Rz

arXdiviµ+1C
r,i1...iµ+1
g (Ω1, . . . ,Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ

υ =

∑

t∈T1

atC
t,i1...iµ
g (Ω1, . . . ,Ωp, , φ1, . . . , φu)∇i1υ . . .∇iµ

υ,

(1.8)

modulo complete contractions of length ≥ σ + u+ µ+ 1. Here each

Ct,i1...iµ
g (Ω1, . . . ,Ωp, φ1, . . . , φu)

is acceptable and is either simply or doubly subsequent to ~Lz.11

(See the first section in [6] for a description of the notions of real length,
acceptable tensor fields, simple character, refined double character, maximal

10Note that in any set S of µ-refined double characters with the same simple character there
is going to be a subset S′ consisting of the maximal refined double characters.

11Recall that “simply subsequent” means that the simple character of C
t,i1...iµ
g is subsequent

to Simp(~Lz).
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refined double character, simply subsequent, strongly doubly subsequent). The
Proposition 1.1 is proven by a multiple induction on the parameters −n (the
weight of the complete contractions appearing in (1.7)), σ (the total number of
factors in the form ∇(m)Rijkl , S∗∇(ν)Rijkl ,∇(A)Ωh among the partial contrac-
tions in (1.7)),12 Φ (the number of factors ∇φ1, . . . ,∇φu appearing in (1.7)), Φ
(the number of factors ∇φ,∇φ′,∇φ̃ appearing appearing in (1.7)), and σ1 + σ2

(the total number of factors ∇(m)Rijkl, S∗∇(ν)Rijkl). Proposition 1.1 when
Φ = 0 coincides with the “Main algebraic Proposition” in [3] outlined above.13

2 Proof of the technical Lemmas from [6].

2.1 Re-statement of the technical Lemmas 4.6–4.9 from
[6].

We start by recalling a definition from [6] that will be used frequently in the
present paper:

Definition 2.1 Consider any tensor field in the form (1.6). We consider any
set of indices, {x1 , . . . , xs

} belonging to a factor T (here T is not in the form
∇φ). We assume that these indices are neither free nor are contracting against
a factor ∇φh.

If the indices belong to a factor T in the form ∇(B)Ω1 then {x1 , . . . , xs
} are

removable provided B ≥ s+ 2.
Now, we consider indices that belong to a factor ∇(m)Rijkl (and are neither

free nor are contracting against a factor ∇φh). Any such index x which is
a derivative index will be removable. Furthermore, if T has at least two free
derivative indices, then if neither of the indices i, j are free then we will say one
of i, j is removable; accordingly, if neither of k, l is free then we will say that
one of k, l is removable. Moreover, if T has one free derivative index then: if
none of the indices i, j are free then we will say that one of the indices i, j is
removable; on the other hand if one of the indices i, j is also free and none of
the indices k, l are free then we will say that one of the indices k, l is removable.

Now, we consider a set of indices {x1 , . . . , xs
} that belong to a factor T =

S∗∇(ν)Rijkl and are not special, and are not free and are not contracting against
any ∇φ. We will say this set of indices is removable if s ≤ ν. Furthermore, if
none of the indices k, l are free and ν > 0 and at least one of the other indices
in T is free, we will say that one of the indices k, l is removable.

For the first two Lemmas, 2.1, 2.2 we will consider tensor fields in the form:

12The partial contractions in (1.7) are assumed to all have the same simple character–
this implies that they all have the same number of factors ∇(m)Rijkl, S∗∇(ν)Rijkl,∇

(A)Ωh

respectively.
13Similarly, the “Main algebraic Propositions” 3.1, 3.2 in [4] coincide with Proposition 1.1

above when Φ = 1.
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pcontr(∇(m1)Rijkl ⊗ · · · ⊗ ∇mσ1Rijkl⊗

S∗∇
(ν1)Rijkl ⊗ · · · ⊗ S∗∇

(νt)Rijkl ⊗∇Y⊗

∇(b1)Ω1 ⊗ · · · ⊗ ∇(bp)Ωp⊗

∇φz1 · · · ⊗ ∇φzw
⊗∇φ′zw+1

⊗ · · · ⊗ ∇φ′zw+d
⊗ · · · ⊗ ∇φ̃zw+d+1

⊗ · · · ⊗ ∇φ̃zw+d+y
).

(2.1)

(Notice this is the same as the form (1.6), but for the fact that we have inserted
a factor ∇Y in the second line). Our claims are then the following:

Lemma 2.1 Assume an equation:

∑

h∈H2

ahX∗divi1 . . . X∗diviah
C

h,i1...iah
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu′) =

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, φ1, . . . , φu′ ),

(2.2)

where all tensor fields have rank ah ≥ α. All tensor fields have a given u-simple
character ~κ′simp, for which σ ≥ 4. Moreover, we assume that if we formally
treat the factor ∇Y as a factor ∇φu′+1 in the above equation, then the inductive
assumption of Proposition 1.1 can be applied. (See subsection 3.1 in [6] for a
strict discussion of the multi-parameter induction by which we prove Proposition
1.1.)

The conclusion (under various assumptions which we will explain below):
Denote by H2,α the index set of tensor fields with rank α.

We claim that there is a linear combination of acceptable14 tensor fields,
∑

d∈D adC
d,i1...iα+1
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu), each with a simple character ~κ′simp

so that:

∑

h∈H2,α

ahC
h,i1...iα
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu′)∇i1υ . . .∇iα

υ−

X∗diviα+1

∑

d∈D

adC
d,i1...iα+1
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu′)∇i1υ . . .∇iα

υ =

+
∑

t∈T

atC
t
g(Ω1, . . . ,Ωp, Y, φ1, . . . , φu′ , υα).

(2.3)

The linear combination on the right hand side stands for a generic linear com-
bination of complete contractions in the form (2.1) with a factor ∇Y and with
a simple character that is subsequent to ~κ′simp.

14“Acceptable” in the sense that each factor Ωi is differentiated at least twice).

9



The assumptions under which (2.4) will hold: The assumption under which
(2.4) holds is that there should be no tensor fields of rank α in (2.2) which are
“bad”. Here “bad” means the following:

If σ2 = 0 in ~κ′simp then a tensor field in the form (2.1) is “bad” provided:

1. The factor ∇Y contains a free index.

2. If we formally erase the factor ∇Y (which contains a free index), then
the resulting tensor field should have no removable indices,15 and no free
indices.16 Moreover, any factors S∗Rijkl should be simple.

If σ2 > 0 in ~κ′simp then a tensor field in the form (2.1) is “bad” provided:

1. The factor ∇Y should contain a free index.

2. If we formally erase the factor ∇Y (which contains a free index), then
the resulting tensor field should have no removable indices, any factors

S∗Rijkl should be simple, any factor ∇
(2)
ab Ωh should have at most one of

the indices a, b free or contracting against a factor ∇φs.

3. Any factor ∇(m)Rijkl can contain at most one (necessarily special, by
virtue of 2.) free index.

Furthermore, we claim that the proof of this Lemma will only rely on the
inductive assumption of Proposition 1.1. Moreover, we claim that if all the
tensor fields indexed in H2 (in (2.2)) do not have a free index in ∇Y then we
may assume that the tensor fields indexed in D in (2.4) have the same property.

Lemma 2.2 We assume (2.2), where σ = 3. We also assume that for each of
the tensor fields in H

α,∗
2

17 there is at least one removable index. We then have
two claims:

Firstly, the conclusion of Lemma 2.1 holds in this setting also. Secondly, we
can write:

∑

h∈H2

ahXdivi1 . . .Xdiviα
Ch,i1...iα

g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu′ ) =

∑

q∈Q

aqXdivi1 . . .Xdivia′
Cq,i1...ia′

g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu′)

+
∑

t∈T

atC
t
g(Ω1, . . . ,Ωp, Y, φ1, . . . , φu′),

(2.4)

15Thus, the tensor field should consist of factors S∗Rijkl,∇
(2)Ωh, and factors ∇

(m)
r1...rmRijkl

with all the indices r1 , . . . , rm contracting against factors ∇φh.
16I.e. α = 1 in (2.2).
17Recall from [6] that Hα,∗

2 is the index set of tensor fields of rank α in (2.2) with a free
index in the factor ∇Y .
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where the linear combination
∑

q∈Q aqC
q,i1...ia′

g stands for a generic linear com-
bination of tensor fields in the form:

pcontr(∇(m1)Rijkl ⊗ · · · ⊗ ∇(mσ1 )Rijkl⊗

S∗∇
(ν1)Rijkl ⊗ · · · ⊗ S∗∇

(νt)Rijkl ⊗∇(B)Y⊗

∇(b1)Ω1 ⊗ · · · ⊗ ∇(bp)Ωp⊗

∇φz1 · · · ⊗ ∇φzw
⊗∇φ′zw+1

⊗ · · · ⊗ ∇φ′zw+d
⊗ · · · ⊗ ∇φ̃zw+d+1

⊗ · · · ⊗ ∇φ̃zw+d+y
),

(2.5)

with B ≥ 2, with a simple character ~κ′simp and with each a′ ≥ α. The accept-
able complete contractions Ct

g(Ω1, . . . ,Ωp, Y, φ1, . . . , φu′) are simply subsequent
to ~κ′simp. Xdivi here means that ∇i is not allowed to hit the factors ∇φh (but

it is allowed to hit ∇(B)Y ).

For our next two Lemmas, we will be considering tensor fields in the general
form:

contr(∇(m1)Rijkl ⊗ · · · ⊗ ∇(ms)Rijkl⊗

S∗∇
(ν1)Rijkl ⊗ · · · ⊗ S∗∇

(νb)Rijkl ⊗∇(B,+)
r1...rB

(∇aω1∇bω2 −∇bω1∇aω1)

⊗∇(d1)Ωp ⊗ · · · ⊗ ∇(dp)Ωp ⊗∇φ1 ⊗ · · · ⊗ ∇φu);

(2.6)

here ∇
(B,+)
r1...rB (. . . ) stands for the sublinear combination in ∇

(B)
r1...rB (. . . ) where

each ∇ is not allowed to hit the factor ∇ω2.

Lemma 2.3 Consider a linear combination of partial contractions,

∑

x∈X

axC
x,i1...ia
g (Ω1, . . . ,Ωp, [ω1, ω2], φ1, . . . , φu′),

where each of the tensor fields Cx,i1...ia
g is in the form (2.6) with B = 0 (and

is antisymmetric in the factors ∇aω1,∇bω2 by definition), with rank a ≥ α and
real length σ ≥ 4.18 We assume that all these tensor fields have a given simple
character which we denote by ~κ′simp (we use u′ instead of u to stress that this
Lemma holds in generality). We assume an equation:

∑

x∈X

axX∗divi1 . . .X∗divia
Cx,i1...ia

g (Ω1, . . . ,Ωp, [ω1, ω2], φ1, . . . , φu)+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, [ω1, ω2], φ1, . . . , φu) = 0,

(2.7)

18 Recall that in the definition of “real length” in this setting, we count each factor
∇(m)R, §∗∇(ν)R,∇(B)Ωx once, the two factors ω1, ω2 for one, and the factors ∇φ,∇φ′,∇φ̃
nor nothing.
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where X∗divi stands for the sublinear combination in Xdivi where ∇i is in ad-
dition not allowed to hit the factors ∇ω1,∇ω2. The contractions Cj here are
simply subsequent to ~κ′simp. We assume that if we formally treat the factors
∇ω1,∇ω2 as factors ∇φu+1,∇φu+2 (disregarding whether they are contracting
against special indices) in the above, then the inductive assumption of Proposi-
tion 1.1 applies.

The conclusion we will draw (under various hypotheses that we will explain
below) is that we can write:

∑

x∈X

axX+divi1 . . . X+divia
Cx,i1...ia

g (Ω1, . . . ,Ωp, [ω1, ω2], φ1, . . . , φu) =

∑

x∈X′

axX+divi1 . . .X+divia
Cx,i1...ia

g (Ω1, . . . ,Ωp, [ω1, ω2], φ1, . . . , φu)+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, [ω1, ω2], φ1, . . . , φu) = 0,

(2.8)

where the tensor fields indexed in X ′ on the right hand side are in the form (2.6)
with B > 0. All the other sublinear combinations are as above. We recall from
[6] that X+divi stands for the sublinear combination in Xdivi where ∇i is in
addition not allowed to hit the factor ∇ω2 (it is allowed to hit the factor ∇(B)ω1).

Assumptions needed for (2.8): We claim (2.8) under certain assumptions on
the α-tensor fields in (2.7) which have rank α and have a free index in one of
the factors ∇ω1,∇ω2 (say to ∇ω1 wlog)–we denote the index set of those tensor
fields by Xα,∗ ⊂ X.

The assumption we need in order for the claim to hold is that no tensor
field indexed in Xα,∗ should be “bad”. A tensor field is “bad” if it has the
property that when we erase the expression ∇[aω1∇b]ω2 (and make the index
that contrated against b into a free index) then the resulting tensor field will
have no removable indices, and all factors S∗Rijkl will be simple.

Lemma 2.4 We assume (2.7), where now the tensor fields have length σ = 3.
We also assume that for each of the tensor fields indexed in X, there is a
removable index in each of the real factors. We then claim that the conclusion
of Lemma 2.3 is still true in this setting.

For the most part, the remainder of this paper is devoted to proving the
above Lemmas. However, we first state and prove some further technical claims,
one of which appeared as Lemma 5.1 in [6].19

2.2 Two more technical Lemmas.

We claim an analogue of Lemma 4.10 in [6] can be derived when we have tensor
fields with a given simple character ~κsimp, and where rather than having one

19Its proof was also deferred to the present paper.
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additional factor ∇φu+1 (which is not encoded in the simple character ~κsimp),
we have two additional factors ∇aφu+1,∇bφu+2.

Lemma 2.5 Consider a linear combination of acceptable tensor fields in the
form (1.6) with a given u-simple character ~κsimp:
∑

l∈L alC
l,i1...iβ
g (Ω1, . . . ,Ωp, φ1, . . . , φu). Assume that the minimum rank among

those tensor fields above is α ≥ 2. Assume an equation:

∑

l∈L

alX∗divi3 . . . X∗diviβ
C

l,i1...iβ
g (Ω1, . . . ,Ωp, φ1, . . . , φu)∇i1φu+1∇i2φu+2+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, φ1, . . . , φu) = 0

(2.9)

(here X∗divi means that ∇i is in addition not allowed to hit the factors ∇φu+1,
∇φu+2). We also assume that if we formally treat the factors ∇φu+1, ∇φu+2

as factors ∇φu+1, ∇φu+2 then (2.9) falls under the inductive assumption of
Proposition 1.1 (with respect to the parameters (n, σ,Φ, u)). Denote by Lα ⊂
L the index set of terms with rank α. We additionally assume that none of

the tensor fields C
l,i1...iβ
g (Ω1, . . . ,Ωp, φ1, . . . , φu) are “forbidden”, in the sense

defined above Proposition 2.1 in [6].
We then claim that there exists a linear combination of (α+ 1)-tensor fields

with a u-simple character ~κsimp (indexed in Y below) so that:

∑

l∈Lα

alC
l,i1...iα
g (Ω1, . . . ,Ωp, φ1, . . . , φu)∇i1φu+1∇i2φu+2∇i3υ . . .∇iα

υ

+X∗diviα+1

∑

y∈Y

ayC
l,i1...iα+1
g (Ω1, . . . ,Ωp, φ1, . . . , φu)∇i1φu+1∇i2φu+2∇i3υ . . .∇iα

υ

+
∑

j∈J

ajC
j,i1...iα
g (Ω1, . . . ,Ωp, φ1, . . . , φu)∇i1φu+1∇i2φu+2∇i3υ . . .∇iα

υ.

(2.10)

Furthermore, we also claim that we can write:

∑

l∈L

alXdivi3 . . . Xdiviβ
C

l,i1...iβ
g (Ω1, . . . ,Ωp, φ1, . . . , φu)∇i1φu+1∇i2φu+2 =

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, φ1, . . . , φu)+

∑

q∈Q1

aqXdivi3 . . . Xdiviα
Cq,i1...iα

g (Ω1, . . . ,Ωp, φ1, . . . , φu+2)∇i1φu+1∇i2φu+2+

∑

q∈Q2

aqXdivi3 . . . Xdiviα
Cq,i1...iα

g (Ω1, . . . ,Ωp, φ1, . . . , φu+2),

(2.11)
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where the tensor fields indexed in Q1 are acceptable with a u-simple character
~κsimp and with a factor ∇(2)φu+1 and a factor ∇φu+2. The tensor fields indexed
in Q2 are acceptable with a u-simple character ~κsimp and with a factor ∇(2)φu+2

and a factor ∇φu+1.

Proof of Lemma 2.5: We may divide the index set Lα into subsets Lα
I , L

α
II

according to whether the two factors ∇φu+1,∇φu+2 are contracting against the
same factor or not–we will then prove our claim for those two index sets sepa-
rately. Our claim for the index set Lα

II follows by a straightforward adaptation
of the proof of Lemma 4.10 in [3]. (Notice that the forbidden cases of the present
Lemma are exactly in correspondence with the forbidden cases of that Lemma).
Therefore, we now prove our claim for the index set Lα

I :
We denote by LI ⊂ L, JI ⊂ J the index set of terms for which the two factors

∇φu+1,∇φu+2 are contracting against the same factor. It then follows that
(2.9) holds with the index sets L, J replaced by LI , JI–denote the resulting new

equation by New[(2.9)]. Now, for each tensor field C
l,i1...iβ
g and each complete

contraction Cj
g , we let Sym[C

l,i1...iβ
g ], Sym[C

l,i1...iβ
g ], AntSym[Cj

g ], AntSym[Cj
g ]

stand for the tensor field/complete contraction that arises from C
l,i1...iβ
g , Cj

g

by symmetrizing (resp. anti-symmetrizing) the indices a, b in the two factors
∇aφu+1,∇bφu+2. We accordingly derive two new equations from New[(2.9)],
which we denote by New[(2.9)]Sym and New[(2.9)]AntSym.

We will then prove the claim separately for the tensor fields in the sublin-
ear combination

∑

l∈Lα
I
alSym[C]l,i1...iα

g and the tensor fields in the sublinear

combination
∑

l∈Lα
I
alAntSym[C]l,i1...iα

g .

The claim (2.10) for the sublinear combination
∑

l∈Lα
I
alAntSym[C]l,i1...iα

g

follows directly from the arguments in the proof of Lemma 2.3. Therefore it
suffices to show our claim for the sublinear combination

∑

l∈Lα
I
alSym[C]l,i1...iα

g .

We prove this claim as follows: We divide the index set Lα
I according to the

form of the factor against which the two factors ∇φu+1,∇φu+2 are contracting:
List out the non-generic factors in ~κsimp,

20 {T1, . . . , Ta}. Then, for each k ≤ a

we let Lα
I,k stand for the index set of terms for which the factors ∇φu+1,∇φu+2

are contracting against the factor Tk. We also let Lα
I,a+1 stand for the index set

of terms for which the factors ∇φu+1,∇φu+2 are contracting against a generic
factor ∇(m)Rijkl . We will prove our claim for each of the sublinear combinations
∑

l∈Lα
I,a+1

alSym[C]l,i1...iα
g separately.

We firstly observe that for each k ≤ a + 1, we may obtain a new true
equation from (2.9) by replacing L by LI,a+1–denote the resulting equation by
(2.9)I,Sym,k. Therefore, for each k ≤ a+ 1 for which Tk is in the form ∇(p)Ωh,
our claim follows straightforwardly by applying Corollary 1 from [3].21

20Recall from the introduction in [6] that the non-generic factors in ~κsimp are all the factors

in the form ∇(A)Ωh, S∗∇(ν)Rijkl, and also all the factors ∇(m)Rijkl that contract against at
least one factor ∇φs.

21There is no danger of falling under a “forbidden case”, since we started with tensor fields
which were not forbidden.
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Now, we consider the case where the factor Tk is in the form S∗∇(ν)Rabcd: In
that case we denote by LI,k,♯ the index set of terms for which one of the factors
∇φu+1,∇φu+2 is contracting against a special index in Tk. In particular, we
will let Lα

I,k,♯ ⊂ LI,k,♯ stand for the index set of terms with rank α. We will
then show two equations:

Firstly, that there exists a linear combination of tensor fields as claimed in
(2.10) so that:

∑

l∈Lα
I,k,♯

alSym[C]l,i1...iα
g (Ω1, . . . ,Ωp, φ1, . . . , φu)∇i1φu+1∇i2ω∇i3υ . . .∇iα

υ−

∑

y∈Y

ayXdiviα+1C
y,i1...iα+1
g (Ω1, . . . ,Ωp, φ1, . . . , φu)∇i1φu+1∇i2ω∇i3υ . . .∇iα

υ

=
∑

l∈Lα
OK

alXdiviα+1C
l,i1...iαiα+1
g ∇i1φu+1∇i2ω∇i3υ . . .∇iα

υ+

∑

j∈J

ajC
j,i1...iα
g (Ω1, . . . ,Ωp, φ1, . . . , φu)∇i1φu+1∇i2ω∇i3υ . . .∇iα

υ,

(2.12)

where the tensor fields in Lα
OK have all the properties of the terms in LI,k, rank

α and furthermore none of the factors ∇φu+1,∇φu+2 are contracting against a
special index.

Then (under the assumption that Lα
I,k,♯ = ∅) we claim that we can write:

∑

l∈LI,k,♯

alXdivi3 . . . Xdiviβ
Sym[C]

l,i1...iβ
g (Ω1, . . . ,Ωp, φ1, . . . , φu)∇i1φu+1∇i2φu+2

=
∑

l∈LI,k,OK

alXdivi3 . . . Xdiviβ
Sym[C]

l,i1...iβ
g (Ω1, . . . ,Ωp, φ1, . . . , φu)

∇i1φu+1∇i2φu+2 +
∑

j∈J

ajSym[C]j,i1i2
g (Ω1, . . . ,Ωp, φ1, . . . , φu)∇i1φu+1∇i2φu+2,

(2.13)

where the tensor fields in LI,k,OK have all the properties of the terms in LI,k,
but they additionally have rank ≥ α + 1 and furthermore none of the factors
∇φu+1,∇φu+2 are contracting against a special index.

If we can show the above two equations, then we are reduced to showing
our claim under the additional assumption that no tensor field indexed in L

in Sym(2.9) has any factor ∇φu+1, ∇φu+1 contracting against a special index
in Tk. Under that assumption, we may additionally assume that none of the
complete contractions indexed in J in (2.9) have that property.22 Therefore, we
may then erase the factor ∇φu+1 from all the complete contractions and tensor
fields in (2.9)k by virtue of the operation Erase, introduced in the Appendix
of [3]–our claim then follows by applying Corollary 1 from [3] to the resulting
equation and then re-introducing the erased factor ∇φu+1.

22This can be derived by repeating the proof of (2.12), (2.13).
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Outline of the proof of (2.12), (2.13): Firstly we prove (2.12): Suppose
wlog Tk is contracting against ∇φ̃1 and ∇φ′2, . . . ,∇φ

′
h; then replace the two

factors ∇aφ1,∇bφu+1 by gab and then apply RictoΩp+1,
23 (obtaining a new

true equation) an then apply the eraser to the resulting true equation. We then
apply Corollary 1 from [3] to the resulting equation,24 and finally we replace

the factor ∇
(b)
r1...rbΩp+1 by an expression

S∗∇
(b+h−1)
y2...yhr1...rb−1

Rijkrb
∇iφ̃1∇

jφu+2∇
kφu+1∇

y2φ′2 . . .∇
yhφ′h.

As in the proof of Lemma 4.10 in [6], we derive our claim. Then, (2.13) is proven
by iteratively applying this step and making ∇υ’s into Xdiv’s at each stage.

We analogously show our claim when the factor Tk is in the form ∇(m)Rijkl :
In that case we denote by LI,k,♯ the index set of terms for which both the factors
∇φu+1,∇φu+2 are contracting against a special index in Tk. We will then show
two equations:

Firstly, that there exists a linear combination of tensor fields as claimed in
(2.10) so that:

∑

l∈Lα
I,k,♯

alSym[C]l,i1...iα
g (Ω1, . . . ,Ωp, φ1, . . . , φu)∇i1φu+1∇i2ω∇i3υ . . .∇iα

υ−

∑

y∈Y

ayXdiviα+1C
y,i1...iα+1
g (Ω1, . . . ,Ωp, φ1, . . . , φu)∇i1φu+1∇i2ω∇i3υ . . .∇iα

υ =

∑

l∈Lα
OK

alXdiviα+1C
l,i1...iαiα+1
g ∇i1φu+1∇i2ω∇i3υ . . .∇iα

υ+

∑

j∈J

ajC
j,i1...iα
g (Ω1, . . . ,Ωp, φ1, . . . , φu)∇i1φu+1∇i2ω∇i3υ . . .∇iα

υ,

(2.14)

where the tensor fields in Lα
OK have all the properties of the terms in LI,k, but

they additionally have rank α and furthermore one of the factors ∇φu+1,∇φu+2

does not contract against a special index. Then (under the assumption that
Lα

I,k,♯ = ∅) we denote by LI,k,♯ the sublinear combination of terms in LI,k with
both factors ∇φu+1 or ∇φu+1 contracting against a special index in Tk. We
claim that we can write:

23See the relevant Lemma in the Appendix of [3].
24Since the factor ∇φu+2 survives this operation, and since we started out with terms that

were not “forbidden”, there is no danger of falling under a “forbidden case” of Corollary 1
from [3].

