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Abstract

Let M be a Riemannian 2-sphere. A classical result of Lyusternik-
Shnirelman asserts the existence of three distinct simple non-trivial
periodic geodesics on M . In this paper we will prove that the lengths
of two of them do not exceed 5d and 10d respectively, where d is the
diameter of M .

1 Main result.

Theorem 1.1 Let M be a Riemannian manifold of diameter d diffeomor-
phic to S2. There exist two distinct non-trivial simple periodic geodesics on
M such that the length of the first of these geodesics does not exceed 5d, and
the length of the second of these geodesics does not exceed 10d.

Recall that the term “simple” means that the geodesics do not have
self-intersections. Our proof of the existence of one simple periodic geodesic
of length ≤ 5d essentially combines Lyusternik-Shnirelman ideas with the
proof by C. Croke, (see [Cr]) of the existence of a non-trivial periodic
geodesic of length ≤ 9d on M and its later modifications by M. Maeda,
(see [M]), who improved this upper bound to 5d. We need to make several
straightforward geometric observations in order to combine these ideas. This
will be explained in Sections 2 and 3. Yet more work is required to prove the
existence of the second simple periodic geodesic of length ≤ 10d, (see Section
4). We do not know if the length of the third simple periodic geodesic can
be similarly majorized only in terms of d, but are able to reduce the problem
to its particular case, when every closed curve of length ≤ 2d is contractible
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to a point by a length-decreasing homotopy, (see Section 5). (In all other
cases a desired upper bound exists.)

Note that the authors and, independently, S. Sabourau proved that there
exists a (possibly self-intersecting) periodic geodesic of length ≤ 4d on M .
However, it does not seem that the techniques used in [NR] and in [S] can
be adapted to produce simple periodic geodesics.

Also, note that ellipsoids that are very close to round spheres have only
three simple periodic geodesics. Moreover, the length of the fourth (self-
intersecting) periodic geodesic becomes arbitrarily large in comparison with
d, when the metric approaches the round metric. Therefore the length of
the fourth periodic geodesic on M cannot be majorized in terms of d.

2 Lyusternik-Shnirelman proof and some geomet-

rical observations.

Our proof uses the basic ideas from the original proof of the existence of three
simple periodic geodesics given by L. Lyusternik and L. Shnirelman. (The
original proof ([cf. [L]) contained gaps that were corrected in later work by
J. Jost, ( [J]) and I. Taimanov ( [T]).) The basic idea of this proof is that
one can consider three non-trivial homology classes of the pair (ΠS2,Π0S

2)
with coefficients in Z2, where ΠS2 is the space of non-parametrized free
loops on S2, and Π0S

2 is its subspace formed by all constant loops. Namely,
one considers a 1-dimensional homology class represented by a 1-cycle that
consists of all circles on S2 obtained as intersections of the standard S2 in R3

with planes parallel to the XZ-plane, a 2-dimensional cycle that consists of
all circles obtained by intersecting S2 with all planes parallel to the Z-axis,
and a 3-dimensional cycle that consists of all circles on S2.

The main idea of Lyusternik-Shnirelman is to apply a curve-shortening
flow to each of these three cycles. The flow is designed so that simple curves
that form those cycles remain simple during the curve-shortening process.
Then Lyusternik and Shnirelman prove that either those cycles will “hang”
at three (simple) periodic geodesics of the diferent lengths, or if either two of
them “hang” at the same periodic geodesic, then there will be a whole critical
level with infinitely many simple periodic geodesics of the same length.

In this paper we will use only the first two of these cycles. Our first
(almost obvious) observation is that there is an alternative representation
of the same homology classes:
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Fix a meridian m on the standard S2. For every angle α ∈ [0, π] con-
sider a free loop lα formed by two meridians forming the angle α with m.
Finally, contract each of the loops l0 and lπ formed by pairs of identical
meridians travelled in opposite directions over themselves to points. We ob-
tained a map of ([0, 1], {0, 1}) into (ΠS2,Π0S

2), which is clearly homotopic
to the map that we used above to describe the first of the three Lyusternik-
Shnirelman classes.

To see this assume that m is the intersection of S2 with the Y Z-plane.
For every convex digon bounded by lα consider the unique circle Cα parallel
to the XZ-plane inscribed into this digon. The homotopy will continuously
deform lα into Cα inside the considered digon, (see fig. 1).

