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The decomposition of global conformal invariants

IV: A proposition on local Riemannian invariants.

Spyros Alexakis∗

Abstract

This is the fourth in a series of papers where we prove a conjecture of
Deser and Schwimmer regarding the algebraic structure of “global confor-
mal invariants”; these are defined to be conformally invariant integrals of
geometric scalars. The conjecture asserts that the integrand of any such
integral can be expressed as a linear combination of a local conformal
invariant, a divergence and of the Chern-Gauss-Bonnet integrand.

The present paper lays out the second half of this entire work: The
second half proves certain purely algebraic statements regarding local Rie-
mannian invariants; these were used extensively in [3, 4]. These results
may be of independent interest, applicable to related problems.
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1 Introduction

This is the fourth in a series of papers [3, 5, 6, 7, 8] where we prove a conjecture
of Deser-Schwmimmer [18] regarding the algebraic structure of global conformal
invariants. We recall that a global conformal invariant is an integral of a natural
scalar-valued function of Riemannian metrics,

∫

Mn P (g)dVg , with the property
that this integral remains invariant under conformal re-scalings of the underlying
metric.1 More precisely, P (g) is assumed to be a linear combination, P (g) =
∑

l∈L alC
l(g), where each Cl(g) is a complete contraction in the form:

contrl(∇(m1)R ⊗ · · · ⊗ ∇(ms)R); (1.1)

here each factor ∇(m)R stands for the mth iterated covariant derivative of the
curvature tensor R. ∇ is the Levi-Civita connection of the metric g and R is
the curvature associated to this connection. The contractions are taken with
respect to the quadratic form gij . In this series of papers we prove:

Theorem 1.1 Assume that P (g) =
∑

l∈L alC
l(g), where each Cl(g) is a com-

plete contraction in the form (1.1), with weight −n. Assume that for every
closed Riemannian manifold (Mn, g) and every φ ∈ C∞(Mn):

∫

Mn

P (e2φg)dVe2φg =

∫

Mn

P (g)dVg .

We claim that P (g) can then be expressed in the form:

P (g) = W (g) + diviT
i(g) + Pfaff(Rijkl).

Here W (g) stands for a local conformal invariant of weight −n (meaning that
W (e2φg) = e−nφW (g) for every φ ∈ C∞(Mn)), diviT

i(g) is the divergence of
a Riemannian vector field of weight −n + 1, and Pfaff(Rijkl) is the Pfaffian of
the curvature tensor.

1See the introduction of [3] for a detailed discussion of the Deser-Schwimmer conjecture,
and for background on scalar Riemannian invariants.
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We now discuss the position of the present paper in this series.
We recall from the introduction of [3] that this series of papers can be natu-

ally subdivided into two parts: Part I (consisting of [3, 4, 5]) proves the Deser-
Schwimmer conjecture, subject to establishing certain “Main algebraic Propo-
sitions”, namely Proposition 5.2 in [3] and Propositions 3.1, 3.2 in [4]. Part II,
consisting of the present paper and [7, 8] prove these main algebraic propositions.

The first task that we undertake in the present paper is to reduce the “main
algebraic Propositions” in [3, 4] to a single Proposition, 2.1 below, which we
call the “fundamental Proposition 2.1” and which will be proven by an elabo-
rate induction on four parameters. This fundamental Proposition is actually a
generalization of the “Main algebraic Propositions” in [3, 4], in the sense that
the “Main algebraic Propositions” are special cases of Proposition 2.1; in fact
they are the ultimate or penultimate steps of the aforementioned induction with
respect to certain of the parameters.

An outline of the goals of the papers [6, 7, 8]: The main goal in the
present paper is to introduce Proposition 2.1 below, which will imply the “main
algebraic Propositions” in [3, 4], and then to reduce the inductive step in the
proof of Proposition 2.1 to three Lemmas, 3.1, 3.2, 3.5 below (along with two
preparatory claims needed for Lemma 3.5, namely Lemmas 3.3, 3.4): We prove
in the present paper that the three Lemmas 3.1, 3.2, 3.5 imply the inductive
step of Proposition 2.1, apart from certain special cases. In this derivation we
employ certain technical Lemmas.2 In the next paper in the series, [7] we derive
the inductive step of Proposition 2.1 in the special cases, and we also provide
a proof of the aforementioned technical Lemmas. Thus, the present paper and
[7] reduce the task of proving the Deser-Schwimmer conjecture to proving the
Lemmas 3.1–3.5 below.

Then, Lemmas 3.1–3.5 are proven in the final paper in this series, [8].

Outline of the “Fundamental Proposition 2.1”: In section 2 we set up
the considerable notational and language conventions needed to state our funda-
mental Proposition 2.1; we then state the fundamental Proposition and explain
how the “main algebraic Propositions” 5.2 and 3.1, 3.2 in [3, 4] are special cases
of it. We also explain how the fundamental Proposition will be proven via an
induction on four parameters. In section 3 we distinguish three cases I,II,III on
the hypothesis of Proposition 2.1 and claim three Lemmas, 3.1, 3.2, 3.5 which
correspond to these three cases. Finally in section 4 we prove that these three
Lemmas imply Proposition 2.1.3 In section 4 we also assert certain important
technical Lemmas which will also be used in the subequent papers in this series;
some of these technical papers are proven in the present paper and some in [7].

2(More on this in the outline of the present paper below).
3We make use of the inductive assumption of Proposition 2.1 in this derivation.
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Now, since the fundamental proposition is very complicated to even write
out, we reproduce here the claim of the first “main algebraic Proposition” from
[3], for the reader’s convenience. As explained above, this first “main algebraic
Proposition” is a special case of Proposition 2.1 below.

A simplified description of the main algebraic Proposition 5.2 in [3]: Given
a Riemannian metric g over an n-dimensional manifold Mn and auxilliary C∞

scalar-valued functions Ω1, . . . , Ωp defined over Mn, the objects of study are
linear combinations of tensor fields

∑

l∈L alC
l,i1...iα
g , where each Cl,i1...iα

g is a
partial contraction with α free indices, in the form:

pcontr(∇(m)R ⊗ · · · ⊗ ∇(ms)R ⊗∇(b1)Ω1 ⊗ · · · ⊗ ∇(bm)Ωp); (1.2)

here ∇(m)R stands for the mth covariant derivative of the curvature tensor R,4

and ∇(b)Ωh stands for the bth covariant derivative of the function Ωh. A partial
contraction means that we have list of pairs of indices (a, b), . . . , (c, d) in (1.2),
which are contracted against each other using the metric gij . The remaining
indices (which are not contracted against another index in (1.2)) are the free
indices i1 , . . . , iα

.
The “main algebraic Proposition” of [3] (roughly) asserts the following: Let

∑

l∈Lµ
alC

l,i1...iµ
g stand for a linear combination of partial contractions in the

form (1.2), where each C
l,i1...iµ
g has a given number σ1 of factors and a given

number p of factor ∇(b)Ωh. Assume also that σ1 + p ≥ 3, each bi ≥ 2,5 and

that for each pair of contracting indices (a, b) in any given C
l,i1...iµ
g , the indices

a, b do not belong to the same factor. Assume also the rank µ > 0 is fixed

and each partial contraction C
l,i1...iµ
g , l ∈ Lµ has a given weight −n + µ.6 Let

also
∑

l∈L>µ
alC

l,i1...iyl
g stand for a (formal) linear combination of partial con-

tractions of weight −n + yl, with all the properties of the terms indexed in Lµ,
except that now all the partial contractions have a different rank yl, and each
yl > µ.

The assumption of the “main algebraic Proposition” is a local equation:

∑

l∈Lµ

alXdivi1 . . . Xdiviµ
Cl,i1...iµ

g +
∑

l∈L>µ

alXdivi1 . . .Xdiviyl
C

l,i1...iyl
g = 0,

(1.3)
which is assumed to hold modulo complete contractions with σ+1 factors. Here
given a partial contraction Cl,i1...iα

g in the form (1.2) Xdivis
[Cl,i1...iα

g ] stands for

sum of σ − 1 terms in divis
[Cl,i1...iα

g ] where the derivative ∇is is not allowed to
hit the factor to which the free index is

belongs.7

4In other words it is an (m + 4)-tensor; if we write out its free indices it would be in the

form ∇
(m)
r1...rmRijkl.

5This means that each function Ωh is differentiated at least twice.
6See [3] for a precise definition of weight.
7Recall that given a partial contraction C

l,i1...iα
g in the form (1.2) with σ factors,

divis C
l,i1...iα
g is a sum of σ partial contractions of rank α − 1. The first summand arises

4



The main algebraic Proposition in [3] then claims that there will exist a

linear combination of partial contactions in the form (1.2),
∑

h∈H ahC
h,i1...iµ+1

g

with all the properties of the terms indexed in L>µ, and all with rank (µ + 1),
so that:

∑

l∈Lµ

alC
l,(i1...iµ)
g +

∑

h∈H

ahXdiviµ+1
Cl,(i1...iµ)iµ+1

g = 0; (1.4)

the above holds modulo terms of length σ + 1. Also the symbol (. . . ) means
that we are symmetrizing over the indices between parentheses.

The proof of the “fundamental Proposition 2.1” via an induction,
and a brief description of Lemmas 3.1,3.2,3.5:

The fundamental Proposition 2.1 is a generalization of Proposition 5.2 from
[3], in the sense that it deals with partial contractions in the form (1.2), which
in addition contain factors ∇φh;8 these are assumed to contract against the
different factors ∇(m)R,∇(p)Ωx according to a given pattern.9 The Proposition
2.1 also groups up the different partial contractions of minimum rank indexxed
in Lµ according to the distribution of the free indices among its different fac-
tors ∇(m)R,∇(p)Ωx.10 The claim of Proposition 2.1 is then an adaptation of
(1.4), restricted to a particular subset of the partial contractions indexed in
Lµ. A discussion of how the Proposition 2.1 is proven via an induction on
four parameters, as well as how the inductive step is reduced to the Lemmas
3.1, 3.2, 3.5 is provided in subsections 3.1 and 3.2. The reader is also refered to
those subsections for a more conceptual outline of the ideas in the present paper.

Before proceeding to give the strict formulation of the fundamental Propo-
sition, we digress to discuss the relationship of the whole work [3]–[8] and of
the papers [6]–[8] in particular with the study of local scalar Riemannian and
conformal invariants.

Broad Discussion: The theory of local invariants of Riemannian structures
(and indeed, of more general geometries, e.g. conformal, projective, or CR) has
a long history. As discussed in [3], the original foundations of this field were
laid in the work of Hermann Weyl and Élie Cartan, see [28, 17]. The task of
writing out local invariants of a given geometry is intimately connected with
understanding polynomials in a space of tensors with given symmetries; these
polynomials are required to remain invariant under the action of a Lie group
on the components of the tensors. In particular, the problem of writing down

by adding a derivative ∇is onto the first factor T1 and then contracting the upper index is

against the free index is ; the second summand arises by adding a derivative ∇is onto the
second factor T2 and then contracting the upper index is against the free index is etc.

8See the forms (2.1), (2.2) below.
9This encoding is described by the notions of weak and simple character–see the informal

discussion after Definition 2.3.
10This encoding is described by the notions of double and refined double character–see the

informal discussion after Definition 2.3.
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all local Riemannian invariants reduces to understanding the invariants of the
orthogonal group.

In more recent times, a major program was laid out by C. Fefferman in
[20] aimed at finding all scalar local invariants in CR geometry. This was mo-
tivated by the problem of understanding the local invariants which appear in
the asymptotic expansion of the Bergman and Szegö kernels of strictly pseudo-
convex CR manifolds, in a similar way to which Riemannian invariants appear
in the asymptotic expansion of the heat kernel; the study of the local invariants
in the singularities of these kernels led to important breakthroughs in [11] and
more recently by Hirachi in [25]. This program was later extended to conformal
geometry in [21]. Both these geometries belong to a broader class of structures,
the parabolic geometries; these admit a principal bundle with structure group a
parabolic subgroup P of a semi-simple Lie group G, and a Cartan connection
on that principle bundle (see the introduction in [15]). An important question
in the study of these structures is the problem of constructing all their local
invariants, which can be thought of as the natural, intrinsic scalars of these
structures.

In the context of conformal geometry, the first (modern) landmark in un-
derstanding local conformal invariants was the work of Fefferman and Graham
in 1985 [21], where they introduced the ambient metric. This allows one to
construct local conformal invariants of any order in odd dimensions, and up to
order n

2 in even dimensions. The question is then whether all invariants arise
via this construction.

The subsequent work of Bailey-Eastwood-Graham [11] proved that this is
indeed true in odd dimensions; in even dimensions, they proved that the re-
sult holds when the weight (in absolute value) is bounded by the dimension.
The ambient metric construction in even dimensions was recently extended by
Graham-Hirachi, [24]; this enables them to identify in a satisfactory way all lo-
cal conformal invariants, even when the weight (in absolute value) exceeds the
dimension.

An alternative construction of local conformal invariants can be obtained
via the tractor calculus introduced by Bailey-Eastwood-Gover in [10]. This
construction bears a strong resemblance to the Cartan conformal connection,
and to the work of T.Y. Thomas in 1934, [27]. The tractor calculus has proven to
be very universal; tractor buncles have been constructed [15] for an entire class
of parabolic geometries. The relation betweeen the conformal tractor calculus
and the Fefferman-Graham ambient metric has been elucidated in [16].

The present work [3]–[8], while pertaining to the question above (given that
it ultimately deals with the algebraic form of local Riemannian and conformal
invariants), nonetheless addresses a different type of problem: We here con-
sider Riemannian invariants P (g) for which the integral

∫

Mn P (g)dVg remains
invariant under conformal changes of the underlying metric; we then seek to un-
derstand the possible algebraic form of the integrand P (g), ultimately proving
that it can be de-composed in the way that Deser and Schwimmer asserted. It is
thus not surprising that the prior work on the construction and understanding
of local conformal invariants plays a central role in this endeavor, in the papers
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[4, 5].
On the other hand, as explained above, a central element of our proof is

the (roughly outlined above) “fundamental Proposition 2.1”,11 which deals ex-
clusively with algebraic properties of the classical scalar Riemannian invari-
ants.12 The “fundamental Proposition 2.1” makes no reference to integration;
it is purely a statement concerning algebraic properties of local Riemannian in-
variants. While the author was led to led to the main algebraic Propositions in
[3, 4] out of the strategy that he felt was necessary to solve the Deser-Schwimmer
conjecture, they can be thought of as results with an independent interest. The
proof of these Propositions, presented in the present paper and in [7, 8] is in
fact not particularly intuitive. It is the author’s sincere hope that deeper insight
(and hopefuly a more intuitive proof) will be obtained in the future as to why
these algebraic Propositions hold.

2 The fundamental Proposition.

In order to state and prove the fundamental proposition we will need to intro-
duce a lot of terminology.

2.1 Definitions and Terminology.

We will be considering (complete or partial) contractions Ci1...iα
g (Ω1, . . . , Ωp, φ1, . . . , φu)

of length σ + u (with no internal contractions) in the form:

pcontr(∇(m1)Rijkl ⊗ · · · ⊗ ∇(ms)Rijkl⊗

∇(b1)Ω1 ⊗ · · · ⊗ ∇(bp)Ωp ⊗∇φ1 ⊗ · · · ⊗ ∇φu);
(2.1)

here σ = s+p and i1 , . . . , iα
are the free indices in Ci1...iα

g (Ω1, . . . , Ωp, φ1, . . . , φu).

Definition 2.1 Any (complete or partial) contraction in the form (2.1) will be
called acceptable if:

1. Each of the free indices must belong to a factor ∇(m)Rijkl or ∇(b)Ωh.

2. Each of the factors ∇φh is contracting against a factor ∇(m)Rijkl or
∇(a)Ωf .

3. Each of the factors ∇(a)Ωf should satisfy a ≥ 2.

More generally, we will also be considering tensor fields
Ci1...iα

g (Ω1, . . . , Ωp, φz1
, . . . , φzu

, φ′
zu+1

, . . . , φ′
zu+d

, φ̃zu+d+1
, . . . , φ̃zu+d+y

) of length

σ + u (with no internal contractions) in the form:13

11This Proposition is a generalization of the main algebraic Propositions 5.1, 3.1, 3.2 in
[3, 4].

12We refer the reader to the introuction of [3] for a detailed discussion of these.
13We recall that S∗∇

(ν)
r1...rν Rijkl stands for the symmetrization of the tensor ∇

(ν)
r1...rν Rijkl

over the indices r1
, . . . , rν , j .
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pcontr(∇(m1)Rijkl ⊗ · · · ⊗ ∇(mσ1
)Rijkl⊗

S∗∇
(ν1)Rijkl ⊗ · · · ⊗ S∗∇

(νt)Rijkl⊗

∇(b1)Ω1 ⊗ · · · ⊗ ∇(bp)Ωp⊗

∇φz1
· · · ⊗ ∇φzw

⊗∇φ′
zw+1

⊗ · · · ⊗ ∇φ′
zw+d

⊗ · · · ⊗ ∇φ̃zw+d+1
⊗ · · · ⊗ ∇φ̃zw+d+y

).

(2.2)

Here, the functions φ̃a, φ′
b are the same as the functions φa, φb. The symbols˜and

′ are used only to illustrate the kind of indices that these factors are contracting
against (we will explain this in the next definition).

The notion of acceptability for contractions in the form (2.2) is a generaliza-
tion of Definition 2.1:

Definition 2.2 We will call a (complete or partial) contraction in the form
(2.2) acceptable if the following conditions hold:

1. {z1, . . . , zw+d+y} = {1, . . . , u}. Also, each of the free indices must belong
to a factor ∇(m)Rijkl, ∇(b)Ωh or S∗∇

(ν)Rijkl. In addition, the factors
∇(b)Ωf must have b ≥ 2.

2. The factors ∇φh,∇φ′
h,∇φ̃h contract according to the following pattern:

Each of the factors ∇φh is contracting against a derivative index in a
factor ∇(m)Rijkl or ∇(b)Ωf . Each of the factors φ̃h must be contracting
against the index i of some factor S∗∇(ν)Rijkl. Conversely, each index i

in any factor S∗∇(ν)Rijkl must contract against some factor ∇φ̃h. Lastly,

each factor ∇φ′
h is contracting against some factor S∗∇

(ν)
r1...rν Rijkl, but

necessarily against one of the indices r1
, . . . , rν

, j.

Definition 2.3 For any (complete or partial) contraction in the form (2.1) or
(2.2), we define its real length to be the number of its factors if we exclude the
factors ∇φh, ∇φ̃h, ∇φ′

h. (So for contractions in the form (2.2) the real length
is σ1 + t + p).

We now introduce the notions of weak, simple, double and refined-double
characters for acceptable contractions Ci1...ia

g in the form (2.2). Since these
definitions are rather technical, we give the gist of these notions here: The
weak character encodes the pattern of which factors in Ci1...ia

g the various terms
∇φh, h = 1, . . . , u are contracting against. The simple character encodes the
above, but also encodes whether each given factor ∇φh that contracts against
a factor T = S∗∇

(ν)Rijkl is contracting against the index i, or one of the
indices r1

, . . . , rν
, j . The double character encodes the simple character, but

also encodes how the free indices are distributed among the different factors in
Ci1...ia

g (i.e. how many free indices belong to each factor). Finally, the refined

8



double character encodes the same information as the double character, but also
encodes whether the free indices are special indices.14

Now we present the proper definitions of the different notions of “character”.

Definition 2.4 Consider any acceptable complete or partial contraction in ei-
ther of the forms (2.1) or (2.2). The weak character ~κweak is defined to be a
pair of two lists of sets: (L1, L2). L1 stands for the list (S1, . . . , Sp) where each
St stands for the set of numbers r for which ∇φr contracts against the factor
∇(bt)Ωt. L2 stands for the list of sets (S1, . . . , Sσ−p) where each St stands for
the set of numbers r for which ∇φr contracts against the tth curvature factor
in (2.1) or (2.2) (in the latter case the curvature factor may be in the form
∇(m)Rijkl or S∗∇(ν)Rijkl).

Definition 2.5 Consider complete or partial contractions in the form (2.2); we
define the simple character ~κsimp to be a triplet of lists: (L1, L2, L3).

L1 is as above. L2 stands for the list of of sets (S1, . . . , Sσ1
) where each

St stands for the set of numbers r for which ∇φr contracts against the tth

factor ∇(mt)Rijkl in the first line of (2.2). L3 is a sequence of pairs of sets:
L3 = [({α1}, S1), . . . , ({αt}, St)], where αw stands for the one number for which
the index i in the wth factor in the second line of (2.2) is contracting against
the factor ∇φ̃aw

. Sw stands for the set of numbers r for which the wth factor
is contracting against the factors ∇φ′

r in (2.2).

Now, we define the double character. We note that this notion is defined for
tensor fields in the form (2.2) that do not have both indices i, j or k, l in a factor
∇(m)Rijkl or S∗∇(ν)Rijkl being free.

Definition 2.6 Consider complete or partial contractions in the form (2.2);
we define the double character to be the union of two triplets of lists: ~κdoub =
(L1, L2, L3)|(H1, H2, H3). Here L1, L2, L3 are as above. H1 stands for the list
(h1, . . . , hp), where ht stands for the number of free indices that belong to the
factor ∇(bt)Ωt. H2 stands for the list of numbers (h1, . . . , hσ1

), where each hi

stands for the number of free indices that belong to the ith factor in the first line
of (2.2). H3 stands for the set of numbers (h1, . . . , ht) where hu stands for the
number of free indices that belong to the uth factor on the second line of (2.2).

Now, one more definition before stating our main Proposition for the present
paper. We will be defining the refined double character of tensor fields in the
form (2.2). For that purpose, we will be paying special attention to the free
indices if

that are internal indices in some factor ∇(m)Rijkl or are one of the

indices k, l in one of the factors S∗∇(ν)Rijkl . We will be calling those free indices
special free indices.

Definition 2.7 Consider complete or partial contractions in the form (2.2);
we define its refined double character to be the union of two triplets of sets:

14Meaning that they are internal indices in some ∇(m)Rijkl or indices k, l in some

S∗∇(ν)Rijkl.
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~κref−doub = (L1, L2, L3)|(H1, H̃2, H̃3) where the sets L1, L2, L3, H1 are as be-
fore, whereas:

H̃2 stands for the list of sets (h̃1, . . . h̃σ1
) where h̃k stands for the following:

If the kth factor ∇(m)Rijkl has no special free indices then h̃k = hk (same as for

the double character). If it contains one special free index then h̃k = {hk}
⋃

{∗}.
Finally, if it contains two special free indices then h̃k = {hk}

⋃

{∗∗}.
H̃3 stands for the list of sets (h̃1, . . . h̃σ2

) where h̃k stands for the following: If
the kth factor S∗∇(ν)Rijkl has no special free indices then h̃k = hk (same as for

the double character). If it contains one special free index then h̃k = {hk}
⋃

{∗}.
The elements {∗∗}, {∗} above will be called marks.

Now, we will introduce a notion of equivalence for the characters (weak,
simple, double or refined double) of tensor fields.

Definition 2.8 We say that two (complete or partial) contractions in the form
(2.2) have equivalent (simple, double or refined double) characters if their (sim-
ple, double or refined double) characters can be made equal by permuting factors
among the first two lines of (2.2).

More generally, we will say that two (complete or partial) contractions in the
more general form (2.1) (possibly of different rank) have equivalent weak char-
acters if we can permute their curvature factors and make their weak characters
equal.

We thus see that the various “characters” we have defined can be thought
of as abstract lists, which are equipped with a natural notion of equivalence.
We note that we will occasionally be speaking of a (weak, simple, double or
refined double) character abstractly, without specifying a (complete or partial)
contraction or tensor field that it represents. Furthermore, we have seen that
the notions of weak, simple, double and refined double characters are graded,
in the sense that each of these four notions contains all the information of the
previous ones. Now, given a simple character ~κsimp we define Weak(~κsimp) to
stand for the weak character that corresponds to that simple character. Anal-
ogously, given any refined double character ~κref−doub, we let Simp(~κref−doub)
stand for the simple character that corresponds to that refined double character
and also Weak(~κref−doub) to stand for the weak character that corresponds to
that refined double character.

Now, we will introduce a weak notion of ordering for simple and refined
double characters. This notion is “weak” in the sense that we will be specifying
a particular simple or refined double character ~κsimp and ~κref−doub respectively,
and we will define what it means for complete or partial contractions (in the
form (2.1) or (2.2)) to be subsequent to ~κsimp and ~κref−doub respectively. This
relation is not transitive.

Definition 2.9 Given any contraction in the form (2.2), we consider any sim-
ple character ~κsimp or refined double character ~κref−doub and we let the defining
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set Def(~κsimp), Def(~κref−doub) to be the set of numbers r for which ∇φ̃r is
contracting against an internal index i in some factor S∗∇(ν)Rijkl.

We now consider any general complete contraction Cg(Ω1, . . . , Ωp, φ1, . . . , φu,

φ′
u+1, . . . , φ

′
u+d, φ̃u+d+1, . . . , φ̃u+d+y) or partial contraction Ci1...ia

g in the form
(2.1) or (2.2), with a weak character Weak(~κsimp) or Weak(~κref−doub) respec-
tively. We say that Cg or Ci1...ia

g is simply subsequent to ~κsimp or ~κref−doub if
for at least one number ν ∈ Def(~κsimp) (or ν ∈ Def(~κref−doub)), the factor

∇φ̃ν in Cg or Ci1...ia
g is contracting against a derivative index. This terminology

extends to linear combinations.

Now, we will introduce a partial ordering among refined double characters
~κh with Simp(~κh) = ~κsimp, where ~κsimp is a fixed simple character. To do this,
some more notation is needed:

For a given tensor field in the form (2.2), with a refined double character
~κref−doub, we define Def∗(~κref−doub) to stand for the subset of Def(~κref−doub)

which consists of those numbers aw for which ∇φ̃aw
contracts against a factor

S∗∇(ν)Rijkl where one of the indices k or l is a free index.

Definition 2.10 We compare two refined double characters ~κ1, ~κ2 with
Simp(~κ1) = Simp(~κ2) according to their ∗-decreasing rearrangements, which
means the following:

By a ∗-decreasing rearrangement of any refined double character, we mean
the rearrangement of the lists H̃2, H̃3 (see Definition 2.7 above) so that the el-
ements in H̃2 with a mark {∗∗} must come first (and the elements with such
factors are arranged in decreasing rearrangement). Then among the rest of the
elements, the ones with a mark {∗} must come first (and the elements with such
a mark are arranged in decreasing rearrangement). Then, the elements without
a mark will come in the end, arranged in decreasing rearrangement. Further-
more, for the lists H̃3 ∗-decreasing rearrangement means that the elements in H̃3

corresponding to a factor S∗∇(ν)Rijkl which is contracting against some factor
∇φ′

h in ~κsimp will come first in the list (and they are arranged in decreasing rear-
rangement), and then come the elements corresponding to a factor S∗∇

(ν)Rijkl

which are not contracting against any factor ∇φ′
h in ~κsimp, and those are also

arranged in decreasing rearrangement.
Now, to compare the refined double characters ~κ1, ~κ2 according to their ∗-

decreasing rearrangements means that we take their lists H̃3 in ∗-decreasing
rearrangement (see above) and order them lexicographically according to these
rearranged lists. If they are still equivalent, we take the lists H̃2 in ∗-decreasing
rearrangement and order them lexicographically. If they are still equivalent, we
take the decreasing rearrangement of the lists H1 and compare them lexicograph-
ically. “Lexicographically” here means that we compare the first elements in the
∗-rearranged lists, then the second etc. The list with the first larger element is
precedent (the converse of “subsequent”) to the other list.

