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Abstract

Let M be a closed surface diffeomorphic to S2 endowed with a
Riemannian metric. Denote the diameter of M by d. We prove that
for every x ∈ M and every positive integer k there exist k distinct
geodesic loops based at x of length ≤ 20kd.

Introduction.

A well-known result of J. P. Serre asserts that for every closed Riemannian
manifold Mn and an arbitrary pair of points x, y ∈ Mn there exist an infinite
set of distinct geodesics connecting x and y, (see [Se]). Later A. Schwartz
proved that there exists a constant c(Mn) depending on the Riemannian
metric on Mn such that for every positive integer k there exist k distinct
geodesics connecting x and y of length ≤ c(Mn)k, (see [Sch]). In particular,
if x = y those geodesics are geodesic loops based at x. Note that one can
write c(Mn) as c0(M

n)d, where d is the diameter of Mn and c0(M
n) is a

scale-invariant constant.
But what Riemannian invariants are required in order to majorize the

lengths of k distinct geodesics connecting a fixed pair of points? In [NR 2]
the authors proved that one can get such an estimate using only the diameter
and the dimension of Mn. Namely, we proved that the lengths of k distinct
geodesics connecting x and y do not exceed 4k2nd. (We do not know if
there exists such an upper bound that does not involve the dimension, i.
e. an estimate of the form f(k)d.) A comparison of our result with the
result of Shwartz leads to the following natural question: Is it possible to
replace the upper bound that is quadratic in k by a linear bound c(n)kd?
Whenever we do not believe that this is possible for Riemannian manifolds
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of all dimensions, we prove that this is, indeed, so in the two-dimensional
case:

Theorem 0.1 Let M be a closed Riemannian manifold diffeomorphic to S2

of diameter d. Let x be a point in M , and k be a positive integer number.

Then there exist at least k distinct non-trivial geodesic loops based at x of

length not exceeding 20kd.

Remark 0.2. If k = 1, one can get a better upper bound 4d as a corollary
of the main result in [R]. Also, a better bound for small values of k follows
from the main result of our paper [NR 1], where we proved that there exist
(4k2 + 2k)d distinct non-trivial geodesic loops. Moreover, it was noted in
[NR 2] that the last estimate can be immediately improved to (k2+3k+2)d,
if one notices that cycles of non-zero dimensions in the space of loops on M
based at x used to prove the existence of the geodesic loops never “hang”
at critical points of index zero. On the other hand, F. Balacheff, C. Croke
and M. Katz demonstrated that it is not true that the length of a shortest
non-trivial geodesic loop is always ≤ 2d, (see [BCK]).

Remark 0.3. The linear upper bound of Theorem 0.1 will hold for all closed
2-dimensional Riemannian manifolds and not only those diffeomorphic to
S2. To prove this assertion first assume that M has an infinite fundamental
group. Then there exists a non-contractible loop γ based at x of length
≤ 2d. The existence of such a loop is easy and well-known, (cf. [Gr]).
Then one can consider the iterates γi of this loop. They all will be non-
contractible and non-pairwise homotopic. Now we can obtain the desired
geodesic loops by applying a curve-shortening process with the fixed base
point x to γi. The case, when M is diffeomorphic to RP 2, can be reduced to
the spherical case by passing to the double covering of M with the induced
Riemannian metric. As the diameter of the double covering of M does not
exceed 2d, we will obtain k geodesic loops of length ≤ 40kd, that can be
then projected to M . Finally, note that our proof of Theorem 0.1 does
not seem to apply to the situation when there are k geodesics connecting
distinct points x, y ∈ M . (The argument in Section 1.3 below does not seem
to work, when one tries to modify it in the case of x 6= y.) Nevertheless, we
plan to establish a similar linear bound for lengths of geodesics connecting
distinct points x, y ∈ M using a different more complicated argument (that
also yields a worse constant) in a sequel to this paper. Also, our proof can
be adapted (with modifications) to the case, when x and y are the most
distant points in M , (see Theorem 2.1 in Section 2).
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1 Proof of the main result.

Proof of Theorem 0.1.

1.1. The length of a meridianal sweep-out and lengths of geodesics.

Definition 1.1 Define a meridianal sweep-out of M by curves of length

≤ L as a map f : S2 −→ M of non-zero degree such that the image of every

meridian of S2 under f does not exceed L. We will refer to the images of

meridians of S2 under f as meridians of M .