Figure 1:

In order to construct this 1-cycle so that it contains only simple curves
we can modify it as follows: Choose any small positive ε. Now the range
of α will be [ε, π − ε]. We take curves lε and lπ−ε and contract them via
simple curves using, for example, the Birkhoff curve shortening process on
(a round) S2. Adding these homotopies to the homotopy between lε and
lπ−ε we obtain the desired relative 1-cycle Z1

ε .
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The 2-dimensional Lyusternik-Shnirelman cycle is obtained by rotating
the 1-dimensional Lyusternik-Shnirelman cycle by the angle π about Z-axis.
We can do the same with the 1-cycle Z1

ε that we constructed above. Thus, we
will obtain a relative 2-cycle Z2

ε representating the Lyusternik-Shnirelman
class in H2(ΠS2,Π0S

2, Z2).
There is yet another useful way to represent the 1-dimensional homology

class of Z1
ε . Fix again a meridian m on S2 and an arbitrary (small) ε ∈ (0, π).

Consider the same homotopy starting at a point, ending at lε, and passing
through simple curves that was used in the construction of Z1

ε . Then keep
one of the meridians forming lε fixed and rotate the other one by the angle
that vary between 0 and 2π − 2ε. At the end of this homotopy we will get
a thin digon that can be contracted via simple closed curves to a point, for
example, using the Birkhoff curve shortening process. Denote the resulting
relative 1-cycle in (ΠS2,Π0S

2) by Y 1
ε .

Now assume that f : S2 −→ M is a diffeomorphism or, more generally,
a piecewise-smooth homeomorphism. It maps simple closed curves on S2

into simple closed curves on M , and cycles Z1
ε , Z2

ε , Y 1
ε into relative cycles

in (ΠM,Π0M). Let L be an upper bound for the images of all meridians
of S2 under f , and L0 denote the length of f(m). Then for each positive δ
one can choose a sufficiently small positive ε to ensure that the lengths of
all curves in f(Z1

ε ), f(Z2
ε ) do not exceed 2L+ δ and the lengths of all curves

in f(Y 1
ε ) does exceed L + L0 + δ.

As a corollary, we can conclude that the lengths of two distinct simple
periodic geodesics on M do not exceed 2L, and, moreover, the length of one
of them does not exceed L + L0. As a corollary we obtain the first part of
the following proposition:

Proposition 2.1 A. Assume that there exists a piecewise-smooth homeo-
morphism from S2 to M that maps all meridians of S2 into curves of length
≤ L on M . Assume that the length of one of these curves does not exceed
L0 (≤ L). Then there exist two simple periodic geodesics on M of lengths
≤ L0 + L and 2L.
B. Assume that there exists a continuous family of closed curves on M
parametrized by [0, 1] such that (a) Curves corresponding to 0 and 1 are
constant curves; curves corresponding to t ∈ (0, 1) are simple closed curves
of length ≤ l; (b) Different curves do not intersect; and (c) Each point of M
is in the image of (exactly) one of these curves. Then there exists a simple
periodic geodesic on M of length ≤ l.

Part B follows from the observation that the continuous family of curves
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provides us with a map ([0, 1], {0, 1}) −→ (ΠM,Π0M) homotopic to the map
considered above and, thus, yielding a simple periodic geodesic of length ≤ l.

3 Work of Croke and Maeda and some geometrical

observations.

The following proposition summarizes some facts that were proven in [Cr]
and [M]:

Proposition 3.1 [Croke-Maeda] Assume that M is a Riemannian manifold
diffeomorphic to S2 of diameter d. Then either

1. There exists a simple periodic geodesic of length ≤ 2d on M ;

or

2. There are no simple periodic geodesics of lengths ≤ 2d on M , but there
exists a non-contractible map f : S1 −→ ΛM such that for every t ∈ S1 the
length of the closed curve f(t) does not exceed 5d. (Here ΛM denotes the
space of parametrized free loops on M .)

We made the following observation:

Proposition 3.2 If there are no simple periodic geodesics on M of length ≤
2d, then for every positive ε there exists a one-parametric family of pairwise
non-intersecting simple closed curves of length ≤ 5d+ε (and points) swiping
out M and satisfying the conditions of Proposition 2.1 B. Also, in this
case there exists a map f : S1 −→ ΛM such that lengths of images of
all meridians of S2 do not exceed 5d + ε, the length of the image of at
least one meridian is equal to d, all meridians are mapped into nonself-
intersecting curves, and the images of different meridians intersect only at
their endpoints.