If ~κ1, ~κ2 are still equivalent after all these comparisons, we say that the
refined double characters ~κ1, ~κ2 are “equipolent”. We remark that two refined
double characters ~κ1, ~κ2 can be equipolent withount being the same.
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A final note before stating our proposition. We remark that in the definition
of simple or of weak character, the rank of the tensor field plays no role. On
the other hand, in the definitions of double character and of refined double
character, the rank of the tensor fields does play a role: Two double characters
or two refined double characters cannot be equivalent if the tensor fields do not
have the same rank. We will then extend the notion of double character and
refined double character as follows: We consider any tensor field Ci1...iβ in the
form (2.2), and also any number α ≤ β. We then define the α-double character
or the α-refined double character of Ci1...iβ in the same way as for definitions
2.5 and 2.6, with the extra restriction that whenever we refer to a free index id

,
we will mean that d ≤ α. We notice that with this new definition, we can have
two tensor fields Ci1...iβ , Ci1...iα with α < β, so that the double character of
Ci1...iα and the α-double character of Ci1...iβ are equivalent. The same is true
of refined double characters. We note that this notion depends on the order of
the free indices in Ci1...iβ .

Furthermore, we note that we will sometimes be referring to a u-simple
character ~κsimp to stress that the information encoded will refer to the u fac-
tors ∇φ1, . . . ,∇φu. Analogously, we will sometimes refer to a (u, µ)-refined
double character to stress that the information encoded refers to the u factors
∇φ1, . . . ,∇φu and the µ free indices i1 , . . . , iµ

.

Forbidden Cases: Now, we introduce a last definition of certain “forbid-
den cases” in which the Proposition 2.1 will not apply. Firstly we introduce a
definition.

Definition 2.11 Given a simple character ~κsimp and any factor T = S∗∇
(ν)Rijkl

in ~κsimp, we will say that T is simple if it is not contracting against any factors
∇φ′

h in ~κsimp.
Also, given a factor T = ∇(B)Ωk, we will say that T is simple if it is not

contracting against any factor ∇φh in ~κsimp.

We recall that σ2 stands for the number of factors S∗∇(ν)Rijkl in ~κsimp.

Definition 2.12 A tensor field in the form (2.2) will be called “forbidden” only
when σ2 > 0, under the following additional restrictions:

If σ2 = 1, it will be forbidden if:

1. Any factor ∇(m)Rijkl must have all its derivative indices contracting against
factors ∇φx and contain no free indices.

2. Any factor ∇(p)Ωh must have p = 2, be simple, and contain no free indices.

3. The factor S∗∇(ν)Rijkl must have ν = 0, be simple, and contain exactly
one (special) free index.

If σ2 > 1, it will be forbidden if:

1. Any factor ∇(m)Rijkl must have all its derivative indices contracting against
factors ∇φx ans contain at most one (necesarily special) free index.
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2. Any factor ∇(p)Ωh must have p = 2. If it is simple, it can contain at most
one free index; if it is non-simple, then it must contract against exactly
one factor ∇φh and contain no free indices.

3. The factor S∗∇(ν)Rijkl must have ν = 0, be simple, and contain at most
one free index. Moreover at least one of the factors S∗Rijkl must contain
a special free index.

Finally, we note that in stating Proposition 2.1 we will be formally consid-
ering linear combinations of tensor fields of different ranks.

Proposition 2.1 Consider two linear combinations of acceptable tensor fields
in the form (2.2):

∑

l∈Lµ

alC
l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu),

∑

l∈L>µ

alC
l,i1...iβl
g (Ω1, . . . , Ωp, φ1, . . . , φu),

where each tensor field above has real length σ ≥ 3 and a given simple character
~κsimp. We assume that for each l ∈ L>µ, βl ≥ µ+1. We also assume that none
of the tensor fields of maximal refined double character in Lµ are “forbidden”
(see Definition (2.12)).

We denote by
∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, φ1, . . . , φu)

a generic linear combination of complete contractions (not necessarily accept-
able) in the form (2.1) that are simply subsequent to ~κsimp.

15 We assume that:

∑

l∈Lµ

alXdivi1 . . .Xdiviµ
Cl,i1...iα

g (Ω1, . . . , Ωp, φ1, . . . , φu)+

∑

l∈L>µ

alXdivi1 . . .Xdiviβl
C

l,i1...iβl
g (Ω1, . . . , Ωp, φ1, . . . , φu)+

∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, φ1, . . . , φu) = 0.

(2.3)

We draw our conclusion with a little more notation: We break the index set
Lµ into subsets Lz, z ∈ Z, (Z is finite) with the rule that each Lz indexes tensor
fields with the same refined double character, and conversely two tensor fields
with the same refined double character must be indexed in the same Lz. For
each index set Lz, we denote the refined double character in question by ~Lz.

15Of course if Def(~κsimp) = ∅ then by definition
P

j∈J · · · = 0.
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Consider the subsets Lz that index the tensor fields of maximal refined double
character.16 We assume that the index set of those z’s is ZMax ⊂ Z.

We claim that for each z ∈ ZMax there is some linear combination of ac-
ceptable (µ + 1)-tensor fields,

∑

r∈Rz

arC
r,i1...iα+1

g (Ω1, . . . , Ωp, φ1, . . . , φu),

where each C
r,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu) has a µ-double character ~Lz
1 and

also the same set of factors S∗∇
(ν)Rijkl as in ~Lz contain special free indices, so

that:

∑

l∈Lz

alC
l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ

υ−

∑

r∈Rz

arXdiviµ+1
Cr,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ
υ =

∑

t∈T1

atC
t,i1...iµ
g (Ω1, . . . , Ωp, , φ1, . . . , φu)∇i1υ . . .∇iµ

υ,

(2.4)

modulo complete contractions of length ≥ σ + u + µ + 1. Here each

Ct,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)

is acceptable and is either simply or doubly subsequent to ~Lz.17

Trivial observation: We recall that when a tensor field is acceptable, then
by definition it does not have two free indices (say iq

, iw
) that are indices i, j

or k, l in the same curvature factor. Thus, such tensor fields are not allowed
in our Proposition hypothesis, (2.3). Nonetheless, the conclusion of the above
Proposition would still be true if we did allow such tensor fields: It suffices to
observe that this sublinear combination would vanish both in the hypothesis of
our Proposition and in its conclusion. This is straightforward, by virtue of the
antisymmetry of those indices.

Now, Proposition 2.1 has a Corollary which will be used more often than
the Proposition itself:

Corollary 1 Assume equation (2.3) (and again assume that the maximal re-
fined double characters appearing there are not “forbidden”). We then claim
that there is a linear combination of acceptable (µ + 1)-tensor fields

∑

h∈H

ahCh,i1,...,iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)

16Note that in any set S of µ-refined double characters with the same simple character there
is going to be a subset S′ consisting of the maximal refined double characters.

17Recall that “simply subsequent” means that the simple character of C
t,i1...iµ
g is subsequent

to Simp(~Lz).
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with simple character ~κsimp, so that:

∑

l∈Lµ

alC
l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ

υ+

∑

h∈H

ahXdiviµ+1
Ch,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ
υ =

∑

t∈T

atC
t,i1,...,iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ

υ,

(2.5)

modulo complete contractions of length ≥ σ + u + µ + 1. Here the right hand
side stands for a generic linear combination of acceptable tensor fields that are
simply subsequent to ~κsimp.

Proof that Corollary 1 follows from Proposition 2.1.

We will prove our claim by an induction.
We consider all the (u, µ)-double characters ~κ with the property that

Simp(~κ) = ~κsimp. It follows by definition that there is a finite number of such re-

fined double characters, so we denote their set by {Doub1( ~Lµ), . . . , DoubU ( ~Lµ)}.
We view the above as an ordered set, with the additional restriction that for
each a, b, 1 ≤ a < b ≤ U Douba( ~Lµ) is not doubly subsequent to Doubb( ~Lµ).
Accordingly, we break the index set Lµ into subsets L1, . . . , LU (where if l ∈ Lt

then C
l,i1...iµ
g has a refined double character Doubt( ~Lµ)).

We then claim the following inductive statement: We inductively assume
that for some f, 1 ≤ f ≤ U , we have shown that there is a linear combination
of acceptable (µ + 1)-tensor fields with simple characters ~κsimp, say

∑

h∈H′′

ahCl,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu),

so that:

∑

w≤f

∑

l∈Lw

alC
l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ

υ−

∑

h∈H′′

ahXdiviµ+1
Cl,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ
υ =

U
∑

w=f+1

∑

d∈Dw

adC
d,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ

υ+

∑

t∈T

atC
t,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ

υ,

(2.6)

where each Cd,i1...iµ , d ∈ Dw has a refined double character Doubw(~L). Write:
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U
∑

w=f+1

∑

l∈Lw

alC
l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)

+

U
∑

w=f+1

∑

d∈Dw

adC
d,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)

=

U
∑

w=f+1

∑

y∈Y w

ayC
y,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu),

(2.7)

where the index sets Y w stand for the index sets that arise when we group up
all the acceptable µ-tensor fields of the same refined double character. We then
claim that for w = f +1 we have that there is a linear combination of acceptable
(µ + 1)-tensor fields, say

∑

h∈H′′′

ahCl,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu),

so that:

∑

y∈Y f+1

ayC
y,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ

υ−

∑

h∈H′′′

ahXdiviµ+1
Cl,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ
υ =

∑

t∈T

atC
t,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ

υ+

∑

k>f+1

∑

y∈Y k

ayCy,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ

υ.

(2.8)

It is clear that if we can show the above, then since the set {Doub1( ~Lµ), . . . ,

DoubU ( ~Lµ)} is finite, we will have shown our corollary.
But (2.8) is not difficult to show: Since (2.6) holds formally we can replace

the ∇υs by Xdivs (see the last Lemma in the Appendix of [3]) and substitute
into (2.3) to obtain:

U
∑

w=f+1

∑

y∈Y w

ayXdivi1 . . .Xdiviµ
Cy,i1...iµ

g (Ω1, . . . , Ωp, φ1, . . . , φu)+

+
∑

h∈H

ahXdivi1 . . . Xdiviµ
Xdiviµ+1

Cl,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)+

∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, φ1, . . . , φu) = 0.

(2.9)
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Because the sum in the first line of (2.9) starts at w = f + 1, it follows
that one of the maximal sublinear combinations in the first line of (2.9) is the
sublinear combination

∑

y∈Y f+1

ayCy,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu).

Therefore, (2.8) follows immediately from the conclusion of Proposition 2.1.
2

2.2 The main algebraic Propositions in [3, 4] follow from
Corollary 1.

We will now show how Proposition 5.1 in [3] and Propositions 3.1, 3.2 in [4]
follow from Corollary 2.1. Proposition 5.1 in [3] and Proposition 3.1 in [4] follow
immediately from Corollary 1: Observe that in case of Proposition 5.2 in [3], the
simple character of the tensor fields in the equation (2.3) just encodes the fact
that there are σ1 factors ∇(m)Rijkl and p factors ∇(y)Ωh, h = 1, . . . , p; in the
setting of Proposition 3.1 in [4] it additionaly encodes the fact that the tensor
fields also contain a factor ∇φ (= ∇φ1) which either contracts against a factor
∇(y)Ω or against a derivative index of a factor ∇(m)Rijkl, for each of the tensor
fields in the hypothesis of that Proposition. There are no factors S∗∇

(ν)Rijkl in
this setting, thus

∑

j∈J aj · · · = 0, both in the hypothesis and in the conclusion
of Corollary 1. Thus, the claims of these two Propositions follow directly from
the conclusion of Corollary 1 by just replacing the expression ∇i1υ . . .∇iµ

υ by
a symmetrization over the indices i1 , . . . , iµ .18

On the other hand, in order to derive the Proposition 3.2 in [4] from Corollary
1, we have to massage the hypothesis of that Proposition in order make it fit with

the hypothesis of Corollary 1. For each tensor field C
l,i1...iµ
g (Ω1, . . . , Ωp, φ) and

C
l,i1...iβl
g (Ω1, . . . , Ωp, φ) in Proposition 3.2 in [4], we denote by C̃

l,i1...iµ
g (Ω1, . . . , Ωp, φ)

and C̃
l,i1...iβl
g (Ω1, . . . , Ωp, φ) the tensor fields that arise from them by formally

replacing the expression ∇
(m)
r1...rmRijkl∇

iφ by S∗∇
(m)
r1...rmRijkl∇

iφ. We then ob-
serve (by virtue of the second Bianchi identity) that:

Cl,i1...iµ
g (Ω1, . . . , Ωp, φ) = C̃l,i1...iµ

g (Ω1, . . . , Ωp, φ)+
∑

j∈J

ajC
j,i1...iµ
g (Ω1, . . . , Ωp, φ),

(2.10)

C
l,i1...iβl
g (Ω1, . . . , Ωp, φ) = C̃

l,i1...iβl
g (Ω1, . . . , Ωp, φ)+

∑

j∈J

ajC
j,i1...iβl
g (Ω1, . . . , Ωp, φ).

(2.11)

Notice that the tensor fields C̃
l,i1...iµ
g (Ω1, . . . , Ωp, φ), C̃

l,i1...iβl
g (Ω1, . . . , Ωp, φ) are

all in the form (2.2) and they all all have the same simple character, which we

18See the remark after the statement of Proposition 5.1 in [3].
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denote by ~κsimp. The complete contractions in
∑

j∈J aj . . . in the hypothesis
of Proposition 3.2 in [4] and the complete contractions in

Xdivi1 . . . Xdiviµ
C

j,i1...iµ
g (Ω1, . . . , Ωp, φ), Xdivi1 . . . Xdiviβl

C
j,i1...iβl
g (Ω1, . . . , Ωp, φ)

are all simply subsequent to ~κsimp.
Thus, replacing the above into the hypothesis of Proposition 3.2 in [4] we ob-

tain an equation to which Corollary 1 can be applied.19 We derive that there is a

linear combination of acceptable tensor fields,
∑

h∈H ahC
h,i1...iµ+1

g (Ω1, . . . , Ωp, φ)
in the form (2.2), each with a simple character ~κsimp so that:

∑

l∈L1

alC̃
l,(i1...iµ)
g (Ω1, . . . , Ωp, φ) − Xdiviµ+1

∑

h∈H

ahCh,(i1...iµ)iµ+1

g (Ω1, . . . , Ωp, φ) =

∑

j∈J

ajC
J,(i1...iµ)
g (Ω1, . . . , Ωp, φ).

(2.12)

Combined with equations (2.10), (2.11) above, (2.12) is precisely our desired
conclusion.

3 Proof of Proposition 2.1: Set up an induction
and reduce to Lemmas 3.1, 3.2, 3.5 below.

3.1 The proof of Proposition 2.1 via an induction:

We will prove Proposition 2.1 by a multiple induction on different parameters
(see the enumeration below). We re-write the hypothesis of the Proposition 2.1,
for reference purposes.

We are given two linear combinations of acceptable tensor fields in the form
(2.2) all with a given simple character ~κsimp. We have the linear combination:

∑

l∈Lµ

alC
l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu),

for which all the tensor fields have rank µ, and also the linear combination:

∑

l∈L\Lµ

alC
l,i1...ia
g (Ω1, . . . , Ωp, φ1, . . . , φu),

for which all the tensor fields have rank strictly greater than µ (we should denote
the rank by al > µ instead of a, to stress that the tensor fields in L \ Lµ have
different ranks–however we will write Cl,i1...ia

g , thus abusing notation). We are
assuming an equation:

19Notice that the extra requirement in Proposition 3.2 ensures that we do not fall under “a
forbidden case” of Corollary 1.
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∑

l∈Lµ

alXdivi1 . . . Xdiviµ
Cl,i1...iµ

g (Ω1, . . . , Ωp, φ1, . . . , φu)+

∑

l∈L\Lµ

alXdivi1 . . .Xdivia
Cl,i1...ia

g (Ω1, . . . , Ωp, φ1, . . . , φu)+

∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, φ1, . . . , φu) = 0,

(3.1)

which holds modulo complete contractions of length ≥ σ +u+1.20 (Recall that
σ stands for the number of factors ∇(m)Rijkl , S∗∇(ν)Rijkl ,∇(B)Ωx in ~κsimp).
We recall that each Cj is simply subsequent to ~κsimp.

The inductive assumptions: We explain the inductive assumptions on Propo-
sition 2.1 in detail:

Denote the left hand side of equation (3.1) by Lg(Ω1, . . . , Ωp, φ1, . . . , φu)
or just Lg for short. For the complete contractions in Lg, σ1 will stand for
the number of factors ∇(m)Rijkl and σ2 will stand for the number of factors

S∗∇(ν)Rijkl . Also Φ will stand for the total number of factors ∇φ,∇φ̃,∇φ′ and
−n will stand for the weight of the complete contractions involved.

1. We assume that Proposition 2.1 is true for all linear combinations Lgn′

with weight −n′, n′ < n, n′ even, that satisfy the hypotheses of our
Proposition.

2. We assume that Proposition 2.1 is true for all linear combinations Lg of
weight −n and real length σ′ < σ, that satisfy the hypotheses of our
Proposition.

3. We assume that Proposition 2.1 is true for all linear combinations Lg of

weight −n and real length σ, with Φ′ > Φ factors ∇φ,∇φ̃,∇φ′, that satisfy
the hypotheses of our Proposition.

4. We assume that Proposition 2.1 is true for all linear combinations Lg of

weight −n and real length σ, Φ factors ∇φ,∇φ̃,∇φ′ and with fewer than
σ1 +σ2 curvature factors ∇(m)Rijkl , S∗∇(ν)Rijkl , provided Lg satisfies the
hypotheses of our Proposition.

We will then show Proposition 2.1 for the linear combinations Lg with weight

−n, real length σ, Φ factors ∇φ,∇φ′,∇φ̃ and with σ1 + σ2 curvature factors
∇(m)Rijkl, S∗∇(ν)Rijkl. So we are proving our Proposition by a multiple induc-
tion on the parameters n, σ, Φ, σ1 + σ2 of the linear combination Lg. A trivial
observation: For each weight −n, there are obvious (or assumed) bounds on the
numbers σ (≥ 3), σ − σ1 − σ2 (≥ 0, < n) and on the number Φ (≤ n

2 ). In view
of this, we see that if we can show this inductive statement, then Proposition

20We have now set Lµ

S

L>µ = L.
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2.1 will follow by induction.

The rest of this series of papers is devoted to proving this inductive step of
Proposition 2.1. However, for simplicity we will still refer to proving Proposition
2.1 rather than proving the inductive step of Proposition 2.1.

3.2 Reduction of Proposition 2.1 to three Lemmas:

We will claim three Lemmas below: Lemmas 3.1, 3.2 and 3.5.21 We will then
prove in the next section that Proposition 2.1 follows from these three Lem-
mas (apart from some exceptional cases, where we will derive Proposition 2.1
directly–they will be presented in the paper [7] in this series). As these Lemmas
are rather technical, we give here the gist of their claims, and also indicate,
very roughly, how they will imply Proposition 2.1, by virtue of our inductive
assumptions above. A rigorous proof of how Lemmas 3.1, 3.2 and 3.5 imply
Proposition 2.1 will be given in section 4 of the present paper.

General Discussion of Ideas: We distinguish three cases regarding the
tensor fields of rank µ appearing in (3.1). In the first case, some of the µ-
tensor fields (indexed in Lµ) have special free indices belonging to factors
S∗∇(ν)Rijkl .

22 In the second case, none of the µ-tensor fields (indexed in Lµ)
have special free indices belonging to factors S∗∇(ν)Rijkl, but some have spe-
cial free indices in factors ∇(m)Rijkl.

23 In the third case, there are no special
free indices in any µ-tensor field in (3.1). The three Lemmas 3.1, 3.2 and 3.5
correspond to these three cases.

A note: It follows that in the first case above, the µ-tensor fields in (3.1) of
maximal refined double character will have a special free index in some factor
S∗∇(ν)Rijkl (this follows from the definition of maximal refined double charac-
ter, Definition 2.7). It also follows that in the second case the µ-tensor fields of
maximal refined double character will have a special free index in some factor
∇(m)Rijkl, while in the third case, the maximal µ-tensor fields will have no
special free indices. We now outline the statements of the Lemmas 3.1, 3.2, 3.5:

In the roughest terms, in each of the three cases above, the corresponding
Lemma states the following: We “canonically” pick out some sub-linear combi-
nation of the maximal µ-tensor fields (for this discussion we denote the index

set of this sublinear combination by L
Max

µ ⊂ Lµ). In the first two cases, we

consider each C
l,i1...iµ
g , l ∈ L

Max

µ and canonically pick out one (or a set of)
special free indices. For the purposes of this discussion, we will assume that we
have canonically picked out one free index, and we will assume it is the index
i1 in each C

l,i1...iµ
g , l ∈ L

Max

µ .

21Lemma 3.5 also relies on certain preparatory Lemmas, 3.3, 3.4 which will be proven in
[8].

22Recall that a special free index in a factor S∗∇(ν)Rijkl is one of the indices k, l.
23Recall that a special free index that belongs to ∇(m)Rijkl is one of the indices i, j , k, l
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A rough description of the claim of Lemmas 3.1 and 3.2: For Lemmas
3.1 and 3.2, our claim is roughly an equation of the form:

∑

l∈L
Max

µ

alXdivi2 . . . Xdiviµ
Cl,i1...iµ

g ∇i1φu+1

+
∑

ν∈N

aνXdivi2 . . .Xdiviµ
Cν,i1...iµ

g ∇i1φu+1

+
∑

p∈P

apXdivi2 . . . Xdiviµ+1
Cp,i1...iµ+1

g ∇i1φu+1 +
∑

j∈J′

ajC
j,i1
g ∇i1φu+1 = 0,

(3.2)

which holds modulo longer complete contractions. Here the tensor fields indexed

in L
Max

µ

⋃

N
⋃

P are “ acceptable” in a suitable sense. Also, the (µ− 1)-tensor

fields indexed in L
Max

µ have a specified “simple character” ~κ′
simp (in a suit-

able sense), where this “‘simple character” encodes the pattern of which factors
the different terms ∇φ1, . . . ,∇φu,∇φu+1 are contracting against. Also, all the
(µ− 1)-tensor fields indexed in N have this “simple character” ~κ′

simp, but they
are “doubly subsequent” (in a suitable sense) to the tensor fields indexed in

L
Max

µ . Finally, the complete contractions indexed in J ′ are “simply subsequent”
(in a suitable sense) to ~κ′

simp. Note: The tensor fields in (3.2) will not always
be in the form (2.2), thus our usual definitions of “character”, “subsequent” etc.
do not immediately apply.

A rough description of the claim of Lemma 3.5: Now, we can roughly
describe the claim of Lemma 3.5 (which is the hardest of the three): We “canon-
ically” pick out a sub-linear combination of the maximal µ-tensor fields in (3.1),

(we again denote the index set of this sublinear combination by L
Max

µ ). For each

µ-tensor field Cl,i1...iµ
g , l ∈ L

Max

µ , there is a “canonical way” of picking out two
factors: The “critical factor” and the “second critical factor”.24 We distinguish
cases based on the number of free indices belonging to the second critical factor.
Case A corresponds to the case where there are at least two such; in that case,
we assume that the indices i1 , i2 belong to the second critical factor. We then
introduce a formal operation that erases the index i1 , and adds a new derivative

free index (denote it by ∇i∗) onto the critical factor. For each l ∈ L
Max

µ , we

will denote the resulting tensor field by Ċ
l,i2...iµ,i∗
g . We also consider the tensor

field Ċ
l,i2...iµ,i∗
g ∇i2φu+1 that is obtained from it by contracting the free index i2

against a new factor ∇i2φu+1. This new, (µ−1)-tensor field has a (u+1)-simple
character which we will again denote by ~κ′

simp. The claim of Lemma 3.5 is that
an equation of the following form holds:

24In fact, we may have a set of critical factors, and a set of second-critical factors, but for

this discussion we will assume that they are unique, for each tensor field indexed in L
Max
µ .
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∑

l∈L
Max

µ

alXdivi3 . . . Xdiviµ
Xdivi∗Ċ

l,i2...iµ,i∗
g ∇i2φu+1+

∑

ν∈N

aνXdivi2 . . . Xdiviµ
Cν,i1...iµ

g ∇i1φu+1

+
∑

p∈P

apXdivi2 . . . Xdiviµ+1
Cp,i1...iµ+1

g ∇i1φu+1

+
∑

j∈J′

ajC
j,i1
g ∇i1φu+1 = 0;

(3.3)

here the tensor fields indexed in N are acceptable and have a simple character
~κ′

simp, but they are doubly subsequent to the tensor fields in the first line. The
tensor fields in P have rank > µ− 1 (but they may fail to be acceptable), while
the complete contractions in J ′ are simply subsequent to ~κ′

simp.

3.3 The rigorous formulation of Lemmas 3.1, 3.2, 3.5:

Consider equation (3.1). Denote by LMax
µ ⊂ Lµ the index set of the tensor fields

of maximal refined double character (recall there may be many maximal refined
double characters). A note is in order here: As explained (roughly) in the above
discussion, in order to state our Lemmas we will be “canonically” picking out
some factor, and contracting one of its free indices against a new factor ∇φu+1.
In particular, for Lemmas 3.1 and 3.2, we will be defining a “critical factor” for
the tensor fields in the equation (3.1), while for Lemma 3.5 we will be defining
both a “critical factor” and a “second critical factor” for the tensor fields in
(3.1). We will make a preliminary note here regarding these notions:

Note on “critical factors”: The “critical factor” (or factors) will be defined
for each of the tensor fields or complete contractions in (3.1). In other words,
once we specify the critical factor(s), we will be able to examine any tensor field

C
l,i1...iβ
g or complete contraction Cj

g in (3.1) and unambiguously pick out the

(set of) critical factor(s) in C
l,i1...iβ
g or Cj

g . In particular, the critical factor (or
set of critical factors) will be defined to be one of the following: Either it will be
a factor ∇(y)Ωa, for some particular value of a, 1 ≤ a ≤ p, or it will be defined
to be the curvature factor that is contracting against a given factor ∇φb, for
some chosen value of b, 1 ≤ b ≤ u, or we will define the set of critical factors
(in each of the contractions in (3.1)) to stand for the set of curvature factors
∇(m)Rijkl that are not contracting against any factors ∇φb.

In order to avoid confusion further down, we will also remark that the way
the critical factor is specified is by examining the µ-tensor fields in (3.1) that
have a maximal refined double character. Nonetheless, once the critical factor(s)
has (have) been specified, we will be able to look at any tensor field or complete
contraction in (3.1) and pick it (them) out. All this discussion is also true for the
“second critical factor” (which will only be defined in the setting of Lemma 3.5).
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Rigorous formulation of Lemma 3.1:

Our first Lemma applies to the case where there are µ-tensor fields in (3.1)
for which some factors S∗∇(ν)Rijkl have special free indices (this will be called
case I).

In each C
l,i1...iµ
g , l ∈ LMax

µ ,25 we pick out the factors T1 = S∗∇(ν)Rijkl

with a special free index26 (observe that by the definition of “maximal” refined
double character and by the assumption in the previous paragraph there will be
such factors in each tensor field indexed in LMax

µ ).
Among those factors, we pick out the ones with the maximum number of

free indices (in total). We denote this maximum number of free indices by M .
It follows from the definition of ordering among refined double characters that

this number M is universal among all C
l,i1...iµ
g , l ∈ LMax

µ .

Definition 3.1 For each l ∈ LMax
µ we list all the factors S∗∇(ν)Rijkl which

contain a special free index and also have M free indices in total: {F1, . . . Fα}.
If at least one of these factors Fh is contracting against at least one factor ∇φ′

b,
then we define the critical factor to be the factor from the list above which is
contracting against the factor ∇φ′

b with the smallest value for b (say Min). If
no factors Fh in the above list are contracting against ∇φ′

b’s, then we define the
critical factor to be the factor from the list above which is contracting against
the factor ∇φ̃r for the smallest value for r (say Min).