The proof of the existence of infinitely many geodesic loops based at a
prescribed point on x ∈ M given by A. Schwartz in [Sch] easily implies that
if both poles of the sphere are mapped into x, then the lengths of the first
k of these loops (including the trivial loop) do not exceed 2kL (and do not
exceed (2k + 2)L if the poles are mapped into arbitrary points of M . See,
for example, [NR 1] for a detailed explanation of Schwartz’s proof in the
case of a 2-sphere.)

Here is a brief explanation of this result. Homology groups Hi(ΩS2,R) of
the space of based loops on S2 are all isomorphic to R, and are generated by
Pontryagin powers of the generator of H1(ΩS2,R). (Recall, that Pontryagin
product in homology groups of loops spaces is induced by the operation of
taking the join of loops.) The generator of H1(ΩS2, R) can be represented by
a map of a circle into H1(ΩS2,R), where each point of a circle is mapped into
the image under f of the meridian of S2 with the corresponding longitude.
(Recall that we assumed that both poles are mapped to x, so every meridian
is mapped into a loop in M based at x.) Its Pontryagin powers can be
represented by tori in ΩS2, where each point of a k-torus is mapped into a
loop that is obtained by going along the images of k corresponding meridians
one after the other. Thus, given a meridianal sweep-out of M by loops of
length ≤ L based at x, we obtain a geometric realization of generators of
Hk(ΩM,R) by maps of k-tori, where each point is mapped into the loop on
M made of k meridianal loops of M of total length ≤ kL.

If the length functional is a Morse function, then those classes corre-
spond to distinct critical points (of different indices), and we are done. In
the degenerate situation Schwartz have proceeded as follows: For an even-

dimensional homology class c he considered a dual cohomology class u of
the same dimension and observed that cup powers of u are dual up to some
constant factors to Pontryagin powers of u. Then he used a theorem proven
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by Lyusternik and Shnirelman asserting that if cohomology classes u and
u∪ v, v 6= 0, correspond to the same critical value, then there exist a whole
critical level (made of uncountably many geodesic loops) corresponding the
the same critical value.

As one is using only the even-dimensional classes, one gets 2kL as the
upper bound for the values of the length functional at first k non-trivial
critical points.

1.2. Meridianal sweep-out via filling. Therefore, our first intention
would be to construct a meridianal sweep-out of M by curves of length 10d
that maps both poles of S2 into x. In the case of success we would obtain
infinitely many geodesic loops such the the length of the kth of them does
not exceed 20kd. To be more precise we will either obtain such a meridianal
sweep-out by curves of length ≤ 10d + ε, where ε > 0 is a parameter that
we can make arbitrarily small (as this upper bound still yields the desired
upper bound for the lengths of k geodesic loops based at x), or we discover
that there exists a geodesic loop α and a non-trivial periodic geodesic β,
both of length ≤ 2d+ ε such that β is contained in a domain D bounded by
α such that the angle of D at x is ≤ π. It turns out that in this last case one
obtains infinitely many distinct geodesic loops based at x as follows: First,
one connects x inside D with a point y ∈ β by a path τ of length ≤ 2d + ε,
then considers loops τ ∗ βi ∗ τ−1 formed by travelling along τ , then along
β i times and then returning along τ−1, (see Fig. 1). (Here i can be any
positive integer number.)

Finally, one applies a Birkhoff curve-shortening process with fixed end-
points to these curves. It turns out that the process terminates at different
geodesic loops based at x for different values of i, (see Section 1.3 for the
details).

To construct a meridianal sweep-out of S2 we start from a diffeomor-
phism F : S2 −→ M . We represent S2 as the boundary of a 3-ball D3. We
consider a very fine triangulation of S2 such that the images of the simplices
under F are contained within the ball of a very small radius ε not exceeding
inj(M)/100, where inj(M) denotes the injectivity radius of M . Moreover,
later we will pass to the limit as ε −→ 0. We triangulate D3 as the cone
over the chosen triangulation of S2.

Now we are going to try to extend F from S2 = ∂D3 to the whole D3.
(Of course, there is no such extension.) For this purpose we map the center
c of D3 to x, then map all 1-dimensional simplices of D3 that connect c
with the vertices vi of the chosen triangulation of S2 into (some) minimal
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x

α

β

τ

Figure 1: Periodic geodesic β is inside the domain bounded by a geodesic
loop α. The angle at x is less than π
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geodesics connecting x with F (vi).