16



∑

l∈LI,k,♯

alXdivi3 . . . Xdiviβ
Sym[C]

l,i1...iβ
g (Ω1, . . . ,Ωp, φ1, . . . , φu)∇i1φu+1

∇i2φu+2 =
∑

l∈LI,k,OK

alXdivi3 . . . Xdiviβ
Sym[C]

l,i1...iβ
g (Ω1, . . . ,Ωp, φ1, . . . , φu)

∇i1φu+1∇i2φu+2 +
∑

j∈J

ajSym[C]j,i1i2
g (Ω1, . . . ,Ωp, φ1, . . . , φu)∇i1φu+1∇i2φu+2,

(2.15)

where the tensor fields in LI,k,OK have all the properties of the terms in LI,k,
but they additionally have rank ≥ α + 1 and furthermore one of the factors
∇φu+1,∇φu+2 does not contract against a special index.

If we can show the above two equations, then we are reduced to showing
our claim under the additional assumption that no tensor field indexed in L in
Sym(2.9) has the two factors ∇φu+1,∇φu+2, contracting against a special index
in Tk. Under that assumption, we may additionally assume that none of the
complete contractions indexed in J in (2.9) have that property. Therefore, we
may then erase the factor ∇φu+1 from all the complete contractions and tensor
fields in (2.9)k–our claim then follows by applying Lemma 4.10 in [6] to the
resulting equation25 and then re-introducing the erased factor ∇φu+1.

Outline of the proof of (2.14), (2.15): Firstly we prove (2.14). Suppose wlog
Tk is contracting against ∇φ1, . . . ,∇φh (possibly with h = 0); then replace
the two factors ∇aφ1,∇bφu+1 by gab and then apply RictoΩp+1 (obtaining a
new true equation) an then apply the eraser to the factors ∇φ1, . . . ,∇φh in the
resulting true equation. Then (apart from the cases, discussed below, where the
above operation may lead to a “forbidden case” of Corollary 1 in [6]), we apply
Corollary 1 frm [6] to the resulting equation, and finally we replace the factor

∇
(b)
r1...rbΩp+1 by an expression

∇(b+h)
s1...shr1...rb−2

Rirb−1krb
∇iφu+1∇

kφu+2∇
s1φ1 . . .∇

shφh.

As in the proof of Lemma 4.10 in [6], we derive our claim. Then, (2.14) is proven
by iteratively applying this step and making ∇υ’s into Xdiv’s at each stage
(again, provided we never encounter “forbidden cases”). If we do encounter for-
bidden cases, then our claims follow by just making the factors ∇φu+1,∇φu+2

into Xdiv’s and then applying Corollary 1 in [3] to the resulting equation (the
resulting equation is not forbidden, since it will contain a factor ∇(m)Rijkl with
two free indices), and in the end re-naming two factors ∇υ into ∇φu+1,∇φu+2.
2

A Further Generalization: Proof of Lemma 5.1 from [6].

25Notice that there is no danger of falling under a “forbidden case” of that Lemma, since
there will be a non-simple factor S∗∇(ν)Rijkl, by virtue of the factor ∇φu+2.
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We remark that on a few occasions later in this series of papers we will be us-
ing a generalized version of the Lemma 2.5. The generalized version asserts that
the claim of Lemma 2.5 remains true, for the general case where rather than one
or two “additional” factors ∇φu+1,∇φu+2 we have β ≥ 3 “additional” factors
∇φu+1, . . . ,∇φu+β . Moreover, in that case there are no “forbidden cases”.

Lemma 2.6 Let
∑

l∈L1
alC

l,i1...iµ,iµ+1...iµ+β
g (Ω1, . . . ,Ωp, φ1, . . . , φu),

∑

l∈L2
alC

l,i1...ibl
,ibl+1...ibl+β

g (Ω1, . . . ,Ωp, φ1, . . . , φu) stand for two linear com-
binations of acceptable tensor fields in the form (1.6), with a u-simple character
~κsimp. We assume that the terms indexed in L1 have rank µ+β, while the ones
indexed in L2 have rank greater than µ+ β.

Assume an equation:

∑

l∈L1

alXdiviβ+1
. . .Xdiviµ+β

C
l,i1...iµ+β
g (Ω1, . . . ,Ωp, φ1, . . . , φu)∇i1φu+1 . . .∇iβ

φu+β

+
∑

l∈L2

alXdiviβ+1
. . . Xdivibl

C
l,i1...ibl+β

g (Ω1, . . . ,Ωp, φ1, . . . , φu)∇i1φu+1 . . .∇iβ
φu+β

+
∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, φ1, . . . , φu+β) = 0,

(2.16)

modulo terms of length ≥ σ+u+β+1. Furthermore, we assume that the above
equation falls under the inductive assumption of Proposition 2.1 in [6] (with
regard to the parameters weight, σ,Φ, p). We are not excluding any “forbidden
cases”.

We claim that there exists a linear combination of (µ+ β + 1)-tensor fields
in the form (1.6) with u-simple character ~κsimp and length σ+ u (indexed in H
below) such that:

∑

l∈L1

alC
l,i1...iµ+β
g (Ω1, . . . ,Ωp, φ1, . . . , φu)∇i1φu+1 . . .∇iβ

φu+β∇iβ+1
υ . . .∇iβ+µ

υ

+
∑

h∈H

ahXdiviµ+β+1
C

l,i1...iµ+β+1
g (Ω1, . . . ,Ωp, φ1, . . . , φu)∇i1φu+1 . . .∇iβ

φβ+1

∇i1υ . . .∇iβ+µ
υ +

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, φ1, . . . , φu+β , υ

µ) = 0,

(2.17)

modulo terms of length ≥ σ + u + β + µ + 1. The terms indexed in J here are
u-simply subsequent to ~κsimp.

Proof of Lemma 2.6: The proof of the above is a straightforward adap-
tation of the proof of Lemma 2.5, except for the cases where the tensor fields
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C
l,i1...iµ,iµ+1...iµ+β
g are “bad”, where “bad” in this case would mean that all fac-

tors are in the form Rijkl, S∗Rijkl, ∇(2)Ωh,26 and in addition each factor ∇(2)Ωh

contracts against at most one factor ∇φh, 1 ≤ h ≤ u + β. So we now focus on
that case:

Let us observe that by weight considerations, all tensor fields in (2.9) must
now have rank µ.

We recall that this special proof applies only in the case where there are spe-
cial free indices in factors S∗Rijkl among the tensor fields of minimum rank in
(2.9). (If there were no such terms, then the regular proof of Lemma 2.5 applies).
We distinguish three cases: Either p > 0, or p = 0, σ1 > 0 or p = σ1 = 0 and
σ2 > 0. We will prove the above by an induction on the parameters (weight),
σ: Suppose that the weight of the terms in (2.16) is −K and the real length is
σ ≥ 3. We assume that the Lemma holds when the equation (2.16) consists of
terms with weight −K ′,K ′ < K, or of terms with weight −K and real length
σ′, 3 ≤ σ′ < σ.

The case p > 0: We first consider the µ-tensor fields in (2.9) with the extra
factor ∇φu+1 contracting against a factor ∇(2)Ωh. Denote the index set of those
terms by Lµ. We will firstly prove that:

∑

l∈Lµ

alC
l,i1...iµ+β
g (Ω1, . . . ,Ωp, φ1, . . . , φu)∇i1φu+1 . . .∇iβ

φu+β∇iβ+1
υ . . .∇iβ+µ

υ = 0.

(2.18)
It suffices to prove the above for the sublinear combination of µ-tensor fields

where ∇φu+1 contracts against ∇(2)Ω1. (2.18) will then follows by repeating
this step p times.

We start by a preparatory claim: Let us denote by Lµ,♯ ⊂ Lµ the index
set of µ-tensor fields for which the factor ∇(2)Ω1 contains a free index, say the
index i1 wlog. We will firstly prove that:

∑

l∈Lµ,♯

alC
l,i1...iµ
g ∇i1φu+1 . . .∇iβ

φu+β∇iβ+1
υ . . .∇iβ+µ

υ = 0. (2.19)

Proof of (2.19): We will use the technique (introduced in subsection 3.1 of
[7]) of “inverse integration by parts” followed by the silly divergence formula.

Let us denote by Ĉl
g the complete contraction that arises from each C

l,i1...iµ+β
g

by formally erasing the expression ∇
(2)
si1

Ω1∇
sφu+1 and then making all free

indices iβ+1
, . . . , iβ+µ

into internal contractions.27 Then, the “inverse integration
by parts” implies a new integral equation:

26Notice that by weight considerations, if this property holds for one of the terms

C
l,i1...iµ,iµ+1...iµ+β
g , then it will hold for all of them.
27We recall that to “make a free index iy into an internal contraction” means that we add

a derivative ∇iy onto the factor Tiy to which the free index iy belongs. The new derivative

index ∇iy is then contracted against the index iy in Tiy .
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∫

Mn

∑

l∈Lµ

alĈ
l
g +

∑

j∈J

ajC
j
g +

∑

z∈Z

azC
z
gdVg = 0. (2.20)

Here the complete contractions indexed in J have length σ + u, u factors ∇φu

but are simply subsequent to the simple character ~κsimp. The terms indexed in
Z either have length ≥ σ + u + 1 or have length σ + u, but also at least one
factor ∇(B)φh with B ≥ 2.

Now, in the above, we consider the complete contractions indexed in Lµ,♯ ⊂
Lµ and we “pull out” the expression ∆∇tΩ1∇tφu+1 to write:

∑

l∈Lµ,♯

alĈ
l
g =

∑

l∈Lµ,♯

alC
l

g · (∆∇tΩ1∇
tφ1).

Now, we consider the silly divergence formula applied to (2.20) obtained by
integrating by parts with respect to the function Ω1. If we denote the integrand
in (2.20) by Fg, we denote the resulting (local) equation by silly[Fg] = 0. We
consider the sublinear combination silly∗[Fg] which consists of terms with length
σ + u, µ internal contractions and u − 1 + β factors ∇φh, h ≥ 2 and a factor
∆φu+1. Clearly, this sublinear combination must vanish separately modulo
longer terms:

silly∗[Fg] = 0.

The above equation can be expressed as:

Spread∇
s,∇s [

∑

l∈Lµ,♯

alC
l

g] · Ω1 · ∆φu+1 = 0. (2.21)

(Here Spread∇
s,∇s is a formal operation that acts on complete contractions in

the form (1.5) by hitting a factor T in the form ∇(m)Rijkl or ∇(p)Ωh with a
derivative ∇s and then hitting another factor T ′ 6= T in the form ∇(m)Rijkl or
∇(p)Ωh by a derivative ∇s which contracts against ∇s and then adding over all
the terms we can thus obtain.) Now, using the fact that (2.21) holds formally,
we derive:28

∑

l∈Lµ,♯

alC
l

g = 0. (2.22)

Thus, applying the operation Subυ µ− 1 times to the above and then multiply-
ing by ∇i1i2Ω1∇i1υ∇i2φu+1 we derive (2.19). So for the rest of this proof we
may assume that Lµ,♯ = ∅.

Now we prove our claim under the additional assumption that for the tensor
fields indexed in Lµ, the factor ∇(2)Ω1 contains no free index.

We again refer to the equation (2.20) and perform integrations by parts
with respect to the factor ∇(B)Ω1. We denote the resulting local equation
by silly[Lg] = 0. We pick out the sublinear combination silly∗[Lg] of terms

28This can be proven by using the operation Erase[. . . ], see the Appendix in [6].
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with σ + u factors, u + β factors ∇φh, µ internal contractions, with u + β − 1
factors ∇φh, h ≥ 2 and a factor ∆φ1. This sublinear combination must vanish
separately, silly∗[Lg] = 0; the resulting new true equation can be described

easily: Let us denote by Ĉl,j1
g the 1-vector field that arises from C

l,i1...iµ
g , l ∈ Lµ,∗

by formally erasing the factor ∇
(2)
js Ω1∇

sφ1, making the index j that contracted
against j into a free index j1 , and making all the free indices i1 , . . . , iµ

into
internal contractions. (Denote by ~κ′simp the simple character of these vector
fields). Then the equation silly∗[Lg] = 0 can be expressed in the form:

∑

l∈Lµ,∗

al{Xdivj1Ĉ
l,j1
g }∆φ1 +

∑

∈J

ajC
j
g∆φ1 = 0; (2.23)

here the complete contractions Cj
g are simply subsequent to ~κ′simp. The above

holds modulo terms of length ≥ σ + u+ 1. Now, we apply the operation Subω
µ times (see the Appendix in [3]). In the case σ > 3, applying the inductive
assumption of our Lemma 2.6 to the resulting equation (notice that the above
falls under the inductive assumption of this Lemma since we have lowered the
weight in absolute value; we ensure that Lemma 2.6 can be applied by just label-
ing one of the factors ∇ω into ∇φu+1. We derive (due to weight considerations)
that there can not be tensor fields of higher rank, thus:

∑

l∈Lµ

alSub
µ−1
ω [Ĉl,j1

g ]∇i1υ∆φ1 = 0. (2.24)

Now, formally replacing the factor ∇i1υ by ∇
(2)
j1tΩ1∇tφ1, and then setting ω = υ,

we derive the claim of our Lemma. In the case σ = 3 (2.24) follows by inspec-
tion, since the only two possible cases are σ2 = 2 and σ1 = 2; in the first case
there are only two possible tensors field in Lµ while in the second there are four.
The equation (2.23) (by inspection) implies that the coefficients of all these ten-
sor fields must vanish, which is equivalent to (2.24).

Now, we will prove our claim under the additional assumption Lµ = ∅ (still
for p > 0). We again refer to (2.20) and again consider the same equation
silly[Lg] = 0 as above. We now pick out the sublinear combination of terms
with σ + u factors, u+ β factors ∇φh, and µ internal contractions. We derive:

∑

l∈Lµ

alXdivj1Xdivj2Ĉ
l,j1j2
g +

∑

∈J

ajC
j
g = 0; (2.25)

here the terms Ĉl,j1j2
g arise from the µ-tensor fields C

li1...iµ
g by replacing all

µ free indices by internal contractions, erasing the factor ∇
(2)
jk Ω1 and making

the indices j , k into free indices j1 , j2 . Now, applying Subω µ times, and then
applying the inductive assumption of Lemma 4.10 2.6 (this applies by length
considerations as above for σ > 3; while if σ = 3 the claim (2.26) will again
follow by inspection) we derive:
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∑

l∈Lµ

alĈ
l,j1j2
g ∇j1υ∇j2υ = 0; (2.26)

Replacing the expression ∇j1υ∇j2υ by a factor ∇
(2)
j1j2

Ω2 and then setting ω = υ,
we derive our claim in this case p > 0.

The case p = 0, σ1 > 0: We will reduce ourselves to the previous case:
We let L1

µ the index set of µ-tensor fields where the factor T1 = S∗Rijkl∇
iφ̃1

contains a special free index (say the index k is the free index iβ+1
wlog). We

will prove our claim for the index set L1
µ; if we can prove this, then clearly our

Lemma will follow by induction.
To prove this claim, we consider the first conformal variation of our hypoth-

esis, Image1Y [Lg] = 0, and we pick out the sublinear combination of terms with

length σ+u+β, with the factor ∇(ν)S∗Rijkl∇iφ̃1 has been replaced by a factor
∇(ν+2)Y , and the factor ∇φ1 now contracts against a factor T2 = Rijkl . This
sublinear combination vanishes separately, thus we derive a new local equation.
To describe the resulting equation, we denote by

Ĉ
l,i1...̂iβ+1...iµ+β
g (Y, φ1, . . . , φu)∇i1φu+1 . . .∇iβ

φu+β the (µ− 1)-tensor field that
arises from by formally replacing the factor by and also adding a derivative
index ∇i∗ onto the factor T2 = Rijkl and then contracting that index against a
factor ∇φ1. Denote the (u − 1)-simple character of the above (the one defined
by ∇φ2, . . . ,∇φu) by ~κ′simp. We then have an equation:

∑

l∈L1
µ

alXdiviβ+2
. . . Xdiviβ+µ

Ĉ
l,i1...̂iβ+1...iµ+β
g (Y, φ1, . . . , φu)∇i1φu+1 . . .∇iβ

φu+β

+
∑

h∈H

ahXdiviβ+1
. . . Xdiviβ+µ

C
l,i2...iµ+β
g (Y, φ1, . . . , φu)∇i1φu+1 . . .∇iβ+µ

φu+β

+
∑

j∈J

ajC
j,iµ+1...iµ+β
g (Y, φ1, . . . , φu)∇iµ+1φu+1 . . .∇iµ+β

φu+β .

(2.27)

The terms indexed in H are acceptable, have a (u − 1)-simple character ~κ′simp

and the factor ∇φ1 contracts against the index i in the factor T2 = Rijkl ; writing

that factor as S∗Rijkl∇iφ̃1, we denote the resulting u-simple factor by κ̃simp.
The terms indexed in J are simply subsequent to ~κ′simp. Now, applying the

inductive assumption of Lemma 2.6,29 we derive that:

∑

h∈H

ahC
l,i2...iµ+β
g (Y, φ1, . . . , φu)∇i1φu+1 . . .∇iβ+1

φu+β∇iβ+1
υ . . .∇iβ+µ

υ = 0.

(2.28)

29The terms indexed in L1
µ are now simply subsequent to κ̃simp.
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Thus, we may assume wlog that H = ∅ in (2.27). Now, we again apply Lemma
2.6 to (2.27) (under that additional assumption), and we derive that:

∑

l∈L1
µ

alĈ
l,i1...̂iβ+1...iµ+β
g (Y, φ1, . . . , φu)∇1φu+1 . . .∇iβ+1

φu+β∇iβ+2
υ . . .∇iβ+µ

υ = 0.

(2.29)
Now, erasing the factor ∇φ1 from the above, and then formally replacing the

factor ∇
(2)
ab Y by S∗Ri(ab)l∇

iφ̃1∇lυ, we derive our claim.
The case p = 0, σ1 = 0: In this case σ = σ2. In other words, all factors

in ~κsimp are simple factors in the form S∗Rijkl∇iφ̃h. We recall that in this
case all µ-tensor fields in (2.9) must have at most one free index in any factor
S∗Rijkl. In that case, we will prove our claim in a more convoluted manner,
again reducing ourselves to the inductive assumption of Proposition 2.1 in [6].

A key observation is the following: By the definition of the special cases,
µ + β ≤ σ2. In the case of strict inequality, we see (by a counting argument)
that at least one of the special indices in one of the factors S∗Rijkl must contract
against a special index in another factor S∗Rabcd. In the case µ+β = σ2 this re-
mains true, except for the terms for which the β factors ∇φu+h contract against
special indices, say the indices k, in β factors Ty = S∗Rikl∇iφ̃y, and moreover
these factors must not contain a free index, and all other factors S∗Rikl contain
exactly one free index, which must be special. In this subcase, we will prove
our claim for all µ-tensor fields excluding this particular “bad” sublinear com-
bination; we will prove our claim for this sublinear combination in the end.

We will now proceed to normalize the different (µ+β)-tensor fields in (2.9).
A normalized tensor field will be in the form (1.6), with possibly certain pairs
of indices in certain of the factors S∗Rijkl being symmetrized.

Let us first introduce some definitions: Given each C
l,i1...iµ
g , we list out the

factors T1, . . . Tσ2 in the form S∗Rikl. Here Ta is the factor for which the index

i is contracting against the factor ∇φ̃a. We say that factors S∗Rikl are type I if
they contain no free index. We say they are of type II if they contain a special
free index. We say they are of type III if they contain a non-special free index.

Given any tensor field C
l,i1...iµ
g in the form (1.6), pick out the pairs of factors,

Tα, Tβ in the form S∗Rijkl for which a special index in Tα contracts against a
a special index in Tβ. (Call such particular contractions “special-to-special”

particular contractions). Now, in any C
l,i1...iµ
g we define an ordering among

all its factors S∗Rijkl: The factor Ta = S∗Rikl∇
iφ̃a is more important than

Tb = S∗Ri′j′k′l′∇i′ φ̃b if a < b.

Now, consider a tensor field C
l,i1...iµ
g and list out all the pairs of factors Ta, Tb

with a special-to-special particular contraction. We say that (Ta, Tb) is the most
important pair of factors with a special-to-special particular contraction30 if any
other such pair (Tc, Td),

31 has either Tc being less important than Ta or Ta = Tc

30Asume wlog that Ta is more important than Tb
31Again assume wlog that Tc is more important than Td.
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and Td less important than Tb.

Now, consider a tensor field C
l,i1...iµ
g and consider the most important pair

of factors (Ta, Tb) with a special-to-special particular contraction. Assume wlog
that the index l in Ta = S∗Rijkl∇iφ̃a contracts against the index l′ in Tb =

S∗Ri′j′k′l′∇i′ φ̃b. We say that C
l,i1...iµ
g is normalized if both factors Ta, Tb are

normalized. The factor Ta = S∗Rikl∇iφ̃a is normalized if: Either the index j

contracts against a factor Tc which is more important than Tb, or if the indices

j , k are symmetrized. If Ta is of type II, then we require that the index j in
Tb = S∗Rij(free)l must be contracting against a special index of some other
factor Tc, and moreover Tc must be more important than Tb. If Ta is of type
III, then it is automatically normalized. The same definition applies to Tb,
where any reference to Tb must be replaced by a reference to Ta.

Let us now prove that we may assume wlog that all µ-tensor fields in (2.9)

are normalized: Consider a C
l,i1...iµ
g in (2.9) for which the most important pair

of factors with a special-to-special particular contraction is the pair (Ta, Tb).
We will prove that we can write:

C
l,i1...iµ+β
g = C̃

l,i1...iµ+β
g +

∑

t∈T

atC
t,i1...iµ+β
g ; (2.30)

here the term C̃
l,i1...iµ+β
g is normalized, the most important pair of factors with

a special-to-special particular contraction is the pair (Ta, Tb), and moreover its

refined double character is the same as for C
l,i1...iµ+β
g . Each C

t,i1...iµ+β
g has

either the same, or a doubly subsequent refined double character to C
l,i1...iµ+β
g ;

moreover in the first case its most important pair of factors with a special-
to-special particular contraction will be less important than the pair (Ta, Tb).
In the second case the most important pair will either be (Ta, Tb) or a less
important pair.

Clearly, if we can prove the above, then by iterative repetition we may assume
wlog that all (µ+ β)-tensor fields in (2.9) are normalized.

Proof of (2.30): Pick out the most important pair of factors with a special-

to-special particular contraction is the pair (Ta, Tb) in C
l,i1...iµ+β
g . Let us first

normalize Ta. If Ta is of type III, there is nothing to do. If it is of type II
and already normalized, there is again nothing to do. If it is of type II and not
normalized, then we interchange the indices j , k. The resulting factor is nor-
malized. The correction term we obtain by virtue of the first Bianchi identity is
also normalized (it is of type III). Moreover, the resulting tensor field is doubly

subsequent to C
l,i1...iµ+β
g . Finally, if the factor Ta is of type I, we inquire on the

factor Tc against which j in Ta = S∗Rijkl contracts: If it is more important than
Tb, then we leave Ta as it is; it is already normalized. If not, we symmetrize

j , k. The resulting tensor field is normalized. The correction term we obtain
by virtue of the first Bianchi identity will then have the same refined double

character as C
l,i1...iµ+β
g , and moreover its most important pair of factors with a

special-to-special particular contraction is less important than that pair (Ta, Tb).
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We now prove the claim of Lemma 2.6 in this special case, under the ad-
ditional assumption that all tensor fields in (2.9) are normalized. We list out
the most important pair of special-to-special particular contractions in each

C
l,i1...iµ+β
g , and denote it by (a, b)l. We let (α, β) stand for the lexicographicaly

minimal pair among the list (a, b)l, l ∈ Lµ. We denote by L
(α,β)
µ ⊂ Lµ the index

set of terms with a special-to-special particular contraction among the terms
Tα, Tβ. We will prove that:

∑

l∈L
(α,β)
µ

alC
l,i1...iµ+β
g ∇i1υ . . .∇iµ

υ = 0. (2.31)

Clearly, the above will imply our claim, by iterative repetition.32

Proof of (2.31): Consider Image2Y1,Y2
[Lg] = 0 and pick out the sublinear

combination where the factors Tα, Tβ are replaced by ∇(A)Y1⊗g,∇(B)Y2⊗g, and

the two factors ∇φ̃α,∇φ̃β contract against each other. The resulting sublinear

combination must vanish separately. We erase the expression ∇tφ̃α∇tφ̃β ,33 and
derive a new true eqation which will be in the form:

∑

l∈L
(α,β)
µ

alXdivi1 . . . Xdiviµ
C̃

l,i1...iµ+β
g (Ω1, Y1, Y2) +

∑

j∈J

ajC
j
g(Ω1, Y1, Y2) = 0;

(2.32)

here the tensor fields C̃
l,i1...iµ+β
g (Ω1, Y1, Y2) arise from the tensor fields C

l,i1...iµ+β
g

by replacing the expression
∇iφ̃αS∗Rijkl ⊗S∗Ri′jk

l∇i′ φ̃β by an expression ∇jkY1⊗∇j′k′Y2 (notice we have
lowered the weight in absolute value).