We then denote by LMax
µ,Min ⊂ LMax

µ the index set of the tensor fields of

maximal refined double character C
l,i1...iµ
g for which the factor S∗∇(ν)Rijkl that

is contracting against ∇φ′
Min or ∇φ̃Min, respectively, contains M free indices

in total and one of them is special.
Let us observe that there exists some subset Z ′

Max ⊂ ZMax so that:

LMax
µ,Min =

⋃

z∈Z′

Max

Lz. (3.4)

Now, with no loss of generality (only for notational convenience), we assume
that for each l ∈ LMax

µ,Min, the critical factor S∗∇(ν)Rijkl against which ∇φ̃Min

contracts has the index k being the free index i1 . We also recall that ~κsimp is
the simple character of the tensor fields indexed in Lµ. We will then denote by

~κz the refined double character of each C
l,i1...,iµ
g , l ∈ Lz, z ∈ Z ′

Max.
Under the assumptions above, our claim is the following:

Lemma 3.1 Assume (3.1), with weight −n, real length σ, u = Φ and σ1 + σ2

factors ∇(m)Rijkl , S∗∇(ν)Rijkl–assume also that the tensor fields of maximal
refined double character are not “forbidden” (see Definition 2.12). Suppose that
there are µ-tensor fields in (2.3) with at least one special free index in a factor

25LMax
µ :=

S

z∈ZMax
Lz is the index set of µ-tensor fields of maximal refined double char-

acter in (3.1).
26Recall that a special free index in a factor S∗∇(ν)Rijkl is one of the indices k, l.
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S∗∇(ν)Rijkl. We then claim that there is a linear combination of acceptable
tensor fields,

∑

p∈P

apC
p,i1...ib
g (Ω1, . . . , Ωp, φ1, . . . , φu)

each with b ≥ µ + 1, with a simple character ~κsimp and where each
Cp,i1...ib

g (Ω1, . . . , Ωp, φ1, . . . , φu) has the property that the free index i1 is the

index k in the critical factor S∗∇(ν)Rijkl against which ∇φ̃Min is contracting,
so that modulo complete contractions of length ≥ σ + u + 2:

∑

z∈Z′

Max

∑

l∈Lz

alXdivi2 . . . Xdiviµ
Cl,i1...iµ

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1+

∑

ν∈N

aνXdivi2 . . . Xdiviµ
Cν,i1...iµ

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1−

∑

p∈P

apXdivi2 . . .Xdivib
Cp,i1...ib

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1 =

∑

t∈T

atC
t,i∗
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i∗φu+1.

(3.5)

Here each C
ν,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1 is acceptable and has a sim-

ple character ~κsimp (and i1 is again the index k in the critical factor S∗∇(ν)Rijkl),
but also has either strictly fewer than M free indices in the critical factor or is
doubly subsequent to each ~κz , z ∈ Z ′

Max. Also, each
Ct,i∗

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i∗φu+1 is in the form (2.1) and is either simply
subsequent to ~κsimp or
Ct,i∗

g (Ω1, . . . , Ωp, φ1, . . . , φu) has a u-simple character ~κsimp but the index i∗ is
not a special index. All complete contractions have the same weak (u+1)-simple
character.

If we can prove the above then (as we will show in the next subsection) by
iterative repetition we can reduce ourselves to proving Proposition 2.1 with the
extra assumption that for each l ∈ Lµ there are no special free indices in any
factor S∗∇(ν)Rijkl . Lemma 3.2 will apply to this subcase.

Rigorous formulation of Lemma 3.2:

We now assume that all µ-tensor fields in (3.1) have no special free indices
in factors S∗∇(ν)Rijkl , but certain µ-tensor fields do have special free indices
in factors ∇(m)Rijkl–this will be called case II. We will then pick out those
µ-tensor fields in (3.1) that have special free indices in factors ∇(m)Rijkl . (If
there are no such tensor fields, we may proceed to Lemma 3.5).

In order to state our Lemma we will need to define the critical factor (or set
of critical factors) for the tensor fields appearing in (3.1), in this setting:
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Definition 3.2 Firstly we consider the case where there are factors ∇(m)Rijkl

with two special free indices among the µ-tensor fields in (3.1). We will define
the critical factor(s) in that setting:

Among all the µ-tensor fields with maximal refined double characters in (3.1),
we pick out all the factors ∇(m)Rijkl with two special free indices. Among those
factors, we pick out the ones with the maximal total number of free indices, say
M ≥ 2. Denote that list by {T1, . . . Tπ}. (All the Ti’s are in the form ∇(m)Rijkl).
We inquire whether any of the factors T1, . . . Tπ are contracting against a factor
∇φh. If so, we define the critical factor to be the factor Ti that is contracting
against the factor ∇φo for the smallest o. If none of the factors T1, . . . , Tπ are
contracting against a factor ∇φh we define the set of critical factors to be the
set of factors ∇(m)Rijkl which are not contracting against any factor ∇φh.

The same definition can be applied to define a critical factor in the case
where there are no factors ∇(m)Rijkl with two special free indices but there are
factors ∇(m)Rijkl with one free index (list them out as {T1, . . . , Tπ′} and proceed
as above).

Now, we index the maximal µ-tensor fields with M free indices in the critical
factor in the index set

⋃

z∈Z′

Max
Lz ⊂ Lµ.

Definition 3.3 For each z ∈ Z ′
Max define I∗,l ⊂ Il (recall that Il stands for

the set of free indices in the tensor field C
l,i1...iµ
g ) to be the set of special free

indices that belong to the critical factor (if it is unique), or to one of the critical
factors.

Note: By virtue of the definition of the maximal refined double characters
and of the critical factors, we observe that for any two l1, l2 ∈

⋃

z∈Z′

Max
Lz, we

will have |I∗,l1 | = |I∗,l2 |.
Now, for each z ∈ Z ′

Max we consider the (µ − 1)-tensor fields in the linear
combination

∑

l∈Lz

al

∑

ih∈I∗,l

Cl,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇ih

φu+1

and we will write them as a linear combination of (µ − 1)-tensor fields in the
form (2.2) (plus error terms–see below):

For each l ∈ Lz, z ∈ Z ′
Max and each ih

∈ I∗,l (we may assume with no
loss of generality that ih

is the index i in some factor ∇(m)Rijkl), we de-

note by C̃
l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇ih

φu+1 the tensor field that arises from

C
l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇ih

φu+1 by replacing the expression

∇
(m)
r1...rmRihjkl∇ihφu+1 by an expression S∗∇

(m)
r1...rmRihjkl∇ihφu+1. By the first

and second Bianchi identity, it then follows that:

Cl,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇ih

φu+1 =

C̃l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇ih

φu+1+
∑

t∈T

atC
t,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇ih

φu+1,

(3.6)
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where each C
t,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇ih

φu+1 has the factor ∇φu+1 con-
tracting against a derivative index in a factor ∇(m)Rijkl-see the statement of
Lemma 3.2.

We denote by ~κ′
simp and ~κz the (u + 1)-simple character (respectively, the

(u + 1, µ − 1)-refined double character) of the tensor fields C̃
l,i1...iµ
g ∇ih

φu+1,
l ∈ Lz, z ∈ Z ′

Max. (We observe that for each l ∈ Lz, z ∈ Z ′
Max the simple

characters of the tensor fields C̃
l,i1...iµ
g ∇ih

φu+1 will be equal).

Lemma 3.2 Assume (3.1) with weight −n, real length σ, u = Φ and σ1 + σ2

factors ∇(m)Rijkl, S∗∇(ν)Rijkl. Suppose that no µ-tensor fields have special
free indices in factors S∗∇(ν)Rijkl, but some have special free indices in factors
∇(m)Rijkl. In the notation above we claim that there exists a linear combination
∑

d∈D adC
d,i1,...,ib
g (Ω1, . . . , Ωp, φ1, . . . , φu, φu+1) of acceptable tensor fields with

a (u + 1)-simple character ~κ′
simp and rank ≥ µ, so that:

∑

z∈Z′

Max

∑

l∈Lz

al

∑

ih∈I∗,l

Xdivi1 . . . ˆXdivih
. . . Xdiviµ

C̃l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)

∇ih
φu+1 +

∑

ν∈N

aνXdivi2 . . . Xdiviµ
Cν,i1...iµ

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1

−
∑

d∈D

adXdivi1 . . . Xdivib
Cd,i1,...,ib

g (Ω1, . . . , Ωp, φ1, . . . , φu, φu+1) =

∑

t∈T

atC
t,i∗
g (Ω1, . . . , Ωp, φ1, . . . , φu, φu)∇i∗φu+1,

(3.7)

where the (µ − 1)-tensor fields C
ν,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1 are ac-

ceptable, have (u+1)-simple character ~κ′
simp but also either have fewer than M

free indices in the factor against which ∇ih
φu+1 contracts,27 or are doubly sub-

sequent to all the refined double characters ~κz, z ∈ Z ′
Max. Moreover we require

that each C
ν,i1...,iµ
g has the property that at least one of the indices r1

, . . . , rν
, j in

the factor S∗∇
(ν)
r1...rν Rijkl is neither free nor contracting against a factor ∇φ′

h,
h ≤ u. The complete contractions Ct,i∗

g (Ω1, . . . , Ωp, φ1, . . . , φu, φu)∇i∗φu+1 are
in the form (2.1) and are simply subsequent to ~κ′

simp.

We will show in section 4 that if we can prove the above, then we can re-
duce ourselves to proving Proposition 2.1 when none of the µ-tensor fields in
the Lemma hypothesis have special free indices. Lemma 3.5 will apply to that
setting:

Rigorous formulation of Lemma 3.5:

27“Fewer than M free indices” where we also count the free index ih
.
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Recall that we have grouped up the µ-tensor fields C
l,i1...iµ
g according to

their refined double characters:
∑

l∈Lµ
alC

l,i1...iµ
g =

∑

z∈Z

∑

l∈Lz al . . . . We

have then picked out the sublinear combinations in
∑

l∈Lµ
alC

l,i1...iµ
g which con-

sist of tensor fields with the same maximal refined double character. Thus we
obtain a sublinear combination

∑

z∈ZMax

∑

l∈Lz alC
l,i1...iµ
g .

Now, in order to state our Lemma we will distinguish two further subcases;
first we must introduce some more terminology.

We will again define the critical factor for the tensor fields in (3.1):

Definition 3.4 Consider all the µ-tensor fields of maximal refined double char-
acter in (3.1), and let M stand for the maximum number of free indices that
can belong to a given factor in such a µ-tensor field (we call these “maximal”
µ-tensor fields). We then list all the factors that appear with M free indices
in some maximal µ-tensor field in (3.1): {T1, . . . , Tπ}. If at least one of those
factors Tl is of the form ∇(p)Ωh, we define the critical factor to be the factor
∇(p)Ωh in the list {T1, . . . , Tπ} with the smallest value h. If none of the factors
in that list are in the form ∇(p)Ωh, we inquire whether any factors in the list are
contracting against factors ∇φh (or ∇φ̃h). If so, we define the critical factor
in (3.1) to be the factor in the list {T1, . . . , Tπ} that is contracting against the
factor ∇φh (or ∇φ̃h) with the smallest value of h. Finally, if none of the factors
in the list {T1, . . . , Tπ} are contracting against a factor ∇φh (or ∇φ̃h) (so all of
them must be in the form ∇(m)Rijkl), then we declare the set of critical factors
to be the set of factors ∇(m)Rijkl that are not contracting against any ∇φh to
be critical factors.

In addition to the critical factor, we now define the second critical factor in
(3.1). The definition goes as follows:

Definition 3.5 Consider any of the maximal µ-tensor fields in (3.1), C
l,i1...,iµ
g ,

l ∈
⋃

z∈ZMax
Lz. If the critical factor is unique, we construct a list of all the non-

critical factors T that belong to one of the tensor fields C
l,i1...,iµ
g , l ∈

⋃

z∈Z′

Max
Lz

Suppose that list is {T1, . . . , Tπ}.
We then pick out the second critical factor from that list in the same way

that we pick out the critical factor in definition 3.4.
If there are multiple critical factors, we just define the set of second critical

factors to be the set of critical factors.
In either case, we denote by M ′ the total number of free indices that belong

to the (a) second critical fator.

Now, an important note: The “critical factor” (or factors) in (3.1) has been

defined based on the maximal refined double characters ~Lz, z ∈ ZMax. Nonethe-
less, once we have chosen a critical factor (or a set of critical factors) for the

set C
l,i1...iµ
g , l ∈

⋃

z∈Z′

Max
Lz, we may then unambiguously speak of the critical

factor(s) for all the tensor fields and complete contractions appearing in (3.1).
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The two cases for Lemma 3.5: We now distinguish two cases on (2.3): We
say that (2.3) (where no tensor fields contain special free indices) fall under case
A if M ′ ≥ 2. It falls under case B if M ′ ≤ 1.

Now, we will state Lemma 3.5 after we first state a few extra claims. These
claims will be proven in the paper [8] in this series.28

The extra claims needed to state Lemma 3.5:

In order to state Lemma 3.5, we must first show some preliminary results.
We introduce some definitions:

We denote by L∗
µ ⊂ Lµ the index set of those tensor fields C

l,i1...iµ
g in (3.1)

for which some chosen factor ∇
(A)
r1...rAΩx (the value x which determizes this

factor will be chosen at a later stage; we may also not choose any such factor

∇
(A)
r1...rAΩx, in which case we set L∗

µ = ∅) has A = 2 and both indices r1
, r2

are
free indices.

Also, we define L+
µ ⊂ Lµ to stand for the index set of those µ-tensor fields

that have a free index (iµ
say) belonging to a factor S∗Rijkl∇iφ̃h (without

derivatives) and in fact j = iµ
.

We also denote by

∑

l∈L̃

alC
l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)

a linear combination of acceptable µ-tensor fields with simple character ~κsimp

which do not have special free indices and does not contain tensor fields in any
of the above two forms.

Lemma 3.3 Assume (3.1), where the terms in the LHS of that equation have
weigh −n, real length σ, Φ factors ∇φ,∇φ′,∇φ̃ and σ1 + σ2 curvature fac-
tors ∇(m)Rijkl, S∗∇(ν)Rijkl;

29 assume also that no µ-tensor field there has any
special free indices. We claim that there is a linear combination of acceptable
(µ + 1)-tensor fields,

∑

p∈P apC
p,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu) with a simple
character ~κsimp so that:

28These claims involve much notation and are rather technical. The reader may choose to
disregard them in the first reading, as they are not central to the argument.

29See the discussion on the induction in subsection 3.1.
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∑

l∈L∗

µ

S

L+
µ

alC
l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ

υ+

∑

p∈P

apXdiviµ+1
Cp,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ
υ =

∑

j∈J

ajC
j,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ

υ+

∑

l∈L̃

alC
l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ

υ,

(3.8)

modulo complete contractions of length ≥ σ+u+µ+1. The tensor fields indexed
in J on the right hand side are simply subsequent to ~κsimp.

Assuming the above Lemma, by making the ∇υ’s into Xdivs (see the last
Lemma in the Appendix of [3]) and replacing into (3.1) we are reduced to show-
ing our Proposition 2.1 under the additional assumption that L∗

µ

⋃

L+
µ = ∅. So

for the rest of this subsection we will be assuming that L∗
µ

⋃

L+
µ = ∅.

We now consider the sublinear combination indexed in L \ Lµ(= L>µ) in
(3.1). We define L′′

+ ⊂ L µ to stand for the index set of tensor fields with a

factor Rijkl∇iφ̃h for which both indices j , k are free.
Now, we denote by

∑

l∈L̃′

alC
l,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)

a generic linear combination of acceptable (µ + 1)-tensor fields that do not
contain tensor fields in the form described above. We then claim:

Lemma 3.4 Assume (3.1) with weight −n, real length σ, u = Φ and σ1+σ2 fac-
tors ∇(m)Rijkl, S∗∇(ν)Rijkl;

30 assume also that none of the µ-tensor fields have
special free indices, and that L∗

µ

⋃

L+
µ = ∅. We claim that there exists a linear

combination of acceptable (µ+2)-tensor fields,
∑

p∈P apC
p,i1...iµ+2

g (Ω1, . . . , Ωp, φ1, . . . , φu)
with simple character ~κsimp, so that:

∑

l∈L′′

+

alXdivi1 . . . Xdiviµ+1
Cl,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)+

∑

p∈P

apXdivi1 . . . Xdiviµ+2
Cp,i1...iµ+2

g (Ω1, . . . , Ωp, φ1, . . . , φu) =

∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, φ1, . . . , φu)

+
∑

l∈L̃′

alXdivi1 . . .Xdiviµ+1
Cl,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu),

(3.9)

30See the discussion in subsection 3.1.
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modulo complete contractions of length ≥ σ+u+1.
∑

j∈J . . . stands for a linear
combination of complete contractions that are simply subsequent to ~κsimp.

We observe that if we can show the above, then replacing into (3.1) we are
reduced to proving Proposition 2.1 under the extra assumptions that
L∗

µ

⋃

L+
µ

⋃

L′′
+ = ∅. So for the rest of this section we will be making that as-

sumption. The proof of these two Lemmas is given in the paper [8] in this series.

Notation and language conventions for Lemma 3.5: Recall the two cases A,
B. We will first formulate our claim in case A (where M ′ ≥ 2). We introduce
some notation.

We define Z ′
Max ⊂ ZMax as follows:31 z ∈ Z ′

Max if and only if C
l,i1...iµ
g , l ∈ Lz

has M ′ free indices in the second critical factor (see definition 3.5).
Now, we first consider the case where there is a unique second critical factor

in (3.1). For each l ∈ Lz, z ∈ Z ′
Max, we assume with no loss of generality

that the indices i1 , i2 belong to the second critical factor, and that the index

i1 is a derivative index (the second assumption can be made since all µ-tensor
fields in (3.1) have no special free indices now; hence if two free indices belong
to the same factor, one of them must be a derivative index). We then denote

by Ċ
l,i2...iµ,i∗
g (Ω1, . . . , Ωp, φ1, . . . , φu) the tensor field that formally arises from

C
l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu) by erasing the free index i1 from the second

critical factor and adding a derivative index ∇i∗ onto the critical factor, and

making the index i∗ free. We denote by ~Lz,♯ the (u + 1, µ − 1)-refined double

character of these Ċ
l,i2...iµ,i∗
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i2φu+1, l ∈ Lz, z ∈ Z ′

Max.
Now, the case where there are multiple second critical factors: If there are

k > 1 second critical factors T1, . . . Tk in (3.1), then for each C
l,i1...iµ
g , l ∈ Lz, z ∈

Z ′
Max we denote by {i1, . . . iα}, {iα+1, . . . i2α}, . . . ,{i(k−1)α+1, . . . , ikα} the set

of free indices that belong to T1, . . . , Tk respectively. We will be making the
assumption (with no loss of generality, for the reason explained in the previous
paragraph) that the index itα+1 is a derivative index for every t = 0, 1, . . . , k−1.

We then denote by Ċ
l,i1...̂itα+1...iµ,i∗
g the tensor field that arises from C

l,i1...iµ
g by

erasing the index itα+1 and adding a free derivative index i∗ onto the (a) critical
factor (and adding, if there are multiple critical factors).

In both cases above we define ~κ+
simp = Simp(~Lz,♯), for some z ∈ Z ′

Max

(notice that the definition is independent of the element z ∈ Z ′
Max).

A note is needed regarding this definition: In the case where the set of critical
and second critical factors coincide, then when we “add a free derivative index

i∗ onto (a) critical factor”, we will be adding it on any critical factor other than
the one to which itα+2

belongs. Observe that for any l = 0, 1, . . . , k the tensor

fields Ċ
l,i1...̂itα+1...iµ,i∗
g ∇tα+2φu+1 have the same (u + 1, µ − 1)-refined double

character, which we again denote by ~Lz,♯, z ∈ Z ′
Max (as in the case of a unique

second critical factor).

31Recall that
S

z∈ZMax
Lz ⊂ Lµ stands for the index set of the µ-tensor fields.
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One last language convention: For uniformity, in case A of Lemma 3.5 we
will call the (set of) second critical factor(s) the (set of) crucial factor(s); in
case B of Lemma 3.5 we will call the (set of) critical factor(s) the (set of) crucial
factor(s).

Our claim is then the following:

Lemma 3.5 Assume (3.1) with weight −n, real length σ, u = Φ and σ1 +
σ2 factors ∇(m)Rijkl, S∗∇(ν)Rijkl, and additionally assume that no µ-tensor
field in (3.1) has special free indices; assume also that L∗

µ

⋃

L+
µ

⋃

L′′
+ = ∅ (in

the notation of the extra claims above). Recall the cases A, B that we have
distinguished above.

Consider case A: Recall that k stands for the (universal) number of second
critical factors among the tensor fields indexed in

⋃

z∈Z′

Max
Lz. Recall also that

for each z ∈ Z ′
Max α is the number of free indices in the (each) second critical

factor. We claim that:

(

α

2

)

∑

z∈Z′

Max

∑

l∈Lz

al

k−1
∑

r=0

Xdivi2 . . .Xdivi∗Ċ
l,i1...̂irα+1...iµ,i∗
g (Ω1, . . . , Ωp, φ1, . . . , φu)

∇irα+2
φu+1 +

∑

ν∈N

aνXdivi2 . . . Xdiviµ
Cν,i1...,iµ

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1+

∑

t∈T1

atXdivi1 . . . Xdivizt
C

t,i1...izt
g (Ω1, . . . , Ωp, φ1, . . . , φu+1)+

∑

t∈T2

atXdivi2 . . . Xdivizt
C

t,i1...izt
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1+

∑

t∈T3

atXdivi1 . . . Xdivizt
C

t,i1...izt
g (Ω1, . . . , Ωp, φ1, . . . , φu+1)

(

+
∑

t∈T4

atXdivi1 . . . Xdivizt
C

t,i1...izt
g (Ω1, . . . , Ωp, φ1, . . . , φu+1)

)

=

∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, φ1, . . . , φu+1) = 0,

(3.10)

modulo complete contractions of length ≥ σ + u + 2. Here each C
ν,i1...iµ
g is

acceptable and has a simple character ~κ+
simp and a double character that is doubly

subsequent to each ~Lz,♯, z ∈ Z ′
Max.

∑

t∈T1

atC
t,i1...izt
g (Ω1, . . . , Ωp, φ1, . . . , φu+1)

is a generic linear combination of acceptable tensor fields with a (u + 1)-simple
character ~κ+

simp), and with zt ≥ µ.

∑

t∈T2

atC
t,i1...izt
g (Ω1, . . . , Ωp, φ1, . . . , φu)
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(zt ≥ µ + 1) is a generic linear combination of acceptable tensor fields with a
u-simple character ~κsimp, with the additional restriction that the free index i1

that belongs to the (a) crucial factor32 is a special free index.33

Now,
∑

t∈T2
atC

t,i1...izt
g (Ω1, . . . , Ωp, φ1, . . . , φu+1) is a generic linear com-

bination of acceptable tensor fields with (u + 1)-simple character ~κ+
simp and

zt ≥ µ,34 and moreover one unacceptable factor ∇Ωh which does not contract
against any factor ∇φt.

The sublinear combination
∑

t∈T4
. . . appears only if the second critical fac-

tor is of the form ∇(B)Ωk, for some k. In that case, t ∈ T4 means that there
is one unacceptable factor ∇Ωk, and it is contracting against a factor ∇φr:
∇iΩk∇iφr, and moreover if zt = µ then one of the free indices i1 , . . . , iµ

is a

derivative index, and if it belongs to ∇(B)Ωh then B ≥ 3.
Finally,

∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, φ1, . . . , φu+1)

stands for a generic linear combination of complete contractions that are u-
simply subsequent to ~κsimp.

In case B, we just claim the whole of Proposition 2.1.

Note: Lemmas 3.1, 3.2, 3.5 (and also Lemmas 3.3, 3.4) will be proven in the
final paper [8] in this series. In the remainder of the present paper we will show
that these three Lemmas imply the inductive step of Proposition 2.1.

4 Proof that Proposition 2.1 follows from Lem-
mas 3.1, 3.2, 3.5 (and Lemmas 3.3, 3.4).

4.1 Introduction

General Discussion: In this section we will show how the inductive step of
Proposition 2.1 (see the discussion in the beginning of the last section) follows
from Lemmas 3.1–3.5 (apart from certain special cases where we will prove the
inductive step of Proposition 2.1 directly, without using Lemmas 3.1, 3.2 and
3.5). We stress that in this derivation, we will be using the inductive assumption
on Proposition 2.1. We also repeat that when we prove the Lemmas 3.1–3.5, we
will be using the inductive assumptions on Proposition 2.1.

More precisely, we will show that Lemmas 3.1, 3.2, 3.5 imply the inductive
step of Proposition 2.1 by distinguishing three cases regarding the assumption

32i.e. the second critical factor, in this case
33Recall that a special free index is either an index k, l in a factor S∗∇(ν)Rijkl or an internal

index in a factor ∇(m)Rijkl.
34If zt = µ then we additionally claim that ∇φu+1 is contracting against a derivative index,

and if it is contracting against a factor ∇(B)Ωh then B ≥ 3; moreover, in this case C
t,i1...iµ
g

will contain no special free indices.
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of Proposition 2.1 (recall that the assumption is equation (3.1)). The cases
we distinguish are based on the maximal refined double characters among the
µ-tensor fields in (3.1):

Recall that the (u, µ)-refined double characters ~Lz, z ∈ Z ′
Max are among the

maximal (u, µ)-refined double characters in (3.1). We have then distinguished

cases I,II,III as follows: If for any ~Lz, z ∈ Z ′
Max there is a special free index

in some factor S∗∇(ν)Rijkl , then we declare that (3.1) falls under case I of

Proposition 2.1.35 If for ~Lz, z ∈ Z ′
Max there are no special free indices in any

factor of the form S∗∇(ν)Rijkl but there are special free indices in factors of
the form ∇(m)Rijkl , then we declare that (3.1) falls under case II of Proposition

2.1.36 Finally, if there are no special free indices at all in any ~Lz, z ∈ Z ′
Max,

then we declare that (3.1) falls under case III of Proposition 2.1.37

In the remainder of this paper we will show that in case I, Lemma 3.1 implies
Proposition 2.1. In case II, Lemma 3.2 implies Proposition 2.1, while in case III
Lemma 3.5 (and Lemmas 3.3, 3.4) implies Proposition 2.1.

More precisely, we will show that in the setting of each of the Lemmas
3.1, 3.2, 3.5 it follows that for each z ∈ Z ′

Max there is a linear combination
of acceptable (µ + 1)-tensor fields (indexed in P below) with a (u, µ)-double

character ~Lz so that:

∑

l∈Lz

alC
l,i1...iµ
g (Ω1, . . .Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ

υ

− Xdiviµ+1

∑

p∈P

apC
p,i1...iµ+1

g (Ω1, . . .Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ
υ =

∑

t∈T

atC
t,i1...iµ
g (Ω1, . . . Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ

υ,

(4.1)

where each C
t,i1...iµ
g is subsequent (simply or doubly) to ~Lz.

Let us just observe how (4.1) implies Proposition 2.1: Firstly, (4.1) shows
us that the conclusion of Proposition 2.1 holds for the sublinear combination
indexed in

⋃

z∈Z′

Max
Lz ⊂

⋃

z∈ZMax
Lz. But then we only have to make the

∇υ’s into Xdiv’s in the above38 and substitute back into (2.3) and we will be
reduced to proving our Proposition 2.1 assuming an equation:

35Observe that if this property holds for one of the maximal refined double characters
~Lz , z ∈ Z′

Max, it will then hold for all of them.
36The observation of the above footnote still holds.
37The observation of the above footnote still holds.
38See the last Lemma in the Appendix of [3].
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∑

z∈ZMax\Z′

Max

∑

l∈Lz

alXdivi1 . . . Xdiviµ
Cl,i1...iµ

g (Ω1, . . . , Ωp, φ1, . . . , φu)+

∑

t∈T

atXdivi1 . . . Xdiviµ
Ct,i1...iµ

g (Ω1, . . . , Ωp, φ1, . . . , φu)+

∑

l∈Lβ>µ

alXdivi1 . . . Xdiviβ
C

l,i1...iβ
g (Ω1, . . . , Ωp, φ1, . . . , φu) =

∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, φ1, . . . , φu),

(4.2)

where the tensor fields indexed in T are acceptable µ-tensor fields which are
(doubly) subsequent to the tensor fields in the first line. But then our Proposi-
tion 2.1 follows by induction, since there are finitely many (u, µ)-refined double
characters.