Our next step will be to construct the extension to the 2-skeleton of
the chosen triangulation of D3. Once this step will be accomplished, we
are going to have a collection of maps πijk of 2-spheres in M corresponding
to the boundaries S2

ijk of 3-simplices [cvivjvk], where [vivjvk] runs over all

2-simplices of the chosen triangulation of S2. As we are not able to extend
F to D3, at least one of these 2-spheres is mapped into M by a map of a
non-zero degree.

Let z0 be a point in the center of the triangle F ([vivjvk]), z1, z2, z3 denote
midpoints of geodesic segments F (vi)F (vj), F (vj)F (vk) and F (vi)F (vk).
Extend the geodesic segment xF (vi) by adding the minimal geodesic seg-
ment F (vi)z, xF (vj) by adding the minimal geodesic segment F (vj)z and
xF (vk) by adding the minimal geodesic segment F (vk)z. Consider three
loops obtained from three pairs of these three broken geodesics connecting
x with z through F (vi), F (vj) or F (vk). We are going to attempt to contract
them to x as loops based at x through based loops of length ≤ 6d + O(ε).
The desired 2-sphere will be obtained by gluing three maps of D2 generated
by these contractions.

We are going to describe how we will be contracting loop l1 =
xF (vi)zF (vj)x, (see Fig. 2).

Z 1

F(v  )i F(v  )j

F(v  )k

x

α

Z

Figure 2: Contracting loop l1
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The contraction of two other loops will be performed in exactly the same
way.

On the first stage we will contract this loop to xF (vi)z1F (vj)x through
the small triangle F (vi)F (vj)F (vk). Now we need to contract the loop
lij = xF (vi)F (vj)x = xF (vi)z1f(vj)x to a point. To achieve this goal we
first apply the Birkhoff curve-shortening process with the fixed base point to
this loop, (cf. [Cr] for a good description of the Birkhoff curve-shortening
process and its properties for free loops. In the nutshell the Birkhoff curve-
shortening process works as follows: Parametrize a given curve γ0 by its
arclength. Divide this curve into N intervals of equal length for some very
large N . Connect the endpoints of these intervals by (unique) minimal
geodesics. The resulting broken geodesic will be a curve γ1/2. Now connect
the midpoints of adjacent geodesic segments of γ1/2 (including the first and
the last segments) by minimal geodesics. These minimal geodesic will form
a new curve γ1 = β(γ0). Then we will be repeating this process, and in-
ductively define γi+1 as β(γi). If N is sufficiently large, it is not difficult to
connect all pairs of curves γi−1 and γi by length non-increasing homotopies
“filling” the “triangles that we are “cutting away”, (see the details on p. 4-5
in [Cr]). In the version of this process for based loops we do not connect the
midpoints of the first and the last geodesic segments, so that all curves will
be loops based at x. Note that process is length non-increasing, and the dis-
tance between points that we need to connect by geodesics does not exceed
length(γ)/N . We call this ratio the rate of the Birkhoff curve-shortening
process. We always choose N sufficiently large to ensure that the rate does
not exceed the injectivity radius of M , inj(M), but sometimes below we
will need to choose the rate to be very small.) This process ends at a point
or at a non-trivial geodesic loop α based at x. Note that so far we obtained
a one-parametric family of loops based at x of length ≤ 2d+O(ε). Without
any loss of generality we can assume that α is not a periodic geodesic as in
this case we are able to obtain the desired geodesic loops as iterates of α.

First, let us assume that α is a simple (i.e. nonself-intersecting) loop.
We will amend our proof to encompass the case when the loop lij develops
self-intersections during the Birkhoff curve-shortening process in Section 1.4.

Now let us apply the Birkhoff curve-shortening process for free loops to
α. That is, we do not keep the base point x fixed anymore. This process
ends either at a point y inside a domain bounded by α or at a non-trivial
periodic geodesic β. In the second case note that β is contained inside a
domain D on M bounded by α, and that the angle of D (i.e. of α) at x is less
than π. (Cf. [Cr] for almost obvious details of the proof of this assertion.)
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If we obtain a non-trivial periodic geodesic β for at least one of the loops
that we are going to contract, we immediately stop our attempts to extend
F to the 2-skeleton of the chosen triangulation of D3. In this case we will
obtain the desired geodesic loops using an entirely different idea described
in Section 1.3 below.