Now, applying the inductive assumption of Lemma 2.6 to the above,34 we
derive:

∑

l∈L
(α,β)
µ

alC̃
l,i1...iµ+β
g (Ω1, Y1, Y2)∇i1υ . . .∇iµ

υ = 0; (2.33)

The proof of (2.31) is only one step away. Let us start with an important
observation: For each given complete contraction above, examine the factor

∇
(2)
zx Y1; it either contracts against no factor ∇υ or one factor ∇υ.35 In the

first case, the factor ∇
(2)
zx Y1 must have arisen from a factor S∗Rijkl of type

I. In fact, the indices z, x correspond to the indices j , k in the original factor,
and we can even determine their position: Since the pair (α, β) is the most
important pair in (2.9), at most one of the indices z , x can contract against a
special index in a more important factor than Tβ. If one of them does (say z),

32In the subcase µ+ β = σ2 it will only imply it for the “excluded” sublinear combination
defined above.

33Denote the resulting (u− 2)-simple character by ~κ′′′simp.
34We have lowered the weight in absolute value.
35The two corresponding sublinear combinations vanish separately, of course.
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then that index must have been the index j in Tα = S∗Rikl. If none of them
does, then the two indices z, x must be symmetrized over, since the two indices

j , k in Tα to which they correspond were symmetrized over. Now, these two
separate sublinear combinations in (2.33) must vanish separately (this can be
proven using the eraser fro the Appendix in [3]), and furthermore in the first
case, we may assume that the index z (which contracts against a special index

in a more important factor than Tβ) occupies the leftmost position in ∇
(2)
zx Y1

and is not permuted in the formal permutations of indices that make (2.33) hold
formally).

On the other hand, consider the terms in (2.33) with the factor ∇(2)Y1 con-

tracting against a factor ∇υ. By examining the index y in the factor ∇
(2)
yt Y1∇

tυ,

we can determine the type of factor in C
l,i1...iµ+β
g from which the factor ∇(2)Y1

arose: If the index y is contracting against a special index in a factor S∗Rijkl

which is more important than Tβ , then ∇(2)Y1 can only have arisen from a factor

of type II in C
l,i1...iµ+β
g . In fact, the index y in ∇(2)Y1 must correspond to the

index j in S∗Rij(free)l in Tα. If the index y in ∇
(2)
yt Y1∇tυ does not contract

against a special index in a factor Tc which is more important than Tβ , then

the factor ∇(2)Y1 can only have arisen from a factor of type III in C
l,i1...iµ+β
g .

In fact, the index y in ∇(2)Y1 must correspond to the index k in S∗Ri(free)kl in
Tα.

The same analysis can be repeated for the factor ∇(2)Y2, with any reference
to the factor Tβ now replaced by the factor Tα.

In view of the above analysis, we can break the LHS of (2.33) into four sublin-
ear combinations which vanish separately (depending on whether ∇(2)Y1,∇(2)Y2

contract against a factor ∇υ or not). Then in each of the four sublinear combi-
nations, we can arrange that in the formal permutations that make the LHS of
(2.33) formally zero, the two indices in the factors ∇(2)Y1,∇

(2)Y2 are not per-
muted (by virtue of the remarks above). In view of this and the analysis in the

previous paragraph, we can then replace the two factors ∇
(2)
zx Y1,∇

(2)
qwY2 by an

expression ∇iφ̃αS∗Rizxl ⊗ S∗Ri′qw
l∇i′ φ̃β , in such a way that the resulting lin-

ear combination vanishes formally without permuting the two indices q,w, q′ ,w′ .
This proves our claim, except for the subcase µ+ β = σ2 where we only derive
our claim for all terms except for the “bad sublinear combination”. We now
prove our claim for that.

We then break up the LHS of (2.16) according to which factor Ts the factor
∇φu+1 contracts–denote the index set of those terms by LK

µ . Denote the result-

ing sublinear combinations by LK
g ,K = 1, . . . , σ2. Given any K, we consider

the eqation Image1Y [Lg] = 0, and we pick out the sublinear combination where

the term ∇(B)S∗Rijkl∇iφ̃K , is replaced by ∇(B+2)Y , and the factor ∇φK now
contracts against the factor ∇φu+1. This sublinear combination must vanish
separately. We then again perform the “inverse integration by parts” to this
true equation (deriving an integral equation), and then we consider the silly di-
vergence formula for this integral equation, obtained by integrating by parts with

26



respect to ∇(B)Y . We pick out the sublinear combination with σ+u+β factors,
µ internal contractions and u + β factors ∇φh, and a expression ∇sφu+1∇sφ̃K

This gives us a new true local equation:

∑

l∈LK
µ

alX∗divj1X∗divj2C̃
l,j1j2
g +

∑

j∈J

ajC
j
g = 0. (2.34)

Here the tensor fields C̃l,j1j2
g arise from C

l,i1...iµ
g by formally replacing all µ free

indices by internal contractions, and also replacing the expression ∇xφu+1 ⊗
S∗Ri(jk)

x∇iφ̃K by ∇xφu+1∇sφ̃K ⊗ Y , and then making the indices j , k that
contracted against j , k into free indices j1 , j2 . X∗divj stands for the sublinear
combination inXdivj where ∇j is not allowed to hit the factor Y . Now, applying
the inductive assumption of Lemma 2.6 to the above,36 we derive that:

∑

l∈LK
µ

alC̃
l,1j2
g ∇j1ω∇j2ω = 0.

Now, we replace the expression ∇xφK∇xφu+1∇j1ω∇j2ωY by

∇lφu+1S∗Ri(j1j2)l∇
iφ̃K and then replacing all internal contractions by factors

∇υ (applying the operation Subυ from the Appendix in [3]). The resulting (true)
equation is precisely our remaining claim for the “bad” sublinear combination.
2

2.3 Proof of Lemmas 4.6, 4.8 in [6]: The main part.

We first write down the form of the complete and partial contractions that we
are dealing with in Lemmas 2.1 and 2.3. In the setting of Lemma 2.1 we recall
that the tensor fields Ch,i1...iα indexed in H2 (in the hypothesis of Lemma 2.1)
are all partial contractions in the form:

pcontr(∇(m1)Rijkl ⊗ · · · ⊗ ∇(mσ1)Rijkl ⊗ S∗∇
(ν1)Rijkl ⊗ · · · ⊗ S∗∇

(νt)Rijkl⊗

∇(b1)Ω1 ⊗ · · · ⊗ ∇(bp)Ωp ⊗∇Y⊗

∇φz1 · · · ⊗ ∇φzf
⊗∇φ′zf+1

⊗ · · · ⊗ ∇φ′zf+d
⊗ · · · ⊗ ∇φ̃zf+d+1

⊗ · · · ⊗ ∇φ̃zf+d+y
),

(2.35)

where we let f + d+ y = u′. The main assumption here is that all tensor fields
have the same u′-simple character (the one defined by ∇φ1, . . . ,∇φu′), which
we denote by ~κ+

simp. The other main assumption is that if we formally treat the
factor ∇Y as a function ∇φu+1, then the hypothesis of Lemma 2.1 falls under
the inductive assumptions of Proposition 1.1 (i.e. the weight, real length, Φ and
p are as in our inductive assumption of Proposition 1.1).

In the setting of Lemma 2.3 we recall that we are dealing with complete and
partial contractions in the form:

36We have lowered the weight in absolute value.
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contr(∇(m1)Rijkl ⊗ · · · ⊗ ∇(mσ1)Rijkl ⊗ S∗∇
(ν1)Rijkl ⊗ · · · ⊗ S∗∇

(νt)Rijkl⊗

∇(b1)Ω1 ⊗ · · · ⊗ ∇(bp)Ωp ⊗ [∇ω1 ⊗∇ω2]⊗

∇φz1 · · · ⊗ ∇φzf
⊗∇φ′zf+1

⊗ · · · ⊗ ∇φ′zf+d
⊗ · · · ⊗ φ̃zf+d+1

⊗ · · · ⊗ φ̃zf+d+y
),

(2.36)

where we let f + d+ y = u′. The main assumption here is that all partial con-
tractions have the same u′-simple character (the one defined by ∇φ1, . . . ,∇φu′ ),
which we denote by ~κ+

simp. The other main assumption is that if we formally
treat the factors ∇ω1,∇ω2 as factors ∇φu+1,∇φu+2, then the hypothesis of
Lemma 2.3 falls under the inductive assumptions of Proposition 1.1 (i.e. the
weight, real length, Φ and p are as in our inductive assumption of Proposition
1.1).

Note: From now on, we will be writing u′ = u, for simplicity. We will also
be writing ~κ+

simp = ~κsimp, for simplicity. We will also be labelling the indices

i1 , . . . , iα
as iπ+1 , . . . , iα+1 .

New induction: We will now prove the two Lemmas 2.1, 2.3 by a new in-
duction on the weight of the complete contractions in the hypotheses of those
Lemmas. We will assume that these two Lemmas are true when the weight of
the complete contractions in their hypotheses is −W , for any W < K ≤ n. We
will then show our Lemmas for weight −K.

Reduce Lemma 2.1 to two Lemmas: In order to show Lemma 2.1, we further
break up H2 into subsets: We say that h ∈ Ha

2 if and only if Ch,iπ+1...iα+1 has
a free index ( say the free index iα+1 wlog) belonging to the factor ∇Y . On
the other hand, we say that h ∈ Hb

2 if the index in the factor ∇Y is not free.
Lemma 2.1 will then follow from Lemmas 2.7, 2.8 below:

Lemma 2.7 There exists a linear combination of acceptable (α− π+ 1)-tensor

fields,
∑

v∈V avC
v,iπ+1...iα+2
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu), where the index iα+1 be-

longs to the factor ∇Y , with a simple character ~κsimp, so that:

∑

h∈Ha
2

ahC
h,iπ+1...iα+1
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu)∇iπ+1υ . . .∇iα+1υ =

∑

v∈V

avX∗diviα+2C
v,iπ+1...iα+2
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu)∇iπ+1υ . . .∇iα+1υ+

∑

j∈J

ajC
j,iπ+1...iα+1
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu)∇iπ+1υ . . .∇iα+1υ.

(2.37)

Each Cj is simply subsequent to ~κsimp.
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We observe that if we can show our first claim, then we can assume, with
no loss of generality, that Ha

2 = ∅, since it immediately follows from the above
that:

∑

h∈Ha
2

ahX∗diviπ+1 . . .X∗diviα+1C
h,iπ+1...iα+1
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu) =

∑

v∈V

avX∗diviπ+1 . . . X∗diviα+1X∗diviα+2C
v,iπ+1...iα+2
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu)

+
∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, Y, φ1, . . . , φu),

(2.38)

where each complete contraction Cj is subsequent to ~κsimp. (Note that one of

the free indices in the tensor fields C
v,iπ+1...iα+2
g will belong to the factor ∇Y ).

Second claim, in the setting of Lemma 2.1:

Lemma 2.8 We assume Ha
2 = ∅. We then claim that modulo complete con-

tractions of length ≥ σ + u+ 1:

∑

h∈H2

ahC
h,iπ+1...iα+1
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu)∇iπ+1υ . . .∇iα+1υ =

∑

t∈T

atX∗diviα+2C
t,iπ+1...iα+2
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu)∇iπ+1υ . . .∇iα+1υ+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, Y, φ1, . . . , φu),

(2.39)

where each Cj is acceptable and subsequent to ~κsimp.

We observe that if we can show the above two Lemmas then Lemma 2.1
will follow. (Notice that replacing by the RHS of (2.38) into the hypothesis of
Lemma 2.1, we do not introduce 1-forbidden terms).

We make two analogous claims for Lemma 2.3:

Reduce Lemma 2.3 to two Lemmas: We say that h ∈ Ha
2 if and only if

Ch,iπ+1...iα+1 has a free index belonging to one of the factors ∇ω1,∇ω2. On
the other hand, we say that h ∈ Hb

2 if in none of the factors ∇ω1,∇ω2 in
Ch,iπ+1...iα+1 contains a free index. (Observe that we may assume with no loss
of generality that there are no tensor fields Ch,iπ+1...iα+1 with free indices in
both factors ∇ω1,∇ω2-this is by virtue of the anti-symmetry of the factors
∇ω1,∇ω2). We make two claims. Firstly:
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Lemma 2.9 There is a linear combination of acceptable (α − π + 1)-tensor

fields,
∑

v∈V avC
v,iπ+1...iα+2
g (Ω1, . . . ,Ωp, [ω1, ω2], φ1, . . . , φu), in the form (2.35)

with a simple character ~κsimp, so that:

∑

h∈Ha
2

ahX+diviπ+1 . . .X+diviα+1C
h,iπ+1...iα+1
g (Ω1, . . . ,Ωp, [ω1, ω2], φ1, . . . , φu) =

∑

v∈V

avX+diviπ+1 . . .X+diviα+1X+diviα+2C
v,iπ+1...iα+2
g (Ω1, . . . ,Ωp, [ω1, ω2], φ1, . . . , φu)

+
∑

q∈Q

aqX+diviπ+1 . . .X+diviα+1C
q,iπ+1...iα+1
g (Ω1, . . . ,Ωp,∇+[ω1, ω2], φ1, . . . , φu)

+
∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, [ω1, ω2], φ1, . . . , φu).

(2.40)

(Recall that by definition the complete contractions indexed in Q have a factor
∇(2)ω1).

We observe that if we can show our first claim, then we can, with no loss of
generality, assume that Ha

2 = ∅.
Second claim:

Lemma 2.10 We assume Ha
2 = ∅, and that for some k ≥ 1, we can write:

∑

h∈Hb
2

axX+diviπ+1 . . . X+diviα+1C
h,iπ+1...iα+1
g (Ω1, . . . ,Ωp, [ω1, ω2], φ1, . . . , φu)

+
∑

t∈Tk

atX+diviπ+1 . . . X+diviα+k
Ct,iπ+1...iα+k

g (Ω1, . . . ,Ωp, [ω1, ω2], φ1, . . . , φu)

+
∑

q∈Q

aqX+divπ+1 . . . X+diviα+1C
h,iπ+1...iα+1
g (Ω1, . . . ,Ωp,∇+[ω1, ω2], φ1, . . . , φu)

+
∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, [ω1, ω2], φ1, . . . , φu),

(2.41)

where the last two linear combinations on the right hand side of the above are
generic linear combinations in the form described in the claim of Lemma 2.3.37

On the other hand,
∑

t∈Tk
atC

t,iπ+1...iα+k
g (Ω1, . . . ,Ωp, [ω1, ω2], φ1, . . . , φu) is a

linear combination of acceptable (α−π+k)-tensor fields in the form (2.36) with
a simple character ~κsimp, and with two anti-symmetric factors ∇ω1,∇ω2 which
do not contain a free index. We then claim that modulo complete contractions
of length ≥ σ + u+ 1 we can write:

37In Lemma 2.3, Q is called V .
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∑

t∈Tk

atX+divi1 . . .X+divia+k
Ct,i1...ia+k

g (Ω1, . . . ,Ωp, [ω1, ω2], φ1, . . . , φu) =

∑

t∈Tk+1

atX+diviπ+1 . . . X+divia+k+1
Ct,iπ+1...ia+k+1

g (Ω1, . . . ,Ωp, [ω1, ω2], φ1, . . . , φu)

+
∑

q∈Q

aqX+divi1 . . . X+divia+1C
q,i1...ia+1
g (Ω1, . . . ,Ωp,∇+[ω1, ω2], φ1, . . . , φu)

+
∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, [ω1, ω2], φ1, . . . , φu),

(2.42)

with the same notational conventions as above.

We observe that if we can show the above two claims, then Lemma 2.3 will
follow by iterative repetition of the second claim.

We will now show the four Lemmas above.

Proof of Lemmas 2.8 and 2.10: Lemma 2.8 is a direct consequence of Lemma
4.10 in [6].38 Lemma 2.10 can be proven in two steps: Firstly, by Lemma 2.5
we derive that there exists a linear combination of acceptable (a+ k+1)-tensor
fields (indexed in X below) with a u-simple character ~κsimp so that:

∑

t∈Tk

atC
t,i1...ia+k
g (Ω1, . . . ,Ωp, [ω1, ω2], φ1, . . . , φu)∇i1υ . . .∇ia+k

υ−

∑

t∈Tk+1

atX∗divia+k+1
Ct,iπ+1...ia+k+1

g (Ω1, . . . ,Ωp, [ω1, ω2], φ1, . . . , φu)∇i1υ . . .∇ia+k
υ

+
∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, [ω1, ω2], φ1, . . . , φu, υ

a+k),

(2.43)

where the complete contractions indexed in J have length σ+ a+ k+ 1 and are
simply subsequent to ~κsimp.

Then, making the factors ∇υ in the above into X+divs, we derive Lemma
2.10. 2

Proof of Lemma 2.7:
We have denoted by ~κsimp the simple character of our tensor fields. We

distinguish two cases: In case A there is a factor ∇(m)Rijkl in ~κsimp, and in
case B there is no such factor.

We denote α+ 1 = γ, for brevity.

38Observe that our hypotheses on the tensor fields in the equation in Lemma 2.1 not being
“bad” ensure that we do not fall under the “forbidden” cases of Lemma 4.10 in [6].
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Now we break the set Hb
2 into subsets: In case A we say that h ∈ H

b,+
2 if

and only if ∇Y is contracting against an internal index of a factor ∇(m)Rijkl .

In case B we say that h ∈ H
b,+
2 if and only if ∇Y is contracting against one of

the indices k, l in a factor S∗∇
(ν)Rijkl .

We define Hb,−
2 = Hb

2 \Hb,+
2 .

In each of the above cases and subcases we treat the function ∇Y as a
function ∇φu+1 in our Lemma hypothesis. Then, by applying the first claim in
Lemma 4.10 in [6]39 to our Lemma hypothesis and then making the ∇υs into
X∗divs, we derive that we can write:

X∗diviπ+1 . . .X∗diviγ

∑

h∈H
b,+
2

ahC
h,iπ+1...iα,iγ
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu) =

X∗diviπ+1 . . .X∗diviγ

∑

h∈H
b,∗,−
2

ahC
h,iπ+1...iα,iγ
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu)

+
∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, Y, φ1, . . . , φu),

(2.44)

where
∑

h∈H
b,∗,−
2

ahC
h,iπ+1...iα,iγ
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu) stands for a generic

linear combination as defined above (i.e. it is in the general form
∑

h∈Hb
2
. . . but

the factor ∇Y is not contracting against a special index in any factor ∇(m)Rijkl

or S∗∇(ν)Rijkl.
40 On the other hand, each Cj

g(Ω1, . . . ,Ωp, Y, φ1, . . . , φu) is a
complete contraction with a simple character that is subsequent to ~κsimp.

Thus, by virtue of (2.44), we reduce ourselves to the case where Hb,+
2 = ∅.

We will then show Lemma 2.7 separately in cases A and B, under the assump-
tion that Hb,+

2 = ∅.

Proof of Lemma 2.7 in case A: We will define the C-crucial factor, for the
purposes of this proof only: We denote by Set the set of numbers u for which
∇φu is contracting against one of the factors ∇(m)Rijkl . If Set 6= ∅, we define
u+ to be the minimum element of Set, and we pick out the factor ∇(m)Rijkl in
each Ch against which ∇φu+ contracts. We call that factor ∇(m)Rijkl C-crucial.
If Set = ∅, we will say the C-crucial factors and will mean any of the factors
∇(m)Rijkl.

Now, we pick out the subset Hb,∗
2 ⊂ Hb

2 , which is defined by the rule: h ∈

H
b,∗
2 if and only if ∇Y is contracting against the (one of the) C-crucial factor(s).
Now, for each h ∈ Ha

2 we denote by

Hitdiviγ
Ch,iπ+1...iα+1

g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu)

39By weight considerations, since we started out with no “bad terms” in Lemma 2.1, we
will not encounter no “forbidden tensor fields” for Lemma 4.10 in [6].

40Recall that a special index in a factor ∇(m)Rijkl is an internal index, while a special

index in a factor S∗∇(ν)Rijkl is an index k, l.
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the sublinear combination inX∗diviγ
C

h,iπ+1...iα+1
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu) that

arises when ∇iγ
hits the (one of the) C-crucial factor.41 It then follows that:

∑

h∈Ha
2

ahX∗diviπ+1 . . . X∗diviα
Hitdiviγ

Ch,iπ+1...iα+1
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu)

+
∑

h∈H
b,∗
2

ahX∗diviπ+1 . . . X∗diviγ
Ch,iπ+1...iα+1

g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu)+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, Y, φ1, . . . , φu),

(2.45)

where each Cj
g has the factor ∇Y contracting against the C-crucial factor

∇(m)Rijkl and is simply subsequent to ~κsimp.
We now denote the (u + 1)-simple character (the one defined by ∇φ1,. . .

,∇φu+1 = ∇Y ) of the tensor fieldsHitdiviγ
C

h,iπ+1...iα,iγ
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu)

by ~κ′simp. (Observe that they all have the same (u+ 1)-simple character).
We observe that just applying Corollary 1 in [6] to (2.45) (all tensor fields are

acceptable and have the same simple character ~κ′simp),
42 we obtain an equation:

∑

h∈Ha
2

ahHitdiviγ
Ch,iπ+1...iα

g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu)∇iπ+1υ . . .∇iα
υ+

∑

u∈U

auXdiviα+1C
u,iπ+1...iα,iα+1
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu)∇iπ+1υ . . .∇iα

υ =

∑

j∈J

ajC
j,iπ+1...iα
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu)∇iπ+1υ . . .∇iα

υ = 0,

(2.46)

where the tensor fields indexed in U are acceptable (we are treating ∇Y as a
factor ∇φu+1), have a simple character ~κ′simp and each Cj is simply subsequent
to ~κ′simp.

But then, our first claim follows almost immediately. We recall the operation
Erase∇Y [. . . ] from the Appendix in [3] which acts on the complete contractions
in the above by erasing the factor ∇Y and the (derivative) index that it contracts
against. Then, since (2.46) holds formally, we have that the tensor field required
for Lemma 2.7 is:

∑

u∈U

auErase∇Y [Cu,iπ+1...iα,iα+1
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu)] · ∇iγ

Y.

41Recall that iγ is the free index that belongs to ∇Y .
42Notice that by weight considerations, since we started out with no “bad” terms in the

hypothesis of Lemma 2.1, there is no danger of falling under a “forbidden case” of that
Corollary.
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Proof of Lemma 2.7 in case B: We again distinguish two subcases: In subcase
(i) there is some non-simple factor S∗∇(ν)Rijkl in ~κsimp or a non-simple factor
∇(B)Ωx contracting against two factors ∇φ′h in ~κsimp. In subcase (ii) there are
no such factors.

In the subcase (i), we arbitrarily pick out one factor S∗∇(ν)Rijkl or ∇(B)Ωx

with the properties described above and call it the D-crucial factor. In this first
subcase we will show our claim for the whole sublinear combination

∑

h∈Ha
2
. . .

in one piece.
In the subcase (ii), we will introduce some notation: We will examine each

factor T = S∗∇
(ν)Rijkl , T = ∇(B)Ωx in each tensor field C

h,iπ+1...iα,iα+1
g and

define its “measure” as follows: If T = S∗∇(ν)Rijkl then its “measure” will stand
for its total number of free indices plus 1

2 . If T = ∇(B)Ωx then its “measure”
will stand for its total number of free indices plus the number of factors ∇φh

against which it is contracting.
We divide the index set Ha

2 into subsets according to the measure of any
given factor. We denote by M the maximum measure among all factors among

the tensor fields C
h,iπ+1...iα,iα+1
g , h ∈ Ha

2 . We denote byH2,∗
a ⊂ Ha

2 the index set
of the tensor fields which contain a factor of maximum measure. We will show
the claim of Lemma 2.7 for the sublinear combination

∑

h∈H
2,∗
a
. . . . Clearly, if

we can do this, then Lemma 2.7 will follow by induction.
We will prove Lemma 2.7 in the second subcase (which is the hardest). The

proof in the first subcase follows by the same argument, only by disregarding
any reference to M free indices belonging to a given factor etc.

Proof of Lemma 2.7 in case B for the sublinear combination
∑

h∈H
2,∗
a
. . . :

We will further divide H2,∗
a into subsets, H2,∗,k

a , k = 1, . . . , σ, according to
the factor of maximum measure: Firstly, we order the factors S∗∇(ν)Rijkl , . . .