Technical discussion of the difficulties in deriving (4.1) from the
Lemmas 3.1, 3.2, 3.5: Let us observe that at a rough level, it would seem
that the conclusions of Lemmas 3.1, 3.2 and 3.5 would fit into the inductive
assumption of Proposition 2.1 because the wegiht is −n, the real length of the
terms in σ but we have increased the number Φ of factors ∇φ,∇φ̃,∇φ′. Hence,
if that were true, one could hope that a direct application of Corollary 1 to the
conclusions of these Lemmas would imply the equation (4.1). Unfortunately,
this is not quite the case, for the reasons we will explain in the next three para-
graphs. Therefore, there is some manipulation to be done with the conclusions
of Lemmas 3.1, 3.2 and 3.5 in order to be able to apply to them the inductive
assumption of Proposition 2.1 (and hence also of Corollary 1), and this manip-
ulation will be done in the remainder of this paper. The obstacles to directly
applying the inductive assumption of Proposition 2.1 to the conclusions of Lem-
mas 3.1, 3.2 and 3.5 are as follows:

Lemma 3.1: Here the (µ−1)-tensor fields C
l,i1...iµ
g ∇i1φu+1 in equation (3.5)

have the factor ∇φu+1 contracting against the index k of a factor S∗∇
(ν)Rijkl .

Thus, they are not of the form (2.2). Therefore, the inductive assumption of
Proposition 2.1 cannot be directly applied to (3.5).

Lemma 3.2: Here the (µ−1)-tensor fields in (3.7) are acceptable in the form
(2.2), and the inductive assumption of Proposition 2.1 can be applied to (3.7).
Nonetheless, if we directly apply the inductive assumption of Proposition 2.1
to to (3.7), we will obtain an equation similar to (2.4), but involving a linear
combination

∑

z∈Z′

Max

∑

l∈Lz

al

∑

ih∈I∗,l

C̃l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇ih

φu+1∇i1υ . . . ∇̂ih
υ . . .∇iµ

υ

34



rather than a linear combination

∑

z∈Z′

Max

∑

l∈Lz

al

∑

ih∈I∗,l

Cl,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ

υ

as required (the important difference here is the symbol ,̃ which stands for an

S∗-symmetrization). In other words, in C̃
l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇ih

φu+1

some factor ∇(m)Rijkl has been S∗-symmetrized. It is then not obvious how to
manipulate this equation to obtain (2.4).

Lemma 3.5: In this case there are numerous obstacles to deriving the in-
ductive step of Proposition 2.1 from (3.10). Firstly, the tensor fields indexed
in T3, T4 are not acceptable. Secondly, even if these index sets were empty, the
tensor fields indexed in T2 do not have the (u+1)-simple character ~κ+

simp of the
tensor fields in the first line of (3.10). Lastly, even if this index set T2 were also
empty, and we directly applied the inductive assumption of Proposition 2.1 to
(3.10), we would obtain a statement involving the expression:

(

α

2

)

∑

z∈Z′

Max

∑

l∈Lz

al

k−1
∑

r=0

Ċl,i1...̂irα+1...iµ,i∗
g (Ω1, . . . , Ωp, φ1, . . . , φu)

∇irα+2
φu+1∇i2υ . . .∇i∗υ,

(4.3)

and this expression is quite different from the expression we need in (4.1).

4.2 Derivation of Proposition 2.1 in case I from Lemma
3.1.

We start this subsection with a technical Lemma that will be needed here, but
will also be used on multiple occasions throughout this work:

Lemma 4.1 Let
∑

x∈X axC
x,i1...,iβ
g (Ω1, . . . , Ωp, φ1, . . . , φb) stand for a linear

combination of tensor fields, each with rank β, for some given number β, and
with a given simple character ~κ∗

simp, with real length σ ≥ 4 and weight −n. We

also assume that there is a given factor ∇(y)Ωc, y ≥ 1, (c independent of x)

in each C
x,i1...iβ
g all of whose indices are contracting against factors ∇φ.39 We

assume an equation:

∑

x∈X

axX∗divi1 . . . X∗diviβ
C

x,i1...iβ
g (Ω1, . . . , Ωp, φ1, . . . , φb)

+
∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, φ1, . . . , φb) = 0,

(4.4)

39If y ≥ 2 then our tensor fields are assumed to be acceptable. If y = 1 then we assume
that ∇Ωc is the only unacceptable factor.
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where X∗divi stands for the sublinear combination in Xdivi for which ∇i is not
allowed to hit the factor ∇(y)Ωc. The complete contractions in J are simply sub-
sequent to ~κ∗

simp. We additionally assume that if we formally erase the factor

∇(y)Ωc along with the factors ∇φh that it is contracting against, then none of
the resulting β-tensor fields is “forbidden” in the sense of Definition 2.12.

We claim that we can then write:

∑

x∈X

axXdivi1 . . .Xdiviβ
C

x,i1...iβ
g (Ω1, . . . , Ωp, φ1, . . . , φb) =

∑

x∈X′

axXdivi1 . . . Xdiviβ
C

x,i1...iβ
g (Ω1, . . . , Ωp, φ1, . . . , φb)+

∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, φ1, . . . , φb),

(4.5)

where the tensor fields indexed in X ′ are exactly like the ones indexed in X, only
the chosen factor ∇(y)Ωc has at least one index that is not contracting against
a factor ∇φ. The complete contractions in J are simply subsequent to ~κ∗

simp.

(Sketch of the) Proof of Lemma 4.1: We just apply the eraser to the factor
∇(y)Ωc and the factors ∇φh that it is contracting against in (4.4), obtaining
a new true equation. We can then iteratively apply Corollary 1 to this new

true equation, multiplying by ∇
(B)
r1...rBΩc∇

r1υ . . .∇rBυ and making all the fac-
tors ∇υ into Xdiv’s at each stage. This would show our claim except for the
caveat that in the last step of the above iteration, we might not be able to apply
Corollary 1 if the tensor fields of maximal refined double character are in one
of the forbidden forms of Corollary 1 with rank > µ. In that case, in the last

step we use Lemma 5.2 below (setting Φ = ∇
(y)
r1...rcΩc∇r1φh1

. . .∇ry φhy
). That

concludes the proof of our claim in this case. 2

Furthermore, we have a weaker form of Lemma 4.1 when σ = 3. We firstly
introduce a definition that will be used on a number of occasions below:

Definition 4.1 Consider any tensor field in the form (2.2). We consider any
set of indices, {x1

, . . . , xs
} belonging to a factor T (here T is not in the form

∇φ). We assume that these indices are neither free nor are contracting against
a factor ∇φh.

If the indices belong to a factor T in the form ∇(B)Ω1 then {x1
, . . . , xs

} are
removable provided B ≥ s + 2.

Now, we consider indices that belong to a factor ∇(m)Rijkl (and are neither
free nor are contracting against a factor ∇φh). Any such index x which is
a derivative index will be removable. Furthermore, if T has at least two free
derivative indices, then if neither of the indices i, j are free then we will say one
of i, j is removable; accordingly, if neither of k, l is free then we will say that
one of k, l is removable. Moreover, if T has one free derivative index then: if
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none of the indices i, j are free then we will say that one of the indices i, j is
removable; on the other hand if one of the indices i, j is also free and none of
the indices k, l are free then we will say that one of the indices k, l is removable.

Now, we consider a set of indices {x1
, . . . , xs

} that belong to a factor T =
S∗∇

(ν)Rijkl and are not special, and are not free and are not contracting against
any ∇φ. We will say this set of indices is removable if s ≤ ν. Furthermore, if
none of the indices k, l are free and ν > 0 and at least one of the other indices
in T is free, we will say that one of the indices k, l is removable.

Weaker version of Lemma 4.1 when σ = 3:

Lemma 4.2 Assume the equation (4.4) when σ = 3 and assume additionally
that every tensor field indexed in X has a removable index. Then (4.5) still
holds.

Proof: The argument essentially follows the ideas developed in the paper [5].
Firstly, we observe that (possibly after applying the second Bianchi identity)
we can explicitly write:

∑

x∈X

axXdivi1 . . . Xdiviβ
Cx,i1...ia

g (Ω1, . . . , Ωp, φ1, . . . , φb) =

∑

x∈X′

axXdivi1 . . . Xdiviβ
C

x,i1...iβ
g (Ω1, . . . , Ωp, φ1, . . . , φb)+

∑

x∈X

axXdivi1 . . . Xdiviγ
Cx,i1...iγ

g (Ω1, . . . , Ωp, φ1, . . . , φb)+

∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, φ1, . . . , φb),

(4.6)

where the tensor fields indexed in X have all the properties of the ones indexed
in X , only they all have rank γ ≥ β+1, and they also have no removable indices.
The sublinear combination

∑

x∈X′ . . . (here and below, when it appears on the
RHS) stands for a generic linear combination as described in Lemma 4.1.

We then observe that we can write:

∑

x∈X

axXdivi1 . . . Xdiviγ
Cx,i1...iγ

g (Ω1, . . . , Ωp, φ1, . . . , φb) =

(Const)∗Xdivi1 . . . Xdiviγ
C∗,i1...iγ

g (Ω1, . . . , Ωp, φ1, . . . , φb)+
∑

x∈X′

axXdivi1 . . . Xdiviβ
C

x,i1...iβ
g (Ω1, . . . , Ωp, φ1, . . . , φb)+

∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, φ1, . . . , φb)

(4.7)

where the tensor field C
∗,i1...iγ
g is zero unless σ1 = σ2 = 0 or σ1 = 2 or σ2 = 2.

In those cases, the tensor field C
∗,i1...iγ
g (Ω1, . . . , Ωp, φ1, . . . , φb) is, respectively:

37



pcontr(∇
(X)
i1...iau1...ut

Ω1 ⊗∇
(B)
j1...jby1...yr

Ω2 ⊗∇u1φ1 ⊗ . . .∇jbφf ⊗∇(B)
z1...zq

Ω3

⊗∇z1φf+1 ⊗∇zqφu+1),

(4.8)

(here if y ≥ 2 then b = 0; if y ≤ 1 then y = 2 − b),

pcontr(∇
(X)
i1...iau1...ut

Ria+1jia+2l ⊗∇(r)
y1...yr

Ria+3

j

ia+4

l
⊗∇u1φ1 ⊗ . . .∇jbφf⊗

∇(B)
z1...zq

Ω3 ⊗∇z1φf+1 ⊗∇zqφu+1),

(4.9)

pcontr(S∗∇
(X)
i1...iau1...ut

Riia+1ia+2l ⊗∇(r)
y1...yr

Ri′ia+3 ia+4

l ⊗∇iφ̃1 ⊗∇i′ φ̃2⊗

∇u1φ3 ⊗ . . .∇jbφf ⊗∇(B)
z1...zq

Ω3∇
z1φf+1 ⊗∇zqφu+1).

(4.10)

Then, picking out the sublinear combination in (4.7) with only factors ∇φ

contracting against ∇(B)Ωc we derive that (Const)∗ = 0. 2

Derivation of Proposition 2.1 (in case I) from Lemma 3.1:

Special cases etc: Now, we return to the derivation of Proposition 2.1 (in case
I) from Lemma 3.1. We will be singling out a further case, which we will call
“delicate”. In this “delicate” case we will derive Proposition 2.1 from Lemma
3.1 by using an extra Lemma (see Lemma 4.3 below). The proof of Lemma 4.3
will be provided in the Appendix to this paper.

The “delicate case”: The delicate case is when the µ-tensor fields of max-
imum refined double character in our Lemma assumption have no removable

free indices, and moreover their critical factor is in the form: S∗∇
(ν)
r1...rν Rirν+1i1l,

where all indices r1
, . . . , rν

, rν+1
are either free or contracting against a factor

∇φ′
h.40

In that case we have an extra claim, which we will prove in the Appendix:

Lemma 4.3 For each z ∈ Z ′
Max, we let Lz

∗ ⊂ Lz stand for the index set of

tensor fields C
l,i1...iµ
g , l ∈ Lz for which the index l in the critical factor contracts

against a special index in some factor S∗Rijkl.
We claim that for each z ∈ Z ′

Max,we can write:

∑

l∈Lz
∗

alC
l,i1...iµ
g ∇i1υ . . .∇iµ

υ =
∑

l∈L′z

alC
l,i1...iµ
g ∇i1υ . . .∇iµ

υ. (4.11)

40Notice that by weight considerations and by the definition of maximal refined double
character, if one tensor field of maximal refined double character has this property then all of
them will.
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Here the terms indexed in L′z have all the properties of the terms indexed in
Lz, but in addition the index l in the critical factor does not contract against a
special index in a factor S∗Rijkl.

The derivation of Proposition 2.1 (in case I):

Recall the conclusion of Lemma 3.1, equation (3.5). Recall that for each
tensor field and each complete contraction in (3.5), ∇φu+1 is contracting against
the crucial factor, which was defined to be the factor S∗∇(ν)Rijkl in ~κsimp

whose index i is contracting against a chosen factor ∇φ̃Min. For notational
convenience, we will assume that Min = 1, i.e. that that index i in the crucial
factor is contracting against a factor ∇φ̃1.

Define the set Stan to stand for the set of numbers o for which the factor
∇φ′

o is contracting against one of the indices r1
, . . . , , rν+1

in the crucial factor

S∗∇
(ν)
r1...rν Rirν+1kl. With no loss of generality, we assume that Stan = {2, . . . , q}

or Stan = ∅ (which is equivalent to saying q = 1–we will be using that convention
below).

For convenience, we will assume that for each of the tensor fields appearing
in (3.5) the factors ∇φ′

2, . . . ,∇φ′
q are contracting against the indices r1

, . . . , rq−1

in the crucial factor S∗∇
(ν)
r1...rν Rirν+1kl.

With this convention, we introduce a new definition:

Definition 4.2 For each tensor field C
l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1,

C
ν,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1, C

p,i1,...,iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu, φu+1)

in (3.5), we define C
l,i2...iµ
g (Ω1, . . . , Ωp, Y, φ2, . . . , φu),

C
ν,i2...iµ
g (Ω1, . . . , Ωp, Y, φ2, . . . , φu), C

p,i2,...,iµ+1

g (Ω1, . . . , Ωp, Y, φ2, . . . , φu) to stand
for the tensor fields that arise by formally replacing the expression

S∗∇
(ν)
r1...rν Rirν+1kl∇iφ̃1∇kφu+1 by a factor ∇

(ν+2)
r1...rνrν+1lY (Y is a scalar func-

tion).

We observe that the tensor fields we are left with have length σ + u − 1, a
factor ∇(B)Y with B ≥ 2, and are acceptable if we set Y = Ωp+1. We observe
that all these tensor fields have the same (u − 1)-simple character (where we
treat the function Y as a function Ωp+1), which we denote by κ̃simp.

We also note that each of the tensor fields C
l,i2...iµ
g (Ω1, . . . , Ωp, Y, φ2, . . . , φu),

C
ν,i2...iµ
g (Ω1, . . . , Ωp, Y, φ2, . . . , φu), Cp,i2...ib

g (Ω1, . . . , Ωp, Y, φ2, . . . , φu) will have

the property that the last index l in ∇(B)Y (in the tensor field

C
l,i2...iµ
g (Ω1, . . . , Ωp, Y, φ2, . . . , φu)) is neither free nor contracting against a fac-

tor ∇φh: This is because the last index l in ∇(B)Y corresponds to the in-

dex l in the crucial factor S∗∇
(ν)
r1...rν Rirν+1kl∇

iφ̃1∇
kφu+1 of the tensor field

C
l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu), and this index is neither free nor contracting

against any factor ∇φ′
o by hypothesis.

We claim an equation:
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∑

z∈Z′

Max

∑

l∈Lz

alXdivi2 . . .Xdiviµ
Cl,i2...iµ

g (Ω1, . . . , Ωp, Y, φ2, . . . , φu)+

∑

ν∈N

aνXdivi2 . . . Xdiviµ
Cl,i2...iµ

g (Ω1, . . . , Ωp, Y, φ2, . . . , φu)−

∑

p∈P

apXdivi2 . . . Xdiviµ+1
Cp,i2...iµ+1

g (Ω1, . . . , Ωp, Y, φ2, . . . , φu) =

∑

t∈T ′

atC
t
g(Ω1, . . . , Ωp, Y, φ2, . . . , φu),

(4.12)

which will hold modulo complete contractions of length ≥ σ +u. Here the right
hand side stands for a generic linear combination of complete contractions that
are simply subsequent to κ̃simp.

Proof of (4.12): Since the argument by which we derive this equation will
be used frequently in this series of papers, we codify this claim in a Lemma:

Lemma 4.4 Consider a linear combination of acceptable (γ + 1)-tensor fields,
∑

x∈X axC
x,i1...,iγ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu), all in the form (2.2) with weight
−n and with a given simple character κsimp. Assume that for each of the tensor
fields then the index i1 is the index k in a given factor S∗∇(ν)Rijkl, for which

the index i is contracting against a chosen factor ∇φ̃w (wlog we will assume

w = 1). Assume that
∑

z∈Z azC
z,i1...,iǫz+1

g (Ω1, . . . , Ωp, φ1, . . . , φu) is a linear
combination with all the features of the tensor fields indexed in X, only now
each ǫz > γ. Assume an equation:

∑

x∈X

axXdivi2 . . .Xdiviγ+1
Cx,i1...,iγ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1

+
∑

z∈Z

azXdivi2 . . .Xdiviǫz
C

z,i1...,iǫz+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1 =

∑

j∈J

ajC
j,i1
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1;

(4.13)

here the vector fields in the RHS have a u-weak character Weak(κsimp) and are
either simply subsequent to κsimp or have one of the two factors ∇φ1, ∇φu+1

contracting against a derivative index, or both factors ∇φw, ∇φu+1 are con-
tracting against anti-symmetric indices i, j or k, l in some curvature factor.

Denote by C
x,i2...,iγ+1

g (Ω1, . . . , Ωp+1, φ2, . . . , φu), C
z,i1...,iǫz+1

g (Ω1, . . . , Ωp+1, φ2, . . . , φu)

the tensor fields that arise from C
x,i1...,iγ+1

g (Ω1, . . . , Ωp+1, φ2, . . . , φu),

C
z,i1...,iǫz+1

g (Ω1, . . . , Ωp+1, φ2, . . . , φu) by formally replacing the expression

S∗∇
(ν)
r1...rν Rijkl∇iφ̃1∇kφu+1 by an expression ∇

(ν+2)
r1...rνjlΩp+1. Denote by κ̃simp
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the (u − 1)-simple character of each of the resulting tensor fields (they have
length σ + u − 1). We then claim that modulo complete contractions of length
≥ σ + u:

∑

x∈X

axXdivi2 . . .Xdiviγ+1
C

x,i1...,iγ+1

g (Ω1, . . . , Ωp+1, φ2, . . . , φu)

+
∑

z∈Z

azXdivi2 . . .Xdiviǫz
C

z,i1...,iǫz+1

g (Ω1, . . . , Ωp+1, φ2, . . . , φu) =

∑

j∈J′

ajC
j
g(Ω1, . . . , Ωp+1, φ1, . . . , φu),

(4.14)

where the complete contractions indexed in J ′ are simply subsequent to κ̃simp.
We note that the proof of this Lemma will be independent of Proposition 2.1.

Note: Before we prove this Lemma we remark that by applying it to (3.5)
we derive (4.12).

Proof of Lemma 4.4: Denote the left hand side of (4.13) by Fg. We then
denote by F ′

g the linear combination that arises from Fg by formally replacing
the factors ∇aφ1,∇bφu+1 by gab (the uncontracted metric tensor). Notice that
F ′

g then consists of complete contractions with one internal contraction in a cur-
vature factor, and with weight −n + 2 and length σ + u. Since Fg = 0 modulo
longer complete contractions, and since this equation holds formally, we derive
that F ′

g = 0 modulo longer complete contractions. Now, apply the operation
RictoΩp+1 to F ′

g (see the relevant Lemma in the Appendix of [3]). Denote the
resulting linear combination by F ′′

g . By definition of RictoΩp+1, the minimum
length of the complete contractions in F ′′

g is σ + u− 1. If we denote this sublin-
ear combination by F ′′σ+u−1

g then (virtue of the afformentioned Lemma) we will
have F ′′σ+u−1

g = 0 modulo longer complete contractions. By following all the
operations we have performed we observe that this equation is precisely (4.14).
2

Now, observe that (4.12) falls under our inductive assumption of Proposition
2.1:41 All the tensor fields are acceptable, and they all have a given simple
character κ̃simp; furthermore, the weight of the complete contractions in (4.12)
is −n + 2 > −n. Lastly, recall that we have noted that the last index in ∇(B)Y

is neither free nor contracting against any factor ∇φu+1.
We observe that the sublinear combinations of (µ − 1)-tensor fields on the

left hand side of (4.12) with maximal double characters are the sublinear com-
binations:

∑

z∈Z′

Max

∑

l∈Lz

alC
l,i2...iµ
g (Ω1, . . . , Ωp, Y, φ2, . . . , φu).

41Notice that since our assumption (3.1) does not include tensor fields in any of the “for-
bidden forms”, it follows that the tensor fields of minimum rank in (4.12) are also not in any
of the “forbidden forms”.
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(This follows directly from the definition of the maximal refined double char-
acters). We denote the respective refined double characters for the complete

contractions of this form by ~Lz
′
, z ∈ Z ′

Max. Applying the inductive hypoth-
esis of Corollary 1 to (4.12) and picking out the sublinear combination with

a (u − 1, µ − 1)-double character Doub( ~Lz
′
), we deduce that there is a linear

combination of acceptable µ-tensor fields with a refined double character ~Lz
′
,

∑

r∈Rz

arC
r,i2...iµ+1

g (Ω1, . . . , Ωp, Y, φ2, . . . , φu),

such that:

∑

l∈Lz

alC
l,i2...iµ
g (Ω1, . . . , Ωp, Y, φ2, . . . , φu)∇i2υ . . .∇iµ

υ

−
∑

r∈Rz

arXdiviµ+1
Cr,i2...iµ+1

g (Ω1, . . . , Ωp, Y, φ2, . . . , φu)∇i2υ . . .∇iµ
υ =

∑

t∈T

atC
t,i2...iµ
g (Ω1, . . . , Ωp, Y, φ2, . . . , φu)∇i2υ . . .∇iµ

υ,

(4.15)

modulo complete contractions of greater length. (Recall that since we are con-
sidering the factor Y to be of the form Ωp+1, each of the tensor fields above has
a factor ∇(b)Y, b ≥ 2).

Here,
∑

t∈T

atC
t,i2...iµ
g (Ω1, . . . , Ωp, Y, φ1, . . . , φu)

stands for a generic linear combination of tensor fields whose refined double

character is (simply or doubly) subsequent to the refined double character ~Lz
′
.

Moreover, if this tensor field C
t,i2...iµ
g is only doubly subsequent to ~Lz

′
, then at

least one of the indices in the factor ∇(B)Y is not contracting against a factor
of the form ∇υ, ∇φ. (This follows since those tensor fields arise from the tensor
fields indexed in N in (4.12), which have that property by construction).

Now, we refer to (4.15) and we make all the factors ∇υ that are not contract-
ing against the critical factor into an Xdiv (see the last Lemma in the Appendix
of [3]). We thus obtain a new true equation:

∑

l∈Lz

alXdiviM+1
. . . Xdiviµ

Cl,i2...iµ
g (Ω1, . . . , Ωp, Y, φ2, . . . , φu)∇iM

υ . . .∇iM−1
υ =

∑

r∈Rz

arXdiviM+1
. . .Xdiviµ+1

Cr,i2...iµ+1

g (Ω1, . . . , Ωp, Y, φ2, . . . , φu)∇i2υ . . .∇iM
υ

+
∑

t∈T

atXdiviM+1
. . .Xdiviµ

Ct,i2...iµ
g (Ω1, . . . , Ωp, Y, φ2, . . . , φu)∇i2υ . . .∇iM

υ.

(4.16)
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Now, before we can proceed with our argument we will need to employ a
technical Lemma whose proof we will present in the end of this subsection.

Lemma 4.5 We claim that we may assume with no loss of generality that for
each tensor field indexed in Rz, one index in ∇(B)Y (the last one, wlog) is not
contracting against any factor ∇φh or ∇υ.

Under this extra assumption, we can now derive the claim of Proposition
2.1:

Now, since all the tensor fields in Lz, Rz have the same (u− 1, µ− 1)-double

character, ~Lz
′
, it follows that for each tensor field appearing in (4.15) there is

a fixed number τ of factors ∇υ contracting against the factor ∇(B)Y , and also
a fixed number (q − 1) of factors ∇φ′

o contracting against ∇(B)Y . We may
assume with no loss of generality that the τ factors ∇υ are contracting against
the first τ indices in ∇(B)Y and the q − 1 factors ∇φo are contracting against
the next q−1 indices in ∇(B)Y , in a decreasing rearrangement according to the
numbers o. By using the Eraser,42 we can see that under these assumptions,
(4.15) will hold formally, subject to the additional feature that for each complete
contraction in (4.15), the first τ + q− 1 indices are not permuted. (Call this the
extra feature).

In this setting, we define an operation Replace that acts on the tensor

fields in (4.15) by replacing the factor ∇
(b)
r1...rbY (recall b ≥ 2) by an expres-

sion S∗∇
(b−2)
r1...rb−2

Rirb−1krb
∇iφ1∇kυ. We denote the resulting tensor fields by:

C̃l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ,

C̃r,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ,

C̃t,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ.

We immediately observe that for each l ∈ Lz:

Replace[C̃l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1]

= Cl,i1,i2...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ.

(4.17)

We then claim that the vector field

∑

r∈R

arC̃
r,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ
υ

is the one we need for Proposition 2.1. In order to see this, we only have to
recall that (4.15) holds formally. We then “memorize” the sequence of formal
applications of the identities in Definition 6 in [1], by which we can make the
linearization of (4.15) formally equal to the linearization of the right hand side.

42See the relevant Lemma in the Appendix of [3].
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We recall that an application of the identities in Definition 6 in [1] to the factor

∇
(b)
r1...rbY (subject to the extra feature) means that we may freely permute the

indices rτ+q
, . . . , rb

.
Now, we will perform the same sequence of applications of the identities in

Definition 6 in [1] to the linear combination:

∑

l∈Lz

alC̃
l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ∇i2υ . . .∇iµ

υ

−
∑

r∈Rz

arXdiviµ+1
C̃r,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ∇i2υ . . .∇iµ
υ

(4.18)

We impose one restriction: When we had permuted the indices r1
, . . . , rb

in a

factor ∇
(b)
r1...rbY in (4.15), we now freely permute them again, but also introduce

correction terms, by virtue of the Bianchi identities:

∇(m)
r1...rm

Rijkl∇
iφ1∇

kυ −∇(m)
r1...rm

Rilkj∇
iφ1∇

kυ = ∇(m)
r1...rm

Rikjl∇
iφ1∇

kυ,

(4.19)

∇(m)
r1...rm

Rijkl∇
iφ1∇

kυ −∇
(m)
r1...jRirmkl∇

iφ1∇
kυ = ∇

(m)
r1...iRrmjkl∇

iφ1∇
kυ,

(4.20)

∇(m)
r1...rm

Rijkl∇
iφ1∇

kυ −∇
(m)
r1...lRijkrm

∇iφ1∇
kυ = ∇

(m)
r1...kRrmlij∇

iφ1∇
kυ.