Therefore we can assume that α contracts to a point y as a free loop.
At this stage we already obtain the extension of F to the 2-skeleton of the
chosen triangulation of D3. However, our goal will be to find a meridional
sweep-out of each sphere xF (vi)F (vj)F (vk) into loops (meridians) of length
≤ 8d + O(ε). As one of those spheres is mapped into M by a map of a
non-zero degree, this completes the proof of the theorem.

For this purpose we are going to convert the free loop part of the process
into a contraction of α to a point through based loops of length ≤ 6d+O(ε).

It is not difficult to see that the contraction αt of α = α0 to y = α1

is monotone, that is the domain bounded by αs containing y contains all
domains bounded by αt and containing y for all t > s, (cf. [Cr]). It seems
rather obvious that we can perform an arbitrarily small perturbation of this
homotopy to make curves αt disjoint. (We leave α intact but might need
to perturb y.) Yet we are not going to prove or to use this assertion. Let
us assume first that closed curve αt already have this property that we are
going to call strict monotonicity.

Let D denote the domain bounded by α in M that contains y. Note
that the distD(x, y) ≤ 2d + O(ε) as we can connect y with the closest point
w ∈ ∂D by a geodesic of length ≤ d and then connect w and x along α by
an arc of length ≤ d + O(ε). Let τ denotes a geodesic in D that connects x
and y and is parametrized by [0, 1], (see Fig. 3).

The strict monotonicity of the contraction implies that: 1) For every
t there exists a unique λ(t) such that τ(t) ∈ αλ(t); 2) λ(t) continuously
depends on t. For every t denote the arc obtained from τ by restricting to
[0, t] interval by τt, and the loop that first goes along τt, then along αλ(t) and
then returns to x along τt in the opposite direction by βt. We can assume
that βt is parametrised by [0, 1] proportionally to the arc length. Note that
β0 = α and β1 is made of two copies of τ traversed in the opposite direction.
We can extend the homotopy βt by contracting these two copies of τ to x
along τt ∗ τ−1

t . The result will be the desired path homotopy contracting α
to a point via loops of length ≤ 6d + O(ε) based at x.

To deal with the general case, when the homotopy is only monotone, but
not necessarily strictly monotone, observe that the convexity of all curves
αs for every t implies that the set A(t) of all s such that τ(t) ∈ αs is
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τ(  )t λ(  )tαis in 

Figure 3: Transforming a free loop homotopy into a based loop homotopy

either a point λ(t), or an interval [λ1(t), λ2(t)]. Moreover, the sets A(t) are
disjoint for different values of t < 1. (This assertion follows from the proof of
Lemmae 6 and 7 in [M]). Therefore, we can modify the homotopy described
in the strictly monotone case by using all curves obtained by travelling along
τt, then along curves αs, s ∈ [λ1(t), λ2(t)], and then along τt in the opposite
direction in the case, when A(t) contains more than one point. (If A(1) has
more than one point, then, when t = 1, we might need to start not with
s = λ1(1) but with s = limt−→1− λ(t), where the limit is taken over the set
of t such that A(t) contains only one point. In principle, this limit can be
greater than λ1(1).)

Thus, we can assume that we contracted each of three loops l1, l2 and l3
through loops based at x of length ≤ 6d + O(ε). It remains to merge these
three 1-parametric families of loops into one continuous family of loops based
at x of length ≤ 8d + O(ε) parametrized by S1 to complete the proof of the
theorem, as we can regard these loops as images of meridians of S2 under a
meridianal sweep-out of M .

We proceed as follows. We start at the constant loop x. We perform
the path homotopy contracting l1 in reverse to obtain l1. Note that the
lengths of all three loops li do not exceed 2d + O(ε). Assume that l2 was
contracted via based loops γt to a constant loop γ1. Now we consider loops
l1∗γ−1

1−t, t ∈ [0, 1]. This part of the homotopy starts at l1 = l1∗γ−1
1 and ends

at l1 ∗ l−1
2 = l1 ∗γ−1

0 . Note that l1 and l2 have a common arc xF (vj)z. After
contracting this arc traversed in opposite directions over itself we obtain
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l3, which then can be contracted to the constant loop using the already
constructed path homotopy. This completes the proof of Theorem 0.1 in
the case when α is nonself-intersecting and can be contracted to a point by
a Birkhoff curve-shortening process for free loops.