∇(p)Ωh in ~κsimp, and label them T1, . . . , Tσ (observe each factor is well-defined

in ~κsimp, because we are in case B). We then say that h ∈ H
a,∗,1
2 if in C

u,iπ+1...iα
g

the factor T1 has measure M . We say say that h ∈ H
a,∗,2
2 if in C

u,iπ+1...iα
g the

factor T2 has measure M and T1 has measure less than M , etc. We will then
prove our claim for each of the index sets h ∈ H

a,∗,k
2 :43 We arbitrarily pick a

k ≤ K and show our claim for
∑

h∈H
2,∗,k
a

. . . .
For the purposes of this proof, we call the factor Tk the D-crucial factor.
Now, we pick out the subset Hb,k

2 ⊂ Hb
2 , which is defined by the rule: h ∈

H
b,k
2 if and only if ∇Y is contracting against the D-crucial factor Tk.
Now, for each h ∈ Ha

2 we denote by

Hitdiviγ
Ch,iπ+1...iα+1

g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu)

the sublinear combination in Xdiviγ
C

h,iπ+1...iα+1
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu) that

arises when ∇iγ
hits the D-crucial factor.44 It then follows that:

43Again we observe that if we can prove this then Lemma 2.7 in case B will follow by
induction.

44Recall that iγ = iα+1
belongs to ∇Y by hypothesis.
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∑

h∈Ha
2

ahXdiviπ+1 . . . Xdiviα
Hitdiviγ

Ch,iπ+1...iα+1
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu)

+
∑

h∈H
b,k
2

ahXdiviπ+1 . . .Xdiviγ
Ch,iπ+1...iα+1

g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu)+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, Y, φ1, . . . , φu),

(2.47)

where each Cj
g has the factor ∇Y contracting against the D-crucial factor and

is simply subsequent to ~κsimp.
We now denote the (u + 1)-simple character (the one defined by ∇φ1, . . . ,

∇φu+1 = ∇Y ) of the tensor fieldsHitdiviγ
C

h,iπ+1...iα,iγ
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu)

by ~κ′simp. (Observe that they all have the same (u+ 1)-simple character).
We apply Corollary 1 in [6] to (2.47) (all tensor fields are acceptable and have

the same simple character ~κ′simp) and then pick out the sublinear combination
where there are M factors ∇υ or ∇φh or ∇φ′h contracting against Tk, we obtain
an equation:

∑

h∈H
a,∗,k
2

ahHitdiviγ
Ch,iπ+1...iα

g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu)∇iπ+1υ . . .∇iα
υ+

∑

u∈U

auXdiviα+1C
h,iπ+1...iα,iα+1
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu)∇iπ+1υ . . .∇iα

υ =

∑

j∈J

ajC
j,iπ+1...iα
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu)∇iπ+1υ . . .∇iα

υ = 0,

(2.48)

where the tensor fields indexed in U are acceptable and have a simple character
~κ′simp and each Cj is simply subsequent to ~κ′simp.

Now, observe that if M ≥ 3
2 , we can apply the eraser to ∇Y (see the Ap-

pendix of [3]) and the index it is contracting against in the D-crucial factor and
derive our conclusion as in case A.

On the other hand, in the remaining cases45 the above argument cannot be
directly applied. In those cases, we derive our claim as follows:

In the caseM = 1 the D-crucial factor is of the form ∇(p)Ωh, then we cannot
directly derive our claim by the above argument, because if for some tensor fields
in U above we have ∇Y contracting according to the pattern ∇iY∇ijΩh∇jψ

(where ψ = υ or ψ = φh), then we will not obtain acceptable tensor fields after
we apply the eraser. Therefore, if M = 1 and the D-crucial factor is of the form
∇(p)Ωh, we apply Lemma 4.6 in [6] to (2.48) (treating the factors ∇υ as factors

45Observe that the remaining cases are when M = 0, M = 1
2
, M = 1.
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∇φ)46 to obtain a new equation in the form (2.48), where each tensor field in
U has the factor ∇Y is contracting against a factor ∇(l)Ωh, l ≥ 3.47 Then,
applying the eraser as explained, we derive our Lemma 2.7 in this case.

When M = 1
2 or M = 0, then we first apply the inductive assumptions of

Corollaries 3,2 in [6] (respectively) to (2.48),48 in order to assume with no loss of
generality that for each tensor field indexed in U there, the factor ∇Y is either
contracting against a factor ∇(B)Ωh, B ≥ 3 or a factor S∗∇(ν)Rijkl, ν ≥ 1.
Then the eraser can be applied and produces acceptable tensor fields. Hence,
applying Erase∇Y to (2.48) we derive our claim. 2

Proof of Lemma 2.9:

We re-write the hypothesis of Lemma 2.3 (which is also the hypothesis of
Lemma 2.9) in the following form:

∑

h∈H2

ahX∗diviπ+1 . . .X∗diviα+1{C
h,i1...iα+1
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)−

Switch[C]h,iπ+1...iα+1
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)}

=
∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, [ω1, ω2], φ1, . . . , φu).

(2.49)

Here the operation Switch interchanges the indices a and b in the two factors
∇aω1, ∇bω2.

Notational conventions: We have again denoted by Ha
2 ⊂ H2 the index set

of those vector fields for which one of the free indices (say iα+1) belongs to a
factor ∇ω1 or ∇ω2. With no loss of generality we assume that for each h ∈ Ha

2

iα+1 belongs to the factor ∇ω1. We can clearly do this, due to the antisymmetry
of the factors ∇ω1,∇ω2.

We have defined Hb
2 = H2 \Ha

2 . For each h ∈ Hb
2 we denote by Tω1 , Tω2 the

factors against which ∇ω1,∇ω2 are contracting. Also, for each h ∈ Ha
2 we will

denote by Tω2 the factor against which ∇ω2 is contracting.49

For each h ∈ H2, we will call the factors Tω1 , Tω2 against which ∇ω1 or
∇ω2 are contracting “problematic” in the following cases: If Tω1 or Tω2 is of
the form ∇(m)Rijkl and ∇ω1 or ∇ω2 is contracting against an internal index.
Alternatively, if Tω1 or Tω2 is of the form S∗∇(ν)Rijkl and the factor ∇ω1 or
∇ω2 is contracting one of the indices k or l.

We then define a few subsets of Ha
2 , Hb

2 :

46Furthermore, we can observe that we do not fall under a “forbidden case” of Lemma 4.1
in [6], by weight considerations, and since the tensor fields in our Lemma assumption are not
“bad”.

47Note that the weight becomes less negative, hence Lemma 4.10 in [6] applies.
48By our assumptions there will be a removable index in these cases. Hence our extra

requirements of those Lemmas are fulfilled.
49Note that the definition of Tω1 , Tω2 depends on h; however, to simplify notation we

suppress the index h that should appear in Tω1 , Tω2 .
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Definition 2.2 We define Hb
2,∗∗ to stand for the index set of the tensor fields

C
h,iπ+1...iα+1
g ’s for which ∇ω1,∇ω2 are contracting against different factors and

both Tω1 , Tω2 are problematic.

We define Ha
2,∗ ⊂ Ha

2 to be the index set of the tensor fields C
h,iπ+1...iα+1
g ’s

for which Tω2 is problematic.

We define Hb
2,∗ to stand for the index set of the tensor fields C

h,iπ+1...iα+1
g ’s

for which either Tω1 = Tω2 or Tω1 6= Tω2 and one of the factors Tω1 , Tω2 is
problematic.

Abusing notation, we will be using the symbols
∑

h∈Hb
2,∗
. . . etc to denote

generic linear combinations as explained above, when these symbols appear in
the right hand sides of the equations below.

We then state three preparatory claims:
Firstly, we claim that we can write:

∑

h∈Hb
2,∗∗

ahX+diviπ+1 . . .X+diviα+1{C
h,iπ+1...iα+1
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)

− Switch[C]h,iπ+1...iα+1
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)} =

∑

h∈Hb
2,∗

ahX+diviπ+1 . . . X+diviα+1{C
h,iπ+1...iα+1
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)

− Switch[C]h,iπ+1...iα+1
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)}

+
∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, [ω1, ω2], φ1, . . . , φu),

(2.50)

where the linear combination
∑

h∈Hb
2,∗
. . . on the RHS stands for a generic linear

combination in the form described above. Observe that if we can show (2.50)
then we may assume with no loss of generality that Hb

2,∗∗ = ∅ in our Lemma
hypothesis.

Then, assuming that Hb
2,∗∗ = ∅ in our Lemma hypothesis we will show that

there exists a linear combination of (α−π+1)-tensor fields (indexed in X below)
which are in the form (2.5) with a simple character ~κsimp so that:
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∑

h∈Ha
2,∗

ah{C
h,iπ+1...iα+1
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)−

Switch[C]h,iπ+1...iα+1
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)}∇iπ+1υ . . .∇iα+1υ−

X∗diviα+2

∑

x∈X

ax{C
x,i1...iα+1iα+2
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)−

Switch[C]h,iπ+1...iα+1
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)}∇iπ+1υ . . .∇iα+1υ

+
∑

h∈Hb
2,∗

ah{C
h,i1...iα+1
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)−

Switch[C]h,iπ+1...iα+1
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)}∇iπ+1υ . . .∇iα+1υ

=
∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, [ω1, ω2], φ1, . . . , φu, υ

α−π).

(2.51)

We observe that if we can show the above, we may then assume thatHa
2,∗ = ∅

(and Hb
2,∗∗ = ∅) in the hypothesis of Lemma 2.9.

Finally, under the assumption that Hb
2,∗∗ = Ha

2,∗ = ∅ in our Lemma hypoth-
esis, we will show that we can write:

∑

h∈Hb
2,∗

ahX+diviπ+1 . . . X+diviα+1{C
h,i1...iα+1
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)−

Switch[C]h,iπ+1...iα+1
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)} =

∑

h∈Hb
2,OK

ahX+diviπ+1 . . .X+diviα+1{C
h,i1...iα+1
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)−

Switch[C]h,iπ+1...iα+1
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)}

+
∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, [ω1, ω2], φ1, . . . , φu),

(2.52)

where the sublinear combination
∑

h∈Hb
2,OK

. . . on the right hand side stands

for a generic linear combination of acceptable tensor fields in the form (2.5)
with simple character ~κsimp, with no free indices in the factors ∇ω1,∇ω2 and
where the factors Tω1 , Tω2 are not problematic. Therefore, if we can show the
above equations, we are reduced to showing Lemma 2.9 under the additional
assumptions that H2

a,∗ = H2
b,∗∗ = H2

b,∗ = ∅.

(Sketch of the) Proof of (2.50), (2.51), (2.52): (2.50) follows by re-iterating
the proof of the first claim of Lemma 4.10 in [6].50 (2.51) follows by re-iterating

50By the additional restrictions imposed on the assumption of Lemma 2.3 there is no danger
of falling under a “forbidden case” of Corollary 1 in [6].
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the proof of the first claim of Lemma 4.10 in [6], but rather than applying Corol-
lary 1 [6] in that proof, we now apply Lemma 2.7 (which we have shown).51 Fi-
nally, the claim of (2.52) for the sublinear combination in Hb

2,∗ where Tω1 6= Tω2

follows by applying Lemma 2.5.52 We can then show that the remaining sublin-
ear combination in

∑

h∈Hb
2,∗
. . . must vanish separately (modulo a linear combi-

nation
∑

j∈J . . . ) by just picking out the sublinear combination in the hypothesis
of Lemma 2.10 where both factors ∇ω1,∇ω2 are contracting against the same
factor. 2

Now, under these additional assumptions that H2
a,∗ = H2

b,∗∗ = H2
b,∗ = ∅,

we will show our claim by distinguishing two cases: In case A there is a factor
∇(m)Rijkl in ~κsimp; in case B there is no such factor. An important note: We
may now use Lemma 2.7, which we have proven earlier in this section.

Proof of Lemma 2.9 in case A.

We define the (set of) C-crucial factor(s) (which will necessarily be of the
form ∇(m)Rijkl) as in the setting of Lemma 2.7. Firstly a mini-claim which
only applies to the case where the C-crucial factor is unique:

Mini-claim, when the C-crucial factor is unique: We then consider the tensor

fields C
h,iπ+1...iα+1
g , h ∈ Ha

2 for which ∇ω2 is contracting against the C-crucial
factor. Notice that by our hypothesis that H2

a,∗ = ∅, we will have that ∇ω2

is contracting against a derivative index in the C-crucial factor. Denote by
H

a,+
2 ⊂ Ha

2 the index set of these tensor fields.
We observe that for each h ∈ H

a,+
2 we can now construct a tensor field by

erasing the index in the factor ∇(m)Rijkl that contracts against the factor ∇ω2

and making the index in ∇ω2 into a free index iβ
. We denote this tensor field

by C
h,iπ+1...iα+1iβ
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu). By the analogous operation

we obtain a tensor field Switch[C
h,iπ+1...iα+1iβ
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)].

It follows that in the case where the C-crucial factor is unique, for each
h ∈ H

a,+
2 :

51Observe that the assumption that Lemma 2.3 does not include “forbidden cases” ensures
that we will not need to apply Lemma 2.7 in a “forbidden case”.

52In this case there will be a factor ∇ω1 or ∇ω2 contracting against a non-special index;
therefore there is no danger of falling under a “forbidden” case of Lemma 2.7.
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X∗diviπ+1 . . . X∗diviα+1{C
h,iπ+1...iα+1
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)

− Switch[C]h,iπ+1...iα+1
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)} =

X∗diviπ+1 . . . X∗diviα+1X∗diviβ
{C

h,iπ+1...iα+1iβ
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)

− Switch[C]
h,iπ+1...iα+1iβ
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)}+

∑

r∈R

arX∗diviπ+1 . . . X∗diviα+1{C
r,iπ+1...iα+1
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)

− Switch[C]r,iπ+1...iα+1(Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)}+
∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu),

(2.53)

where each tensor field C
r,iπ+1...iα+1
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu) has the fac-

tor ∇ω2 contracting against some factor other than the C-crucial factor.
But we observe that:

X∗diviπ+1 . . . X∗diviα+1X∗diviβ
{C

h,iπ+1...iα+1iβ
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)

− Switch[C]
h,iπ+1...iα+1iβ
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)} = 0.

(2.54)

Therefore, in the case Set 6= ∅ or Set = ∅ and σ1 = 1, we have now reduced
Lemma 2.9 to the case where Ha,+

2 = ∅.

Now, (under the assumption that Ha,+
2 = ∅ when the C-crucial factor is

unique) we consider the sublinear combination Special in the equation hypoth-
esis of Lemma 2.9 that consists of complete contractions with ∇ω1 contracting
against the C-crucial factor while the factor ∇ω2 is contracting against some
other factor. (If Set = ∅ and σ1 > 1 Special stands for the sublinear combi-
nation where ∇ω1 is contracting against a generic C-crucial factor and ∇ω2 is
contracting against some other factor). In particular, for each h ∈ Ha

2 , since
H

a,+
2 = ∅ we see that the sublinear combination in

∑

h∈Ha
2

ahX∗diviπ+1 . . .X∗diviα+1{C
h,iπ+1...iα+1
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)

− Switch[C]h,iπ+1...iα+1
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)}

(2.55)

that belongs to Special is precisely:

∑

h∈Ha
2

ahX∗diviπ+1 . . .X∗diviα
Hitdiviα+1C

h,iπ+1...iα+1
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu);
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(in the case Set = ∅ and σ1 > 1 Hitdiviα+1 just means that ∇iγ
can hit any

factor ∇(m)Rijkl that is not contracting against ∇ω2; recall that in the other
cases it means that it must hit the unique C-crucial factor).

We also consider the tensor fields Ch,iπ+1...iα+1 , Switch[C]h,iπ+1...iα+1 , h ∈
Hb

2 for which ∇ω1 is contracting against the C-crucial factor and ∇ω2 is not (or,
if there are multiple C-crucial factors, where ∇ω1,∇ω2 are contracting against
different C-crucial factors). For this proof, we index all those tensor fields in

H
b,Ψ
2 and we will denote them by C

h,iπ+1...iα+1
g .

Thus we derive an equation:

∑

h∈Ha
2

ahX∗diviπ+1 . . .X∗diviα
Hitdiviα+1C

h,iπ+1...iα+1
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)

+
∑

h∈H
b,Ψ
2

ahX∗diviπ+1 . . . X∗diviα+1C
h,iπ+1...iα+1
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu) =

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu).

(2.56)

We group up the vector fields on the left hand side according to their weak
(u + 2)-characters53 (defined by ∇φ1, . . . ,∇φu,∇ω1,∇ω2). (Recall that we
started off with complete contractions with the same u-simple characters-so
the only new information that we are taking into account is what type of factor
is ∇ω2 contracting against). We consider the set of weak simple characters that
we have obtained. We denote the set by {~κ1, . . . ~κB}, and we respectively have

the index sets H
a,~κf

2 and H
b,~κf

2 .

We will show our Lemma 2.9 by replacing the index set Ha
2 by any H

a,~κf

2 ,
f ≤ B.

It follows that for each f ≤ B:

∑

h∈H
a,~κf
2

ahX∗diviπ+1 . . . X∗diviα
Hitdiviα+1C

h,iπ+1...iα+1
g

(Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)+
∑

h∈H
b,~κf
2

ahX∗diviπ+1 . . . X∗diviα+1C
h,iπ+1...iα+1
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu) =

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu),

(2.57)

where the complete contractions Cj
g have a u-simple character that is subsequent

to ~κsimp. We will show our claim for each of the index sets H
b,~κf

2 separately.

53See [6] for a definition of this notion.
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Now, we treat the factors ∇ω1,∇ω2 in the above as factors ∇φu+1,∇φu+2.
We see that since Hb

2,∗∗ = H2
b,∗ = H2

a,∗ = ∅, all the tensor fields in the above
have the same (u+ 2)-simple character.

Our claim (Lemma 2.9) for the index set H
a,~κf

2 then follows: Firstly, apply
the operator Erase∇ω1 [. . . ] to (2.57).54 We are then left with tensor fields
(denote them by

Ch,iπ+1...iα
g (Ω1, . . . ,Ωp, ω2, φ1, . . . , φu), h ∈ H

a,~κf

2 ,

Ch,iπ+1...iα+1
g (Ω1, . . . ,Ωp, ω2, φ1, . . . , φu), h ∈ H

b,~κf

2 ,

respectively) with the same (u + 1)-simple character say ~κsimp,f . We can then
apply Corollary 1 from [6] (since we have weight −n + 2k, k > 0 by virtue of
the eraser–notice that by weight considerations, since we started out with no
“bad” tensor fields, there is no danger of falling under a “fobidden case”). to
derive that there is a linear combination of acceptable α-tensor fields indexed
in V below, with (u+ 1)-simple character ~κsimp,f so that:

∑

h∈H
a,~κf
2

ahC
h,iπ+1...iα
g (Ω1, . . . ,Ωp, ω2, φ1, . . . , φu)∇iπ+1υ . . .∇iα

υ−

∑

v∈V

avX∗diviα+1C
v,iπ+1...iα+1
g (Ω1, . . . ,Ωp, ω2, φ1, . . . , φu)∇iπ+1υ . . .∇iα

υ =

∑

j∈J

ajC
j,iπ+1...iα
g (Ω1, . . . ,Ωp, ω2, φ1, . . . , φu)∇iπ+1υ . . .∇iα

υ,

(2.58)

where each complete contraction indexed in J is (u+ 1)-subsequent to ~κsimp,f .
In this setting X∗divi just means that in addition to the restrictions imposed
on Xdivi we are not allowed to hit the factor ∇ω2.

Then, if we multiply the above equation by an expression ∇iω1∇iυ and then
anti-symmetrize the indices a, b in the factors ∇aω1,∇bω2 and finally make all
∇υs into X+divs, we derive our claim. 2

Proof of Lemma 2.9 in case B (when σ1 = 0).

Our proof follows the same pattern as the proof of Lemma 2.7 in case B.

We again define the “measure” of each factor in each tensor field C
h,iπ+1...iα+1
g

as in the proof of case B in Lemma 2.7. Again, let M stand for the maximum

measure among all factors in all tensor fields C
h,iπ+1...iα+1
g , h ∈ Ha

2 . We denote

by H
a,M
2 ⊂ Ha

2 the index set of the tensor fields for which some factor has
measure M .

We will further divide H2,M
a into subsets, H2,M,k

a , k = 1, . . . , σ, according to
the factor which has measureM : Firstly, we order the factors S∗∇(ν)Rijkl , . . .∇(p)Ωh

54See the relevant Lemma in the Appendix of [3].
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in ~κsimp, and label them T1, . . . , Tσ (observe each factor is well-defined in ~κsimp,

because we are in case B). We then say that h ∈ H
a,M,1
2 if in C

h,iπ+1...iα
g T1 has

measure M . We say say that h ∈ H
a,M,2
2 if in C

h,iπ+1...iα
g T2 has measure M

and T1 has measure less than M , etc. We will then prove our claim for each of
the index sets h ∈ H

a,M,k
2 .55 We arbitrarily pick a k ≤ σ and show our claim

for
∑

h∈H
2,M,k
a

. . . .

For the purposes of this proof, we call the factor Tk the D-crucial factor (in
this setting the D-crucial factor is unique).

Now, we pick out the subset Hb,k,+
2 ⊂ Hb

2 , which is defined by the rule:

h ∈ H
b,k
2 if and only if ∇ω1 is contracting against the D-crucial factor Tk. We

also pick out the subset Hb,k,−
2 ⊂ Hb

2 , which is defined by the rule: h ∈ H
b,k
2 if

and only if ∇ω2 is contracting against the D-crucial factor Tk. Finally, we define
H

a,̃
2 ⊂ Ha

2 , Ha,−
2 ⊂ Ha

2 to stand for the index set of tensor fields for which ∇ω2

contracts against the D-crucial factor.
Now, for each h ∈ Ha

2 we denote by

Hitdiviγ
Ch,iπ+1...iα+1

g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)

the sublinear combination in Xdiviγ
C

h,iπ+1...iα+1
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)

that arises when ∇iγ
hits the D-crucial factor. It then follows that:

∑

h∈Ha
2

ahX∗diviπ+1 . . .X∗diviα
Hitdiviγ

Ch,iπ+1...iα+1
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)

−
∑

h∈H
a,̃
2

ahX∗diviπ+1 . . . X∗diviα+1Switch[C]h,iπ+1...iα+1
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)

+
∑

h∈H
b,k,+
2

ahXdiviπ+1 . . .Xdiviγ
Ch,iπ+1...iα+1

g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)

−
∑

h∈H
b,k,−
2

ahXdiviπ+1 . . . Xdiviγ
Switch[C]h,iπ+1...iα+1

g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)

+
∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu),

(2.59)

where each Cj
g has the factor ∇ω1 contracting against the D-crucial factor and

is simply subsequent to ~κsimp.
We now denote the (u+1)-simple character (the one defined by ∇φ1, . . . ,∇ω1)

of the tensor fieldsHitdiviγ
C

h,iπ+1...iα,iγ
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu) by ~κ′simp.

(Observe that they all have the same (u + 1)-simple character).
We observe that just applying Lemma 2.1 to (2.59) (all tensor fields are

acceptable and have the same simple character ~κ′simp–we treat ∇ω1 as a factor

55Again we observe that if we can prove this then Lemma 2.9 in case B will follow by
induction.
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∇φu+1 and the factor ∇ω2 as a factor ∇Y ) and we then pick out the sublinear
combination where there are M factors ∇υ contracting against Tk, we obtain
an equation:

∑

h∈H
a,∗,k
2

ahHitdiviγ
Ch,iπ+1...iα

g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)∇iπ+1υ . . .∇iα
υ+

∑

x∈X

axXdiviα+1C
x,iπ+1...iα,iα+1
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)∇iπ+1υ . . .∇iα

υ+

∑

j∈J

ajC
j,iπ+1...iα
g (Ω1, . . . ,Ωp, ω1, ω2, φ1, . . . , φu)∇iπ+1υ . . .∇iα

υ = 0,

(2.60)

where the tensor fields indexed in X are acceptable and have a (u + 1)-simple
character ~κ′simp and each Cj is simply subsequent to ~κ′simp.

Now, observe that if M ≥ 3
2 then we can apply the Eraser (from the Ap-

pendix in [3]) to ∇ω1 and the index it is contracting against in the D-crucial
factor and derive our conclusion as in case A.

The remaining cases are when M = 1,M = 1
2 and M = 0. The first one

is easier, so we proceed to show our claim in that case. The two subcases
M = 1

2 ,M = 0 will be discussed in the next subsection.