(4.21)
Hence, we derive that modulo complete contractions of length ≥ σ+u+µ+1:

∑

l∈Lz

alC̃
l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ

υ

−
∑

r∈Rz

arXdiviµ+1
C̃r,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ
υ =

∑

t∈T

atC̃
t,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iα

υ

+
∑

t∈T ′

atC̃
t,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ

υ,

(4.22)

where

∑

t∈T ′

atC̃
t,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ

υ (4.23)

stands for the linear combination of correction terms that arises by virtue of the
identities (4.19), (4.20), (4.21).
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Specifically, the linear combination of correction terms arises by replacing

the crucial factor ∇
(m)
r1...rmRijkl∇iφ1∇kφu+1 by one of the expressions on the

right hand sides of (4.19), (4.20), (4.21). We observe that all the correction

terms are acceptable tensor fields that are (simply or doubly) subsequent to ~Lz
′
.

Thus we have proven that under the assumptions of Lemma 3.1, the claim
of Proposition 2.1 follows in this case I. 2

Proof of Lemma 4.5:
We refer to (4.16). We pick out the sublinear combination of terms in that

equation where all indices in the function ∇(B)Y are contracting against a factor
∇υ or ∇φ′

h (denote the index set of tensor fields in Rz with that property by

R
z
). We thus obtain a new equation:

∑

r∈R
z

arX∗diviM+1
. . . X∗diviµ+1

Cr,i2...iµ+1

g (Ω1, . . . , Ωp, Y, φ2, . . . , φu)∇i2υ . . .∇iM
υ

=
∑

j∈J

ajC
j,i2...iM
g (Ω1, . . . , Ωp, Y, φ2, . . . , φu)∇i2υ . . .∇iM

υ,

(4.24)

(where the terms indexed in J are simply subsequent to the simple character of
the terms in the first line). If σ ≥ 4 and if our Lemma assumption (3.1) does
not fall under the delicate case,43 we then apply Lemma 4.1; if σ = 3 and if our
Lemma assumption (3.1) does not fall under the delicate case we apply Lemma
4.2.44 We thus derive:

∑

r∈R
z

arXdiviM+1
. . .Xdiviµ+1

Cr,i2...iµ+1

g (Ω1, . . . , Ωp, Y, φ2, . . . , φu)∇i2υ . . .∇iM
υ

=
∑

r∈R̃z

arXdiviM+1
. . .Xdiviµ+1

Cr,i2...iµ+1

g (Ω1, . . . , Ωp, Y, φ2, . . . , φu)∇i2υ . . .∇iM
υ

+
∑

j∈J

ajC
j,i2...iM
g (Ω1, . . . , Ωp, Y, φ2, . . . , φu)∇i2υ . . .∇iM

υ,

(4.25)

where the terms indexed in R̃z have all the features of the terms in Rz but
in addition have at least one index in ∇(B)Y not contracting against a factor
∇φh or ∇υ. Replacing the above into (4.16), we may assume that all terms in
Rz have at least one index in ∇(B)Y not contracting against a factor ∇φh or ∇υ.

43We will explain what to do if (4.24) does fall under the delicate case below. The fact that
(3.1) does not fall under the delicate case ensures that (4.24) does not fall under a forbidden
case of Lemma 4.1.

44We observe that Lemma 4.2 can be applied, since we are in a non-delicate case hence the
tensor fields indexed in Rz which have all indices in ∇(B)Y contracting against factors ∇υ

must have a removable index.

45



Proof of (4.25) when (3.1) falls under the delicate case: All the arguments
above can be repeated except for the application of Lemma 4.1, because in this
setting (4.24) might fall under the forbidden cases of Lemma 4.1. On the other
hand, we have also imposed a “delicate assumption” on (3.1), which we will
utilize now:

Proof that the technical claim follows from (4.15) when (3.1) falls under the
“delicate case”:

Refer to (4.15). We denote by Rz
Bad ⊂ Rz the index set of tensor fields that

have the free index iµ+1
being a special index in some simple factor S∗∇(ν)Rijkl ,

and with all indices in ∇(B)Y contracting against a factor ∇φh or ∇υ (we will
call tensor fields with that property “bad”). We observe that (4.25) can again
be derived, provided that Rz

Bad = ∅ in (4.24); (this is because when Rz
Bad = ∅

there is no danger of falling under a “forbidden case” of Lemma 4.1, by weight
considerations). We will now show that we can write:

∑

r∈Rz
Bad

arC
r,i2...iµ+1

g (Ω1, . . . , Ωp, Y, φ2, . . . , φu)∇i2υ . . .∇iµ
υ∇iµ+1

Φ =

∑

r∈Rz
NotBad

arC
r,i2...iµ+1

g (Ω1, . . . , Ωp, Y, φ2, . . . , φu)∇i2υ . . .∇iµ
υ∇iµ+1

Φ+

∑

j∈J

ajC
j,i2...iµ+1

g (Ω1, . . . , Ωp, Y, φ2, . . . , φu)∇i2υ . . .∇iµ
υ∇iµ+1

Φ,

(4.26)

where the terms in Rz
NotBad are in the form described in (4.15) and in addition

are not bad. The terms indexed in J are simply subsequent to ~κsimp. If we can
show the above, then by making the ∇Φ into an Xdiv and replacing into (4.15),
we are reduced to the case Rz

Max = ∅. We have then noted that the proof above
goes through. Thus matters are reduced to showing (4.26).

Proof of (4.26): We may assume with no loss of generality that the free

index iµ+1
is the index k in a factor S♯∇

(ρ)
r1...rρRijkl , where S♯ stands for the

symmetrization over the index l and all the indices in the above that are not
contracting against a factor ∇υ or ∇φ′

h (the correction terms that we obtain
from this S♯-symmetrization would be tensor fields which are not “bad”–as
allowed in (4.26)). We then pick out the sublinear combination of terms in
(4.15) with a factor ∇(B)Y that has all its indices except one (say the index s)
contracting against a factor ∇φh or ∇υ, and the index s contracting against a
special index in a factor S∗∇(ρ)Rijkl . By virtue of the “delicate assumption”,
this sublinear combination will be of the form:
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∑

r∈Rz
BAD

arHitY diviµ+1
Cr,i2...iµ+1

g (Ω1, . . . , Ωp, Y, φ2, . . . , φu)∇i2υ . . .∇iµ
υ+

∑

j∈J

ajC
j,i2...iµ
g (Ω1, . . . , Ωp, Y, φ2, . . . , φu)∇i2υ . . .∇iµ

υ.

(4.27)

Then, we consider the first conformal variation Image1
X [Fg] of (4.15) and we

pick out the terms where one of the factors ∇φh, h ∈ Def(~κsimp) is contracting
against the factor ∇(B)Y , for which we additionally require that all other indices
contract against ∇υ’s or ∇φ’s. The above sublinear combination must vanish
separately. We thus derive a new equation:

∑

r∈Rz
BAD

arHitY diviµ+1
Op[C]r,i2...iµ+1

g (Ω1, . . . , Ωp, Y, φ2, . . . , φu)∇i2υ . . .∇iµ
υ+

∑

j∈J

ajC
j,i2...iµ
g (Ω1, . . . , Ωp, Y, φ2, . . . , φu)∇i2υ . . .∇iµ

υ = 0,

(4.28)

where Op[C]
r,i2...iµ+1

g formally arises from by replacing the factor

S♯∇
(ρ)
r1...rρRijiµ+1l∇iφ̃q by ∇

(ρ+2)
r1...rρjlY ∇iµ+1

φq (and HitY diviµ+1
still means that

∇iµ+1 is forced to hit the factor ∇(B)Y ). Then, formally replacing the expression

∇(C)
y1...yC

X∇y1υ . . .∇yaυ∇ya+1φw1
. . .∇ybφwf

by an expression

S♯∇(C−2)
y1...yC−2

RiyC−1iµ+1yC
∇y1υ . . .∇yaυ∇ya+1φw1

. . .∇ybφwf
∇iφ̃q,

and repeating the formal identities by which (4.28) is proven “formally”,45 we
derive (4.26). 2

4.3 Derivation of Proposition 2.1 in case II from Lemma
3.2.

Recall the notation of Lemma 3.2. Our point of departure will be the Lemma’s
conclusion, equation (3.7). Recall that in that equation, all tensor fields have a
given (u + 1)-simple character, which we have denoted by ~κ′

simp. We also recall

that the (µ−1)-tensor fields C̃
l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇ih

φu+1 in the first
line of (3.7) have maximal refined double characters among all (µ − 1)-refined
double characters appearing in (3.7); we have denoted the maximal (µ − 1)-
refined double characters by ~κz

ref−doub, z ∈ Z ′
Max.

45See the argument that proves (4.22).
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For all tensor fields in (3.7) the factor ∇φu+1 is contracting against an index

i in some chosen factor S∗∇(ν)Rijkl . For this subsection, we will be calling that
factor the A-crucial factor. We recall that all tensor fields in the first line in
(3.7) have a given number of special free indices in the A-crucial factor. This
follows from the definition of Z ′

Max.
We further distinguish two subcases of case II: Observe that either all re-

fined (u + 1, µ − 1)-double characters ~κz, z ∈ Z ′
Max one internal free index k

or l in the A-crucial factor, or have no such free index.46 We accordingly call
these subcases A and B,47 and we will prove our claim separately for these two
subcases.

We here prove our assertion for all cases apart from certain special cases
where we will derive the claim of Proposition 2.1 directly from (3.1) (in the
paper [7] in this series).

The special cases:

Case A: The special case here is when for each tensor field C
l,i1...iµ
g , l ∈

Lz, z ∈ Z ′
Max in (3.1) there are no removable free indices among any of its

factors.48

Case B: The special case here is when for each tensor field C
l,i1...iµ
g , l ∈

Lz, z ∈ Z ′
Max in (3.1) there are no removable indices other than (possibly) the

indices k, l in the (one of the) crucial factor ∇
(m)
v1...vxi1...ib

Rib+1jkl.
49

Throughout the rest of this subsection we will be assuming that the µ-tensor
fields of maximal refined double character in (3.1) are not special. In the special
cases, Proposition 2.1 will be derived directly (without recourse to Lemma 3.2)
in [7].

Derivation of Proposition 2.1 in case II from Lemma 3.2 (subcase A): Recall
the conclusion of Lemma 3.2:

46Notice that this dichotomy corresponds to the following dichotomy regarding the tensor
fields in

S

z∈Z′

Max
Lz in (3.1): Either for those tensor fields the critical factor ∇(m)Rijkl

contains two internal free indices, or it contains one internal free index.
47Sometimes we will refer to subcases IIA, IIB, to stress that these are subcases of case II.
48Observe that if this is true of one of the tensor fields C

l,i1...iµ
g , l ∈ Lz , z ∈ Z′

Max, it will
be true of all of them, by weight considerations.

49The remark in the previous footnote still holds.
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∑

z∈Z′

Max

∑

l∈Lz

al

∑

ih∈I∗,l

Xdivi1 . . . ˆXdivih
. . . Xdiviµ

C̃l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)

∇ih
φu+1 +

∑

ν∈N

aνXdivi2 . . . Xdiviµ
Cν,i1...iµ

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1+

∑

d∈D

adXdivi1 . . .Xdiviµ
Cd,i1...iµ

g (Ω1, . . . , Ωp, φ1, . . . , φu, φu+1) =

∑

t∈T

atC
t,i∗
g (Ω1, . . . , Ωp, φ1, . . . , φu, φu)∇i∗φu+1.

(4.29)

We now apply our inductive assumption of Corollary 1 to the above.50 We
derive that there is a linear combination of acceptable (µ− 1)-tensor fields with
a (u + 1)-simple character ~κ′

simp (indexed in H below), so that:

∑

z∈Z′

Max

∑

l∈Lz

al

∑

ih∈I∗,l

C̃l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇ih

φu+1∇i1υ . . . ∇̂ih
υ . . .∇iµ

υ

+
∑

ν∈N

aνCν,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇iµ

υ+

∑

h∈H

ahXdiviµ+1
Ch,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇iµ
υ+

∑

j∈J

ajC
j,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇iµ

υ,

(4.30)

where each C
j,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1 is simply subsequent to

Simp(~κz
ref−doub). Note: We will now be calling the factor against which ∇φu+1

is contracting the A-crucial factor for any contraction appearing in the above.

Now, we observe that in view of the claim in Lemma 3.2, for each C̃
l,i1...iµ
g ,

C
ν,i1...iµ
g we must have that at least one of the indices r1

, . . . , rν
, j in the A-

crucial factor S∗∇
(ν)
r1...rν Rijkl is not free and not contracting against a factor

∇φf , f ≤ u. Furthermore, it follows from the definition of
⋃

z∈Z′

Max
Lz that all

C̃
l,i1...iµ
g tensor fields are contracting against a given number c of factors ∇υ.

We denote by N ⊂ N, H ⊂ H, J ⊂ J the index sets of the contractions above
for which the A-crucial factors is contracting against c factors ∇υ. Then, since
(4.30) holds formally, we derive that:

50The fact that we are assuming that (2.3) (the assumption of Lemma 3.2) does not fall
under a “special case” of subcase A ensures that (4.29) satisifies the requirements of Corollary
1. Also, since we have introduced a new factor ∇φu+1, the above falls under the inductive
assumption of Corollary 1.
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∑

z∈Z′

Max

∑

l∈Lz

al

∑

ir∈I∗,l

C̃l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇ir

φu+1∇i1υ . . . ∇̂ir
υ . . .∇iµ

υ

+
∑

ν∈N

aνCν,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇iµ

υ =

∑

h∈H

ahXdiviµ+1
Ch,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇iµ
υ+

∑

j∈J

ajC
j,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇iµ

υ.

(4.31)

In fact, we will be using a weaker version of this equation: Consider (4.31):
We assume with no loss of generality, only for notational convenience, that in
each C̃l,i1...iµ , C

ν,i1...iµ
g and each Ch,i1...iµ+1 the free indices i1 , . . . , îr

, . . . , ic+1

belong to the A-crucial factor, while the indices ic+2
, . . . , iµ

do not. Now, recall
that (4.31) holds formally. Then, define an operation that formally erases the
factors ∇υ that are not contracting against the A-crucial factor and then takes
Xdivs of the resulting free indices that we obtain. If we denote the expression
that we (formally) thus obtain by F ′, it follows that F ′ = 0 (modulo longer
complete contractions) by virtue of the last Lemma in the Appendix of [3]. We
have thus derived:51

∑

z∈Z′

Max

∑

l∈Lz

al

∑

ih∈I∗,l

Xdivic+2
. . . Xdiviµ

C̃l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇ih

φu+1 . . .∇ic+1
υ+

∑

ν∈N

aνXdivic+2
. . . Xdiviµ

Cν,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇ic+1

υ

=
∑

h∈H

ahXdivic+1
. . . Xdiviµ+1

Ch,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1

· ∇i2υ . . .∇ic+1
υ +

∑

j∈J′

ajC
j,i1...ic+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇ic+1
υ.

(4.32)

Here the complete contractions indexed in J ′ are simply subsequent to ~κ′
simp.

Now, we break the index set H into two subsets: h ∈ H1 if and only if the

A-crucial factor S∗∇
(ν)
r1...rν Rijkl in

Ch,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇iπ
υ

has the property that at least one of the indices r1
, . . . , rν

, j is neither contract-
ing against a factor ∇υ nor a factor ∇φ′

h. We say that h ∈ H2 if and only if all

51We will revert to writing N, H, J instead of N , H, J for notational simplicity.
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the indices r1
, . . . , rν

, j in the A-crucial factor are contracting against a factor
∇φ′

h or ∇υ. We complete our proof in two steps: Step 1 involves getting rid of
the terms indexed in H2:

Step 1: We introduce some notation:

Definition 4.3 We denote by X∗divi[. . . ] the sublinear combination in each
Xdivi[. . . ] where we impose the additional restriction that ∇i is not allowed to
hit the A-crucial factor (in the form S∗∇(ν)Rijkl).

Then, since (4.32) holds formally, we deduce that:

∑

h∈H2

ahX∗divic+2
. . . X∗diviµ+1

Ch,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ

. . .∇ic+1
υ +

∑

j∈J

ajC
j,i2...ic+2

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇ic+2
υ = 0,

(4.33)

(modlo longer terms), where each Cj,i2...iπ
g is simply subsequent to ~κ′

simp.
A notational convention that can be made with no loss of generality is that

in ~κz
simp the b factors ∇φ′

h that are contracting against indices r1
, . . . , rν

, j in

the A-crucial factor S∗∇(ν)Rijkl are precisely the factors ∇φ1, . . . ,∇φb.
We then claim that we can write:

∑

h∈H2

ahXdivic+2
. . .Xdiviµ+1

Ch,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .

∇ic+1
υ =

∑

h∈H̃

ahXdivic+2
. . . Xdiviµ+1

Ch,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ

. . .∇ic+1
υ +

∑

j∈J

ajC
j,i2...ic+2

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇ic+2
υ,

(4.34)

where the sublinear combination indexed in H̃ in the RHS stands for a generic
linear combination of tensor fields with all the properties of the tensor fields
indexed in H1 above.

We will show below that (4.34) follows by applying Lemma 4.6 or Lemma
4.7 to (4.33) (and we will prove Lemmas 4.6, 4.7 in [7]). For now, let us observe
how (4.34) implies Proposition 2.1 in this case A:

Step 2: Proposition 2.1 follows from (4.34). By replacing (4.34) into (4.32),
we are reduced to showing our claim when H2 = ∅. Now, for each of the tensor

fields in (4.32) we denote by C
l,ic+2...iµ
g (Ω1, . . . , Ωp, Y, φb+1, . . . , φu),

C
ν,ic+2...iµ
g (Ω1, . . . , Ωp, Y, φ1, . . . , φu), C

h,ic+2...iµ+1

g (Ω1, . . . , Ωp, Y, φb+1, . . . , φu) the
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tensor fields that arise from
C

l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇ih

φu+1∇i2υ . . .∇ic+1
υ,

Ch,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇ic+1
υ

by replacing the expressions

S∗∇
(A+c+b−1)
u1...uA−1s1...sbr1...rc

RiuAkl∇
r1υ . . .∇rcυ∇kυ∇s1φ1 . . .∇sbφb∇

iφu+1

by a factor ∇
(A+1)
u1...uAlY .

Now, by polarizing the function υ in (4.32) and applying Lemma 4.4, we
deduce that:

∑

z∈Z′

Max

∑

l∈Lz

al

∑

ih∈I∗,l

Xdivic+2
. . . Xdiviµ

C̃l,ic+2...iµ
g (Ω1, . . . , Ωp, Y, φb+1, . . . , φu)+

∑

ν∈N

aνXdivic+2
. . . Xdiviµ

Cν,ic+2...iµ
g (Ω1, . . . , Ωp, Y, φb+1, . . . , φu) =

∑

h∈H

ahXdivic+1
. . .Xdiviµ+1

Ch,ic+2...iµ+1

g (Ω1, . . . , Ωp, Y, φ1, . . . , φu)+

∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, Y, φb+1, . . . , φu).

(4.35)

Notice that all the tensor fields in the above have at least 2 derivatives on
the factor ∇(b)Y . For the tensor fields indexed in H , this follows since H2 = ∅;
for the tensor fields indexed in (

⋃

z∈Z′

Max
Lz)

⋃

N , it follows by our observation

after (4.30). Thus, if we treat Y as a function Ωp+1, all tensor fields in the
above have a given simple character, which we will denote by κ̃simp.

We denote the refined double character of the tensor fields
C

l,ic+2...iµ+1

g (Ω1, . . . , Ωp, Y, φb+1, . . . , φu), l ∈ Lz, z ∈ Z ′
Max by ~L′

z (observe that
they are the maximal refined double characters among all the (µ − c − 1)-
tensor fields appearing in (4.35)). By virtue of our inductive assumption of
Proposition 2.1,52 we derive that for each z ∈ Z ′

Max there is a linear combination
of acceptable (µ − c)-tensor fields
∑

h∈H′ ahC
h,ic+1...iµ+1

g (Ω1, . . . , Ωp, Y, φb+1, . . . , φu) with an (µ − c − 1)-refined

double character ~L′
z (so in particular they have a factor ∇(B)Y , B ≥ 2, not

contracting against any factor ∇υ, ∇φh), so that for each z ∈ Z ′
Max:

52Notice that since we are assuming that the µ-tensor fields of maximal refined double
character in (3.1) do not have special free indices in any factor S∗∇(ν)Rijkl then it follows
that the tensor fields of minimum rank in (4.35) satisfy the requirememnts of Proposition 2.1.
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∑

l∈Lz

al

∑

ih∈I∗,l

Cl,i1ic+2...iµ
g (Ω1, . . . , Ωp, Y, φb+1, . . . , φu)∇ic+2

υ . . .∇iµ
υ

−
∑

h∈H

ahXdiviµ+1
Ch,ic+2...iµ+1

g (Ω1, . . . , Ωp, Y, φb+1, . . . , φu)∇ic+2
υ . . .∇iµ

υ

=
∑

t∈T

atC
t,ic+2...iµ
g (Ω1, . . . , Ωp, Y, φb+1, . . . , φu)∇ic+2

υ . . .∇iµ
υ,

(4.36)

where each C
t,ic+2...iµ
g (Ω1, . . . , Ωp, Y, φb+1, . . . , φu) is acceptable and simply or

doubly subsequent to ~L′
z.

We use the fact that (4.36) holds formally. We then define an operation

Op[. . . ] that replaces each factor ∇
(B)
t1...tB

Y (B ≥ 2) by an expression

∇
(m)
s1...sbr1...rc−1t1...tk−2

RitB−1ktB
∇iυ∇r1υ . . .∇rc−1υ∇kυ∇s1φ′

1 . . .∇sbφ′
b.

We observe that for each z ∈ Z ′
Max:

Op{
∑

l∈Lz

al

∑

ih∈I∗,l

C̃l,ic+2...iµ
g (Ω1, . . . , Ωp, Y, φb+1, . . . , φu)∇ic+2

υ . . .∇iµ
υ} =

|I∗,l|
∑

l∈Lz

alC
l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ

υ,

(4.37)

where we have noted that |I∗,l| is universal, i.e. independent of the element
l ∈ Lz (in most cases |I∗,l| = 1).

Hence, since (4.36) holds formally, we deduce that:

∑

l∈Lz

alC
l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ

υ−

∑

h∈H

ahXdiviµ+1
Op[Ch,iπ+1...iµ+1

g (Ω1, . . . , Ωp, Y, φ1, . . . , φu)∇iπ+1
υ . . .∇iµ

υ]

=
∑

t∈T ′

atC
t,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇iµ

υ,

(4.38)

where again each C
t,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu) is either simply or doubly sub-

sequent to ~Lz. The above is obtained from (4.36) by the usual argument as in
the derivation of Proposition 2.1 from Lemma 3.1 (see the argument above equa-
tions (4.19), (4.20), (4.21)): We may repeat the permutations by which we make
(4.36) formally zero, modulo introducing corrections terms that are simply or
doubly subsequent by virtue of the Bianchi identities.
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Therefore, we have shown that Lemma 3.2 implies case II of Proposition
2.1 in subcase A (in the non-special cases), provided we can prove (4.34). We
reduce (4.38) to certain other Lemmas, which will be proven in [7] in the next
subsection. 2

Derivation of case II of Proposition 2.1 from Lemma 3.2 in case B:

Our point of departure is again equation (3.7).
Recall that in this second case, for each z ∈ Z ′

Max none of the free indices

in the A-crucial factor S∗∇
(ν)Rijkl in any C̃

l,i1...iµ
g ∇i1φu+1, l ∈ Lz are special.

In that case, we again have equation (4.31). We will re-write the equation
in a somewhat more convenient form, but first we recall some of the notational
conventions from the previous case. For notational convenience, we have as-
sumed that the b factors ∇φh, h ≤ u that are contracting against the A-crucial
factor S∗∇(ν)Rijkl∇iφu+1 are precisely the factors ∇φ′

1, . . . ,∇φ′
b. We also recall

that ~κz
ref−doub stands for the (u + 1, µ− 1)-refined double character of the con-

tractions in
∑

ih∈I∗,l
C̃

l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1. Equation (4.31)

can then be re-written in the form:

∑

z∈Z′

Max

∑

l∈Lz

al

∑

ir∈I∗,l

C̃l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇ir

φu+1∇i1υ . . . ∇̂ir
υ . . .

∇iµ
υ +

∑

h∈H

ahXdiviµ+1
Ch,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇iµ
υ

=
∑

t∈T

atC
t,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇iµ

υ,

(4.39)

where each C
t,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1 is (simply or doubly) subse-

quent to ~κz
ref−doub. Moreover, if some C

t,i1...iµ
g is doubly subsequent to ~κz

ref−doub

then at least one of the indices r1
, . . . , rν

, j in the A-crucial factor S∗∇
(ν)
r1...rnRijkl

is neither contracting against a factor ∇υ nor against a factor ∇φh. The com-
plete contractions on the right hand side arise by indexing together the contrac-
tions in N, J in (4.31).

We then again assume with no loss of generality that in each tensor field in
the first line above, the indices i1 , . . . , ic+1

belong to the A-crucial factor and the
indices ic+2

, . . . , iµ
do not. We will then again use a weakened version of (4.39).

Weakened version of (4.39): Now, we return to (4.39). We derive an equa-
tion:

54



∑

z∈Z′

Max

Xdivic+2
. . . Xdiviµ

∑

l∈Lz

al

∑

ir∈I∗,l

C̃l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)

∇ir
φu+1∇i1υ . . . ∇̂ir

υ . . .∇ic+1
υ +

∑

t∈T ′

atXdivic+2
. . .

Xdiviµ
Ct,i1...iµ

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇ic+1
υ +

∑

h∈H

ahXdivic+2

. . .Xdiviµ+1
Ch,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇ic+1
υ

+
∑

j∈J

ajC
j,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇ic+1

υ = 0;

(4.40)

here each of the tensor fields indexed in T ′ are doubly subsequent to the maximal
refined double characters ~κz

ref−doub, while each of the complete contractions
indexed in J is simply subsequent to ~κ′

simp. This just follows from the previous
equation by making the factors ∇υ that are not contracting against the A-
crucial factor into Xdiv’s (as in the previous case A–we are applying the last
Lemma in the Appendix of [3] here).

Now, similarly to the previous case, we complete our proof in two steps; we
first introduce some notation: We divide the index set H into two subsets: We
say h ∈ H1 if at least one of the indices r1

, . . . , rm
, j in the A-crucial factor

S∗∇
(m)
r1...rmRijkl does not contract against a factor ∇υ or ∇φh, h ≤ u. If all the

indices r1
, . . . , rm

, j in the A-crucial factor S∗∇
(m)
r1...rmRijkl contract against a

factor ∇υ or ∇φf , f ≤ u, we say that h ∈ H2. Now, step 1 involves getting rid
of the terms indexed in H2.

Step 1: For each h ∈ H2, recall (from definition 4.3) that X∗divi[. . . ] the
sublinear combination in Xdivi[. . . ], where we impose the extra restriction that
∇i is not allowed to hit the A-crucial factor S∗∇(m)Rijkl . Then, since (4.39)
holds formally, we deduce that:

∑

h∈H2

ahX∗divic+2
. . . X∗diviµ

X∗diviµ+1
Ch,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)

· ∇i1φu+1∇i2υ . . .∇ic+1
υ +

∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, φ1, . . . , φu) = 0.