1.3. The case of a non-trivial periodic geodesic. Here we are going
to prove Theorem 0.1 in the case when there exists a nonself-intersecting
geodesic loop α of length ≤ 2d + O(ε) based at x and a non-trivial periodic
geodesic β of a smaller length contained in a domain D bounded by α, and
the angle of D at x is < π, (see Fig. 1).

Consider the closed domain T ⊂ D contained between α and β. Denote
a shortest curve in T connecting x and a point of β by ̺. The length of ̺
does not exceed 2d+O(ε). Indeed, denote the other endpoint of ̺ by q. Let
q0 denote the last point of intersection of a minimal geodesic g connecting
x and q in M with α. The length of ̺ does not exceed the length of a curve
obtained by going from x to q0 along the shortest arc of α, and then to
q along g. For every positive integer m consider loops γm based at x and
obtained by going from x to q along ̺, then going along β m times, and
finally returning to x along ̺.

Recall that Birkhoff curve-shortening process involves subdividing a
curve into segments of a small length ≤ s < inj(M), replacing these seg-
ments by minimal geodesics, then connecting the midpoints of these seg-
ments by another set of the minimal geodesics, etc. Once the parameter
s (that we call the rate of the process) is chosen, we never need to con-
nect points that are situated at a distance greater than s from each other
by a minimal geodesic. As the result, we obtain a sequence of very close
closed curves which then can be connected by obvious homotopies filling
added (or subtracted) “triangles”. Theorem 0.1 immediately follows from
the following lemma:

Lemma 1.2 Consider geodesic loops gm obtained from γm by the applica-

tion of a Birkhoff curve-shortening process with fixed basepoint x. If the rate

s of the process is sufficiently small, then these geodesic loops are distinct

for different m.

Proof. Let a denote a point inside the subdomain of D bounded by β. The
absolute value of the winding number of γm around a is equal to m. Clearly,
this number does not change during any homotopy of γm in T .
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Thus, lemma follows from the following key fact: The loops obtained
during the Birkhoff curve-shortening process applied to gm stay inside the
closed domain T .

To prove this observation notice that there exists a positive number
s(α) such that if r1, r2 ∈ T are two points such that distM (r1, r2) <
min{inj(M), s(α)}, then the minimal geodesic connecting r1, r2 is con-
tained in T . This geodesic cannot transversely intersect β or α “far” from x
as in this case two points of intersection would be connected by two minimal
geodesics, namely, an arc of β (or α) and a segment of r1r2, which yields a
contradiction.

It remains to note the following well-known fact: There exists a positive
s(α) such that for every two points x1, x2 on α s(α)-close to x the minimal
geodesic that connects them lies in the closure of D. Indeed, it cannot inter-
sect α at other points due to the uniqueness of minimal geodesics connecting
sufficiently close points of M . And it cannot be contained in the closure of
M \ D as a consequence of the fact that the angle of D at x is less than π,
and the angle of its complement at x is greater than π.

Therefore every step of the Birkhoff curve shortening process yields
closed curves that are contained in T , which completes the proof of the
lemma and Theorem 0.1. 2

1.4. The general case. In Sections 1.2 and 1.3 we dealt with the case
when a loop lij formed by two minimizing geodesics from x to two very
close points F (vi), F (vj) and the minimal geodesic segment ν = F (vi)F (vj)
can be contracted to a nonself-intersecting geodesic loop based at x through
loops based at x of length not exceeding the length of lij .

As we mentioned in Section 1.2, we will now consider the general case,
and intend to achieve either one of the following two goals:
1.4.1. To contract lij to a point through loops based at x of length ≤
8d + o(1) (which then can be merged into a meridianal sweep-out of M by
curves of length ≤ 10d+o(1) exactly as it was described in the last paragraph
of Section 1.2);
1.4.2. To find a simple geodesic loop α based at x and a non-trivial simple
periodic geodesic β contained in a domain D bounded by α such that (a)
The lengths of α and β do not exceed 2d + o(1); (b) The angle of D at x
is less than π (or equivalently, α is convex to D in terminology of [Cr].
A closed curve α that bounds D is convex to D if the minimal geodesic in
M that connects each pair of sufficiently close points in α is contained in
D. We use the notation o(1) for terms that can be made arbitrarily small
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by choosing arbitrarily fine triangulation of M and a very small rate of a
Birkhoff curve-shortening process used in the course of our construction.)