In the case M = 1, i.e. the D-crucial factor is of the form ∇(p)Ωh, then we
cannot derive our claim, because if for some tensor fields in X above we have
∇ω1 contracting according to the pattern: ∇iω1∇ijΩh∇jψ, where ψ = υ or
ψ = φh. Therefore, in this setting, we first apply the eraser twice to remove

the expression ∇
(2)
ij Ωh∇iψ∇jω1 and then apply Corollary 2 from [6]56 to (2.60)

(observe that (2.60) now falls under the inductive assumption of Lemma 4.6 in
[6] since we have lowered the weight57 to obtain a new equation in the form
(2.60), where each tensor field in X has the factor ∇ω1 contracting against a
factor ∇(l)Ωh, l ≥ 3. Then, applying the eraser as explained, we derive our
Lemma 2.9 in this case.

The cases M = 1
2 , M = 0: Notice that in this case we must have α = π,

by virtue of the the definition of maximal “measure” above. We will then prove
our claim by proving a more general claim by induction, in the next subsection.
2

2.4 The remaining cases of Lemma 2.9.

We prove our claim in this case by an induction. In order to give a detailed
proof, we will re-state our Lemma hypothesis in this case (with a slight change

56Recall that we showed in [6] that this is a Corollary of Lemma 4.6 in [6], which we have
now shown.

57There is no danger of falling under a “forbidden case” of Lemma 2.1 by weight considera-
tions since we are assuming that none of the tensor fields of minimum rank in the assumption
of Lemma 2.3 are “bad”.
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of notation):

The hypothesis of the remaining cases of Lemma 2.9: We are assuming an
equation:

∑

x∈Xa

axX∗divi1C
x,i1
g (Ω1, . . . ,Ωp, φ1, . . . , φu, [ω1, ω2])+

∑

x∈Xb

axX∗divi1C
x,i1
g (Ω1, . . . ,Ωp, φ1, . . . , φu, [ω1, ω2])+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, φ1, . . . , φu) = 0,

(2.61)

which holds modulo complete contractions of length ≥ σ+ u+ 3 (σ ≥ 3–here σ
stands for u+ p–see the next equation). We denote the weight of the complete
contractions in the above by −K. The tensor fields in the above equation are
each in the form:

pcontr(S∗∇
(ν1)Rx1jkl ⊗ · · · ⊗ S∗∇

(νu)Rxzj′k′l′⊗

∇(a1)Ω1 ⊗ . . .∇(ap)Ωp ⊗ [∇ω1 ⊗∇ω2]

⊗∇x1 φ̃1 ⊗ · · · ⊗ ∇xu φ̃z).

(2.62)

We recall that the u-simple character of the above has been denoted by ~κsimp.
Recall that we are now assuming that all the factors ∇(ai)Ωx in ~κsimp are accept-
able.58 The complete contractions indexed in J in (2.61) are simply subsequent
to ~κsimp. We also recall that X∗divi stands for the sublinear combination in
Xdivi where ∇i is not allowed to hit either of the factors ∇ω1,∇ω2.

We recall that the tensor fields indexed inXa have the free index i1 belonging
to the factor ∇ω1. The tensor fields indexed in Xb have the free index i1 not
belonging to any of the factors ∇ω1,∇ω2.

We recall the key assumption that for each of the tensor fields indexed in
Xa, there is at least one removable index in each tensor field
Cx,i1

g (Ω1, . . . ,Ωp, φ1, . . . , φu, [ω1, ω2]), x ∈ Xa.59

In order to complete our proof of Lemma 2.9, we will show that we can write:

58meaning that each ai ≥ 2.
59Recall the definition of a “removable” index from Definition 2.1.
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∑

x∈Xa

axC
x,i1
g (Ω1, . . . ,Ωp, φ1, . . . , φu, [ω1, ω2])∇i1υ =

∑

x∈X′

axX∗divi2 . . .X∗divia
Cx,i1...ia

g (Ω1, . . . ,Ωp, φ1, . . . , φu, [ω1, ω2])∇i1υ+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, φ1, . . . , φu),

(2.63)

where the tensor fields indexed in X ′ are acceptable in the form (2.62), each
with rank a ≥ 2. Note that this will imply the remaining cases of Lemma 2.9,
completing the proof of Lemma 2.3.

We recall that we are proving this claim when the assumption (2.61) formally
falls under our inductive assumption of Proposition 1.1 (if we formally treat
∇ω1,∇ω2 as factors ∇φz+1,∇φz+2).

We will prove (2.63) by inductively proving a more general statement. The
more general statement is as follows:

The general statement:

Assumptions: We consider vector fields Cζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ ),

Cζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ) in the following forms, respec-

tively:

pcontr(S∗∇
(ν1)Rx1jkl ⊗ · · · ⊗ S∗∇

(νv)Rxvj′k′l′⊗

∇(a1)Ω1 ⊗ . . .∇(ab)Ωb ⊗∇Y ⊗∇ψ1 ⊗ · · · ⊗ ∇ψτ

⊗∇x1 φ̃1 ⊗ · · · ⊗ ∇xv φ̃v),

(2.64)

pcontr(S∗∇
(ν1)Rx1jkl ⊗ · · · ⊗ S∗∇

(νv)Rxvj′k′l′⊗

∇(a1)Ω1 ⊗ . . .∇(ab)Ωb ⊗ [∇χ1 ⊗∇χ2] ⊗∇ψ1 ⊗ · · · ⊗ ∇ψτ

⊗∇x1 φ̃1 ⊗ · · · ⊗ ∇xv φ̃v),

(2.65)

for which the weight is −W + 1,W ≤ K. We also assume v + b ≥ 2. Note:
the bracket [. . . ] stands for the anti-symmetrization of the indices a, b in the
expression ∇aω1∇bω2.

We assume (respectively) the equations:
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∑

ζ∈Za

aζX∗divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )+

∑

ζ∈Za

aζX∗divi1 . . . X∗diviγ
Cζ,i1...iγ

g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )+

∑

ζ∈Zb

aζX∗divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ ) = 0,

(2.66)

∑

ζ∈Za

aζX∗divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )+

∑

ζ∈Za

aζX∗divi1 . . .X∗diviγ
Cζ,i1...iγ

g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )+

∑

ζ∈Zb

aζX∗divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ) = 0,

(2.67)

which holds modulo complete contractions of length ≥ v + b+ τ + 3.
The tensor fields indexed in Za are assumed to have a free index in one of

the factors ∇Y,∇ψ1, . . . ,∇ψτ , or one of the factors ∇χ1,∇χ2,∇ψ1, . . . ,∇ψτ ,
respectively. The tensor fields indexed in Za have rank γ ≥ 2 and all their free in-
dices belong to the factors∇Y,∇ψ1, . . . ,∇ψτ , or the factors ∇χ1,∇χ2,∇ψ1, . . . ,∇ψτ ,
respectively. The tensor fields indexed in Zb have the property that i1 does
not belong to any of the factors ∇Y,∇ψ1, . . . ,∇ψτ , ∇χ1,∇χ2,∇ψ1, . . . ,∇ψτ ,
respectively. We furthermore assume that for the tensor fields indexed in
Za

⋃

Zb

⋃

Za, none of the factors ∇ψ1, . . . ,∇ψτ are contracting against a spe-
cial index in any factor S∗∇(ν)Rijkl and none of them are contracting against
the rightmost index in each ∇(ah)Ωh (we will refer to this property as the @-
property). We assume that v+ b ≥ 2, and furthermore if v+ b = 2 then for each
ζ ∈ Za

⋃

Zb, the factor(s) ∇Y (or ∇χ1,∇χ2) are also not contracting against a
special index in any S∗∇(ν)Rijkl and are not contracting against the rightmost
index in any ∇(ah)Ωh. Finally (and importantly) we assume that for the tensor
fields indexed in Za, there is at least one removable index in each Cζ,i1 . (In
this setting, for a tensor field indexed in Za, a “removable” index is either a
non-special index in a factor S∗∇(ν)Rijkl, with ν > 0 or an index in a factor
∇(B)Ωh, B ≥ 3).

Convention: In this subsection only, for tensor fields in the forms (2.66),
(2.67) we say then an index is special if it is one of the indices k, l in a fac-

47



tor S∗∇(ν)Rijkl (this is the usual convention), or if it is an index in a fac-

tor ∇
(B)
r1...rBΩh for which all the other indices are contracting against factors

∇ψ1, . . . ,∇ψτ .
All tensor fields in (2.66), (2.67) have a given v-simple character κsimp. The

complete contractions indexed in J are assumed to have a weak v-character
Weak(κsimp) and to be simply subsequent to κsimp. Here X∗divi stands for the
sublinear combination in Xdivi where ∇i is not allowed to hit any of the factors
∇Y,∇ψ1, . . . ,∇ψτ or ∇χ1,∇χ2,∇ψ1, . . . ,∇ψτ , respectively.

The Claims of the general statement: We claim that under the assumption
(2.67), there exists a linear combination of acceptable 2-tensor fields in the form
(2.64), (2.65) respectively (indexed in W below), for which the @-property is
satisfied, so that (respectively):

∑

ζ∈Za

aζC
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )∇i1υ−

∑

w∈W

awX∗divi2C
w,i1i2
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )∇i1υ+

∑

j∈J

ajC
j,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )∇i1υ = 0,

(2.68)

∑

ζ∈Za

aζC
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )∇i1υ+

∑

w∈W

awX∗divi2C
w,i1i2
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )∇i1υ+

∑

j∈J

ajC
j,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )∇i1υ = 0.

(2.69)

We observe that when τ = 0 and v + b ≥ 3, (2.69) coincides with (2.63).60

Therefore, if we can prove this general statement, we will have shown Lemma
2.9 in full generality, thus also completing the proof of Lemma 2.3.

We also have a further claim, when we assume (2.66), (2.67) with v+ b = 2.
In that case, we also claim that we can write:

60Also, the assumption of existence of a non-removable index coincides with the correspond-
ing assumption of Lemma 2.3.
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X+divi1

∑

ζ∈Za

S

Zb

S

Za

aζC
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ ) =

∑

q∈Q

aqX+divi1C
q,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ ),

(2.70)

X+divi1

∑

ζ∈Za

S

Za

S

Zb

aζC
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ) =

∑

q∈Q

aqX+divi1C
q,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ),

(2.71)

where the tensor fields indexed in Q are in the same form as (2.64) or (2.65)

respectively, but have a factor (expression) ∇(2)Y or ∇
(2)
a[iω1∇j]ω2, respectively,

and satisfy all the other properties of the tensor fields in Za.

Consequence of (2.68), (2.69) when v + b ≥ 3: We here codify a conclusion
one can derive from (2.68), (2.69). This implication will be useful further down
in this subsection. We see that by making the factors ∇υ into X∗div’s in (2.66),
(2.67) and replacing into (2.68), (2.69), we obtain new equations:

∑

ζ∈Z′

a

aζX∗divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )+

∑

ζ∈Zb

aζX∗divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ ) = 0,

(2.72)

∑

ζ∈Z′

a

aζX∗divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )+

∑

ζ∈Zb

aζX∗divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ) = 0,

(2.73)

where here the tensor fields indexed in Z ′
a are like the tensor fields indexed in

Za in (2.66), (2.67) but have the additional feature that no free index belongs
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to the factor ∇ψ1 (and all the other assumptions of equations (2.66), (2.67)
continue to hold).

We then claim that we can derive new equations:

∑

ζ∈Z′

a

aζX+divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )+

∑

ζ∈Zb

aζX+divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ ) =

∑

q∈Q

aqX+divi1C
q,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ ),

(2.74)

∑

ζ∈Z′

a

aζX+divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )+

∑

ζ∈Zb

aζX+divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ) =

∑

q∈Q

aqX+divi1C
q,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ),

(2.75)

where here X+divi stands for the sublinear combination in Xdivi where ∇i

is allowed to hit the factor ∇Y or ∇χ1 (respectively), but not the factors
∇ψ1, . . . ,∇φτ , (∇χ2). Furthermore, the linear combinations indexed in Q stand
for generic linear combinations of vector fields in the form (2.64) or (2.65),
only with the expressions ∇Y or ∇[aω1∇b]ω2 replaced by expressions ∇(2)Y ,

∇
(2)
c[aω1∇b]ω2.

Proof that (2.74), (2.75) follow from (2.68), (2.69): We prove the above by
an induction. We will firstly subdivide Z ′

a, Zb into subsets as follows: ζ ∈ Z ′
a,@

or ζ ∈ Zb,@ if the factor ∇Y (or one of the factors ∇χ1,∇χ2) is contracting
against a special index in the same factor against which ∇ψ1 is contracting.

Now, if Z ′
a,@

⋃

Zb,@ 6= ∅ our inductive statement will be the following:
We inductively assume that we can write:
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∑

ζ∈Z′

a,@

aζX+divi1 . . . X+diviγ
Cζ,i1...iγ

g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ ) =

∑

ζ∈Zb,@

aζX+divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )+

∑

t∈T k

atX+divi1 . . . X+divik
Ct,i1...ik

g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )+

∑

ζ∈Z′

a,No@

aζX+divi1 . . . X+diviγ
Cζ,i1...iγ

g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )+

∑

q∈Q

aqX+divi1C
q,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ ),

(2.76)

and

∑

ζ∈Z′

a,@

aζX+divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ) =

∑

ζ∈Zb,@

aζX+divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )+

∑

t∈T k

atX+divi1 . . .X+divik
Ct,i1...ik

g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )+

∑

ζ∈Z′

a,No@

aζX+divi1 . . .X+diviγ
Cζ,i1...iγ

g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )+

∑

q∈Q

aqX+divi1C
q,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ),

(2.77)

where the tensor fields indexed in T k have all the properties of the tensor fields
indexed in Z ′

a,@ (in particular the index in ∇ψ1 is not free) and in addition have
rank k. The tensor fields indexed in Z ′

a,No@ in the RHS have all the regular
features of the terms indexed in Z ′

a (in particular rank γ ≥ 1 and the factor
∇ψ1 does not contain a free index) and in addition none of the factors ∇Y (or
∇χ1,∇χ2) are contracting against a special index.

Our inductive claim is that we can write:
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∑

ζ∈Z′

a

aζX+divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ ) =

∑

ζ∈Zb

aζX+divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )+

∑

t∈T k+1

atX+divi1 . . .X+divik+1
Ct,i1...ik+1

g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )+

∑

ζ∈Z′

a,No@

aζX+divi1 . . .X+diviγ
Cζ,i1...iγ

g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )+

∑

q∈Q

aqX+divi1C
q,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ ),

(2.78)

∑

ζ∈Z′

a

aζX+divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ) =

∑

ζ∈Zb

aζX+divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )+

∑

t∈T k+1

atX+divi1 . . .X+divik
Ct,i1...ik+1

g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )+

∑

ζ∈Z′

a,No@

aζX+divi1 . . .X+diviγ
Cζ,i1...iγ

g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+
∑

q∈Q

aqX+divi1C
q,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ) = 0.

(2.79)

We will derive (2.78), (2.79) momentarily. For now, we observe that by
iterative repetition of the above inductive step we are reduced to showing (2.74),
(2.75) under the additional assumption that Z ′

a,@ = ∅.
Under that assumption, we denote by Zb,@ ⊂ Zb the index set of vector fields

for which the factor ∇Y (or one of the factors ∇χ1,∇χ2) is contracting against
a special index. We will then assume that we can write:
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∑

ζ∈Zb,@

aζX+divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ ) =

∑

t∈V k

atX+divi1 . . .X+divik
Ct,i1...ik

g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )+

∑

ζ∈Zb,No@

aζX+divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )+

∑

q∈Q

aqX+divi1C
q,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ ),

(2.80)

∑

ζ∈Zb,@

aζX+divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ) =

∑

t∈V k

atX+divi1 . . . X+divik
Ct,i1...ik

g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )+

∑

ζ∈Zb,No@

aζX+divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )+

∑

q∈Q

aqX+divi1C
q,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ),

(2.81)

where the tensor fields indexed in V k have all the features of the tensor fields
indexed in Zb,@ but in addition have all the k free indices not belonging to
factors ∇ψ1, . . . ,∇ψτ . The tensor fields indexed in Zb,No@ have all the regular
features of the tensor fields in Zb and in addition have the factor ∇Y (or the
factors ∇χ1,∇χ2) not contracting against special indices. The terms indexed
in Q are as required in the RHS of (2.74), (2.75) (which are the equations that
we are proving).

We will then show that we can write:
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∑

ζ∈Zb,@

aζX+divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ ) =

∑

t∈V k+1

atX+divi1 . . . X+divik+1
Ct,i1...ik+1

g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )+

∑

ζ∈Zb,No@

aζX+divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )+

∑

q∈Q

aqX+divi1C
q,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ ),

(2.82)

∑

ζ∈Zb,@

aζX+divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ) =

∑

t∈V k+1

atX+divi1 . . . X+divik+1
Ct,i1...ik+1

g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+
∑

ζ∈Zb,No@

aζX+divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )+

∑

q∈Q

aqX+divi1C
q,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ).

(2.83)

(Here the tensor fields indexed in V k+1 have all the features described above
and moreover have rank k + 1).

Thus, by iterative repetition of this step we are reduced to showing our claim
under the additional assumption that Z ′

a,@ = Zb,@ = ∅.

We prove (2.82), (2.83) below. Now, we present the rest of our claims under
the assumption that Z ′

a,@ = Zb,@ = ∅. For the rest of this proof we will be
assuming that all tensor fields have the factor ∇Y (or the factors ∇χ1,∇χ2)
not contracting against special indices.

We then perform a new induction: We assume that we can write:

54



∑

ζ∈Z′

a

aζX+divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ ) =

∑

ζ∈Zb

aζX+divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )+

∑

t∈T k

atX+divi1 . . . X+divik
Ct,i1...ik

g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )+

∑

q∈Q

aqX+divi1C
q,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ ),

(2.84)

∑

ζ∈Z′

a

aζX+divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ) =

∑

ζ∈Zb

aζX+divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )+

∑

t∈T k

atX+divi1 . . .X+divik
Ct,i1...ik

g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )+

∑

q∈Q

aqX+divi1C
q,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ),

(2.85)

where the tensor fields indexed in T k have all the properties of the tensor fields
indexed in Z ′

a (in particular the index in ∇ψ1 is not free) and in addition have
rank k. We then show that we can write:

∑

ζ∈Z′

a

aζX+divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ ) =

∑

ζ∈Zb

aζX+divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )+

∑

t∈T k+1

atX+divi1 . . . X+divik+1
Ct,i1...ik

g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )+

∑

q∈Q

aqX+divi1C
q,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ ),

(2.86)
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∑

ζ∈Z′

a

aζX+divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ) =

∑

ζ∈Zb

aζX+divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )+

∑

t∈T k+1

atX+divi1 . . .X+divik+1
Ct,i1...ik+1

g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+
∑

q∈Q

aqX+divi1C
q,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ).

(2.87)

We will derive (2.86), (2.87) momentarily. For now, we observe that by it-
erative repetition of the above we are reduced to showing (2.74), (2.75) under
the additional assumption that Z ′

a = ∅. In that setting, we can just repeatedly
apply the eraser (see the Appendix in [6] for a definition of this notion) to as
many factors ∇ψτ as needed in order to reduce ourselves to a new true equation
where each of the real factors is contracting against at most one of the factors
∇ψ1, . . . ,∇ψτ ,∇Y (or ∇χ1,∇χ2).

61 Then, by invoking Corollary 1 from [6]62

and then re-introducing the factors we erased, we derive our claim.

Proof of (2.86), (2.87): Picking out the sublinear combination in (2.84),
(2.85) with one derivative on ∇Y or ∇χ1 and substituting into (2.72), (2.73)
we derive a new equation:

∑

t∈T k

atX∗divi1 . . . X∗divik
Ct,i1...ik

g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )+

∑

ζ∈Zb

aζX∗divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ ) =

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ ),

(2.88)

61All remaining factors ∇ψ1, . . . ,∇ψτ and also the factor(s) ∇Y (or ∇χ1,∇χ2) are treated
as factors ∇φh

62Notice that there will necessarily be at least one non-simple factor S∗∇(ν)Rijkl or

∇(B)Ωh, by virtue of the factor(s) ∇Y (or ∇ω1,∇ω2), therefore that Corollary can be applied.
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∑

t∈T k

atX∗divi1 . . .X∗divik
Ct,i1...ik

g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )+

∑

ζ∈Zb

aζX∗divi1C
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ) =

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ );

(2.89)

(the sublinear combination
∑

ζ∈Zb
. . . above is generic).

We now divide the index set T k according to which of the factors∇ψ2,. . . ,∇ψτ ,∇Y
(or ∇ψ1, . . . ,∇ψτ ,∇χ1) contain the k free indices. Thus we write: T k =
⋃

α∈A T
k,α (each α ∈ A corresponds to a k-subset of the set of factors∇ψ1,. . . ,∇ψτ ,∇Y

or ∇ψ1,. . . ,∇ψτ ,∇χ1). We will then show that for each α ∈ A there exists a

tensor field
∑

b∈Bα abC
b,i1...ik+1
g in the form (2.64) or (2.65) with the first k

free indices belonging to the factors in the set α, and the free index ik+1
not

belonging to ∇ψ1, so that:

∑

t∈T k,α

atC
t,i1...ik
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )∇i1υ . . .∇ik

υ−

X∗divik+1

∑

b∈Bα

abC
b,i1...ik+1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )∇i1υ . . .∇ik

υ

=
∑

j∈J

ajC
j,i1...ik
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ )∇i1υ . . .∇ik

υ,

(2.90)

∑

t∈T k,α

atC
t,i1...ik
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )∇i1υ . . .∇ik

υ−

X∗divik+1

∑

b∈Bα

abC
b,i1...ik+1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )∇i1υ . . .∇ik

υ

=
∑

j∈J

ajC
j,i1...ik
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )∇i1υ . . .∇ik

υ.

(2.91)

If we can show the above for every α ∈ A, then replacing the factor ∇υ by
X+div’s we can derive our claim (2.86), (2.87).

Proof of (2.90), (2.91): Refer to (2.88) and (2.89). Denote Y or χ1 by ψτ+1

for uniformity. We pick out any α ∈ A; assume that α = {∇ψx1 , . . . ,∇ψxk
}.

Pick out the sublinear combination where the factors ∇ψx1 , . . . ,∇ψxk
which

belong to α are contracting against the same factor as ∇ψ1. This sublinear
combination Zg vanishes separately (i.e. Zg = 0). We then apply the eraser to
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the factors ∇ψ2, . . . ,∇Y ∈ A (notice this is well-defined, since all the above fac-
tors and the factor ∇ψ1 are contracting against non-special indices). We obtain
a new true equation, which we denote by Erase[Zg] = 0. It then follows that
Erase[Zg] · (∇i1ψx1∇

i1υ . . .∇ik
ψxk

∇ikυ) = 0 is our desired conclusion (2.90),
(2.91). 2

(Sketch of) Proof of (2.78), (2.79) (2.82), (2.83): These equations can
be proven by only a slight modification of the idea above. We again subdi-
vide the index sets T k, V k according to the set of factors ∇ψ2, . . . ,∇ψτ or
∇ψ2, . . . ,∇ψτ ,∇ω1 which contain the k free indices (so we write T k =

⋃

α∈A T
k,α

and V k =
⋃

α∈A V
k,α) and we prove the claims above separately for those sub-

linear combinations.
To prove this, we pick out the sublinear combination in our hypotheses with

the factors ∇ψh, h ∈ α contracting against the same factor against which ∇ψ1

and ∇Y (or ∇ψ1 and ∇ω1) are contracting. Say α = {h1, . . . , hk}; we then for-

mally replace the expressions S∗∇
(ν)
r1...rµl1...lk

Rijkl∇l1ψh1 . . .∇
lkψhk

∇iφ̃1∇jψ1∇kY

or ∇
(A)
r1...rµl1...lkstΩ1∇l1ψh1 . . .∇

lkψhk
∇sψ1∇tY etc, by expressions

S∗∇
(ν−k)
r1...rµRijkl∇iφ̃1∇jψ1∇kY , ∇

(A−k)
r1...rµstΩ1∇sψ1∇tY and derive our claims (2.78),

(2.79) (2.82), (2.83) as above. 2

Proof of the claims of our general statement (i.e. (2.68), (2.69) by induc-
tion): We will prove these claims by an induction. Our inductive assumptions
are that (2.68), (2.69) follow from (2.66), (2.67) for any weight −W ′, W ′ < K

and when W ′ = K they hold for any length v + b ≥ γ ≥ 2. We will then show
the claim when the weight is −K, and v + b = γ + 1. In the end, we will check
our claims for the base case v + b = 2.

Proof of the inductive step: Refer back to (2.66), (2.67). We will prove this
claim in four steps.

Step 1: Firstly, we will denote by Zspec
a , Z

spec

a , Z
spec
b the index sets of the

tensor fields for which ∇Y or one of the factors ∇χ1, ∇χ2 (respectively) is
contracting against a special index. Then using the inductive assumptions of
our general claim, we will show that there exists a linear combination of 2-tensor
fields (indexed in W below) which satisfies all the requirements of (2.66), (2.68)
so that:

∑

ζ∈Z
spec
a

aζC
ζ,i1
g ∇i1υ −X∗divi2

∑

w∈W

awC
w,i1i2
g ∇i1υ =

∑

ζ∈ZOK
a

aζC
ζ,i1
g ∇i1υ +

∑

j∈J

ajC
j,i1
g ∇i1υ,

(2.92)

where the tensor fields n ZOK
a are generic linear combinations of tensor fields of

the same general type as the ones indexed in Za in (2.66), (2.68) and where in
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addition none of the factors ∇Y or ∇χ1,∇χ2 are contracting against a special
index.