(4.41)

We then claim that (4.41) will imply a new equation, for which we will need
some more notation: Let us consider the tensor fields

C̃l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇ir

φu+1∇i1υ . . . ∇̂ir
υ . . .∇ic+1

υ,

C
t,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇ir

φu+1∇i1υ . . . ∇̂ir
υ . . .∇ic+1

υ in (4.40).
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For each l ∈ Lz, we denote by C̃
l,i1ic+2...iµ
g (Ω1, . . . , Ωp, φb+1, . . . , φu)∇i1φu+1

the tensor field that arises from C̃
l,i1...iµ
g ∇ih

φu+1 (as it appears in (4.40)) by
replacing the A-crucial factor

S∗∇
(ν)
i2...ic+1l1...lbyπ+1...yν

Riyν+1kl∇
iφu+1∇

l1φ2 . . .∇lbφb∇
i2υ . . .∇ic+1υ (4.42)

(i2 , . . . , iπ
are the free indices that belong to that A-crucial factor) by

S∗∇
(ν−π−b+1)
yπ+1...yν Riyν+1kl∇iφu+1. We analogously define

C
t,i1ic+2...iµ
g (Ω1, . . . , Ωp, φb+1, . . . , φu)∇i1φu+1. Notice these constructions are

well-defined, since we know that at least one of the indices i2 , . . . , rν+1
in the

left hand side of (4.66) are not contracting against any factor ∇φ or ∇υ.
Furthermore, observe that the tensor fields constructed above are acceptable,

and have a given (u − b)-simple character, which we denote by ~κ′′
simp.

Now, our claim is that assuming (4.41), there is a linear combination of
acceptable tensor fields (indexed in H̃ below) with a simple character ~κ′′

simp,
and each with rank µ − c > µ − c − 1 so that:

∑

z∈Z′

Max

∑

l∈Lz

al

∑

ir∈I∗,l

Xdivic+2
. . . Xdiviµ

C̃l,ic+2...iµ
g (Ω1, . . . , Ωp, φb+1, . . . , φu)

∇ir
φu+1 +

∑

t∈T ′

atXdivic+2
. . .Xdiviµ

Ct,i1ic+2...iµ
g (Ω1, . . . , Ωp, φb+1, . . . , φu)+

∑

h∈H̃

ahXdivic+2
. . .Xdiviµ+1

Ch,ic+2...iµ+1

g (Ω1, . . . , Ωp, φb+1, . . . , φu)∇i1φu+1

+
∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, φb+1, . . . , φu) = 0;

(4.43)

here the contractions indexed in J are simply subsequent to ~κ′′
simp. The above

holds modulo contractions of length ≥ σ +u− b+1. This claim will be reduced
to Lemma 4.8 in the next subsection. We now take it for granted and check
how Proposition 2.1 in case IIB follows from (4.43).

Step 2: Derivation of Proposition 2.1 in case II subcase B from (4.43):
Denote the refined double characters of the tensor fields in

⋃

z∈Z′

Max
Lz by

~κ′z
ref−doub; observe that the tensor fields C

t,i1ic+2...iµ
g (Ω1, . . . , Ωp, φb+1, . . . , φu)∇i1φu+1

are doubly subsequent to the refined double characters ~κ′z
ref−doub. Moreover, the

refined double characters ~κ′z
ref−doub are then all maximal.

Now, the above falls under the inductive assumption of Proposition 2.1:53

If b + c > 0 then the weight of the above complete contractions is > −n, and if
b+ c = 0 then we have u+1 factors ∇φ. Thus we derive that for each z ∈ Z ′

Max

53Observe that the tensor fields of minimum rank in (4.43) will not contain special free
indices in factors S∗∇(ν)Rijkl (since we are considering (3.1) in the setting of case IIB).
Therefore there is no danger of falling under a “forbidden case” of Proposition 2.1.
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there is a linear combination of acceptable tensor fields with a refined double
character ~κ′z

ref−doub (indexed in Hz below) so that:

∑

l∈Lz

al

∑

ih∈I∗,l

C̃l,ihic+2...iµ
g (Ω1, . . . , Ωp, φb+1, . . . , φu)∇ih

φu+1∇ic+2
υ . . .∇iµ

υ−

Xdiviµ+1

∑

h∈H

ahCh,i1ic+2...iµ+1

g (Ω1, . . . , Ωp, φb+1, . . . , φu)∇i1φu+1∇ic+2
υ . . .∇iµ

υ

=
∑

t∈T

atC
t,ic+1...iµ
g (Ω1, . . . , Ωp, φb+1, . . . , φu)∇ic+1

φu+1∇ic+2
υ . . .∇iµ

υ;

(4.44)

(here each C
t,ic+1...iµ
g (Ω1, . . . , Ωp, φb+1, . . . , φu)∇ic+1

φu+1 is (simply or doubly)
subsequent to ~κ′z

ref−doub).
Now, we define an operation Add[. . . ] that acts on the complete contractions

and vector fields in the above by adding c derivative indices ∇g1
, . . . ,∇gc

to the
A-crucial factor and then contracting them against c factors ∇υ, and then adds
b derivative indices ∇f1

, . . .∇fb
onto the A-crucial factor and contracts them

against factors ∇f1φ1, . . . ,∇fbφb.
Since (4.44) holds formally, we derive that for each z ∈ Z ′

Max:

∑

l∈Lz

al

∑

ih∈I∗,l

Add[Cl,ihic+2...iµ
g (Ω1, . . . , Ωp, φb+1, . . . , φu)∇ih

φu+1∇ic+2
υ . . .∇iµ

υ]

= {Xdiviµ+1

∑

h∈H

ahAdd[Ch,ic+2...iµ+1

g (Ω1, . . . , Ωp, φb+1, . . . , φu)∇i1φu+1+

∑

t∈T

atAdd[Ct,ic+2...iµ−1

g (Ω1, . . . , Ωp, φb+1, . . . , φu+1)}∇ic+2
υ . . .∇iµ−1

υ],

(4.45)

where each complete contraction indexed in T is simply or doubly subsequent
to κ̃z

ref−doub. If we set φu+1 = υ in the above, and we observe that:

∑

l∈Lz

al

∑

ih∈I∗,l

Add[C̃l,i1ic+2...iµ
g (Ω1, . . . , Ωp, φb+1, . . . , φu)∇ih

υ∇ic+2
υ . . .∇iµ

υ] =

|I∗,l| ·
∑

l∈Lz

alC
l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ

υ+

∑

t∈T ′′

atC
t,i1...iµ
g ∇i1υ . . .∇iµ

υ,

(4.46)

where the complete contractions indexed in T ′′ are acceptable and doubly subse-
quent to ~κz

ref−doub. We thus derive that the vector field needed for Proposition
2.1 in this case is precisely:
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1

|I∗,l|

∑

l∈Lz

al

∑

ih∈I∗,l

Add[C̃l,i1iπ+1...iµ+1

g (Ω1, . . . , Ωp, φb+1, . . . , φu)∇ih
υ∇ic+2

υ . . .∇iµ
υ].

Therefore we have shown that Lemma 3.2 implies Proposition 2.1 in case
IIB, provided we can prove (4.43).

We now show how the claims (4.34) and (4.43) follows from four Lemmas,
4.6, 4.8 and 4.7, 4.9, which we will state below. These four Lemmas will be
derived in the paper [7] in this series.

4.4 Reduction of the claims (4.34) and (4.43) to the Lem-
mas 4.6, 4.8 and 4.7, 4.9 below.

Reduction of claim (4.34) to Lemma 4.6:
Since our Lemma 4.6 will also be used in other instances in this series of

papers, we will re-write our hypothesis (equation 4.33) in slightly more general
notation:

We will set c+1 = π and write α instead of µ, to stress that our Lemma 4.6
below is independent of the specific values of the parameters µ, c. Furthermore,
with no loss of generality, we will assume further down that b = 0 (in other
words that there are no factors ∇φ′

h contracting agianst the crucial factor–this
can be done since we can just re-name the factors ∇φ′

h that contract against
the A-crucial factor and make them into ∇υs). Now, recall the operation in-
troduced in Step 2 after (4.33), where for each h ∈ H2 we obtain tensor fields

C
h,iπ+1...iµ+1

g (Ω1, . . . , Ωp, Y, φb+1, . . . , φu) by formally replacing the expression

S∗∇
(ν)
r1...rν Rijkl∇r1υ . . .∇jυ∇iφ̃1∇kφu+1 by an expression ∇lY . As we noted

after (4.33), if we apply this operation to a true equation, we again obtain a
true equation. Thus, applying this operation to (4.33) we derive a new equation:

∑

h∈H2

ahX∗diviπ+1
. . . X∗diviµ+1

Ch,iπ+1...iµ+1

g (Ω1, . . . , Ωp, Y, φb+1, . . . , φu) =

∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, φb+1, . . . , φu),

(4.47)

where all complete contractions and tensor fields in the above have σ +u− b− c

factors, and are in the form:

pcontr(∇(m1)Rijkl ⊗ · · · ⊗ ∇mσ1 Rijkl⊗

S∗∇
(ν1)Rijkl ⊗ · · · ⊗ S∗∇

(νt)Rijkl ⊗∇Y ⊗

∇(b1)Ω1 ⊗ · · · ⊗ ∇(bp)Ωp⊗

∇φz1
· · · ⊗ ∇φzw

⊗∇φ′
zw+1

⊗ · · · ⊗ ∇φ′
zw+d

⊗ · · · ⊗ ∇φ̃zw+d+1
⊗ · · · ⊗ ∇φ̃zw+d+y

).

(4.48)
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(Notice this is the same as the form (2.2), but for the fact that we have inserted
a factor ∇Y in the second line).

Definition 4.4 In the setting of (4.33) X∗divi will stand for the sublinear com-
bination in Xdivi with the additional restriction that ∇i is not allowed to hit
the factor ∇Y . Moreover, we observe that the complete contractions in (4.47)
have weight −n + 2(b + c).

Some language conventions before our next claim: We will be considering
tensor fields Ci1...ia

g (Ω1, . . . , Ωp, Y, φ1, . . . , φu) in the form (4.48), and even more
generally in the form:

pcontr(∇(m1)Rijkl ⊗ · · · ⊗ ∇(mσ1
)Rijkl⊗

S∗∇
(ν1)Rijkl ⊗ · · · ⊗ S∗∇

(νt)Rijkl ⊗∇(B)Y ⊗

∇(b1)Ω1 ⊗ · · · ⊗ ∇(bp)Ωp⊗

∇φz1
· · · ⊗ ∇φzw

⊗∇φ′
zw+1

⊗ · · · ⊗ ∇φ′
zw+d

⊗ · · · ⊗ ∇φ̃zw+d+1
⊗ · · · ⊗ ∇φ̃zw+d+y

).

(4.49)

(Notice this only differs from (4.48) by the fact that we allow B ≥ 1 derivatives
on the function Y ).

We will say that the tensor field in the form (4.49) is acceptable if all its
factors are acceptable when we disregard the factor ∇(B)Y (i.e. we may have
B = 1 derivatives on Y but the tensor fields will still be considered acceptable).
Also, we will still use the notion of a simple character for such tensor fields
(where we again just disregard the factor ∇(B)Y ). With this convention, it
follows that all the tensor fields in (4.35) have the same simple character, which
we will denote by ~κ′

simp. For such complete contractions σ will stand for the

number of factors in one of the forms ∇(m)Rijkl, S∗∇(ν)Rijkl, ∇(p)Ωh, ∇(B)Y .
We now state a technical Lemma, which will be proven in the next paper in

this series.

Lemma 4.6 Assume an equation:

∑

h∈H2

ahX∗divi1 . . . X∗diviah
C

h,i1...iah
g (Ω1, . . . , Ωp, Y, φ1, . . . , φu′) =

∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, φ1, . . . , φu′),

(4.50)

where all tensor fields have rank ah ≥ α. All tensor fields have a given u-simple
character ~κ′

simp, for which σ ≥ 4. Moreover, we assume that if we formally
treat the factor ∇Y as a factor ∇φu′+1 in the above equation, then the inductive
assumption of Proposition 2.1 can be applied.

The conclusion (under various assumptions which we will explain below):
Denote by H2,α the index set of tensor fields with rank α.

We claim that there is a linear combination of acceptable54 tensor fields,

54“Acceptable” in the sense given after (4.49).
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∑

d∈D adC
d,i1...iα+1

g (Ω1, . . . , Ωp, Y, φ1, . . . , φu), each with a simple character ~κ′
simp

so that:

∑

h∈H2,α

ahCh,i1...iα
g (Ω1, . . . , Ωp, Y, φ1, . . . , φu′ )∇i1υ . . .∇iα

υ−

X∗diviα+1

∑

d∈D

adC
d,i1...iα+1

g (Ω1, . . . , Ωp, Y, φ1, . . . , φu′ )∇i1υ . . .∇iα
υ =

+
∑

t∈T

atC
t
g(Ω1, . . . , Ωp, Y, φ1, . . . , φu′ , υα).

(4.51)

The linear combination on the right hand side stands for a generic linear com-
bination of complete contractions in the form (4.48) with a factor ∇Y and with
a simple character that is subsequent to ~κ′

simp.

The assumptions under which (4.52) will hold: The assumption under which
(4.52) holds is that there should be no tensor fields of rank α in (4.50) which
are “bad”. Here “bad” means the following:

If σ2 = 0 in ~κ′
simp then a tensor field in the form (4.48) is “bad” provided:

1. The factor ∇Y contains a free index.

2. If we formally erase the factor ∇Y (which contains a free index), then
the resulting tensor field should have no removable indices,55 and no free
indices.56 Moreover, any factors S∗Rijkl should be simple.

If σ2 > 0 in ~κ′
simp then a tensor field in the form (4.48) is “bad” provided:

1. The factor ∇Y should contain a free index.

2. If we formally erase the factor ∇Y (which contains a free index), then
the resulting tensor field should have no removable indices, any factors

S∗Rijkl should be simple, any factor ∇
(2)
ab Ωh should have at most one of

the indices a, b free or contracting against a factor ∇φs.

3. Any factor ∇(m)Rijkl can contain at most one (necessarily special, by
virtue of 2.) free index.

Furthermore, we claim that the proof of this Lemma will only rely on the
inductive assumption of Proposition 2.1. Moreover, we claim that if all the
tensor fields indexed in H2 (in (4.50)) do not have a free index in ∇Y then we
may assume that the tensor fields indexed in D in (4.52) have the same property.

Note: It follows (by weight considerations) that none of the tensor fields of
minimum rank in (4.47) is “bad” in the above sense, since our assumption (3.1)

55Thus, the tensor field should consist of factors S∗Rijkl,∇
(2)Ωh, and factors ∇

(m)
r1...rmRijkl

with all the indices r1
, . . . , rm contracting against factors ∇φh.

56I.e. α = 1 in (4.50).
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does not fall under one of the special cases, as described in the beginning of this
subsection.

We also claim a corollary of Lemma 4.6. Firstly, we introduce some notation:

∑

q∈Q

aqC
q,iπ+1...iµ+1

g (Ω1, . . . , Ωp, Y, φb+1, . . . , φu)

will stand for a generic linear combination of acceptable tensor fields with a
simple character ~κ′

simp and with a factor ∇(B)Y with B ≥ 2 (and where this
factor is not contracting against any factors ∇φh).

Corollary 2 Under the assumptions of Lemma 4.6, with σ ≥ 4 we can write:

∑

h∈H2

ahXdivi1 . . . Xdiviα
Ch,i1...iα

g (Ω1, . . . , Ωp, Y, φ1, . . . , φu′) =

∑

q∈Q

aqXdivi1 . . . Xdivia′
Cq,i1...ia′

g (Ω1, . . . , Ωp, Y, φ1, . . . , φu′ )

+
∑

t∈T

atC
t
g(Ω1, . . . , Ωp, Y, φ1, . . . , φu′ ),

(4.52)

where the linear combination
∑

q∈Q aqC
q,i1...ia′

g stands for a generic linear com-
bination of tensor fields in the form (4.49) with B ≥ 2, with a simple character
~κ′

simp and with each a′ ≥ α. The acceptable complete contractions
Ct

g(Ω1, . . . , Ωp, Y, φ1, . . . , φu′) are simply subsequent to ~κ′
simp. Xdivi here means

that ∇i is not allowed to hit the factors ∇φh (but it is allowed to hit ∇(B)Y ).

We have an analogue of the above corollary when σ = 3 (the next Lemma,
4.7, will also be proven in the paper [7]).

Lemma 4.7 We assume (4.50), where σ = 3. We also assume that for each of
the tensor fields in H

α,∗
2

57 there is at least one removable index. We then have
two claims:

Firstly, the conclusion of Lemma 4.6 holds in this setting also. Secondly, the
conclusion of Corollary 2 is true in this setting.

Before we show that Corollary 2 follows from Lemma 4.6, let us see how our
desired equation (4.34) follows from the above corollary:

Corollary 2 (or Lemma 4.7 when σ = 3) implies (4.34): We introduce an
operation Op{. . . } which acts on complete contractions and tensor fields in the

form (4.49) by formally replacing the factor ∇
(B)
r1...rBY (recall B ≥ 1) by

S∗∇
(B+b+c−2)
y1...ybs1...scr1...rB−2

RirB−1sc+1rB
∇y1φ1 . . .∇ybφb∇

s1υ . . .∇sc+1υ.

57Recall that H
α,∗
2 is the index set of tensor fields of rank α in (4.50) with a free index in

the factor ∇Y .
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Then, if we apply this operation to (4.52) and we repeat the permutations by
which we make (4.52) formally zero (modulo introducing correction terms by
the Bianchi identities (4.19), (4.20), (4.21)), we derive (4.34). So matters are
reduced to showing that Corollary 2 follows from Lemma 4.6. 2

Proof that Corollary 2 follows from Lemma 4.6:

The proof is by induction. Firstly, we apply Lemma 4.6 and we pick out the
sublinear combination in the conclusion of Lemma 4.6 where ∇Y is contracting
against a factor ∇υ. That sublinear combination must vanish separately, thus
we obtain an equation:

∑

h∈H
α,∗
2

ahCh,i1...iα
g (Ω1, . . . , Ωp, Y, φ1, . . . , φu′)∇i1υ . . .∇iα

υ−

X∗diviα+1

∑

d∈D′

adC
d,i1...iα+1

g (Ω1, . . . , Ωp, Y, φ1, . . . , φu′)∇i1υ . . .∇iα
υ =

+
∑

t∈T

atC
t
g(Ω1, . . . , Ωp, Y, φ1, . . . , φu′ , υα).

(4.53)

Now, we make the the factors ∇υ into Xdivs58 (which are allowed to hit the
factor ∇Y ) and we derive a new equation:

∑

h∈H
α,∗
2

ahXdivi1 . . . Xdiviα
Ch,i1...iα

g (Ω1, . . . , Ωp, Y, φ1, . . . , φu′)−

Xdivi1 . . . Xdiviα
Xdiviα+1

∑

d∈D′

adC
d,i1...iα+1

g (Ω1, . . . , Ωp, Y, φ1, . . . , φu′) =

∑

q∈Q

aqXdivi1 . . . Xdiviα
Cq,i1...iα

g (Ω1, . . . , Ωp, Y, φ1, . . . , φu′ )

+
∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, Y, φ1, . . . , φu′).

(4.54)

In view of this equation, we are reduced to proving our claim when H
α,∗
2 = ∅.

That is, we may then additionally assume that in the hypothesis of Lemma 4.6
no tensor fields contain a free index in ∇Y (if there are such tensor fields with a
factor ∇i1Y , we just treat X∗divi1∇i1Y [. . . ] as a sum of β-tensor fields, β ≥ α).
We will be making this assumption until the end of this proof.

Then we proceed by induction. More precisely, our inductive statement is
the following: Suppose we know that for some number f ≥ 0 we can write:

58See the last Lemma in the Appendix of [3].
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∑

h∈H2

ahXdivi1 . . .Xdivia
Ch,i1...ia

g (Ω1, . . . , Ωp, Y, φ1, . . . , φu′) =

∑

q∈Q

aqXdivi1 . . . Xdivia
Cq,i1...ia

g (Ω1, . . . , Ωp, Y, φ1, . . . , φu′)+

∑

h∈H
f
2

ahXdivi1 . . . Xdivia+f
C

h,i1...ia+f
g (Ω1, . . . , Ωp, Y, φ1, . . . , φu′)+

+
∑

t∈T

atC
t
g(Ω1, . . . , Ωp, Y, φ1, . . . , φu′),

(4.55)

where the tensor fields indexed in H
f
2 still have a factor ∇Y (which does not

contain a free index) but are otherwise acceptable with simple character ~κ′
simp

and have rank α + f .
Our claim is that we can then write:

∑

h∈H2

ahXdivi1 . . . Xdivia
Ch,i1...ia

g (Ω1, . . . , Ωp, Y, φ1, . . . , φu′ ) =

∑

q∈Q

aqXdivi1 . . . Xdivia
Cq,i1...ia

g (Ω1, . . . , Ωp, Y, φ1, . . . , φu′)+

∑

h∈H
f+1

2

ahXdivi1 . . .Xdivia+f+1
C

h,i1...ia+f+1

g (Ω1, . . . , Ωp, Y, φ1, . . . , φu′)+

+
∑

t∈T

atC
t
g(Ω1, . . . , Ωp, Y, φ1, . . . , φu′);

(4.56)

(with the same convention regarding
∑

h∈H
f+1

2

. . . –it is like the sublinear com-

bination
∑

h∈H
f
2

. . . only with rank ≥ f + 1).

Clearly, if we can show this inductive step then our Corollary will follow,
since we are dealing with tensor fields of a fixed weight −K, K ≤ n.

This inductive step is not hard to deduce. Assuming (4.55), we pick out the
sublinear combination that contains a factor ∇Y (which vanishes separately)
and we replace it into (4.47) to derive the equation:

∑

h∈H
f
2

ahX∗divi1 . . .X∗diviα+f
C

h,i1...iα+f
g (Ω1, . . . , Ωp, Y, φ1, . . . , φu′) =

∑

t∈T

atC
t
g(Ω1, . . . , Ωp, Y, φ1, . . . , φu′ ).

(4.57)

Now, applying Lemma 4.6 to this equation,59 we derive that there is a linear

59Since we are assuming that the terms of maximal refined double character in the hypothesis
of Proposition 2.1 are assumed not to be “special” (as defined in the begining of the previous
subsection), it follows by weight considerations that no terms in (4.57) are “bad” in the
language of Lemmas 4.6.
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combination of acceptable (α + f + 1)-tensor fields (indexed in Df below) with
a factor ∇Y and a simple character ~κ′

simp so that:

∑

h∈H
f
2

ahC
h,i1...iα+f
g (Ω1, . . . , Ωp, Y, φ1, . . . , φu′ )∇i1υ . . .∇iα+f+1

υ−

X∗diviα+f+1

∑

d∈Df

adC
d,i1...iα+f+1

g (Ω1, . . . , Ωp, Y, φ1, . . . , φu′)∇i1υ . . .∇iα+f
υ =

+
∑

t∈T

atC
t
g(Ω1, . . . , Ωp, Y, φ1, . . . , φu′ , υα−π).

(4.58)

But observe that the above implies:

∑

h∈H
f
2

ahC
h,i1...iα+f
g (Ω1, . . . , Ωp, Y, φ1, . . . , φu′)∇i1υ . . .∇iα+f

υ−

Xdiviα+f+1

∑

d∈Df

adC
d,i1...iα+f+1

g (Ω1, . . . , Ωp, Y, φ1, . . . , φu′ )∇i1υ . . .∇iα+f
υ =

∑

q∈Q

aqC
q,i1...iα+f
g (Ω1, . . . , Ωp, Y, φb+1, . . . , φu′ )∇i1υ . . .∇iα+f

υ

+
∑

t∈T

atC
t
g(Ω1, . . . , Ωp, Y, φ1, . . . , φu′ , υα+f+1),

(4.59)

where the tensor fields indexed in Q are acceptable with a simple character
~κ′

simp and with a factor ∇(2)Y . But then just making the ∇υ’s into Xdiv’s in

the above we obtain (4.56) with Hf+1 = Df . 2

Reduction of equation (4.43) to Lemmas 4.8, 4.9 below:

We define an operation that acts on the tensor fields in (4.39) and (4.41) by
replacing the expression

S∗∇
(ν+b)
s1...sbr1...rν

Rijkl∇
iφu+1∇

r1υ . . .∇rτ υ∇s1φ′
1 . . .∇sbφ′

b

by an expression ∇(rτ+1...rmj)lω1∇kω2 − ∇(rτ+1...rmj)kω1∇lω2. We denote this
operation by Repl{. . .}. Thus, acting with the above operation we obtain com-
plete contractions and tensor fields in the form:

contr(∇(m1)Rijkl ⊗ · · · ⊗ ∇(ms)Rijkl⊗

S∗∇
(ν1)Rijkl ⊗ · · · ⊗ S∗∇

(νb)Rijkl ⊗∇(B,+)
r1...rB

(∇aω1∇bω2 −∇bω1∇aω1)

⊗∇(d1)Ωp ⊗ · · · ⊗ ∇(dp)Ωp ⊗∇φ1 ⊗ · · · ⊗ ∇φu);

(4.60)
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here ∇
(B,+)
r1...rB (. . . ) stands for the sublinear combination in ∇

(B)
r1...rB (. . . ) where

each ∇ is not allowed to hit the factor ∇ω2.

Definition 4.5 We define the simple character of a complete contraction or
tensor field in the above form to be the simple character of the complete con-
traction or tensor fields that arises from it by disregarding the two factors
∇(B)ω1,∇ω2. For each tensor field in the form (4.60), we will also define σ

to stand for the number of factors ∇(m)Rijkl , S∗∇(ν)Rijkl, ∇(p)Ωh plus one.
(In other words, we are not counting the ∇φ’s and we are counting the two
factors ω1, ω2 as one).

We then derive from (4.40) that:

∑

z∈Z′

Max

X+divic+2
. . . X+diviµ

∑

l∈Lz

al

∑

ih∈I∗,l

Repl{Cl,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇ih

φu+1∇i1υ . . . ∇̂ih
υ . . .∇ic+1

υ}+
∑

t∈T ′

atX
+divic+2

. . . X+diviµ
Repl{Ct,i1...iµ

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1

∇i2υ . . .∇ic+2
υ} − X+divic+2

. . . X+diviµ+1

∑

h∈H

ahRepl{Ch,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇ic+1
υ}

=
∑

j∈J

ajRepl{Cj,i1...ic+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇ic+1
υ},

(4.61)

where here X+divi stands for the sublinear combination in Xdivi where ∇i is
not allowed to hit the factor ∇ω2. This equation follows from the proof of the
last Lemma in the Appendix in [3].60 Thus, we derive that:

∑

h∈H2

ahX∗divic+2
. . . X∗diviµ

X∗diviµ+1
Repl{Ch,i1...iµ+1

g (Ω1, . . . , Ωp,

φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇ic+1
υ} =

∑

j∈J′

ajRepl{Ct,i1...ic+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇ic+1
υ},

(4.62)

where here X∗ stands for the sublinear combination in Xdivi where ∇i is not
allowed to hit either of the factors ∇ω1,∇ω2. Also J ′ ⊂ J stands for the
sublinear combination of complete contraction with two factors ∇ω1,∇ω2 (each
with only one derivative).

We then formulate Lemma 4.8, which we will show in [7]. We introduce one
further piece of notation before stating this claim:

60Be repeating exactly the same argument.
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Definition 4.6 Let Cx,i1...ia
g (Ω1, . . . , Ωp, [ω1, ω2], φ1, . . . , φu′) stand for a tensor

field in the form (4.60) with B = 0. We will say that a derivative index in some
factor ∇(m)Rijkl or S∗∇(ν)Rijkl in Cx,i1...ia

g (Ω1, . . . , Ωp, [ω1, ω2], φ1, . . . , φu′) is
“removable” if it is neither free not contracting against a factor ∇φh.

Now, consider any factor ∇
(B)
r1...rBΩv in Cx,i1...ia

g , where we make the normal-
izing requirement that all indices that are either free or are contracting against
a factor ∇φh or ∇ωf are pulled to the right. We then say that an index in

∇
(B)
r1...rBΩv is “removable” if it is one of the leftmost B − 2 indices and it is

neither free, nor contracting against any factor ∇φh,∇ωf .