This proposition immediately implies the existence of a simple periodic geo-
desic on M of length ≤ 5d. Yet some further work will be required to
establish an upper bound for the length of the second simple periodic geo-
desic.

Proof of Proposition 3.2. We are going to examine the basic ideas of the
approach of Croke. First, he uses Berger’s lemma to conclude that if x and y
are two points such that the distance between them is equal to the diameter
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of the manifold, then there exists a finite collection of minimal geodesics
g1, . . . , gN connecting x and y such that for every i gi and gi+1(modN) form
a digon with both angles < π unless x and y are both located on a periodic
geodesic. (Note that gi do not pairwise intersect.) As the digonal domains
are convex, the classical Birkhoff curve shortening process contracts the
boundary ∂Di = gi

⋃
g(i+1)mod N of each of those domains Di either to a

simple non-trivial periodic geodesic of length ≤ 2d or to a point via convex
curves contained inside Di. (See [Cr] for a good description of the Birkhoff
curve-shortening process and an explanation of the last assertion.)

If the process ends at a simple periodic geodesic, then its length does
not exceed 2d, which contradicts the assumptions of Proposition 3.2. So, we
can assume that ∂Di is contracted to a point. Now our goal is to combine
all these homotopies into one family of closed curves.

Consider one of those homotopies that contracts a closed curve ∂Di to
a point via curves ht, t ∈ [0, 1], where h0 = ∂Di, and h1 is a constant curve.
Denote the value of h1 by z. The curves ht are convex and have length
≤ 2d. Also, the homotopy is monotonous in the following sense: if t1 < t2,
then the domain bounded by ht2 containing h1 is contained in the domain
bounded by ht1 that contains h1. Let w be a point on ∂Di that is the closest
to z, (see fig. 2).

g
i

g
i+1 mod N

w
z

τ
Figure 2:
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The free loop homotopy can be transformed into a path homotopy that
contracts h0 = ∂Di to w and passes only through loops of length ≤ 2d +
2dist(w, z) based at w as follows: Connect w and z by a minimal geodesic
τ parametrized by [0, 1] interval. Note that this geodesic is contained in Di.
For every t denote the restriction of τ to [0, t] by τt.

It is easy to prove using the convexity of all curves ht and the monotonic-
ity of the homotopy that τ(t) ∈ hs if and only if s ∈ [α1(t), α2(t)], where
for all but countably many values of t α1(t) = α2(t), and α1(t1) > α2(t2)
if t1 > t2. (Many details can be found in [M]. See, in particular, proofs
of Lemmae 6, 7 there). Now we can construct the desired path homotopy
by using τt ∗ hα1(t) ∗ τ−1

t at the points, where α1(t) = α2(t), and all loops

τt ∗ hs ∗ τ−1
t for all s ∈ [α1(t), α2(t)] at points, where α1(t) < α2(t). To be

more precise we are using curves hα(t) reparametrized so that they start and
end at τt(t). (Of course, eventually we will forget about parametrizations
and will end up with a 1-parametric family of non-parametrized curves any-
way.) The total time of the homotopy will not exceed 2. It then can be
reparametrized by [0, 1]. Denote these loops by lt. The loop l1 consists of
two copies of τ travelled in the opposite directions, and we can contract it to
the point w through loops l1+t = τt ∗ τ−1

t , t ∈ [0, 1]. The loops lt, t ∈ [0, 2],
form the desired homotopy.

Note that the homotopy lt does not pass through simple closed curves
because we go along τt twice (in the opposite directions). However, this
homotopy can be easily modified to avoid this problem: At each moment
of time we could return back not along τt but along a curve that goes very
closely to τt and has almost the same length. At the moment t = 1 we would
end up with a very thin “finger” of thickness much less than the injectivity
radius of M that can be contracted through simple loops based at z in an
obvious way.

Our next observation is that this homotopy can be used to construct a
path homotopy between two geodesic segments gi and g(i+1)mod N forming
the boundary of Di, (see fig. 3).