Thus, if we can show the above, by replacing ∇υ by an X∗divi, and substi-
tuting back into (2.66), (2.68), we are reduced to showing (2.67), (2.69) under
the additional assumption that Zspec

a = ∅.

Step 2: Then, under the assumption that Zspec
a = ∅, we will show that we

can write:

∑

ζ∈Z
spec
b

aζX∗divi1C
ζ,i1
g +

∑

ζ∈Z
spec

a

aζX∗divi1 . . . X∗divic
Cζ,i1...ic

g =

X∗divi1 . . . X∗divib

∑

c∈C

acC
c,i1...ib
g +

∑

j∈J

ajC
j,i1
g ,

(2.93)

where the tensor fields on the RHS are of the general form as the ones indexed in
Zb, Za in our hypothesis, and moreover the factor ∇Y (or the factors ∇χ1,∇χ2)
is (are) not contracting against special indices.

Notice that if we can show (2.92), (2.93) then we are reduced to showing
our claim under the additional assumption that for each ζ ∈ Za

⋃

Za

⋃

Zb the
factor(s) ∇Y (or ∇χ1,∇χ2) are not contracting against special indices. We will
show (2.92), (2.93) below.

Proof of (2.67), (2.69) under the additional assumption that for each ζ ∈
Za

⋃

Za

⋃

Zb the factor ∇Y or (∇χ1,∇χ2) is not contracting against special
indices:

Step 3: Proof of (2.94) below:

We note that for all the tensor fields in the rest of this proof will not have
the factor ∇Y (or any of the factors ∇χ1,∇χ2) contracting against a special
index in any factor S∗∇(ν)Rijkl or ∇(B)Ωh. Now, we arbitrarily pick out one
factor T = S∗∇

(ν)Rijkl or T = ∇(B)Ωx in κsimp and call it the “chosen factor”
for the rest of this subsection.

We will say that the factor ∇Y (or ∇ω2) is contracting against a good index
in T , if it is contracting against a non-special index in T when T is of the form
S∗∇(ν)Rijkl with ν > 0; when T is of the form ∇(B)Ωx, then it is contracting
against a good index provided B ≥ 3.

We will say that the factor ∇Y (or ∇ω2) is contracting against a bad index
if it is contracting against the index j in a factor T = S∗Rijkl or an index in
a factor T = ∇(2)Ωx. We denote by ZBAD

a ⊂ Za the index set of tensor fields
for which ∇Y (or ∇ω2) is contracting against a bad index. We also denote
by ZBAD

b ⊂ Zb the index set of the vector fields for which ∇Y is contracting
against a bad index in T and T also contains a free index. We will show that
we can write:
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∑

ζ∈ZBAD
a

S

ZBAD
b

aζC
ζ,i1
g ∇i1υ −X∗divi2

∑

h∈H

ahC
i1i2
g ∇i1υ =

∑

ζ∈Z′GOOD
a

S

Z′GOOD
b

aζC
ζ,i1
g ∇i1υ +

∑

j∈J

ajC
j
g ,

(2.94)

where all the tensor fields indexed in Z ′GOOD
a

⋃

Z ′GOOD
b are generic vector fields

of the forms indexed in Za, Zb, only with the factors ∇Y or ∇ω2 contracting
against a good index in the factor T . The tensor fields indexed in H are as
required in the claim of our general statement (they correspond to the index set
W in our general statement).

Step 4: Proof that (2.94) implies our claims (2.68), (2.69).

We start by proving (2.94) (i.e. we prove Step 3). Then, we will show how
we can derive our claim from (2.94) (i.e. we then prove Step 4).

Proof of Step 3: Proof of (2.94): We can prove this equation by virtue of our

inductive assumption on our general claim. First, we define Z
BAD

a ⊂ Za to stand
for the index set of tensor fields where the factor ∇Y (or ∇ω2) is contracting
against a bad index in the chosen factor. We pick out the sublinear combination
in our Lemma assumption where ∇Y (or ∇ω2) are contracting against the
chosen factor T = S∗Rijkl or T = ∇(2)Ωx). This sublinear combination must
vanish separately, and we thus derive an equation:

∑

ζ∈ZBAD
a

S

ZBAD
b

aζX∗∗divi1C
ζ,i1
g +

∑

ζ∈Z
BAD

a

aζX∗∗divi1 . . . X∗∗divic
Cζ,i1...ic

g +

∑

ζ∈ZnvBAD
b

afC
f,i1
g =

∑

j∈J

ajC
j
g ,

(2.95)

whereX∗∗divi1 stands for the sublinear combination for which ∇i1 is not allowed
to hit the chosen factor T . ZnvBAD

b ⊂ Zb stands for the index set of tensor fields
indexed in Zb with the free index i1 not belonging to the chosen factor and also
with the factor ∇Y (or ∇ω2) contracting against a bad index.

Now, define an operation Op[. . . ] which acts on the complete contractions

above by formally replacing any expression ∇
(2)
ij Ωx∇iY (or ∇

(2)
ij Ωx∇iχ2) by

∇jD (D is a scalar function), or any expression S∗Rijkl∇iφ̃1∇jY (or

S∗Rijkl∇iφ̃1∇jχ2) by ∇[kθ1∇l]θ2. (Denote by κ̃simp the simple character of
these resulting vector fields). Acting on (2.95) by Op[. . . ] produces a true equa-
tion, which we may write out as:

60



∑

ζ∈ZBAD
a

S

ZBAD
b

aζX∗∗divi1Op[C]ζ,i1
g +X∗∗divi1

∑

f∈F

afC
f,i1
g

+
∑

ζ∈Z
BAD

a

aζX∗∗divi1 . . .X∗∗divic
Cζ,i1...ic

g =
∑

j∈J

ajC
j
g .

(2.96)

Here X∗∗divi stands for the sublinear combination in divi where ∇i is not al-
lowed to hit the factor to which ∇i belongs, nor any of the factors ∇φ1, . . . ,∇φu,
∇ψ1, . . . ,∇ψτ , nor any factors ∇D,∇θ1,∇θ2. The vector fields indexed in F

are generic vector fields with a simple character κ̃simp, for which the free index

i1 does not belong to any of the factors ∇ψ1, . . . ,∇ψτ or any of the factors
∇D, (∇χ1),∇θ1,∇θ2.

Now, observe that the above equation falls under our inductive assumption of
the general statement we are proving: We now either have factors∇ψ1,. . . ,∇ψτ ,∇D,
or ∇ψ1,. . . ,∇ψτ ,∇χ1,∇D or ∇ψ1,. . . ,∇ψτ ,[∇θ1,∇θ2] or ∇ψ1,. . . ,∇ψτ ,∇χ1,[∇θ1,∇θ2].
Notice that the tensor fields indexed in HBAD

a , HBAD
b are precisely the ones that

contain a free index in one of these factors. Therefore, by our inductive assump-
tion of the “general claim” we derive that there exists a linear combination of
2-tensor fields,

∑

v∈V . . . , (with factors ∇ψ1,. . . ,∇ψτ ,∇D etc, and which satisfy
the @-property for the factors ∇ψ1,. . . ,∇ψτ ) so that:

∑

ζ∈ZBAD
a

S

ZBAD
b

aζOp[C]ζ,i1
g ∇i1υ −X∗∗divi2

∑

v∈V

avC
v,i1i2
g ∇i1υ =

∑

j∈J

ajC
j,i1
g ∇i1υ.

(2.97)

Now, we define an operation Op−1[. . . ], which acts on the complete contrac-
tions in the above equation by replacing the factor ∇jD by an expression

∇ijΩx∇jY (or ∇ijΩx∇jω2) or the expression ∇[aθ1∇b]θ2 by S∗Rijab∇iφ̃1∇jY

(or S∗Rijab∇iφ̃1∇jω2). The operation Op−1 clearly produces a true equation,
which is our desired conclusion, (2.94). 2

Proof of Step 4: We derive our conclusions (2.68), (2.69) in pieces. Firstly,
we show these equations with the sublinear combinations Za replaced by the
index set Za,spec, which index the terms with the free index i1 belonging to the
factor ∇Y or ∇ω1 (this will be sub-step A). After proving this claim, we will
show (2.68), (2.69) under the additional assumption that Za,spec = ∅ (this will
be sub-step B).

Proof of sub-step A: We make the ∇υ’s into X∗div’s in (2.94) and replace the
resulting equations into our Lemma hypothesis. We thus derive a new equation:

61



∑

ζ∈Za

aζX∗divi1C
ζ,i1
g +

∑

ζ∈Z1
b

aζX∗divi1C
ζ,i1
g +

∑

ζ∈Z2
b

aζX∗divi1 . . .X∗divia
Cζ,i1...ia

g +
∑

j∈J

ajC
j
g = 0,

(2.98)

where we now have the tensor fields indexed in Za have a free index among the
factors ∇ψ1, . . . ,∇ψτ ,∇Y (or ∇ψ1, . . . ,∇ψτ ,∇χ1,∇χ2), and furthermore the
factor ∇Y (or the factors ∇ω1,∇ω2) are not contracting against a bad index in
the chosen factor T . The tensor fields indexed in Z1

b have a free index that does
not belong to one of the factors∇ψ1, . . . ,∇ψτ ,∇Y (or ∇ψ1, . . . ,∇ψτ ,∇χ1,∇χ2),
and furthermore if the factor ∇Y (or one of the factors ∇ω1,∇ω2) is contracting
against a bad index in the chosen factor T , then T does not contain the free
index i1 . Finally the tensor fields indexed in Z2

b each have rank a ≥ 2 and all
free indices belong to the factors ∇ψ1, . . . ,∇ψτ ,∇Y , (∇ω1,∇ω2). We may then
re-write our equation (2.98) in the form:

∑

ζ∈Za

aζX∗divi1C
ζ,i1
g +

∑

ζ∈Z1
b

aζX∗divi1C
ζ,i1
g +

∑

ζ∈Z2
b
′

aζX∗divi1 . . . X∗divia
Cζ,i1...ia

g +
∑

j∈J

ajC
j
g = 0,

(2.99)

where now for the tensor fields indexed in Z2
b

′
, each a ≥ 1 and the factor ∇ψ1

does not contain a free index for any of the tensor fields for which ∇Y (or one
of ∇ω1,∇ω2) is contracting against a bad index in the chosen factor.

We will denote by Z1
b,♯ ⊂ Z1

b and Z2
b,♯

′
⊂ Z2

b

′
the index sets of tensor fields

where ∇Y (or one of ∇ω1,∇ω2) is contracting against a bad index in the chosen
factor T .

From (2.99) we derive an equation:

∑

ζ∈Z1
b,♯

aζX∗∗divi1C
ζ,i1
g +

∑

ζ∈Z2
b,♯

′

aζX∗∗divi1 . . . X∗∗divia
Cζ,i1...ia

g +
∑

j∈J

ajC
j
g = 0,

(2.100)

where X∗∗divi stands for the sublinear combination in X∗divi for which ∇i is
in addition no allowed to hit the chosen factor T .

Then, applying operation Op as in Step 3 and the the inductive assumption
of the general claim we are proving,63 and then using the operation Op−1[. . . ]
as in the proof of Step 3, we derive a new equation:

63The resulting equation falls under the inductive assumption, as in Step 3.
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∑

ζ∈Z1
b,♯

aζX∗divi1C
ζ,i1
g +

∑

ζ∈Z2
b,♯

′

aζX∗divi1 . . . X∗divia
Cζ,i1...ia

g =

∑

ζ∈ZOK

aζX∗divi1 . . .X∗divia
Cζ,i1...ia

g +
∑

j∈J

ajC
j
g = 0,

(2.101)

where the tensor fields indexed in ZOK have rank a ≥ 1 (all free indices not
belonging to factors ∇ψ1, . . . ,∇Y or ∇ψ1, . . . ,∇χ2) and furthermore have the
property that the one index in ∇Y or ∇ω1 is not contracting against a bad
index in the chosen factor (and it is also not free). Thus, replacing the above
back into (2.99), we derive:

∑

ζ∈Za

aζX∗divi1C
ζ,i1
g +

∑

ζ∈Z1
b
′

aζX∗divi1C
ζ,i1
g +

∑

ζ∈Z2
b
′′

aζX∗divi1 . . . X∗divia
Cζ,i1...ia

g +
∑

j∈J

ajC
j
g = 0,

(2.102)

where the tensor fields indexed in Z1
b

′
, Z2

b

′′
have the additional restriction that

if the factor ∇Y (or ∇ω1,∇ω2) is contracting against the chosen factor T then
it is not contracting against a bad index in T .

We are now in a position to derive sub-step A from the above: To see this
claim, we just apply Erase∇Y or Erase∇ω1 to (2.102) and multiply the result-
ing equation by ∇i1Y∇i1υ.

Sub-step B: Now, we are reduced to showing our claim when Za,spec = ∅.
In that setting, we denote by Za,s ⊂ Za the index set of vector fields in Za for
which the free index i1 belongs to the factor ∇ψs; we prove our claim separately
for each of the sublinear combinations

∑

ζ∈Za,s
. . . . This claim is proven by

picking out the sublinear combinations in (2.66), (2.67) where the factors ∇ψs

and ∇Y (or ∇χ1) are contracting against the same factor; we then apply the
eraser to ∇ψs (this is well-defined and produces a true equation), and multiply
by ∇i1ψs∇i1υ. The resulting equation is precisely our claim for the sublinear
combination

∑

ζ∈Za,s
. . . .

(Sketch of the) Proof of Steps 1 and 2 (i.e. of (2.92) and (2.93)): We will
sketch the proof of these claims for the sublinear combinations in
Zspec

a

⋃

Z
spec
b

⋃

Z
a

spec where one of the special indices in Cζ,i1 is an index k or

l that belongs to a factor S∗∇(ν)Rijkl. The remaining case (where the special
indices belong to factors ∇(a)Ωh) can be seen by a similar (simpler) argument.64

For each ζ ∈ Zspec
a

⋃

Z
spec
b

⋃

Z
a

spec We denote by C
ζ,i1
g , C

ζ,i1...iγ

g the tensor

fields that arise from Cζ,i1 C
ζ,i1...iγ
g in (2.66), (2.68) by replacing the expressions

64The only extra feature in this setting is that one must prove the claim by a separate
induction on the number of factors ∇ψz that are contracting against ∇(a)Ωh.
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S∗∇
(ν)
r1...rνRijkl∇iφ̃1∇kY , S∗∇

(ν)
r1...rνRijkl∇iφ̃1∇kχ2 by a factor ∇

(ν+2)
r1...rνjlΩb+1.

We denote by κ̃simp the resulting simple character. We derive an equation:

∑

ζ∈Z
spec
a

S

Z
spec
b

aζX∗divi1C
ζ,i1
g +

∑

ζ∈Z
spec

a

aζX∗divi1 . . . X∗diviγ
C

ζ,i1
g +

∑

j∈J

ajC
j

g = 0.
(2.103)

Now, again applying the inductive assumption of our general statement,
we derive that there is a linear combination of tensor fields (indexed in W

below) with a free index i1 belonging to one of the factors ∇ψ1, . . . ,∇ψτ or
∇ψ1, . . . ,∇ψτ ,∇χ1 so that:

∑

ζ∈Z
spec
a

aζC
ζ,i1
g ∇i1υ −X∗divi2

∑

w∈W

awC
w,i1i2
g ∇i1υ =

∑

j∈J

ajC
j

g. (2.104)

Now, applying an operation Op∗ to the above which formally replaces the

factor ∇
(A)
r1...rAΩx by a factor S∗∇

(A−2)
r1...rA−2RirA−1krA

∇iφ̃1∇kY or

S∗∇
(A−2)
r1...rA−2RirA−1krA

∇iφ̃1∇kχ2, we derive (2.92) (since we can repeat the per-
mutations by which (2.104) is made to hold formally, modulo introducing cor-
rection terms that allowed in the RHS of (2.92)).

We will now prove (2.93) by repeating the induction performed in the “Con-
sequence” we derived above (where we showed that inductively assuming (2.84),
(2.85) we can derive (2.78), (2.79)):

We will show the claim of Step 2 in pieces: First consider the tensor fields
indexed in Za,@ of minimum rank 2 (denote the corresponding index set is

Z
2

a,@); we then show that we can write:

∑

ζ∈Z
2
a,@

aζXdivi1Xdivi2C
ζ,i1i2
g =

∑

ζ∈Z
3
a,@

aζXdivi1 . . . Xdivi3C
ζ,i1...i3
g +

∑

ζ∈Zb,@

aζXdivi1C
ζ,i1
g +

∑

ζ∈ZOK

aζXdivi1 . . . Xdivia
Cζ,i1...ia

g +
∑

j∈

ajC
j .

(2.105)

The tensor fields indexed in Z
3

a,@, Zb,@ in the RHS are generic linear combina-
tions in those forms (the first with rank 3). The tensor fields indexed in ZOK are
generic linear combinations as allowed in the RHS of our Step 2. Assuming we
can prove (2.105), we are then reduced to showing our claim when the minimum
rank among the tensor fields indexed in Za,@ is 3. We may then “forget” about
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any Xdivih
where ih

belongs to the factor ∇ψ1. Therefore, we are reduced to
showing our claim when the minimum rank is 2 and the factor ∇ψ1 does not
contain a free index. We then show our claim by an induction (for the rest of
this derivation, all tensor fields will not have a free index in the factor ∇ψ1):
Assume that the minimum rank of the tensor fields indexed in Za,@ is k, and

they are indexed in Z
k

a,@. We then show that we can write:

∑

ζ∈Z
k

a,@

aζXdivi1 . . .Xdivik
Cζ,i1...ik

g =

∑

ζ∈Z
k+1
a,@

aζXdivi1 . . . Xdivik+1
Cζ,i1...ik+1

g +
∑

ζ∈Zb,@

aζXdivi1C
ζ,i1
g +

∑

ζ∈ZOK

aζXdivi1 . . . Xdivia
Cζ,i1...ia

g +
∑

j∈

ajC
j .

(2.106)

The tensor fields indexed in Z
3

a,@, Zb,@ in the the RHS are generic linear com-
binations in those forms (the first with rank k + 1). The tensor fields indexed
in ZOK are generic linear combinations as allowed in the RHS of our Step 2.

Iteratively repeating this step we are reduced to showing our Step 2 when
Za,@ = ∅.

In that case we then assume that the tensor fields indexed in Zb,@ have
minimum rank k (and the corresponding index set is Zk

b,@) and we show that
we can write:

∑

ζ∈Zk
b,@

aζXdivi1 . . . Xdivik
Cζ,i1...ik

g =

∑

ζ∈Zk+1
b,@

aζXdivi1 . . . Xdivik+1
Cζ,i1...ik+1

g +

∑

ζ∈ZOK

aζXdivi1 . . . Xdivia
Cζ,i1...ia

g +
∑

j∈

ajC
j ,

(2.107)

(with the same conventions as in the above equation).
If we can prove (2.105) and (2.107) we will have shown our step 2.
Proof of (2.105), (2.106), (2.107): We start with a small remark: If the

chosen factor is of the form S∗∇(ν)Rijkl, we replace our assumption by a more
convenient equation: Consider the tensor fields Cζ,i1...ia

g , ζ ∈ Za,@

⋃

Zb,@;

we denote by C̃ζ,i1...ia
g the tensor fields that arise from Cζ,i1...ia

g by replacing

the expression ∇
(ν)
r1...rνRijkl∇iφ̃1∇kY (or ∇

(ν)
r1...rνRijkl∇iφ̃1∇kχ2) by a factor

∇
(ν+2)
r1...rνjlΩp+1. We then derive an equation:
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∑

ζ∈Za

S

Zb

aζX∗divi1 . . . X∗divia
C̃ζ,i1...ia

g (Ω1, . . . ,Ωp+1, φ2, . . . , φu, (χ1), ψ1, . . . , ψτ )

+
∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp+1, φ2, . . . , φu, (χ1), ψ1, . . . , ψτ ).

(2.108)

Now we can derive our claims:

Proof of (2.106): We divide the index set Z
Z

2
a,@

according to the two fac-

tors which contain the two free indices and we show our claim for each of those
tensor fields separately. The proof goes as follows: We pick out the sublin-
ear combination in our hypothesis (or in (2.108)) where the factors ∇ψh,∇ψh′

(or ∇ψh,∇χ2) are contracting against the same factor. Clearly, this sublinear
combination, Xg, vanishes separately. We then formally erase the factor ∇ψh.
Then, we may apply the inductive assumption of our general claim to the re-
sulting equation (the minimum rank of the tensor fields will be 1), and (in case
our assumption is (2.108) we also apply an operation Op−1 which replaces the

factor ∇
(y)
r1...ryΩp+1 by S∗∇

(y−2)
r1...ry−2Riry−1kry

∇iφ̃1∇kY (∇kχ1)). This is our de-
sired conclusion.

Proof of (2.105), (2.107): Now, we show (2.105) for the subset Zk,α
a,@ (which

indexes the k-tensor fields for which the free indices i1 , . . . , ik
belong to a cho-

sen subset of the factors ∇ψ1, . . . ,∇ψτ , (∇χ1) (hence the label α designates the
chosen subset). To prove this equation, we pick out the sublinear combination
in the equation (2.108) where the factors ∇ψ2, . . . ,∇ψτ , (∇χ1) (indexed in α)
are contracting against the same factor as ∇ψ1. Then we apply the eraser to
these factors and the indices they contract against. This is our desired conclu-
sion. To show (2.107), we only have to treat the factors ∇ψh as factors ∇φh.
The claim then follows by applying Corollary 1 in [6] and making the factors
∇υ into Xdiv’s.65 2

Proof of the base case (v + b = 2) of the general claim: We firstly prove our
claim when our hypothesis is (2.67) (as opposed to (2.66)).

Proof of the base case under the hypothesis (2.67): We observe that the
weight −K in our assumption must satisfy K ≥ 2τ + 8 if v > 0 and K ≥ 2τ +6
if v = 0.

First consider the case where we have the strict inequalities K > 2τ + 8
if v > 0 and K > 2τ + 6 if v = 0. In that case our first claim of the base
case can be proven straightforwardly, by picking out a removable index in each
Cζ,ia

g , ζ ∈ Za and treating it as an X∗div (which can be done when we only have

65Observe that by virtue of the factor ∇ψ1, we must have at least one non-simple factor
S∗∇(ν)Rijkl or ∇(B)Ωh in (2.108)–hence (2.108) does not fall under any of the “forbidden
cases” of Corollary 1 in [6], by inspection.
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two real factors). Thus, in this setting we only have to show our second claims
(2.70), (2.71).

In this setting, by using the “manual” constructions as in [5], we can con-
struct explicit tensor fields which satisfy all the assumptions of our claim in the
base case (each with rank ≥ 2), so that:

X+divi1

∑

ζ∈Z′

a

S

Zb

aζC
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ) =

∑

q∈Q

aqX+divi1C
q,iq
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )+

∑

p∈P

apX+divi1 . . . X+divic+1C
p,i1...ic+1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2],

ψ1, . . . , ψτ ) +
∑

j∈J

ajC
j
g

(2.109)

Here the tensor field C
p,i1...ic+1
g will be in one of three forms:

If v = 2 then each C
p,i1...ic+1
g will be in the form:

pcontr(S∗∇
(ν1)fb1

...fbh

i1...ic−1
Rx1jicl ⊗ S∗∇

(ν2)fd1
...fdy

Rxv

j′

ic+1

l
⊗

⊗ [∇jχ1 ⊗∇j′χ2] ⊗∇f1ψ1 · · · ⊗ ∇fτ
ψτ ⊗∇x1 φ̃1 ⊗∇x2 φ̃2),

(2.110)

where {b1, . . . , bh, d1, . . . , dy} = {1, . . . , τ}.
If v = 1 then

∑

p∈P · · · = 0 (this can be arranged because of the two anti-

symmetric indices k, l in the one factor S∗∇(ν)Rijkl).

If v = 0 then each C
p,i1...ic+1
g will be in the form:

pcontr(∇(A1)fb1
...fbh

i1...ic−1jic
Ω1 ⊗∇(A2)fd1

...fdy j′ic+1
Ω2

⊗ [∇jχ1 ⊗∇j′χ2] ⊗∇f1ψ1 · · · ⊗ ∇fτ
ψτ ⊗∇x1 φ̃1 ⊗∇x2 φ̃2),

(2.111)

where {b1, . . . , bh, d1, . . . , dy} = {1, . . . , τ}.
Then, picking out the sublinear combination in (2.120), (2.121) with factors

∇ψ1, . . . ,∇ψτ ,∇χ1,∇χ2 we derive that
∑

p∈P · · · = 0. This is precisely our
desired conclusion in this case.