Lemma 4.8 Consider a linear combination of partial contractions,

∑

x∈X

axCx,i1...ia
g (Ω1, . . . , Ωp, [ω1, ω2], φ1, . . . , φu′),

where each of the tensor fields Cx,i1...ia
g is in the form (4.60) with B = 0 (and

is antisymmetric in the factors ∇aω1,∇bω2 by definition), with rank a ≥ α and
length σ ≥ 4.61 We assume all these tensor fields have a given simple character
which we denote by ~κ′

simp (we use u′ instead of u to stress that this Lemma
holds in generality). We assume an equation:

∑

x∈X

axX∗divi1 . . . X∗divia
Cx,i1...ia

g (Ω1, . . . , Ωp, [ω1, ω2], φ1, . . . , φu)+

∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, [ω1, ω2], φ1, . . . , φu) = 0,

(4.63)

where X∗divi stands for the sublinear combination in Xdivi where ∇i is in ad-
dition not allowed to hit the factors ∇ω1,∇ω2. The contractions Cj here are
simply subsequent to ~κ′

simp. We assume that if we formally treat the factors
∇ω1,∇ω2 as factors ∇φu+1,∇φu+2 (disregarding whether they are contracting
against special indices) in the above, then the inductive assumption of Proposi-
tion 2.1 applies.

The conclusion we will draw (under various hypotheses that we will explain
below) is that we can write:

∑

x∈X

axX+divi1 . . . X+divia
Cx,i1...ia

g (Ω1, . . . , Ωp, [ω1, ω2], φ1, . . . , φu) =

∑

x∈X′

axX+divi1 . . . X+divia
Cx,i1...ia

g (Ω1, . . . , Ωp, [ω1, ω2], φ1, . . . , φu)+

∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, [ω1, ω2], φ1, . . . , φu),

(4.64)

61 Recall we are counting the two factors ω1, ω2 for one
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where the tensor fields indexed in X ′ on the right hand side are in the form
(4.60) with B > 0. All the other sublinear combinations are as above. We re-
call that X+divi stands for the sublinear combination in Xdivi where ∇i is in
addition not allowed to hit the factor ∇ω2 (it is allowed to hit the factor ∇(B)ω1).

Assumptions needed to derive (4.64): We claim (4.64) under certain as-
sumptions on the α-tensor fields in (4.63) which have rank α and have a free
index in one of the factors ∇ω1,∇ω2 (say to ∇ω1 wlog)–we denote the index
set of those tensor fields by Xα,∗ ⊂ X.

The assumption we need in order for the claim to hold is that no tensor
field indexed in Xα,∗ should be “bad”. A tensor field is “bad” if it has the
property that when we erase the expression ∇[aω1∇b]ω2 (and make the index
that contracted against b into a free index) then the resulting tensor field will
have no removable indices, and all factors S∗Rijkl will be simple.

Lemma 4.9 We assume (4.63), where now the tensor fields have length σ = 3.
We also assume that for each of the tensor fields indexed in X, there is a
removable index in each of the real factors. We then claim that the conclusion
of Lemma 4.8 is still true in this setting.

We will show Lemmas 4.8, 4.9 in [7]. For now, let us see how they imply
(4.43).

Note: Observe that (4.62) satisfies the requirements of Lemma 4.8 by weight
considerations, since we are assuming that (3.1) does not fall under any of the
“special cases” outlined in the beginning of the previous subsection.

Thus, we will now apply Lemma 4.8 (or 4.9) to (4.62).
Consider (4.62). We denote by ~κ∗ the simple character of the tensor fields

Repl{C
h,i1...iα+1

g }. We then observe that Lemmas 4.8 (or 4.9) imply:

∑

h∈H2

ahX+divic+2
X+diviµ+1

Repl{Ch,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)

∇i1φu+1∇i2υ . . .∇iπ
υ}

=
∑

q∈Q

aqX
+divic+2

X+diviβ
C

q,iic+2
...iβ

g (Ω1, . . . , Ωp, ω1, ω2, φ1, . . . , φu)+

∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, ω1, ω2, φ1, . . . , φu),

(4.65)

where each C
q,ic+2...iβ
g (Ω1, . . . , Ωp, ω1, ω2, φ1, . . . , φu) (β ≥ µ + 1) is a generic

acceptable tensor field in the form (4.60), with the additional restriction that it
has an expression ∇+

χ (∇aω1∇bω2 −∇aω2∇bω1).
62 Also, each

62Recall that ∇+
χ stands for the sublinear combination in ∇χ where ∇χ is not allowed to

hit ∇ω2

67



Cj
g(Ω1, . . . , Ωp, ω1, ω2, φ1, . . . , φu) is in the form (4.60) with (B = 0) but is also

simply subsequent to ~κ∗.
We now define an operation Op∗ which formally acts on the complete con-

tractions (and linear combinations thereof) in (4.61) by replacing each expres-

sion ∇
(K)
(r1...rK)ω1∇γω2

63 by an expression:

(K − 1) · ∇
(K+1)
γ(r1...rK)φu+1

This operation can also be defined on the tensor fields appearing in (4.40). Be-
fore we proceed to explain how this operation can act on true equations and
produce true equations, let us see what will be the outcome of formally applying
Op∗ to the equation (4.61):

Op∗ acting on (4.61) proves (4.43): For each l ∈ Lz, we denote by

C̃l,i1ic+2...iµ
g (Ω1, . . . , Ωp, φb+1, . . . , φu)∇i1φu+1

the tensor field that arises from C̃
l,i1...iµ
g ∇ih

φu+1 (as it appears in (4.40)) by
replacing the A-crucial factor

S∗∇
(ν)
i2...ic+1l1...lbyf ...yν

Rirν+1kl∇
iφu+1∇

l1φ2 . . .∇lbφb∇
i2υ . . .∇ic+1υ (4.66)

(i2 , . . . , iπ
are the free indices that belong to that critical factor) by

S∗∇
(ν−π−b+1)
yπ+1...yν Rijkl∇iφu+1.

We analogously define the tensor fields C
h,i1ic+2...iµ+1

g (Ω1, . . . , Ωp, φb+1, . . . , φu),

C
t,i1ic+2...iµ
g (Ω1, . . . , Ωp, φb+1, . . . , φu)∇i1φu+1. Observe that for the tensor fields

indexed in H , this is a well-defined operation, since we are assuming that H2 = ∅
in (4.61) (thus for each of the tensor fields above we will have that at least one
of the indices i1 , . . . , rν+1

in (4.66) is not contracting against a factor ∇φ or ∇υ).
We observe that for each l ∈ Lz, z ∈ Z ′

Max:

Op∗{Xdiviπ+1
. . .Xdiviµ

Repl{C̃l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇ih

φu+1∇i2υ . . .∇iπ
υ}}

= Xdiviπ+1
. . . Xdiviµ

Cl,i1iπ+1...iµ
g (Ω1, . . . , Ωp, φb+1, . . . , φu)∇i1φu+1+

∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, φb+1, . . . , φu+1);

(4.67)

(the tensor fields and complete contractions on the right hand side have length
σ − b + u. Here each Cj

g has length σ − b + u + 1) and also has a factor

∇(s)φu+1, s > 1.
In the same way we derive that for each h ∈ H (recall that H2 = ∅, hence

the factor ∇(K)ω1 in each C
h,i1...iµ+1

g has K > 1) and for each t ∈ T ′:

63
(... ) stands for symmetrization of the indices between parentheses.
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Op∗{Xdivic+2
. . .Xdiviµ+1

Repl{Ch,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1

∇i2υ . . .∇iπ
υ}} = Xdivic+2

. . .Xdiviµ+1
Ch,i1ic+2...iµ+1

g (Ω1, . . . , Ωp, φb+1, . . . , φu)

+
∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, φb+1, . . . , φu),

(4.68)

Op∗{Xdivic+2
. . .Xdiviµ

Repl{Ct,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇iπ

υ}}

= Xdivic+2
. . . Xdiviµ

Ct,i1ic+2...iµ
g (Ω1, . . . , Ωp, φb+1, . . . , φu)∇i1φu+1+

∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, φb+1, . . . , φu+1),

(4.69)

where each Cj
g has length σ − b + u + 1 and also has a factor ∇(s)φu+1, s > 1.

Op∗ produces a true equation: Now, let us explain why acting on (4.61) by
Op∗ will produce a true equation: We break up (4.61) (denote its left hand side
by F ) into sublinear combinations FK , according to the number K of deriva-
tives on the factor ∇(K)ω1. Since (4.61) holds formally, it follows that FK = 0
formally (modulo longer contractions). We then apply Op∗ to each equation
FK = 0. This produces a true equation since we may just repeat the per-
mutations by which FK is made formally zero to Op∗{FK}. Adding over all
equations Op∗{F

K} = 0, we derive our conclusion. 2

For future reference, we formulate a corollary of Lemma 4.8:

Corollary 3 We consider a linear combination of α-tensor fields of weight −n+
α and length σ

∑

w∈W

awCw,i1...iα
g (Ω1, . . .Ωp, φ1, . . . , φb),

where each tensor field above has a given b-simple character ~κ∗ and a given

rank α. We assume that for a given factor T = S∗∇
(ν)
r1...rν Rijkl (for which the

index i is contracting against a given factor ∇φ̃k) each tensor field indexed in
W has the feature that the factor T has at least one of the indices r1

, . . . , rν
, j

not contracting against a factor ∇φ (for this Lemma only we refer to this as the
good property). Assume an equation of the form:

∑

w∈W

awXdivi1 . . .Xdiviα
Cw,i1...iα

g (Ω1, . . . Ωp, φ1, . . . , φb)+

∑

h∈H

ahXdivi1 . . .Xdiviz
Ch,i1...iz

g (Ω1, . . . Ωp, φ1, . . . , φb)

=
∑

j∈J′

ajC
j
g(Ω1, . . . Ωp, φ1, . . . , φb),

(4.70)
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where each tensor field indexed in H has a b-simple character ~κ∗ has rank z ≥ β

(for some chosen β), and does not satisfy the good property. Furthermore, we
assume that for these tensor fields of rank exactly β, if we formally replace the

expression S∗∇
(ν)
r1...rν Rijkl by ∇

(ν+1)
r1...rνj[kω1∇l]ω2, then the resulting tensor fields

satisfy the hypotheses of Lemma 4.8 or 4.9. Each complete contraction indexed
in J ′ is simply subsequent to ~κ∗.

We then claim that:

∑

w∈W

awXdivi1 . . .Xdiviα
Cw,i1...iα

g (Ω1, . . . Ωp, φ1, . . . , φb)+

∑

h∈H′

ahXdivi1 . . . Xdiviz
Ch,i1...iz

g (Ω1, . . . Ωp, φ1, . . . , φb)

=
∑

j∈J

ajC
j
g(Ω1, . . .Ωp, φ1, . . . , φb),

(4.71)

where each tensor field indexed in H ′ are as the tensor field indexed in H above,
only they now satisfy the good property. Each complete contraction indexed in
J is simply subsequent to ~κ∗.

Proof: The proof just follows by reiterating the argument above: We first
use the operation Repl{. . .} as above, and then apply Lemma 4.8. We then use
the operation Op{. . . } as above and then the operation Add. 2

4.5 Derivation of Proposition 2.1 from Lemma 3.5.

Firstly observe that we only have to show the above claim in case A, since in
case B the claims of Lemma 3.5 and Proposition 2.1 coincide.

Proof in two steps: We show that Lemma 3.5 (in case A) implies Propo-
sition 2.1 in steps: Firstly, using the conclusion of Lemma 3.5 we show that we
can derive a new equation:

(

α

2

)

∑

z∈Z′

Max

∑

l∈Lz

al

k−1
∑

r=0

Xdivi2 . . .Xdivi∗Ċ
l,i1...̂irα+1...iµ,i∗
g (Ω1, . . . , Ωp, φ1, . . . , φu)

∇irα+2
φu+1 +

∑

ν∈N

aνXdivi1 . . . Xdiviµ
Cν,i1...,iµ

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1

+
∑

t∈T̃1

atXdivi1 . . . Xdivizt
C

t,i1...izt
g (Ω1, . . . , Ωp, φ1, . . . , φu+1) =

∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, φ1, . . . , φu+1) = 0;

(4.72)

(notice the difference with (3.10) is that we are not including T2, T3, T4 and
T1 has been replaced by T̃1). Here the sublinear combination indexed in T̃1
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stands for a generic linear combination of the form
∑

t∈T1
. . . described in the

statement of Lemma 3.5. This is step 1.
In step 2 we use (4.72) to derive Proposition 2.1.

Special cases: There are two special cases which we will not consider here,
but treat in [7]. The first special case is when σ = 3, p = 3,64 and n−2µ−2u ≤ 2.
The second special case is when σ = 3, p = 2, σ + 2 = 1 and n = 2µ + 2u. For
the rest of this section, we will be assuming that we do not fall under these
special cases.

Proof of Step 1: Recall that
∑

t∈T4
. . . appears only when the second critical

factor is a simple factor of the from ∇(B)Ωh. In that case, we choose the
factor ∇(B)Ωx (referenced in the definition of the index set L∗

µ) to be the factor

∇(B)Ωh. (In other words we set x = h). In order to show (4.72), we recall the
hypothesis L∗

µ = ∅ in Lemma 3.5. In other words, we are assuming that no

tensor field C
l,i1...iµ
g in (2.3) has two free indices belonging to a factor ∇(2)Ωh.

Now, refer to the conclusion of Lemma 3.5 (in case A). In view of the

above remark, it follows that none of the µ-tensor fields Ċ
l,i2...iµ,i∗
g ∇i2φu+1

or C
ν,i1...iµ
g ∇i1φu+1 have an expression ∇iΩh∇iφu+1. Thus, all tensor fields on

the RHS of (3.10) with such an expression are indexed in T4 (and have rank
zt ≥ µ, by definition).

Now, we will firstly focus on the sublinear combination

∑

t∈T4

atXdivi1 . . . Xdivizt
C

t,i1...izt
g (Ω1, . . . , Ωp, φ1, . . . , φu+1)

(recall zt ≥ µ) if it is nonzero. (If it is zero we move onto the next stage). We
firstly seek to “get rid” of the tensor fields indexed in T4. More precisely, we
will show that we can write:

∑

t∈T4

atXdivi1 . . . Xdivizt
C

t,i1...izt
g (Ω1, . . . , Ωp, φ1, . . . , φu+1) =

∑

t∈T̃1

atXdivi1 . . . Xdivizt
C

t,i1...izt
g (Ω1, . . . , Ωp, φ1, . . . , φu+1)+

∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, φ1, . . . , φu+1),

(4.73)

(with the same notational convention for the index set T̃1 as above). If we can
prove this, we will be reduced to showing Step 1 under the assumption that
T4 = ∅.

Proof of 4.73: From (3.10) we straightforwardly derive that:

64Recall that p stands for the number of factors ∇(A)Ωx in ~κsimp.
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∑

t∈T4

atX∗divi1 . . .X∗divizt
C

t,i1...izt
g (Ω1, . . . , Ωp, φ1, . . . , φu+1) = 0, (4.74)

modulo complete contractions of length ≥ σ + u + 2. Here X∗divi stands for
the sublinear combination in Xdivi where ∇i is additionally not allowed to hit
the expression ∇kΩh∇kφu+1.

We observe that (4.73) follows from Lemma 4.1 if σ > 3,65 and from Lemma
4.2 if σ = 3.66 2

Thus, we may now prove our claim under the additionnal assumption that
T4 = ∅. Next, we want to “get rid” of the sublinear combination:

∑

t∈T3

atXdivi1 . . . Xdivizt
C

t,i1...izt
g (Ω1, . . . , Ωp, φ1, . . . , φu+1)

in (3.10).
In particular, we will show that we can write:

∑

t∈T3

atXdivi1 . . . Xdivizt
C

t,i1...izt
g (Ω1, . . . , Ωp, φ1, . . . , φu+1) =

∑

t∈T̃1

atXdivi1 . . . Xdivizt
C

t,i1...izt
g (Ω1, . . . , Ωp, φ1, . . . , φu+1)+

∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, φ1, . . . , φu+1);

(4.75)

(
∑

t∈T̃1
. . . stands for a generic linear combination as described in the conclusion

of (4.72)).
Thus, if we can show the above, we may additionaly assume that T3 = ∅, in

addition to our assumption that T4 = ∅.

Proof of (4.75) when σ > 3: Break up T3 into subsets {T h
3 }h=1,...,p according

to the factor ∇Ωh that is differentiated only once. We will then show (4.75) for
each of the index sets T h

3 separately.
To show this, we pick out the sublinear combination on (3.10) with a fac-

tor ∇Ωh (differentiated only once). This sublinear combination must vanish
separately, hence we derive an equation:

∑

t∈T h
3

atX∗divi1 . . .X∗divizt
C

t,i1...izt
g (Ω1, . . . , Ωp, φ1, . . . , φu+1)

+
∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, φ1, . . . , φu+1) = 0,

(4.76)

65By the definition of
P

t∈T4
. . . in the statement of Proposition 2.1, the assumptions of

Lemma 4.1 are fulfilled.
66Notice that since we are assuming that (3.1) does not fall under the special case (described

in the beginning of this subsection) the requirements of Lemma 4.2 are fulfilled.
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modulo complete contractions of length ≥ σ+u+2; here as usual X∗divi stands
for the subinear combination in Xdivi where ∇i is not allowed to hit the one
factor ∇Ωh.

Then, we see that (4.75) follows from (4.76) by applying Corollary 2 above
(since µ ≥ 4 there are at least 2 derivative free indices for all maximal µ-tensor
fields in our Lemma assumption; therefore there exist at least two derivative
free indices for each tensor field indexed in T3, by weight considerations hence
the requirements of Corollary 1 are fulfilled). 2

Proof of (4.75) when σ = 3: We apply the technique of the proof of Lemma
4.2 (“manually” constructing Xdiv’s) to write out:

∑

t∈T3

atXdivi1 . . . Xdivzt
atC

t,i1...izt
g (Ω1, . . . , Ωp, φ1, . . . , φu+1) =

(Const)1,∗Xdivi1 . . . XdiviA+1
C∗1,i1...iA+1

g (Ω1, . . . , Ωp, φ1, . . . , φu+1)+

(Const)2,∗Xdivi1 . . . XdiviA
C∗2,i1...iA

g (Ω1, . . . , Ωp, φ1, . . . , φu+1)+
∑

t∈T̃1

atXdivi1 . . . Xdivzt
atC

t,i1...izt
g (Ω1, . . . , Ωp, φ1, . . . , φu+1)+

∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, φ1, . . . , φu+1),

(4.77)

where the tensor fields C
∗1,i1...iA+1

g , C∗2,i1...iA
g are zero unless p = 3 or σ1 = 2

or σ2 = 2 or σ1 = σ2 = 1 (in the last case there will only be one tensor field

C
∗1,i1...iA+1

g in the above). In those cases, they stand for the following tensor
fields:

pcontr(∇
(X)
i1...iau1...ut

Ω1 ⊗∇
(B)
j1...jby1...yr

Ω2 ⊗∇u1φ1 ⊗ . . .∇yrφu+1 ⊗∇iA+1
Ω3)

pcontr(∇s∇
(X)
i1...iau1...ut

Ω1 ⊗∇
(B)
j1...jby1...yr

Ω2 ⊗∇u1φ1 ⊗ . . .∇yrφu+1 ⊗∇sΩ3)

(here if r ≥ 2 then b = 0; if r ≤ 1 then y = 2 − r).

pcontr(∇
(X)
i1...iau1...ut

Ria+1jia+2l⊗∇(r)
y1...yr

Ria+3

j

ia+4

l
⊗∇u1φ1 . . .∇yrφu+1⊗∇iA+1

Ω1),

pcontr(∇s∇
(X)
i1...iau1...ut

Ria+1jia+2l⊗∇(r)
y1...yr

Ria+3

j

ia+4

l
⊗∇u1φ1 . . .∇yrφu+1⊗∇sΩ1).

(In fact if t + r = 0 then there will be no C
∗1,i1...iA+1

g in (4.77)).
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pcontr(S∗∇
(X)
i1...iau1...ut

Riia+1ia+2l ⊗ S∗∇
(r)
y1...yr

Ri′ia+3 ia+4

l ⊗∇iφ̃1 ⊗∇i′ φ̃2

⊗∇u1φ3 ⊗ . . .∇yrφu+1 ⊗∇iA+1
Ω1)

(4.78)

pcontr(∇sS∗∇
(X)
i1...iau1...ut

Riia+1ia+2l ⊗ S∗∇
(r)
y1...yr

Ri′ia+3 ia+4

l ⊗∇iφ̃1 ⊗∇i′ φ̃2

⊗∇u1φ3 ⊗ . . .∇yrφu+1 ⊗∇sΩ1)

(4.79)

pcontr(S∗∇
(X)
i1...iau1...ut

Rsia+1ia+2l ⊗∇(r)
y1...yr

Ri′ia+3 ia+4

l ⊗∇iφ̃1 ⊗∇i′ φ̃2

⊗∇u1φ3 ⊗ . . .∇yrφu+1 ⊗∇sΩ1).
(4.80)

As in the proof of Lemma 4.2 we then derive that (Const)1,∗ = (Const)2,∗ =
0 in those cases; thus our claim follows in this case also. 2

Now, under the additional assumption that T3 = T4 = ∅, we focus on the
sublinear combination

∑

t∈T2

atXdivi1 . . .Xdivizt
C

t,i1,...,izt
g (Ω1, . . . , Ωp, φ1, . . . , φu+1)

in (3.10). We will show that we can write:

∑

t∈T2

atXdivi1 . . .Xdivizt
C

t,i1,...,izt
g (Ω1, . . . , Ωp, φ1, . . . , φu+1) =

∑

t∈T̃1

atXdivi1 . . .Xdivizt
C

t,i1,...,izt
g (Ω1, . . . , Ωp, φ1, . . . , φu+1)+

∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, φ1, . . . , φu+1),

(4.81)

where the notation is the same as in the statement of Lemma 3.5, and moreover
∑

t∈T̃1
. . . stands for a generic linear combination of the form described after

(4.72). For each t ∈ T̃1 we have zt ≥ µ.
We will show a more general statement, for future reference.

Lemma 4.10 Consider a linear combination of acceptable tensor fields,

∑

l∈L1

alC
l,i1...izl
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1

with a u-simple character ~κsimp (σ ≥ 3) and with a (u + 1)-simple character
~κ+

simp, where in addition we are assuming that if ∇i1φu+1 is contracting against
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a factor ∇(m)Rijkl then it is contracting against a derivative index, whereas if
it is contracting against a factor S∗∇(ν)Rijkl it must be contracting against one
of the indices r1

, . . . , rν
, j. (This is the defining property of the (u + 1)-simple

character ~κ+
simp).

Consider another linear combination of acceptable tensor fields,

∑

l∈L2

alC
l,i1...izl
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1

with a u-simple character ~κsimp and weak (u+1)-character equal to Weak(~κ+
simp),

where in addition ∇i1φu+1 is either contracting against an internal index in
some factor ∇(m)Rijkl or an index k or l in a factor S∗∇(ν)Rijkl. We moreover
assume that each l ∈ L2 we have zl ≥ γ, for some number γ, and denote by
L

γ
2 ⊂ L2 the index set of the tensor fields with order γ.

Assume that:

Xdivi2 . . . Xdivizl

∑

l∈L1

alC
l,i1...izl
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1+

Xdivi2 . . . Xdivizl

∑

l∈L2

alC
l,i1...izl
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1 =

∑

j∈J

ajC
j,i1
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1,

(4.82)

where each Cj,i1
g is u-subsequent to ~κsimp. Furthermore assume that the above

equation falls under the inductive assumption of Proposition 2.1 (with regard
to the parameters weight, σ, Φ, p). Furthermore, we additionally assume that

none of the tensor fields C
l,i1...izl
g of minimum rank in (4.82)67 are “forbidden”

in the sense of Proposition 2.1.
Our first claim is then that there exists a linear combination of (γ + 1)-

tensor fields,
∑

l∈L′

2
alC

l,i1...iγ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1 with u-simple

character ~κ and weak (u+1)-character equal to Weak(~κ+
simp), where in addition

∇i1φu+1 is either contracting against an internal index in some factor ∇(m)Rijkl

or an index k or l in a factor S∗∇
(ν)Rijkl, so that:

67I.e. of rank γ.
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∑

l∈L
γ
2

alC
l,i1...iγ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇iγ

υ

− Xdiviγ+1

∑

l∈L′

2

alC
l,i1...iγ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇iγ
υ

+
∑

l∈L1

alC
l,i1...iγ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇iγ

υ+

∑

j∈J

ajC
j,i1...iγ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇iγ

υ;

(4.83)

here each C
j,i1...iγ
g is u-subsequent to ~κsimp. The tensor fields indexed in L1 are

like the ones indexed in L1 in (4.82), but in addition each zl ≥ γ.

Our second claim is that assuming (4.82) we can write:

Xdivi2 . . . Xdivizl

∑

l∈L2

alC
l,i1...izl
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1 =

∑

l∈L1

alXdivi2 . . . Xdivizl
C

l,i1...izl
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1+

∑

j∈J

ajC
j,i1
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1,

(4.84)

where Cj,i1
g is u-subsequent to ~κ+

simp.
Our third claim is that if γ is the minimum rank among all tensor fields

in L1

⋃

L2 in our assumption and L
γ
1 , L

γ
2 their respective index sets, then there

exists a linear combination of (γ + 1)-tensor fields,
∑

l∈L3
alC

l,i1...iγ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1 with u-simple character ~κ and

weak (u + 1)-character equal to Weak(~κ+
simp) so that:

∑

l∈L
γ
1

S

L
γ
2

alC
l,i1...iγ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇iγ

υ

− Xdiviγ+1

∑

l∈L3

alC
l,i1...iγ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇iγ
υ =

∑

j∈J

ajC
j,i1...iγ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇iγ

υ;

(4.85)

here each C
j,i1...iγ
g is u-subsequent to ~κsimp.
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We observe that if we can show the above, then our claim (4.81) follows from
the second step of this Lemma.

Proof of Lemma 4.10: We firstly remark that in proving Lemma 4.10 we will
use Lemma 5.2, which is stated and proven in the Appendix of this paper. We
also easily observe that the third claim above follows from the first two. So we
now prove the first two claims in that Lemma:

Proof of the second claim of Lemma 4.10: We now show that the second
claim follows from the first one.

We will show this by induction. We assume that minl∈L2
zt = γ′ ≥ γ. We

denote the index set of those tensor fields by L
γ′

2 ⊂ L2. Then, using the first
claim68 and making the ∇υs into Xdivs, we derive that we can write:

∑

l∈L
γ′

2

alXdivi1 . . . Xdiviγ
C

t,i1,...,izl
g (Ω1, . . . , Ωp, φ1, . . . , φu+1) =

∑

l∈L′

2

alXdivi1 . . . Xdivizt
C

l,i1,...,izl
g (Ω1, . . . , Ωp, φ1, . . . , φu+1)+

∑

l∈L1

alXdivi1 . . . Xdivizl
Cl,i1,...,iγ

g (Ω1, . . . , Ωp, φ1, . . . , φu+1)+

∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, φ1, . . . , φu+1),

(4.86)

where the tensor fields indexed in L′
2 are of the exact same form as the ones

indexed in L2 in (3.5), with the additional property that zl ≥ γ′ +1. We notice
that since we are dealing with tensor fields of a given weight −n, iteratively
repeating this step we derive our second step. (Note: If at the last step we
encounter a “forbidden case” then clearly γ′ > γ–we then apply Lemma 5.2
below with Φ = 1).

Proof of the first claim of Lemma 4.10: The proof requires only our inductive
assumption on Corollary 1. We have two cases to consider: Firstly, when the
factor ∇φu+1 is contracting (in ~κ+

simp) against an internal index (say i with no

loss of generality) of a factor ∇(m)Rijkl. Secondly, when the factor ∇φu+1 is
contracting against an index k of a factor S∗∇(ν)Rijkl.