Assume that w ∈ gi (the case, when z ∈ g(i+1)mod N is treated similarly).
Let g1 and g2 denote segments of gi between x and w, and w and y, corre-
spondingly. The path homotopy will include paths g1 ∗ l̄1−t/2 ∗g2, t ∈ [0, 2],,
where l̄1−t/2 denotes l1−t/2 travelled in the opposite direction. Note that
g1 ∗ l̄0 ∗ g2 = g1 ∗ (g1)−1 ∗ g(i+1)mod N ∗ (g2)−1 ∗ g2, and this curve can be
path homotoped along itself to g(i+1)mod N . Again, the paths in this homo-
topy are self intersecting as they contain pairs of segments going in opposite
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g i

g i+1 mod N

τ
zw

Figure 3: Path homotopy between gi and gi+1modN

directions that are then being cancelled. But, as above, it is obvious how
to perturb this homotopy to make all curves nonself-intersecting by having
pairs of segments that go closely to each other rather than coincide, and
contracting long thin fingers using a continous family of minimal geodesics
between their corresponding points. The lengths of the curves in this path
homotopy do not exceed 3d+2dist(w, z)+ε, where ε can be made arbitrarily
small.

M. Maeda (see [M]) noticed that for all digons Di but at most one
for every z ∈ Di there exists w ∈ ∂Di such that dist(w, z) ≤ d

2 . (Indeed,
otherwise the distance between points z1, z2 in the two digons that violate
this inequality should have been greater than d, which is impossible.) The
distance between z and the closest point of the boundary of the exceptional
digon (if it exists) does not exceed d.

Without any loss of generality we can assume that D1 is the exceptional
domain, if such a domain exists. According to our assumption its boundary
can be contracted to a point by the Birkhoff curve-shortening homotopy
inside D1. We can perform this homotopy in reverse to obtain ∂D1 starting
from a point. The lengths of curves during this homotopy do not exceed 2d.

Now we are going to extend this homotopy, so as to make it swipe D2,
and end with a closed curve formed by γ1 and γ3. For this purpose we
keep γ1 but vary γ2 so that it runs over the 1-parametric family of curves
γt of length ≤ 4d + ε in a path homotopy between γ2 and γ3 constructed
as above. Then we can either sweep-out D3 by moving γ3 using the path
homotopy between γ3 and γ4, or, if we prefer, move γ1 to γN (keeping γ3

fixed). We can continue in this way until all domains Di but one will be
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swept-out. We can arrange for this last domain to be any domain but D1.
(This observation is not used in the proof but will be important in the next
section.) Then we contract the boundary of this domain to a point using
the Birkhoff curve-shortening process.

This proves the first assertion of the proposition. To prove the second
assertion we proceed as above, but do not use Birkhoff curve-shortening
process to contract the boundaries of D1 and the last domain. Instead, we
construct path homotopies between “halves” of the boundary of D1 (and
the last domain) exactly as it was done for all other domains. As dist(z,w)
for D1 can be as large as d (instead of d

2 for other domains) we obtain an
extra summand d, and the lengths of meridians swiping D1 will be bounded
by 5d + ε (but not by 4d + ε as in other domains). 2

4 The length of the second simple periodic geode-

sic.

As we noticed before, this proposition immediately implies the existence
of one simple periodic geodesic of length ≤ 5d. But its proof implies more
than that. First, note that if the Birkhoff curve shortening process contracts
the boundary of every domain Di to a point, then, as we saw in Section 1,
we obtain also a second simple periodic geodesic of length ≤ 2(5d + ε) for
an arbitrary small ε, and, thus, a second simple periodic geodesic of length
≤ 10d. Second, if the Birkhoff curve shortening process contracts boundaries
of two different domains Di to non-trivial periodic geodesics, then these
geodesics must be distinct and have length ≤ 2d. Finally, assume that the
Birkhoff curve-shortening process contracts boundaries of all domains Di

but one to points, and it contracts the boundary of the remaining domain
that we will denote by Dj to a non-trivial periodic geodesic γ. This geodesic
must be a simple geodesic of length ≤ 2d contained in Dj. It provides a local
minimum of the length functional on the space of simple closed curves on M .
Denote the domain bounded by γ inside Dj by D. The proof of Proposition
3.2 given above implies that there is a slicing of M \ Dj into simple closed
curves (and a point) starting from a point and ending at ∂Dj . All curves in
this 1-parametric family have length ≤ 5d + ε. We can extend this family
by applying the Birkhoff curve-shortening process to ∂Dj until we get stuck
at γ. Assume that there exists a homotopy H that contracts γ to a point
within D via simple closed curves of length ≤ L, where L is some number
greater than or equal to 5d. Then we can extend our original homotopy by
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H, and will obtain a chain representing the 1-dimensional homology cycle in
the space of non-parametrized simple closed curves considered in section 1
such that all closed curves have length ≤ L. Therefore there exists a simple
closed geodesic of length ≤ L in M that corresponds to this cycle, and so is
not a local minimum of the length functional on the considered space. Thus,
this geodesic is different from γ. Hence, Theorem 1 would follow from the
following lemma:

Lemma 4.1 Let D be a domain on M bounded by a simple periodic geodesic
γ of length ≤ 2d. Assume that there are no simple periodic geodesics of
length ≤ 4d inside D providing a local minimum for the length functional.
Then for every positive ε there exists a homotopy contracting γ to a point
and passing via simple closed curves of length ≤ 8d + ε.

Proof. The crucial observation is the following relative version of Berger’s
lemma: Let z be a point in D maximizing the distance to γ = ∂D. Then for
every non-zero vector v in the tangent space to M at z there exists a shortest
path τ from z to ∂D such that its tangent vector at z makes angle ≤ π/2
with v. This assertion can be proven by contradiction exactly as Berger’s
lemma: Assume that the assertion is not true for some vector v. Move z in
the direction of v for a very small distance δ. Connect the resulting point
zδ with ∂D by a geodesic of minimal length. Passing to the limit as δ −→ 0
and choosing an appropriate subsequence we will find a sequence of geodesics
of length < dist(z, ∂D) starting at zδ , ending at ∂D and converging to a
shortest geodesic ̺ between z and ∂D. The first variation formula for lengths
of geodesics and the fact that the angle between ̺ and the minimal geodesic
z zδ is obtuse lead to a contradiction proving the assertion.

Thus, one can choose a finite set of shortest paths leading from z to ∂D
such that the angle between each consecutive pair of these paths is ≤ π.
These paths do not intersect other than at the endpoints, have length ≤ d
and divide D into a finite collection of convex domains Ti. The Birkhoff
curve-shortening process applied to the boundary of each domain Ti con-
tracts it to a point as we assumed that there are no simple closed geodesics
of length ≤ 4d (≥ length ∂Ti), (see fig. 4).

Now we can construct the desired homotopy by contracting γ = ∂D
combining homotopies contracting ∂Ti almost exactly as it was done in the
proof of Proposition 3.2. We omit the details of the process. 2
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D i

γ

Figure 4: Contracting closed geodesic γ
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5 The length of the third simple periodic geodesic.

Can we prove an upper bound of the form const d for the length of the third
simple periodic geodesic in Lyusternik-Shnirelman theorem?

In the previous section we saw that there are three possibilities: (i) There
exist two simple periodic geodesics of lengths ≤ 2d and ≤ 4d providing local
minima for the length functional on the space of closed curves on M ; (ii)
There exists one simple periodic geodesic of length ≤ 2d providing a local
minimum for the length functional on the space of closed curves on M ,
and there exists a non-contractible map of a circle into the space of simple
closed curves on M that was constructed in the previous section, such that
the lengths of closed curves that are the images of points of this circle do
not exceed ≤ 8d + ε. Finally, in the last case (iii) there exist no periodic
geodesics of length ≤ 2d locally minimizing the length functional.

In the case (i) we can iterate the argument from section 3 and to con-
clude that either there exist three simple periodic geodesics of lengths ≤ 8d
providing local minima for the length functional, or there exists a slicing of
M into meridianal curves of length ≤ const d that implies the existence of
the desired bound for the length of the third simple periodic geodesic. In
the case (ii) we can convert the homotopies contracting boundaries of D1

and another domain as free loops into path homotopies between “halves” of
the boundaries of these domains as it was done for the other domains during
the construction of this homotopy, and, as the result, will obtain two simple
periodic geodesics with positive indices of length ≤ const d.

Thus, the problem stated at the beginning of this section reduces to its
particular case, when no closed curve of length ≤ 2d is a local minimum of
the length functional, or, equivalently, every closed curve of length ≤ 2d on
M can be contracted to a point by a length-decreasing homotopy. Yet we
do not know how to solve the problem in this particular case.
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