Now, the case where we have the equalities in our Lemma hypothesis, K =
2τ + 8 if v > 0 and K = 2τ + 6 if v = 0. In this case we note that in our
hypothesis Zb = ∅ if v 6= 1, while Za = Za = ∅ if v = 1.

Then, if v 6= 1, by the “manual” constructions as in [5], it follows that we
can construct tensor fields (as required in the claim of our “general claim”), so
that:
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∑

ζ∈Za

aζC
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )∇i1υ

X∗divi2aζC
ζ,i1i2
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )∇i1υ =

a∗C
∗,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )∇i1υ+

∑

j∈J

ajC
j,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )∇i1υ,

(2.112)

where the tensor field C∗,i1
g is in the form:

pcontr(S∗∇
(ν1)f1...fτ−1

Rx1

fτ

kl ⊗Rx2

j′kl ⊗⊗

[∇i1χ1 ⊗∇j′χ2] ⊗∇f1ψ1 · · · ⊗ ∇fτ
ψτ ⊗∇x1 φ̃1 ⊗∇x2 φ̃2),

(2.113)

if v = 2, and in the form:

pcontr(∇(τ+1)f1...fτ

sΩ1 ⊗∇j′sΩ2⊗

[∇i1χ1 ⊗∇j′χ2] ⊗∇f1ψ1 · · · ⊗ ∇fτ
ψτ ⊗∇x1 φ̃1 ⊗∇x2 φ̃2),

(2.114)

if v = 0.
Thus, we are reduced to the case where Za only consists of the vector field

(2.113) or (2.114), and all other tensor fields in our Lemma hypothesis have
rank ≥ 2 (we have denoted their index set by Z ′

a). We then show that we can
write:

X+divi1

∑

ζ∈Z′

a

aζC
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ) =

∑

q∈Q

aqX+divi1C
q,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )+

∑

p∈P

apX+divi1 . . .X+divic+1C
p,i1...ic+1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+
∑

j∈J

ajC
j
g ,

(2.115)

where the tensor fields indexed in P here each have rank ≥ 2 and are all in the
form:

pcontr(S∗∇
(ν1)

f1...fτ−1
Rx1

fτ

ikl ⊗ S∗Rxv

j′kl⊗

[∇i1χ1 ⊗∇j′χ2] ⊗∇y1ψ1 · · · ⊗ ∇yτ
ψτ ⊗∇x1 φ̃1 ⊗∇x2 φ̃2),

(2.116)
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pcontr(∇(ν1)f1...fτ

sΩ1 ⊗∇j′sΩ2⊗

[∇i1χ1 ⊗∇j′χ2] ⊗∇y1ψ1 · · · ⊗ ∇yτ
ψτ ),

(2.117)

where each of the indices fh is contracting against one of the indices yq
. The

indices yq
that are not contracting against an index fh are free indices.

Then, replacing the above into our Lemma hypothesis (and making all the
∇υ’s ito X+div’s), we derive that ap = 0 for every p ∈ P and a∗ = 0. This
concludes the proof of the base case when v + b = 2, v 6= 1. In the case v = 1
we show our claim by just observing that we can write:

X+divi1

∑

ζ∈Zb

aζC
ζ,i1
g (Ω1, . . . ,Ωb, φ1, [χ1, χ2], ψ1, . . . , ψτ ) =

∑

q∈Q

aqX+divi1C
q,i1
g (Ω1, . . . ,Ωb, φ1, [χ1, χ2], ψ1, . . . , ψτ )

+
∑

j∈J

ajC
j
g(Ω1, . . . ,Ωb, φ1, [χ1, χ2], ψ1, . . . , ψτ );

(2.118)

this concludes the proof of the base case, when the tensor fields in our Lemma
hypothesis are in the form (2.67).

Now, we consider the setting where our hypothesis is (2.66). We again
observe that if v = 0 then the weight −K in our hypothesis must satisfy K ≥
2τ + 4. If v > 0 it must satisfy K ≥ 2τ + 6. We then again first consider the
case where we have the strict inequalities in the hypothesis of our general claim.

In this case (where we have the strict inequalities K > 2τ + 4 if v = 0 and
K > 2τ + 6 if v 6= 0) our first claim follows straightforwardly (as above, we just
pick out one removable index in each Cζ,i1

g , ζ ∈ Za and treat it as an X∗div).
To show the second claim we proceed much as before:

We can “manually” construct tensor fields in order to write:

X+divi1

∑

ζ∈Z′

a

S

Zb

aζC
ζ,i1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, Y, ψ1, . . . , ψτ ) =

∑

q∈Q

aqX+divi1C
q,iq
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )+

∑

p∈P

apX+divi1 . . .X+divic+1C
p,i1...ic+1
g (Ω1, . . . ,Ωb, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+
∑

j∈J

ajC
j
g .

(2.119)

Here the tensor field C
p,i1...ic+1
g will be in one of three forms:
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If v = 2 then each C
p,i1...ic+1
g will be:

pcontr(S∗∇
(ν1)fb1

...fbh

i1...ic−1
Rx1

fbh+1
icl ⊗ S∗∇

(ν2)fd1
...fdy

Rxv

fdy+1
ic+1

l
⊗

∇fτ+1Y ⊗∇f1ψ1 · · · ⊗ ∇fτ
ψτ ⊗∇x1 φ̃1 ⊗∇x2 φ̃2),

(2.120)

where {b1, . . . , bh+1, d1, . . . , dy+1} = {1, . . . , τ + 1}.
If v = 1 then

∑

p∈P · · · = 0 (this is because of the two antisymmetric indices

k, l in the one factor S∗∇(ν)Rijkl).

If v = 0 then each C
p,i1...ic+1
g will be in the form:

pcontr(∇(A1)fb1
...fbh

i1...ic−1ic
Ω1 ⊗∇(A2)fd1

...fdy ic+1
Ω2

⊗∇fτ+1Y ⊗∇f1ψ1 · · · ⊗ ∇fτ
ψτ ),

(2.121)

where {b1, . . . , bh, d1, . . . , dy} = {1, . . . , τ + 1}.
Then, picking out the sublinear combination in (2.120), (2.121) with factors

∇ψ1, . . . ,∇ψτ ,∇Y we derive that
∑

p∈P · · · = 0. This is precisely our desired
conclusion in this case.

Finally, we prove our claim when we have the equalities K = 2τ + 4 if v < 2
and K = 2τ + 6 if v = 2) in the hypothesis of our general claim.

In this case by “manually” constructing X+div’s so that we can write:

∑

ζ∈Z′

a

S

Zb

S

Za

aζX+divi1 . . . X+divia
Cζ,i1...ia

g (Ω1, . . .Ωb, Y, ψ1, . . . , ψτ ) =

∑

q∈Q

aqX+divi1 . . . X+divia
Cq,i1...ia

g (Ω1, . . .Ωb, Y, ψ1, . . . , ψτ )+

∑

p∈P

apX+divi1 . . .X+divia
Cp,i1...ia

g (Ω1, . . .Ωb, Y, ψ1, . . . , ψτ )

+
∑

j∈J

ajC
j
g(Ω1, . . .Ωb, Y, ψ1, . . . , ψτ ).

(2.122)

Here the tensor fields indexed in P are in the following form:
If v = 0 then they will either be in the form:

pcontr(∇i∗Y ⊗∇(A)fx1 ...fxas
Ω1 ⊗∇(B)fxa+1

...fxτ

s Ω2 ⊗∇f1ψ1 ⊗ · · · ⊗ ∇fτ
φτ ),

(2.123)

(where {x1, . . . , xτ} = {1, . . . , τ}), or in the form:

pcontr(∇qY ⊗∇(A)fx1 ...fxa

i∗
Ω1 ⊗∇(B)fxa+1

...fxτ q
Ω2 ⊗∇f1ψ1 ⊗ · · · ⊗ ∇fτ

φτ ),

(2.124)
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(where {x1, . . . , xτ} = {1, . . . , τ}).
If v = 2 they will be in the form:

pcontr(∇i∗Y ⊗∇(A)fx1 ...fxa−1S∗R
ifxa kl ⊗∇(B)fxa+1

...fxτ−1Ri′fxτ
kl

⊗∇f1ψ1 ⊗ · · · ⊗ ∇fτ
φτ∇iφ̃1 ⊗∇i′ φ̃2),

(2.125)

(where {x1, . . . , xτ} = {1, . . . , τ}), or in the form:

pcontr(∇qY ⊗∇(A)fx1 ...fxa−1S∗R
ifxa ql ⊗∇(B)fxa+1

...fxτ−1Ri′fxτ
i∗l

⊗∇y1ψ1 ⊗ · · · ⊗ ∇yτ
φτ∇iφ̃1 ⊗∇i′ φ̃2).

(2.126)

If v = 1 the equation (2.122) will hold with P = ∅:
Then, picking out the sublinear combination in (2.122) which consists of

terms with a factor ∇Y and replacing into our hypothesis, we derive that the
coefficient of each of the tensor fields indexed in P must be zero. This completes
the proof of our claim. 2

2.5 Proof of Lemmas 2.2, 2.4:

Proof of Lemma 2.2:

The first claim follows immediately, since each tensor field has a removable
index (thus each tensor field separately can be written as an X∗div).

The proof of the second claim essentially follows the “manual” construction
of divergences, as in [5]. By “manually” constructing explicit divergences out of
each Ch,i1...iα

g (Ω1, . . . ,Ωp, φ1, . . . , φu), h ∈ H2, we derive that we can write:

∑

h∈H2

ahXdivi1 . . . Xdiviα
Ch,i1...iα

g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu) =

(Const)1Xdivi1 . . .Xdiviξ
C

1,i1...iξ
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu)+

(Const)2Xdivi1 . . .Xdiviζ
C

2,i1...iζ
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu)+

∑

q∈Q

aqXdivi1 . . . Xdiviα
Cq,i1...iα

g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu)+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, Y, φ1, . . . , φu),

(2.127)

where the tensor fields indexed in Q are as required by our Lemma hypothesis,
while the tensor fields C1, C2 are explicit tensor fields which we will write out
below (they depend on the values p, σ1, σ2).

66

66In some cases there will be no tensor fields C1, C2 (in which case we will just say that in
(2.127) we have (Const)1 = 0, (Const)2 = 0).
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We will then show that in (2.127) we will have (Const)1 = (Const)2 = 0.
That will complete the proof of Lemma 2.2. We distinguish cases based on the
value of p: Either p = 2 or p = 1 or p = 0.

The case p = 2: With no loss of generality we assume that the factor
∇(A)Ω1 is contracting against the factors ∇φ1, . . . ,∇φx and ∇(B)Ω2 is con-
tracting against ∇φx+1, . . . ,∇φx+t; we may also assume wlog that x ≤ t. By
manually constructing divergences, it follows that we can derive (2.127), where
each of the tensor fields C1, C2 will be in the forms, respectively:

pcontr(∇i∗Y ⊗∇
(A)
v1...vxi1...iγ

Ω1 ⊗∇
(B)
y1...ytiγ+1...iγ+δ

Ω2 ⊗∇v1φ1 ⊗ · · · ⊗ ∇ytφu),

(2.128)
(where if t ≥ 2 then δ = 0, otherwise t+ δ = 2), or:

pcontr(∇qY ⊗∇q∇
(A)
v1...vxi1...iγ

Ω1 ⊗∇
(B)
y1...ytiγ+1...iγ+δ

Ω2 ⊗∇v1φ1 ⊗ · · · ⊗∇ytφu),

(2.129)
(where if t ≥ 2 then δ = 0, otherwise t+ δ = 2).

The case p = 1: We “manually” construct divergences to derive (2.127),
where if σ1 = 1 then there are no tensor fields C1, C2 (and hence (2.127) is our
desired conclusion); if σ1 = 0, σ2 = 1 then there is only the tensor field C1 in
(2.127) and it is in the form:

pcontr(∇qY ⊗ S∗∇
(ν)
v2...vxi1...iγ

Riiγ+1iγ+2q ⊗∇
(B)
y1...ytiγ+1...iγ+δ

Ω2

⊗∇iφ̃1 ⊗∇v1φ2 ⊗ · · · ⊗ ∇ytφu),
(2.130)

where if t ≥ 2 then δ = 0, otherwise δ = 2 − t.

The case p = 0: We have three subcases: Firstly σ2 = 2, secondly (σ2 =
1, σ1 = 1), and thirdly σ1 = 2.

In the case σ2 = 2, the tensor fields C1, C2 must be in the forms, respectively:

pcontr(∇i∗Y ⊗ S∗∇
(ν)
v2...vxi1...iγ

Riiγ+1iγ+2l ⊗ S∗∇
(t−1)
y1...yt

Ri′iγ+3iγ+4

l

⊗∇iφ̃1 ⊗∇i′ φ̃2 ⊗∇v1φ3 ⊗ · · · ⊗ ∇ytφu),
(2.131)

pcontr(∇qY ⊗ S∗∇
(ν)
qv2...vxi1...iγ

Riiγ+1iγ+2l ⊗ S∗∇
(t−1)
y1...yt

Ri′iγ+3iγ+4

l

⊗∇iφ̃1 ⊗∇i′ φ̃2 ⊗∇v1φ3 ⊗ · · · ⊗ ∇ytφu),
(2.132)

(if x = t = 0 then the tensor field C1 above will not be present).
In the case σ1 = 2, the tensor fields C1, C2 must be in one of the two forms:
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pcontr(∇i∗Y⊗∇
(m1)
v1...vxi1...iγ

Riiγ+1iγ+2l⊗∇(t−1)
y1...yt

Ri
iγ+3iγ+4

l
⊗∇v1φ1⊗· · ·⊗∇ytφu),

(2.133)

pcontr(∇qY ⊗∇q∇
(m1)
v1...vxi1...iγ

Riiγ+1iγ+2l ⊗∇(t−1)
y1...yt

Ri
iγ+3iγ+4

l

⊗∇v1φ1 ⊗ · · · ⊗ ∇ytφu).
(2.134)

In the case σ1 = 1, σ2 = 1, there will be only one tensor field C1, in the
form:

pcontr(∇qY ⊗ S∗∇
(m1)
v1...vxi1...iγ

Riiγ+1iγ+2l ⊗∇(t−1)
y1...yt

Rqiγ+3iγ+4

l ⊗∇iφ̃1

⊗∇v1φ2 ⊗ · · · ⊗ ∇ytφu).
(2.135)

We then derive that (Const)1 = (Const)2 = 0 as in [5] (by picking out the
sublinear combination in (2.127) that consists of complete contractions with a
factor ∇Y –differentiated only once).

Proof of Lemma 2.4:

We again “manually” construct explicit Xdiv’ to write:

∑

h∈H2

ahXdivi1 . . . Xdiviα
Ch,i1...iα

g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu) =

(Const)1Xdivi1 . . .Xdiviξ
C

1,i1...iξ
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu)+

(Const)2Xdivi1 . . .Xdiviζ
C

2,i1...iζ
g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu)+

∑

q∈Q

aqXdivi1 . . . Xdiviα
Cq,i1...iα

g (Ω1, . . . ,Ωp, Y, φ1, . . . , φu)+

∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, Y, φ1, . . . , φu),

(2.136)

where the tensor fields indexed in Q are as required by our Lemma hypothesis,
while the tensor fields C1, C2 are explicit tensor fields which we will write out
below (they depend on the values p, σ1, σ2). In some cases there will be no
tensor fields C1, C2 (in which case we will just say that in (2.127) we have
(Const)1 = 0, (Const)2 = 0).

The case p = 2: With no loss of generality we assume that the factor
∇(A)Ω1 is contracting against the factors ∇φ1, . . . ,∇φx and ∇(B)Ω2 is con-
tracting against ∇φx+1, . . . ,∇φx+t

; we may also assume wlog that x ≤ t. By
manual construction of divergences, it follows that we can derive (2.127), where
there is only the tensor field C1 and it is in the form:
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pcontr(∇[i∗χ1⊗∇q]χ2⊗∇
(A)
v1...vxi1...iγ

Ω1⊗∇
(B)
qy1...ytiγ+1...iγ+δ

Ω2⊗∇v1φ1⊗· · ·⊗∇ytφu),

(2.137)
(where if t ≥ 1 then δ = 0, otherwise δ = 1).

The case p = 1: We “manually” construct divergences to derive (2.136),
where: if σ1 = 1 then there are no tensor fields C1, C2 in the RHS of (2.136)
(and this is our desired conclusion); if σ1 = 0, σ2 = 1 then there is only the
tensor field C1 in the RHS of (2.136) and it is of the form:

pcontr(∇[i∗ω1 ⊗∇q]ω2 ⊗ S∗∇
(ν)
v2...vxi1...iγ

Riiγ+1iγ+2q ⊗∇
(B)
y1...ytiγ+1...iγ+δ

Ω2 ⊗∇iφ̃1

⊗∇v1φ2 ⊗ · · · ⊗ ∇ytφu),

(2.138)

where if t ≥ 2 then δ = 0, otherwise δ = 2 − t.
The case p = 0: We have three subcases: Firstly σ2 = 2, secondly (σ2 =

1, σ1 = 1), and thirdly σ1 = 2.
In the case σ2 = 2, the tensor fields C1, C2 in the RHS of (2.127) will be in

the two forms, respectively:

pcontr(∇[i∗ω1 ⊗∇q]ω2 ⊗ S∗∇
(ν)
qv2...vxi1...iγ

Riiγ+1iγ+2l⊗

S∗∇
(t−1)
y1...yt

Ri′iγ+3iγ+4

l ⊗∇iφ̃1 ⊗∇i′ φ̃2 ⊗∇v1φ3 ⊗ · · · ⊗ ∇ytφu),
(2.139)

pcontr(∇[pω1 ⊗∇q]ω2 ⊗ S∗∇
(ν)
qv2...vxi1...iγ

Riiγ+1iγ+2p⊗

S∗∇
(t−1)
y1...yt

Ri′iγ+3iγ+4q ⊗∇iφ̃1 ⊗∇i′ φ̃2 ⊗∇v1φ3 ⊗ · · · ⊗ ∇ytφu).
(2.140)

In the case σ1 = 2, the tensor fields C1, C2 will be the forms, respectively:

pcontr(∇[i∗ω1 ⊗∇q] ⊗∇
(m1)
v1...vxi1...iγ

Riiγ+1iγ+2l ⊗∇(t−1)
qy1...yt

Ri
iγ+3iγ+4

l

⊗∇v1φ1 ⊗ · · · ⊗ ∇ytφu),
(2.141)

pcontr(∇[pω1 ⊗∇q]ω2 ⊗∇
(m1)
v1...vxi1...iγ

Riiγ+1iγ+2p ⊗∇(t−1)
y1...yt

Ri
iγ+3iγ+4q

⊗∇v1φ1 ⊗ · · · ⊗ ∇ytφu),
(2.142)

(if at least one of the two factors ∇(m)Rijkl is contracting against a factor ∇φh.
Otherwise, we can prove (2.136) with no tensor fields C1, C2 on the RHS).

In the case σ1 = 1, σ2 = 1, the tensor fields C1, C2 must be in the forms,
respectively:
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pcontr(∇[i∗ω1 ⊗∇q]ω2 ⊗ S∗∇
(ν)
v1...vxi1...iγ

Riiγ+1iγ+2l ⊗∇(t−1)
y1...yt

Rqiγ+3iγ+4

l

⊗∇iφ̃1 ⊗∇v1φ2 ⊗ · · · ⊗ ∇ytφu),

(2.143)

pcontr(∇[pω1 ⊗∇q]ω2 ⊗ S∗∇
(m1)
v1...vxi1...iγ

Riiγ+1iγ+2l ⊗∇(t−1)
y1...yt

Rpqiγ+3

l

⊗∇iφ̃1 ⊗∇v1φ2 ⊗ · · · ⊗ ∇ytφu).
(2.144)

We then derive that (Const)1 = (Const)2 = 0 by picking out the sublinear
combination in (2.136) that consists of complete contractions with two factors
∇Y,∇ω2–each factor differentiated only once). 2

3 The proof of Proposition 1.1 in the special
cases:

3.1 The direct proof of Proposition 1.1 (in case II) in the
“special cases”.

We now prove Proposition 1.1 directly in the special subcases of case II. We recall
the setting of the special subcases of Proposition 1.1 in case II are as follows: In

subcase IIA for each µ-tensor field of maximal refined double character, C
l,i1...iµ
g

there is a unique factor in the form T = ∇(m)Rijkl for which two internal indices
are free, and each derivative index is either free or contracting against a factor
∇φh. For subcase IIB there is a unique factor in the form T = ∇(m)Rijkl

for which one internal index is free, and each derivative index is either free or
contracting against a factor ∇φh. In both sucases IIA, IIB there is at least one
free derivative index in the factor T .

Moreover, both in subcases IIA, IIB, all other real factors in C
l,i1...iµ
g are

either in the form S∗Rijkl or ∇(2)Ωh, or they are in the form ∇(m)Rijkl, where
all the m derivative indices contract against factors ∇φh.67

In order to prove Proposition 1.1 directly in the special subcases of subcases
IIA, IIB we will rely on a new Lemma:

Our new Lemma deals with two different settings, which we will label setting
A and setting B below.

In setting A, we let

∑

l∈L

alC
l,i1...iµ
g (Ω1, . . . ,Ωp, φ1, . . . , φu)

67For the rest of this subsection, we will slightly abuse notation and not write out the
derivative indices that contract against factors ∇φh–we will thus refer to factors Rijkl, setting
m = 0.
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stand for a linear combination of µ-tensor fields with one factor ∇(m)Rijkl con-
taining α ≥ 2 free indices, distributed according to the pattern

∇
(m)
(free)...(free)R(free)j(free)l, and all other other factors being all in one of the

forms Rijkl,S∗Rijkl ,∇(2)Ωh. (I.e. they have no removable indices).
In setting B we let

∑

l∈L

alC
l,i1...iµ
g (Ω1, . . . ,Ωp, φ1, . . . , φu)

stand for a linear combination of µ-tensor fields with one factor ∇(m)Rijkl con-
taining α ≥ 2 free indices, distributed according to the pattern

∇
(m)
(free)...(free)R(free)j(free)l, and all but one of the other factors being in one of

the forms Rijkl ,S∗Rijkl, ∇
(2)Ωh; one of the other factors (which we label T ′) will

be in the form ∇Rijkl ,S∗∇Rijkl , ∇(3)Ωh. We will call this other factor “the fac-
tor with the extra derivative”. Moreover, in setting B we impose the additional

restriction that if both the indices j , l in the factor ∇
(m)
(free)...(free)R(free)j(free)l

contract against the same other factor T ′, then either T ′ is not the factor with
the extra derivative, or if it is, then T ′ is in the form ∇sRabcd, and furthermore
the indices j , l contract against the indices b, c and we assume that the indices

s, a, c are symmetrized over.68

Lemma 3.1 Let
∑

l∈L alC
l,i1...iµ
g be a linear combination of µ-tensor fields as

described above. We assume the following special case of (1.7):

∑

l∈L
S

L′

alXdivi1 . . . Xdiviµ
Cl,i1...iµ

g (Ω1, . . . ,Ωp, φ1, . . . , φu)+

∑

h∈H

ahXdivi1 . . . Xdiviβ
C

h,i1...iβ
g (Ω1, . . . ,Ωp, φ1, . . . , φu)

+
∑

j∈J

ajC
j
g(Ω1, . . . ,Ωp, φ1, . . . , φu);

(3.1)

here, in both cases A and B the terms indexed in L will be as described above;
the µ-tensor fields indexed in L′ will have fewer than α free indices in any given
factor of the form ∇(m)Rijkl. The tensor felds indexed in H each have rank
> µ and also each of them has fewer than α free indices in any given factor of
the form ∇(m)Rijkl. Finally, the terms indexed in J are simply subsequent to
~κsimp.
We claim that:

∑

l∈L

alC
l,i1...iµ
g ∇i1υ . . .∇iµ

υ = 0. (3.2)

68In other words, in that case the factors T, T ′ contract according to the pattern:

∇
(m)
(free)...(free)

R(free)j(free)l∇(sRa
jk

d), where the indices s, a, d are symmetrized over.
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We will prove this Lemma shortly. Let us now, however, note how the above
Lemma directly implies Proposition 1.1 in the special subcases IIA (directly)
and IIB (after some manipulation).

Lemma 3.1 implies Proposition 1.1 in the special subcases of case II:
We first start with subcase IIA: Consider the sublinear combination of µ-

tensor fields of maximal refined double character in (1.7). Denote their index
set by LMax ⊂ L. Recall that since we are considering the subcase where (1.7)
falls under the special case of Proposition 1.1 in case IIA, it follows that for each

C
l,i1...iµ
g there is a unique factor in the form ∇(m)Rijkl for which two internal

indices are free, and each derivative index is either free or contracting against a
factor ∇φh; denote by M + 2 the number of free indices in that factor.69

Now, by weight considerations (since we are in a special subcase of Propo-
sition 1.1 in case IIA), any tensor field of rank > µ in (1.7) must have strictly
fewer thanM+2 free indices in any given factor ∇(m)Rijkl . Therefore in subcase
IA, (1.7) is of the form (3.1), with LMax ⊂ L. Therefore, we apply Lemma 3.1
to (1.7) and pick out the sublinear combination of terms with a refined double

character Doub(~Lz), z ∈ Z ′
Max

70 we thus obtain a new true equation, since (3.2)
holds formally, and the double character is invariant under the formal permuta-
tions of indices that make (3.2) formally zero. This proves our claim in subcase
IIA.