Proof of first claim of Lemma 4.10 in the first case: In the first case, we
define an operation Cutsym that acts on the tensor fields indexed in L2 by

replacing the expression ∇
(m)
r1...rmRijkl∇r1φt1 . . .∇raφta

∇iφu+1 by an expression

S∗∇
(m−a)
ra+1...rnRijkl∇

iφu+1. We observe that the tensor fields that arise via this
operation have a given simple character which we will denote by ~κcut. For each

68Provided that there are no terms indexed in L
γ′

2 which are forbidden.
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l ∈ L2 we denote by

C
l,i1...izl
g (Ω1, . . . , Ωp, φ1, . . . φ̂ra1

, . . . , φ̂rat
, . . . , φu)∇i1φu+1

the tensor field that we obtain by applying this operation.
We also define the operation Cutsym to act on the tensor fields indexed

in L1 by replacing the the expression ∇
(m)
r1...rmRijkl∇

r1φt1 . . .∇raφta
∇rbφu+1 by

a factor ∇
(m−1)
ra+1...rmRijkl∇rbφu+1. Now, by applying the eraser to the factors

∇r1φt1 . . .∇raφta
and S∗-symmetrizing, we may apply CutSym to (4.82) and

derive an equation:

Xdivi2 . . . Xdivizl

∑

l∈L2

alC
l,i1...izl
g (Ω1, . . . , Ωp, φ1, . . . φ̂ra1

, . . . , φ̂rat
, . . . , φu)

∇i1φu+1 =
∑

j∈J

ajC
j,i1
g (Ω1, . . . , Ωp, φ1, . . . φ̂ra1

, . . . , φ̂rat
, . . . , φu)∇i1φu+1,

(4.87)

where each Cj
g is (u− a)-subsequent to ~κcut. We may then apply Corollary 1 to

the above.69 This follows since either the weight in (4.87) is −n′, n′ < n, (this
occurs when we erase factors ∇φt upon performing the operation CutSym), or
the weight is −n and there are u + 1 factors ∇φh in (4.87). Thus, our inductive
assumption of Corollary 1 applies to (4.87).

Thus, by direct application of Corollary 1 (which we are now inductively
assuming because either the weight is > −n or there are (u + 1) factors ∇φ) to
(4.87) we derive that there is an acceptable linear combination of (γ +1)-tensor
fields with a simple character ~κcut, say

∑

x∈X

axCx,i1...iγ+1

g (Ω1, . . . , Ωp, φ1, . . . φ̂ra1
, . . . , φ̂rat

, . . . , φu)∇i1φu+1,

so that:

∑

l∈L
γ
2

alC
l,i1...iγ
g (Ω1, . . . , Ωp, φ1, . . . φ̂ra1

, . . . , φ̂rat
, . . . , φu)∇i1φu+1∇i2υ . . .∇iγ

υ−

∑

x∈X

axCx,i1...iγ+1

g (Ω1, . . . , Ωp, φ1, . . . φ̂ra1
, . . . , φ̂rat

, . . . , φu)∇i1φu+1∇i2υ . . .∇iγ
υ

=
∑

j∈J

ajC
j,i1...iγ
g (Ω1, . . . , Ωp, φ1, . . . φ̂ra1

, . . . , φ̂rat
, . . . , φu)∇i1φu+1∇i2υ . . .∇iγ

υ,

(4.88)

where each tensor field Cj
g is subsequent to ~κcut.

69Corollary 1 may be applied by virtue of our assumptions on various terms in our Lemma
assumption not being “forbidden”. This ensures that the terms of minimum rank in (4.87)
are not “forbidden” in the sense of Corollary 1.
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Now, we define an operation Add that acts on the tensor fields above by

replacing the expression S∗∇
(m−a)
ra+1...rnRijkl∇iφu+1 by an expression

∇r1...ra
S∗∇

(m−a)
ra+1...rm

Rijkl∇
r1φt1 . . .∇raφta

∇iφu+1.

In case ∇φu+1 is contracting against some derivative index in some ∇(m)Rijkl ,
it adds on the factor ∇(m)Rijkl against which ∇φu+1 is contracting a derivative
indices and contracts them against factors ∇φa1

, . . . , φat
. By applying the op-

eration Add to (4.88) we derive our desired equation (4.83). 2

The second case is treated in a similar fashion. We now define a formal
operation CutY as follows: CutY acts on the tensor fields indexed in L2

by replacing the expression S∗∇
(ν)
r1...rν Rirν+1kl∇r1φ′

t1
. . .∇raφ′

ta
∇iφ̃ta+1

∇kφu+1

by an expression ∇
(ν−a+2)
ra...rn+1lY ∇raφ′

ta
, (if there is at least one factor ∇φ′ con-

tracting against our factor S∗∇(ν)Rijkl; if there is no such factor we replace

S∗∇
(ν)
r1...rν Rirν+1kl∇iφ̃ta+1

∇kφu+1 by ∇
(ν+2)
r1...rν+1lY . We will denote the tensor

field thus obtained by

C
l,i1...izl
g (Ω1, . . . , Ωp, Y, φ1, . . . φ̂t1 , . . . , φ̂ta+1

, . . . , φu). (Observe that it is accept-
able if we treat the function Y as a function Ωp+1. We observe that all the tensor
fields that arise thus have a given simple character which we will denote by ~κcut).
We also define CutY to act on the tensor fields indexed in L1 by replacing them
by zero. Finally, it follows easily that the operation CutY either annihilates a
given complete contraction Cj

g , or replaces it by a complete contraction that is
subsequent to ~κcut.

Now, by virtue of Lemma 4.4 and the “Eraser” (defined in the Appendix of
[3]), we see that applying CutY to (4.82) produces a true equation which can
be written as:

Xdivi2 . . .Xdivizl

∑

l∈L2

alC
l,i1...izl
g (Ω1, . . . , Ωp, Y, φ1, . . . φ̂t1 , . . . , φ̂ta+1

, . . . , φu) =

∑

k∈K

akCk,i1
g (Ω1, . . . , Ωp, Y, φ1, . . . φ̂t1 , . . . , φ̂ta+1

, . . . , φu),

(4.89)

where each Ck
g is simply subsequent to ~κcut. Thus, by direct application of

Corollary 1 to (4.87),70 we derive that there is an acceptable linear combination
of (γ + 1)-tensor fields with a simple character ~κcut,
∑

x∈X axC
x,i1...iγ+1

g (Ω1, . . . , Ωp, Y φ1, . . . φ̂t1 , . . . , φ̂ta
, . . . , φu), so that:

70The observation in the previous footnote still applies–by virtue of the assumptions imposed
in our Lemma hypothesis, (4.87) does not fall under a “forbidden case”.
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∑

l∈L
γ
2

alC
l,i1...iγ
g (Ω1, . . . , Ωp, Y, φ1, . . . φ̂t1 , . . . , φ̂ta

, . . . , φu)∇i2υ . . .∇iγ
υ−

∑

x∈X

axXdiviγ+1
Cx,i1...iγ+1

g (Ω1, . . . , Ωp, Y, φ1, . . . φ̂t1 , . . . , φ̂ta
, . . . , φu)∇i2υ . . .∇iγ

υ

=
∑

k∈K

akCk,i1...iγ
g (Ω1, . . . , Ωp, Y, φ1, . . . φ̂t1 , . . . , φ̂ta

, . . . , φu)∇i2υ . . .∇iγ
υ,

(4.90)

where each tensor field Ck
g is subsequent to ~κcut. (Note that the LHS in (4.89)

has weight > −n, hence Corollary 1 applies, thanks to our inductive assump-
tion).

Now, we define a formal operation UnY that acts on the tensor fields above

by replacing the expression ∇
(B)
t1...tB

Y , B ≥ 2 by an expression

∇
(B−2+a)
r1...rat1...tB−2+a

Rijkl∇r1φt1 . . .∇raφta
∇iφta+1

∇kφu+1. By applying the oper-
ation UnY to (4.90) (and repeating the permutations by which (4.90) is made
formally zero, modulo introducing correction terms by virtue of the Bianchi
identities–see (4.19), (4.20),(4.21)) we derive our desired equation (4.83). 2

This completes the proof of step 1 (in the derivation of Proposition 2.1 (in
case III) from Lemma 3.5. 2

Proof of step 2 (in the derivation of Proposition 2.1 (in case III)) from
Lemma 3.5: We consider (4.72), (where all the tensor fields are now acceptable,
by definition). Recall that the (u + 1, µ − 1)-refined double characters that
correspond to the index sets Lz, z ∈ Z ′

Max in (4.72) (we have denoted them by
~Lz,♯) are the maximal ones. Now, we can apply our inductive assumption of
Proposition 2.1 to (4.72):71

We derive that for each z ∈ Z ′
Max, there is a linear combination of acceptable

µ-tensor fields (which satisfy the extra restriction if it is applicable),

∑

p∈P ′

apC
p,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu, φu+1)

with a (u + 1, µ − 1)-refined double character ~Lz,♯, so that for any z ∈ Z ′
Max:

71The inductive assumption of Proposition 2.1 applies here since we have weight −n but
have an extra factor ∇φu+1. Observe that the (µ − 1)-tensor fields in that equation have no
special free indices, hence there is no danger of “forbidden cases”.
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(

α

2

)

∑

l∈Lz

al

k−1
∑

r=1

Ċl,i1... ˆirα+1...iµ,i∗
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇i∗υ+

∑

p∈P ′

apXdiviµ
Cp,i1...iµ

g (Ω1, . . . , Ωp, φ1, . . . , φu, φu+1)∇i1υ . . .∇iµ−1
υ =

∑

k∈K

akCk
g (Ω1, . . . , Ωp, φ1, . . . , φu, φu+1, υ

µ−1),

(4.91)

modulo complete contractions of length ≥ σ+u+µ+1. Here each Ck is (simply

or doubly) subsequent to each ~Lz,♯, z ∈ Z ′
Max.

We then define a formal operation Op that acts on the tensor fields in the
above by performing two actions: Firstly, we pick out a derivative index in the
critical factor (the unique factor that is contracting against the most factors
∇υ) that contracts against a factor ∇υ and erase it. Secondly, we then add a
derivative index ∇i+ onto the A-crucial factor and contract it against the above
factor ∇υ.

Let us observe that this operation is well-defined, and then see that it pro-
duces a true equation: The only thing that could make this operation not well-
defined is if no factor ∇υ is contracting against a derivative index in the critical
factor (this can only be the case for factors S∗∇(ν)Rijkl with ν = 0). But that
cannot happen: Recall the critical factor must start out with at least two free
indices (none of them special), and then we add another derivative index onto
it. Thus in all complete contractions in (4.91) there are at least three factors
∇υ contracting against (non-special) indices in the critical factor. Thus, our op-
eration Op is well-defined. By the same reasoning, observe that our operation
Op produces acceptable tensor fields.

We then set φu+1 = υ. We have observed that Op is well defined, and we
see that after we set φu+1 = υ, we will have that for each l ∈ Lz, z ∈ Z ′

Max:

Op[Ċl,i1... ˆirα+1...iµ,i∗
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1∇i2υ . . .∇i∗υ] =

Cl,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ

υ.
(4.92)

Hence, applying Op to (4.91) (which produces a true equation since (4.91) holds
formally) gives us step 2 and thus we derive the claim of Proposition 2.1 in case
III from Lemma 3.5. 2

5 Appendix.

5.1 A weak substitute for Proposition 2.1 in the “forbid-
den cases”.

We present a “substitute” of sorts of the Proposition 2.1 in the “forbidden
cases”. This “substitute” (Lemma 5.2 below) will rely on a generalized version
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of the Lemma 4.10, Lemma 5.1 which is stated below but proven in [7]. The
generalized version asserts that the claim of Lemma 4.10 remains true, for the
general case where rather than one “additional” factor ∇φu+1 we have β ≥ 3
“additional” factors ∇φu+1, . . . ,∇φu+β . Moreover, in that case there are no
“forbidden cases”.

Lemma 5.1 Let
∑

l∈L1
alC

l,i1...iµ,iµ+1...iµ+β
g (Ω1, . . . , Ωp, φ1, . . . , φu),

∑

l∈L2
alC

l,i1...ibl
,ibl+1...ibl+β

g (Ω1, . . . , Ωp, φ1, . . . , φu) stand for two linear com-
binations of acceptable tensor fields in the form (2.2), with a u-simple character
~κsimp. We assume that the terms indexed in L1 have rank µ+β, while the ones
indexed in L2 have rank greater than µ + β.

Assume an equation:

∑

l∈L1

alXdivi1 . . . Xdiviµ
C

l,i1...iµ+β
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1 . . .∇iβ

φu+β

+
∑

l∈L2

alXdivi1 . . .Xdivibl
C

l,i1...ibl+β

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1 . . .∇iβ
φu+β

+
∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, φ1, . . . , φu+β) = 0,

(5.1)

modulo terms of length ≥ σ +u+β +1. Furthermore, we assume that the above
equation falls under the inductive assumption of Proposition 2.1 in [6] (with
regard to the parameters weight, σ, Φ, p). We are not excluding any “forbidden
cases”.

We claim that there exists a linear combination of (µ + β + 1)-tensor fields
in the form (2.2) with u-simple character ~κsimp and length σ + u (indexed in H

below) such that:

∑

l∈L1

alC
l,i1...iµ+β
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1 . . .∇iβ

φu+β∇i1υ . . .∇iµ
υ

+
∑

h∈H

ahXdiviµ+β+1
C

l,i1...iµ+β+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1φu+1 . . .∇iβ
φu+β

∇i1υ . . .∇iµ
υ +

∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, φ1, . . . , φu+β , υµ) = 0,

(5.2)

modulo terms of length ≥ σ + u + β + µ + 1. The terms indexed in J here are
u-simply subsequent to ~κsimp.

A note and a notational convention before we state our Lemma: We observe
that if some of the µ-tensor fields of maximal refined double character in (2.3)
are “forbidden”, then necessarily all tensor fields in (2.3) must have rank µ (in
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other words L>µ = ∅). This follows from weight considerations. Also all the µ-
tensor fields must have each of the µ free indices belonging to a different factor.
This follows from the definition of maximal refined double character.

We introduce the notational convention needed for our Lemma. For each
tensor field C

l,i1...iµ
g appearing in (2.3) we will consider its product with an

auxilliary function Φ, C
l,i1...iµ
g ·Φ. In that contect Xdivia

[C
l,i1...iµ
g ·Φ] will stand

for the sublinear combination in where ∇ia is not allowed to hit the factor to
which ia

belongs (but it is allowed to hit the function Φ).

Lemma 5.2 Assume equation (2.3), under the additional assumption that some
of the tensor fields of maximal refined double character in Lµ are “forbidden”,
in the sense of definition 2.12. Denote by ~κsimp the u-simple character of the
tenosr field in (2.3).

We then claim that there is then a linear combination of acceptable µ-tensor
fields with a u-simple character ~κsimp indexed in H below so that:

∑

l∈Lµ

alXdivi1 . . . Xdiviµ
[Cl,i1...iµ

g (Ω1, . . . , Ωp, φ1, . . . , φu) · Φ] =

∑

h∈H

ahXdivi2 . . . Xdiviµ
[Ch,i1...iµ

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1Φ]

+
∑

j∈J

ajXdivi1 . . . Xdiviµ−1
[Cj,i1...iµ−1

g (Ω1, . . . , Ωp, φ1, . . . , φu) · Φ],

(5.3)

(modulo longer terms); here the terms indexed in J are acceptable (µ−1)-tensor
fields in the form (2.1) which are simply subsequent to ~κsimp.

Proof: Pick out the factor T1 = S∗Rijkl∇iφ̃1. Let LA
µ ⊂ Lµ stand for the

index set of terms in which contain a free index in this special factor and let
LB

µ ⊂ Lµ stand for the index set of terms with no free index in that factor. We

assume wlog that for each l ∈ LA
µ the free index that belongs to the factor T1 is

i1 .
We will prove the following statements:

∑

l∈LA
µ

alXdivi1C
l,i1...iµ
g ∇i2υ . . .∇iµ

υ =
∑

l∈L′B
µ

alXdivi1C
l,i1...iµ
g ∇i2υ . . .∇iµ

υ

+
∑

t∈T

atC
t,i2...iµ
g ∇i2υ . . .∇iµ

υ +
∑

j∈J

ajC
j,i2...iµ
g ∇i2υ . . .∇iµ

υ,

(5.4)

where the tensor fields indexed in L′B
µ are just like the tensor fields indexed in

LB
µ , but the free index i1 does not belong to the factor T1. The tensor fields

indexed in T are acceptable tensor fields of rank µ− 1, with a simple character
~κsimp, and moreover they have a factor S∗∇Rijkl (with one derivative) which
does not contain a free index.
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We will prove (5.4) momentarily. Let us now check how it implies our claim:
We convert the factors ∇υ’s into Xdiv’s (we are using the last Lemma in the
Appendix of [3] here), and replace into our Lemma hypothesis, to derive a new
equation:

∑

t∈T

atXdivi2 . . . Xdiviµ
Ct,i2...iµ

g +
∑

l∈LB
µ

S

L′B
µ

Xdivi1 . . .Xdiviµ
Cl,i1...iµ

g

+
∑

j∈J

ajC
j
g .

(5.5)

We next pick out the sublinear combination of terms in (5.5) with a factor
S∗Rijkl∇iφ̃1 (no derivatives); this sublinear combination clearly vanishes sepa-
rately, so we derive:

∑

l∈LB
µ

S

L′B
µ

X∗divi1 . . .X∗diviµ
Cl,i1...iµ

g +
∑

j∈J

ajC
j
g = 0.

(5.6)

(Here X∗divi[. . . ] stands for the sublinear combination in Xdivi[. . . ] where ∇i

is not allowed to hit the factor S∗Rijkl∇iφ̃1. We then define a formal operation

Op[. . . ] which acts on the terms above by replacing the expression S∗Rijkl∇iφ̃1

by an expression ∇jω∇kω∇lυ−∇jω∇lω∇kυ; denote the resulting (u−1)-simple

character (which keeps track of the indices ∇φ̃2, . . . ,∇φ̃u) by ~κ′
simp. Observe

that this produces a new true equation:

∑

l∈LB
µ

S

L′B
µ

Xdivi1 . . . Xdiviµ
Op[C]l,i1...iµ

g +
∑

j∈J

ajC
j
g = 0,

(5.7)

where the terms Cj
g are simply subsequent to ~κ′

simp. We can then apply the
“generalized version” of Lemma 4.10 to the above (the above falls under the
inductive assumption of (the generalized version of) Lemma 4.10 because the
terms above have σ1 + σ2 + p = σ − 1). We derive that:

∑

l∈LB
µ

S

L′B
µ

Op[C]l,i1...iµ
g ∇i1υ . . .∇iµ

υ = 0.
(5.8)

Now, we formaly replace each expression ∇aω∇bω,∇cυ by an expression
S∗Ri(ab)c∇

iφ̃1 and derive that:

∑

l∈LB
µ

S

L′B
µ

Cl,i1...iµ
g ∇i1υ . . .∇iµ

υ = 0.
(5.9)

Thus, we may return to (5.5) and erase the sublinear combination in LB
µ

⋃

L′B
µ .

We then pick out the sublinear combination in that equation with a factor
S∗∇aRijkl∇iφ̃1. We then derive a new true equation:
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∑

t∈T

atX∗divi2 . . . X∗diviµ
Ct,i2...iµ

g +
∑

j∈J

ajC
j
g ; (5.10)

(X∗divi . . . now means that ∇i is not allowed to hit the factor S∗∇aRijkl).
We then define a formal operation Op′[. . . ] which acts on the terms above by
replacing the expression S∗∇aRijkl∇i1 φ̃1 by an expression ∇aω∇jω∇kω∇lυ −
∇aω∇jω∇lω∇kυ; denote the resulting (u − 1)-simple character (which keeps

track of the indices ∇φ̃2, . . . ,∇φ̃u) by ~κ′
simp. Then by the same argument as

above, we derive that:

∑

t∈T

atOp′[C]t,i2...iµ
g ∇i2υ . . .∇iµ

υ = 0, (5.11)

and therefore:

∑

t∈T

atC
t,i2...iµ
g ∇i2υ . . .∇iµ

υ = 0. (5.12)

Thus, we derive our claim by just multiplying the equations (5.4), (5.9),
(5.12) by Φ, converting the ∇υ’s into Xdiv’s (we are here applying the relevant
Lemma from the Appendix of [3]),72 and then adding the resulting equations.

Thus, matters are reduced to proving (5.4). We do this as follows: Refer to
our Lemma assumption and pick out the sublinear combination of terms with a
factor S∗Rijkl∇iφ̃1 (with no derivatives). This sublinear combination vanishes
separaely, thus we derive a new true equation:

∑

l∈LA
1

alXdivi1X∗divi2 . . .X∗diviµ
Cl,i1...iµ

g +
∑

l∈LB
1

alX∗divi1 . . . X∗diviµ
Cl,i1...iµ

g

+
∑

j∈J

ajC
j
g = 0.

(5.13)

Again, applying the operation Op (defined above) to (5.13) we derive a new true
equation:

∑

l∈LA
1

alX∗divi2 . . . X∗diviµ
{Xdivi1Op[C]l,i1...iµ

g }

+
∑

l∈LB
1

alX∗divi1 . . .X∗diviµ
Op[C]l,i1...iµ

g +
∑

j∈J

ajC
j
g = 0.

(5.14)

72Recall that in this setting the derivative ∇i in each Xdivi is allowed to hit the factor Φ.
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Here Xdivi1Op[C]
l,i1...iµ
g stands for the sublinear combination where the deriva-

tive ∇i is not allowed to hit any of the factors ∇φh nor any of the factors

∇ω,∇υ. In fact, if we treat the XdiviOp[C]
l,i1...iµ
g as a sum of (µ − 1)-tensor

fields (so we forget its Xdiv-structure). We then apply the inductive assump-
tion of Lemma 4.10 to derive that there exists a linear combination of µ-tensor
fields with a (u − 1)-simple character ~κ′

simp, such that:

∑

l∈LA
1

al{Xdivi1Op[C]l,i1...iµ
g }∇i2υ . . .∇υiµ

+
∑

h∈H

alX∗diviµ
Ch,i1...iµ

g ∇i2υ . . .∇υiµ

+
∑

j∈J

ajC
j
g = 0.

(5.15)

Now, we act on the above by another formal operation Op−1[. . . ] which replaces
each expression ∇aω∇bω∇cυ by S∗Ri(ab)c∇

iφ̃1. The result precisely is our
desired (5.4).

5.2 Mini-Appendix: Proof that the “delicate assumption”
(in case I) can be made with no loss of generality:

We let M stand for the number of free indices in the critical factor, for the terms
of maximal refined double character in (3.1). We denote by Lµ,∗ ⊂

⋃

z∈Z′

Max
Lz

the index set of µ-tensor fields in (3.1) with M free indices in the critical factor
and with only one index (the index l) in the critical factor contracting against
another factor, in particular against a special index in some (simple) factor
S∗∇(ρ)Rabcd.

73 We will show that:

∑

l∈Lµ,∗

alC
l,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ

υ−

∑

h∈H

ahXdiviµ+1
Ch,i1...iµ+1

g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ
υ =

∑

t∈T

atC
t,i1...iµ
g (Ω1, . . . , Ωp, φ1, . . . , φu)∇i1υ . . .∇iµ

υ,

(5.16)

where the tensor fields in the RHS have all the features of the tensor fields in the
first line but in addition the index l in the critical factor is contracting against
a non-special index. If we can show (5.16), it then follows that the “delicate
assumption” can be made with no loss of generality.

Proof of (5.16): We divide the index set Lµ,∗ according to which factor
S∗∇(ρ)Rabcd the index l in the critical factor is contracting against: We say
that l ∈ Lµ,∗,k, k ∈ K if and only if the index l is contracting against a special

73Denote this other factor by T ′ (while the critical factor will be denoted by T∗).
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index in the factor S∗∇(ρ)Rijcd∇iφ̃k (denote this factor by T ′
k)–say the index l

in T ′
k.
We prove (5.16) for the terms in Lµ,∗,k. Clearly, if we can prove this then the

whole of (5.16) will follow. We denote by C̃
l,i1...iµ
g (Ω1, . . . , Ωp, Y1, Y2, φ1, . . . , φu)

the tensor field that arises from C
l,i1...iµ
g (Ω1, . . . , Ωp, φ2, . . . , φ̂k, . . . , φu) by re-

placing the expression S∗∇
(ν)
r1...rν RijklS∗∇

(ρ)
y1...yρRi′j′k′

l∇iφ̃1∇i′ φ̃k by

∇
(ν+2)
r1...rνjkY1∇

(ρ+2)
y1...yρj′k′Y2; denote the resulting simple character by Cut[~κsimp].

Considering the second conformal variation of (3.1) and pick out the terms of
length σ+u with the factors ∇φ̃1,∇φ̃k contracting against each other, we derive
a new true equation:

[
∑

l∈Lµ,∗,k

alXdivi1 . . . Xdiviµ
C̃l,i1...iµ

g (Ω1, . . . , Ωp, Y1, Y2, φ2, . . . , φ̂k, . . . , φu)+

∑

h∈H

ahXdivi1 . . . Xdivia
Ch,i1...ia

g (Ω1, . . . , Ωp, Y1, Y2, φ2, . . . , φ̂k, . . . , φu)+

∑

j∈J

ajC
j
g(Ω1, . . . , Ωp, Y1, Y2, φ2, . . . , φ̂k, . . . , φu)]∇sφ̃1∇sφ̃k = 0.

(5.17)

The terms indexed in H have length > µ and are acceptable with a simple char-
acter Cut[~κsimp]. The complete contractions indexed in J are simply subsequent
to Cut[~κsimp].

Now, we apply our inductive assumption of Corollary 1 to the above,74 and
we pick out the sublinear combination of maximal refined double character–
denote the index set of those terms by L̃µ,∗,k (notice that the sublinear com-
bination

∑

l∈Lµ,∗,k
will be included in those terms). We then derive that there

exists a linear combination of acceptable (µ + 1)-tensor fields with a simple
character Cut[~κsimp] so that:

∑

l∈L̃µ,∗,k

alC̃
l,i1...iµ
g (Ω1, . . . , Ωp, Y1, Y2, φ2, . . . , φ̂k, . . . , φu)∇i1υ . . .∇iµ

υ−

∑

h∈H

ahXdiviµ+1
Ch,i1...iµ+1

g (Ω1, . . . , Ωp, Y1, Y2, φ2, . . . , φ̂k, . . . , φu)∇i1υ . . .∇iµ
υ

+
∑

j∈J

ajC
j,i1...iµ
g (Ω1, . . . , Ωp, Y1, Y2, φ2, . . . , φ̂k, . . . , φu)∇i1υ . . .∇iµ

υ = 0.

(5.18)

Now, formally replacing the expression

∇(A)
y1...yA

Y1 ⊗∇(B)
r1...rB

Y2 ⊗∇yqφz ⊗ · · · ⊗ ∇yx−1φχ ⊗∇yxυ . . .∇yA ⊗ υ

74Notice that (5.17) does not fall under any of the “forbidden cases”, since the for the factor
∇(A)Y we have Φ1 +M ≥ 2, where M is the number of free indices that belong to that factor
and Φ1 is the number of factors ∇φh that contract against it.
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by an expression

S∗∇
(A−2)
y1...yA−2

RiyA−1yAl ⊗ S∗∇
(B−2)
r1...rB−2

Ri′rB−1rB

l ⊗∇iφ1 ⊗∇i′φk

and repeating the permutations that make the above hold formally,75 we derive
our claim. 2
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of strictly pseudoconvex domains Ann. of Math. (2) 163 (2006), no. 2, 499–
515.

[27] T. Y. Thomas The differential invariants of generalized spaces, Cambridge
University Press, Cambridge 1934.

[28] H. Weyl The classical groups, Princeton University press.
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