Now we deal with subcase IIB:
We consider the µ-tensor fields of maximal refined double character in (1.7).

By definition (since we now fall under a special case), they will each have a factor

in the form ∇
(m)
(free)...(free)R(free)jkl, with a total of M + 1 > 1 free indices.71

Each of the other factors will be in the form Rijkl or be simple factors in the
form S∗Rijkl , or in the form ∇(2)Ωh.

We denote by L ⊂ L the index set of µ-tensor fields with M + 1 free indices
in a factor ∇(m)Rijkl. It follows by weight considerations that the factor in

question will be unique for each C
l,i1...iµ
g , l ∈ L. We then start out with some

explicit manipulation of the terms indexed in L:
We will prove that there exists a linear combination of µ + 1-tensor fields,

∑

h∈H ahC
h,i1...iµ+1
g , as allowed in the statement of Proposition 1.1, so that:

∑

l∈L

alC
l,i1...iµ
g ∇i1υ . . .∇iµ

υ =
∑

h∈H

ahXdiviµ+1C
h,i1...iµ+1
g ∇i1υ . . .∇iµ

υ

+
∑

l∈Lnew

alC
l,i1...iµ
g ∇i1υ . . .∇iµ

υ
∑

j∈J

ajC
l,i1...iµ
g ∇i1υ . . .∇iµ

υ.
(3.3)

69So we set α = M + 2.
70Recall that ~Lz , z ∈ Z′

Max is the collection of maximal refined double characters that
Proposition 1.1 deals with.

71So, we set α = M + 1.
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Here the µ-tensor fields indexed in Lnew have a factor

T = ∇
(M−1)
(free)...(free)R(free)j(free)l, and one other factor T ′ has an extra deriva-

tive (meaning that T ′ is either in the form ∇Rijkl or S∗∇Rijkl , or ∇(3)Ωh).
Moreover if both indices j , l in T contract against indices j , l in the same fac-
tor T ′′ and at least one of j , l is removable, then T ′ 6= T ′′. Clearly, (3.3) in
conjunction with Lemma 3.1 implies Proposition 1.1 in the “special cases” of
case II. So, matters are reduced to showing (3.3) (and then deriving Lemma 3.1).

Proof of (3.3): We first apply the second Bianchi identity to the factor
T to move one of the derivative free indices ito the position kl in the factor

∇
(M−1)
(free)...(free)R(free)j(free)l. Thus, we derive that modulo terms of length ≥

σ + u+ 1:

Cl,i1...iµ
g = −Cl,1,i1...,iµ

g + Cl,2,i1...,iµ
g ,

where the partial contractions C
l,1,i1...iµ
g , C

l,2,i1...iµ
g have the factor T replaced by

a factor in the form: ∇
(m)
k(free)...(free)R(free)j(free)l, ∇

(m)
l(free)...(free)R(free)jk(free),

respectively. We then erase the indices k, l in these two factors (thus creating

a new tensor field C
l,1,i1...,iµiµ+1
g , C

l,2,i1...,iµiµ+1
g ) by creating a free index iµ+1),

and subtract the Xdiviµ+1 [. . . ] of the corresponding (µ + 1)-tensor field. We
then derive an equation:

Cl,1,i1...,iµ
g = Xdiviµ+1C

l,1,i1...iµ+1
g +

∑

l∈Lnew

Cl,i1...iµ
g , (3.4)

where all the tensor fields indexed in Lnew satisfy the required property of
Lemma 3.1, except for the fact that one could have both indices j , l in the

factor ∇
(M−1)
(free)...(free)R(free)j(free)l contracting against indices j , l in a factor

T ′ which has an additionnal derivative index. If C
l,i1...iµ
g , l ∈ Lnew is not in

the form allowed in the claim of Lemma 3.1, then (after possibly applying the
second Bianchi identity and possibly introducing simply subsequent complete
contractions) we may arrange that one of the indices j , l is a derivative index.

In that case we construct another (µ+1)-tensor field by erasing the derivative
index j or l and making the index j or l in a free index iµ+1 . Then, subtracting
the corresponding Xdiviµ+1 of this new (µ+1)-tensor field, we derive our claim.
2

Therefore, matters are reduced to proving Lemma 3.1.

Proof of Lemma 3.1:

Let us start with some notational conventions
Recall the first variation law of the curvature tensor under variations by a

symmetric 2-tensor by vij : For any complete or partial contraction T (gij) (which
is a function of the metric gij), we define: Image1vij

= d
dt
|t=0[T (gij + tvij)]. (We
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write Image1vij
[. . . ] or Image1vab

[. . . ] below to stress that we are varying by a
2-tensor, rather than just by a scalar).

We consider the equation Image1vij
[Lg] = 0 (which corresponds to the first

metric variation of our Lemma hypothesis (i.e. of (1.7)). This equation holds
modulo complete contractions with at least σ + u+ 1 factors.

Thus, we derive a new local equation:

∑

l∈Lµ

alXdivi1 . . .Xdiviµ
Image1vab

[Cl,i1...iµ
g ]

+
∑

l∈L\Lµ

alXdivi1 . . . Xdivia
Image1vab

[Cl,i1...ia
g ]

=
∑

j∈J

ajImage
1
vab

[Cj
g ],

(3.5)

which holds modulo terms of length ≥ σ + u+ 1.
Now, we wish to pass from the local equation above to an integral equation,

and then to apply the silly divergence formula from [1] to that integral equation
(thus deriving a new local equation).

In order to do this, we start by introducing some more notation: Let us
write out:

Image1vab
[Cl,i1...iµ

g ] =
∑

t∈T l

atC
t,i1...ia
g

where each Ct,i1...ia
g is in the form:

pcontr(∇(A+2)
r1...rA+2

vab ⊗∇(m1)Rijkl ⊗ · · · ⊗ ∇(mσ−1)R⊗∇(b1)Ω1 ⊗ · · · ⊗ ∇(bp)Ωp

⊗∇φ1 ⊗ · · · ⊗ ∇φu).

(3.6)

For our next technical tool we introduce some notation: For each tensor
field Cl,i1...ia

g in the form above, we denote by Cl
g the complete contraction that

arises by hitting each factor Ti (i = 1, 2, 3) by m derivative indices ∇u1...um ,
where u1 , . . . , um

are the free indices that belong to Ti in Cl,i1...ia
g (thus we

obtain a factor with m internal contraction, each involving a derivative in-
dex). Notice there is a one-to-one correspondence between the tensor fields
and the complete contractions we are constructing. We can then easily ob-
serve that there are two linear combinations Σr∈R1arC

r
g (Ω1, . . .Ωp, φ1, . . . , φu),

Σr∈R2arC
r
g (Ω1, . . .Ωp, φ1, . . . , φu) where each Cr

g , r ∈ R1 has at least σ + u+ 1

factors, while each Cr
g , r ∈ R2 has σ+u factors but at least one factor ∇(p)φh 6=

∆φh with p ≥ 2, so that for any compact orientable (M, g):

∫

M

∑

l∈L

al

∑

t∈T l

atC
t,∗
g (vab) +

∑

r∈R1

arC
r
g (vab) +

∑

r∈R2

arC
r
g (vab)dVg = 0 (3.7)
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(denote the integrand of the above by Zg(vab)). Here again each Cj
g has σ + u

factors and all factors ∇φh have only one derivative but its simple character is
subsequent to ~κ. We call this technique (of going from the local equation (3.5)
to the integral equation (3.7)) the “‘inverse integration by parts”.

Now, we derive a “silly divergence formula” from the above by performing
integrations by parts with respect to the factor ∇(B)vab (until we are left with
a factor vab–without derivatives). This produces a new local equation which we
denote by silly[Zg(vab)] = 0. We will be using this equation in our derivation
of Lemma 3.1.

Now, for each C
l,i1...iµ
g , l ∈ L, we consider the factor

T = ∇
(M)
(free)...(free)R(free)j(free)l with the M+2 free indices. We define T j to be

the factor in C
l,i1...iµ
g that contracts against the index j in T and by T l to be the

factor in C
l,i1...iµ
g that contracts against the index l in T . We define Lsame ⊂ L

to be the index set of tensor fields for which T j = T l; we define Lnot.same ⊂ L

to be the index set of tensor fields for which T j 6= T l. We will then prove (3.2)
separately for the two sublinear combinations indexed in Lsame, Lnot.same.

Proof of (3.2) for the index set Lsame:
We first prove our claim for σ > 3 and then note how to prove it when σ = 3.
Consider silly[Lg(Ω1, . . . ,Ωp, φ1, . . . , φu, vab)] = 0. Pick out the sublinear

combination silly+[Lg(Ω1, . . . ,Ωp, φ1, . . . , φu, vab)] = 0 with µ−M − 2 internal
contractions, and with the indices in the factor vab contracting against a factor
T ′ which either has no extra derivative indices, or if it does, then the contraction
is according to the pattern vab ⊗∇sRajbl; we also require that the two factors
T ′′, T ′′′ with an extra M +2 extra derivatives each. This sublinear combination
must vanish separately, hence we derive:

silly+[Zg(Ω1, . . . ,Ωp, φ1, . . . , φu, vab)] = 0. (3.8)

We also observe that this sublinear combination can only arise (in the process of
passing from the equation Lg = 0 to deriving silly+[Zg(vab)] = 0) by replacing

the factor ∇
(M)
(free)...(free)R(free)j(free)l by ∇

(M)
(free)...(free)vjl and then (in the in-

verse integration by parts) replacing all µ free indices by internal contractions,72

and finally integrating by parts the M + 2 pairs of derivative indices (∇a,∇a)
and forcing all upper indices hit a factor T ′′ 6= T ′ and the lower indices to hit a
factor T ′′′ 6= T ′, T ′′′ 6= T ′′.73

Thus, we can prove our claim by starting from the equation (3.8) and ap-
pling Subυ µ−M − 2 times,74 just applying the eraser to the extra M +2 pairs
of contracting derivatives,75 and then replacing the factor vab by

72(Thus the factor ∇
(M)
(free)...(free)

vjl gets replaced by ∆M+2vij).
73The fact that σ > 3 ensures the existence of two such factors.
74See the Appendix in [3] and just set ω = υ.
75This can be done by just repeating the proof of the “Eraser” Lemma in the Appendix of

[3].
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∇
(M)
r1...rMRiajb∇r1υ . . .∇rMυ∇aυ∇bυ. Finally we just divide by the combinatio-

rial constant
(

σ−3
2

)

.
Let us now consider the case σ = 3: In those case the terms of maxi-

mal refined double character can only arise in the subcase IIA,76 and can

only be in one of the forms: ∇
(M)
(free)...(free)R(free)j(free)l ⊗ Rijkl ⊗ ∇

(2)
ik Ω1),

∇
(M)
(free)...(free)R(free)j(free)l ⊗Rijkl ⊗R(free)

j

(free)

l
). Thus, in that case we de-

fine silly+[Zg(vab)] to stand for the terms (vjl⊗∇
(M+2)
t1...tM+2

Rijkl⊗∇
(M+4)
t1...tM+4ikΩ1),

(vjl ⊗ ∇
(M+2)
t1...tM+2

Rijkl(∇(M+2))t1...tM+2 ⊗ R(free)
j

(free)

l
) respectively, and then

repeat the argument above.

Proof of (3.2) for the index set Lnot.same:

We prove our claim in steps: We first denote by L
∗∗

not.same ⊂ Lnot.same

the index set of tensor fields in Lnot.same for which both indices j , l in the

factor T = ∇
(M)
(free)...(free)R(free)j(free)l contract against special indices in factors

T j, T l of the form S∗Rijkl. We will firstly prove that:

∑

l∈L
∗∗

not.same

alC
l,i1...iµ
g ∇i1υ . . .∇iµ

υ =
∑

l∈L′

alC
l,i1...iµ
g ∇i1υ . . .∇iµ

υ. (3.9)

Here the terms in the RHS have all the features of the terms in Lnot.same, but in

addition at most one of the indices in the factor T = ∇
(M)
(free)...(free)R(free)j(free)l

contract against a special index in a factor of the form S∗Rijkl. Thus, if we can
prove (3.9), we are reduced to proving our claim under the additional assumption

that L
∗∗

not.same = ∅.

For our next claim, we denote by L
∗

not.same ⊂ Lnot.same the index set of
tensor ields in Lnot.same for which one of the indices j , l in the factor T =

∇
(M)
(free)...(free)R(free)j(free)l contracts against a special index in factors T j, T l

of the form S∗Rijkl.
We will then prove that:

∑

l∈L
∗

not.same

alC
l,i1...iµ
g ∇i1υ . . .∇iµ

υ =
∑

l∈L′′

alC
l,i1...iµ
g ∇i1υ . . .∇iµ

υ. (3.10)

Here the terms in the RHS have all the features of the terms in Lnot.same, but

in addition none of the indices in the factor T = ∇
(M)
(free)...(free)R(free)j(free)l

contracting against a special index in a factors of the form S∗Rijkl . Thus, if
we can prove (3.9), we are reduced to proving our claim under the additionnal

assumption that for eac C
l,i1...iµ
g , l ∈ L the two indices j , l in the factor T =

76This follows by virtue of the symmetry of the indices s, a, d in any factor ∇sRabcd as
discussed above.
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∇
(M)
(free)...(free)R(free)j(free)l contract against two different factors and none of

the indices j , l are special indices in a factor of the form S∗Rijkl .
In our third step, we prove (3.2) under this additonnal assumption.
We now present our proof of the third step. We will indicate in the end how

this proof can be easily modified to derive the first two steps.

For each l ∈ Lnot.same, let us denote by link(l) the number of particular

contractions betwen the factors T j, T l in the tensor fields C
l,i1...iµ
g . (Note that

by weight considerations 0 ≤ link(l) ≤ 3). Let B be the maximum value of

link(l), l ∈ Lnot.same, and by L
B

not.same ⊂ Lnot.same the corresponding index

set. We will then prove our claim for the tensor fields indexed in L
B

not.same. By
repeating this step at most four times, we will derive our third claim.

Consider silly[Lg(Ω1, . . . ,Ωp, φ1, . . . , φu, vab)] = 0. Pick out the sublinear
combination silly∗[Lg(Ω1, . . . ,Ωp, φ1, . . . , φu, vab)] = 0 with µ−M − 2 internal
contractions, and with an extra M + 2 derivatives on the factors T j, T l against
which the two indices of the factor vab contract, and with M + 2 +B particual
contractions betwen the factors T j, T l. This sublinear combination must vanish
separately:

silly∗[Lg(Ω1, . . . ,Ωp, φ1, . . . , φu, vab)] = 0.

Moreover, we observe by following the “inverse integration by parts” and the
silly divergence formula obtained from

∫

Mn Zg(vab)dVg = 0, that the LHS of the
above can be desrcibed as follows:

For each C
l,i1...iµ
g , l ∈ L

B

not.same, we denote by C̃l
g(vab) the complete con-

traction that arises by replacing the factor T = ∇
(M)
(free)...(free)R(free)j(free)l by

∇
(M+2)
(free)...(free)vjl, and then replacing each free index that does not belong to

the factor T by an internal contraction. We then denote by Ĉl
g(vab) the com-

plete contraction that rises from C̃l
g(vab) by hitting the factor T j (against which

the index j in vjl contracts) by (M + 2) derivative indices ∇t1 , . . . ,∇tM+2 and
hitting the factor T l (against which the index l in vjl contracts) by derivatives
∇t1 , . . . ,∇tM+2 .77 It follows that:

(0 =)silly∗[Lg(Ω1, . . . ,Ωp, φ1, . . . , φu, vab)] =
∑

L
B

not.same

al2
M+1[Ĉl

g(vab)].

Now, to derive our claim, we introduce a formal operation Op[. . . ] which acts
on the terms above by applying Subυ to each of the µ −M − 2 internal con-
tractions,78 erasing M + 2 particular contractions between the factors T j, T l

and then replacing the factor vjl by ∇
(m)
r1...rMRijkl∇r1υ . . .∇rMυ∇iυ∇kυ. This

operation produces a new true equation; after we divide this new true equation
by 2M+1, we derive our claim.

77These derivatives contract against the indices ∇t1 , . . . ,∇tM+2 that have hit T j .
78See the Appendix of [3] for the definition of this operation.
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Note on the derivation of (3.9), (3.10): The equations can be derived by
a straighttforward modification of the ideas above: The only extra feature
we must add is that in the silly divergence formula we must pick out the
terms for which (both/one of the) indices j , l in vjl contract against a spe-

cial index in a factor S∗∇(M+2)Rabcd∇aφ̃h. This linear combination will van-
ish, modulo terms where one/none of the indices j , l in vjl contract against
a special index in the factor S∗Rijkl : This follows by the same argument
that is used in [6] to derive that Lemma 3.1 in [6] implies Proposition 1.1
in case I: We firstly replace the factor vjl by an expression y(jyl). We then

just replace both/one of the expressions ∇iφ̃h, yj by gij and apply RictoΩ
twice/once.79 The only terms that survive this true equation are the ones

indexed in Lnot.same, for which the expression(s) S∗∇
(ν)
r1...rνRijkl∇iφ̃h∇ky are

replaced by ∇
(ν+2)
r1...rνjlYf . We then proceed as above, deriving that the sublin-

ear combination of terms indexed in Lnot.same must vanish, after we replace

two/one expressions S∗∇
(ν)
r1...rνRijkl∇iφ̃h∇ky by ∇

(ν+2)
r1...rνjlYf . Then, repeating

the permutations applied to any factors ∇
(ν+2)
r1...rνjlYf , to S∗∇

(ν)
r1...rνRijkl∇iφ̃h∇ky

we derive our claim. 2

3.2 The remaining cases of Proposition 1.1 in case III:

We recall that there are remaining cases only when σ = 3. In that case we have
the remaining cases when p = 3 and n − 2u − 2µ ≤ 2, or when p = 2, σ2 = 1
and n = 2u+ 2µ.

The case p = 3: Let us start with the subcase n− 2u− 2µ = 0. In this case,
all tensor fields in (1.7) will be in the form:

pcontr(∇
(A)
i1...iaj1...jb

Ω1 ⊗∇
(B)
ia+1...ia+a′ jb+1...jb+b′

Ω2⊗

∇
(C)
ia+a′+1...ia+a′+a′′jb+b′+1...jb+b′+b′′

Ω3 ⊗∇jx1φ1 · · · ⊗ ∇xj+j′+j′′φu)
(3.11)

where we are making the following conventions: Each of the indices if
is free;

also, each of the indices jf
is contracting against some factor ∇φh, and also

A,B,C ≥ 2.
Thus, we observe that is this subcase µ is also the maximum rank among the

tensor fields appearing in (1.7). Now, assume that the µ-tensor fields in (1.7)
of maximal refined double character have a = α, a′ = α′, a′′ = α′′. With no loss
of generality (only up to renaming the factors Ω1,Ω2,Ω3, φ1, . . . , φu) we may
assume that α ≥ α′ ≥ α′′ and that only the functions ∇φ1, . . . ,∇φu1 contract
against ∇(A)Ω1 in ~κsimp. We will then show that the coefficient aα,α′,α′′ of this
tensor field must be zero. This will prove Proposition 1.1 in this subcase.

We prove that aα,α′,α′′ = 0 by considering the global equation
∫

ZgdVg = 0
and considering the silly divergence formula silly[Zg] = 0. We then consider

79Recall that this operation has been defined in the Appendix of [3] and produces a true
equation.
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the sublinear combination silly+[Zg] consisting of terms with α′, α′′ internal
contractions in the factors ∇(D)Ω2,∇(E)Ω3, with α particular contractions be-
tween those factors and with all factors ∇φh that contracted against ∇(A)Ω1

in ~κsimp being replaced by ∆φh, while all factors ∇φh that contracted against
∇(B)Ω2,∇

(C)Ω3 still do so. We easily observe that silly+[Zg] = 0, and further-
more silly+[Zg] consists of the complete contraction:

contr(Ω1 ⊗∇f1...fα
jb+1...jb+b′

∆α′

Ω2 ⊗∇f1...fαjb+b′+1...jb+b′+b′′
∆α′′

Ω3 ⊗ ∆φ1

. . .∇
jx

b+b′+b′′ φu)

(3.12)

times the constant (−1)u12αaα,α′,α′′ . Thus, we derive that aα,α′,α′′ = 0.

The second subcase: We now consider the setting where σ = p = 3, n− 2u−
2µ = 2. In this setting, the maximum rank of the tensor fields appearing in
(1.7) is µ + 1. In this case, all (µ+ 1)-tensor fields in (1.7) will be in the form
(3.11) (with α + α′ + α′′ = µ + 1, while all the µ-tensor fields will be in the
form (3.11) but with α+ α′ + α′′ = µ, and with one particular contraction c,

c

between two of the factors ∇(A)Ω1,∇(B)Ω2,∇(C)Ω3.
Now, if both the indices c,

c described above are removable, we can explicitly

express C
l,i1...iµ
g as an Xdiv of an acceptable (µ+ 1)-tensor field. Therefore, we

are reduced to showing our claim in this setting where for each µ-tensor field in
(1.7) at least one of the indices c,

c is not removable. Now, let z ∈ ZMax stand

for one of the index sets for which the sublinear combination
∑

l∈Lz alC
l,i1...iµ
g

in (1.7) indexes tensor fields of maximal refined double character. We assume
with no loss of generality that for each l ∈ Lz the factors ∇(A)Ω1, ∇(B)Ω2,
∇(C)Ω3 have α ≥ α′ ≥ α′′ free indices respectively.80 Therefore, the tensor
fields indexed in Lz can be in one of the following two forms:

pcontr(∇c∇
(A)
i1...iαj1...jb

Ω1 ⊗∇
(B)
iα+1...iα+α′jb+1...jb+b′

Ω2⊗

∇
(2)
ciα+α′+1...iα+α′+α′′jb+b′+1...jb+b′+b′′

Ω3 ⊗∇jx1φ1 · · · ⊗ ∇xj+j′+j′′φu),
(3.13)

pcontr(∇
(A)
i1...iαj1...jb

Ω1 ⊗∇c∇
(B)
iα+1...iα+α′jb+1...jb+b′

Ω2⊗

∇
(2)
ciα+α′+1...iα+α′+α′′jb+b′+1...jb+b′+b′′

Ω3 ⊗∇jx1φ1 · · · ⊗ ∇xj+j′+j′′φu),
(3.14)

(where A,B ≥ 3).
Now, by “manually subtracting” Xdiv’s from these µ-tensor fields, we can

assume wlog that the tensor fields indexed in our chosen Lz are in the from
(3.14).

80Recall that by our hypothesis α′ ≥ 2.
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With that extra assumption, we can show that the coefficient of the tensor
field (3.14) is zero. We see this by considering the (global) equation

∫

M
ZgdVg =

0 and using the silly divergence formula silly[Zg] = 0 (which arises by integra-
tions by parts w.r.t. to the factor ∇(A)Ω1). Picking out the sublinear combina-
tion silly+[Zg] which consists of the complete contraction:

contr(Ω1 ⊗∇c∇f1...fα

jb+1...jb+b′
∆α′

Ω2 ⊗∇c∇f1...fαjb+b′+1...jb+b′+b′′
∆α′′

Ω3⊗

∆φ1 . . .∇
jx

b+b′+b′′ φu)
(3.15)

(notice that silly+[Zg] = 0), we derive that the coefficient of (3.14) must vanish.
Thus, we have shown our claim in this second subcase also. 2

The case p = 2, σ2 = 1: Recall that in this case we fall under the special
case when n = 2u + 2µ. In this setting, we will have that in each index set
Lz, z ∈ Z ′

Max (see the statement of Lemma 3.5 in [6]) there is a unique µ-tensor
field of maximal refined double character in (1.7), where the two indices k, l in the
factor S∗∇(ν)Rijkl will be contracting against one of the factors ∇(A)Ω1,∇(B)Ω2

(wlog we may assume that they are contracting against different factors). But
now, recall that since we are considering case A of Lemma 3.5 in [6], one of
the factors ∇(A)Ω1,∇(B)Ω2 will have at least two free indices. Hence, in at
least one of the factors ∇(A)Ω1,∇(B)Ω2, the index k, l is removable (meaning
that it can be erased, and we will be left with an acceptable tensor field). We

denote by C
l,i1...iµiµ+1
g the tensor field that arises from C

l,i1...iµ
g by erasing the

aforementioned k, l and making k or l into a free index, we then observe that:

Cl,i1...iµ
g −Xdiviµ+1C

l,i1...iµiµ+1
g = 0 (3.16)

(modulo complete contractions of length ≥ σ+u+1). This completes the proof
of our claim. 2
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