Again we are going to attempt to contract all loops lij. Our first step
will be to reduce contracting the triangle lij to contracting several of geode-
sic digons. For this purpose consider minimal geodesics connecting x with
points of the interval F (vi)F (vj), (see Fig. 4). This interval can be

F(v  )i F(v  )j

x

w

Minimal geodesics
connecting x to w form
a digon that we would like
to contract.

Figure 4: Contracting loops can be reduced to contracting geodesic digons

subdivided into open intervals I, where the minimal geodesic from x to a
point w ∈ I is unique, and continuously varies with w. Moreover, the con-
tinuous family of minimizing geodesics connecting x with points of I can
be extended to endpoints of I. However, the minimal geodesics from two
continuous families corresponding to two adjacent open intervals meeting at
a common endpoint O can be distinct and form a minimal geodesic digon
xO. Our goal is to construct a continuous one parametric family of curves
connecting x with all points of F (vi)F (vj) of length ≤ 7d + o(1). Once this
goal is achieved, we immediately get the desired contraction of lij via loops
of length ≤ 8d + o(1). But it is sufficient to learn to contract the digons xO
via loops of length ≤ 6d + o(1) based at x in order to achieve this goal.

Consider one of these digons xO formed by two minimal geodesics λ1

and λ2 connecting x and O. As it had been already noticed, we can assume
that this digon is not a periodic geodesic. It divides M into two domains.
Denote the domain with the angle at O less than π by D1. If D1 has the
angle at x less than π as well, then the Birkhoff curve-shortening process
will contract xO as a based at x loop inside D1 and via convex curves. The
homotopy will end either at a point or at a nonself-intersecting geodesic loop
α (because of the convexity of the boundary D1 - cf. [Cr] for the details).
Then we can continue as in Sections 1.2, 1.3.

However, if D1 has the angle at x that is greater than π, then we are
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not guaranteed that the curve will not develop a self-intersection during the
Birkhoff curve-shortening process. To be more precise note that the curve
will be contracted inside D1 via curves that are convex to D1 at all points
other than x until a self-intersection develops - if it develops at all. The only
possibility for development of a self intersection is the case, when an arc of
the curve will come close to x during the homotopy, and two points on this
arc will be connected by a geodesic segment cutting through both the initial
and final segments of the curve very closely to x, (see Fig. 5).

γ0

γbeg

σ 1 σ 2

γ end

B (  )x ε

x

y

the bisector

Figure 5: The case when the angle at x is greater than π

Denote the closed curve that appears during the Birkhoff curve-
shortening process right before the intersection is formed on the next stage
of the process by γt.

By choosing the rate of the Birkhoff curve shortening process very small
we can ensure that the metric ball of radius ε < inj(M) centered at x will
intersect γt via two arcs γbeg and γend that meet at x as well as another arc
γ0 that does not intersect them. Here we can make ε as small as we wish by
choosing the rate of the Birkhoff curve-shortening process to be sufficiently
small. A crucial observation now is that the geodesic ray starting at x and
bisecting the angle of D1 at x must intersect γ0. Otherwise, γ0 will be
contained inside a convex curve formed by the boundary of the metric ball
and either the bisector and one of the arcs γbeg, γend, or by both arcs γbeg,
γend. In this case the minimal geodesic connecting any pair of points of
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γ0 will be in this convex domain and cannot intersect γbeg and γend, so,
contrary to our assumptions, the self-intersection will not be formed on the
next stage of the Birkhoff process.

Let y denotes the point of intersection of the bisector of the angle at x
with γ0. There are two arcs of γt between x and y. Denote these arcs by
γ1 and γ2, and their lengths by l1, l2. Consider two closed curves formed
by γi and the bisector xy, i = 1, 2. Each of these two curves that we will
denote σ1 and σ2 will be convex to the subdomain of D1 that it bounds, as
the angles at x and y are less than π, and γt was convex to D1 at all points
but x

Assume that there exist path homotopies that contract σi to a point via
loops based at x of length ≤ 4d + li + o(1) for i = 1, 2. (As usual, o(1)
term contains quantities that we can make arbitrarily small.) Then these
two path homotopies can be merged in an obvious way, so that we obtain
a path homotopy contracting γt to a point via loops based at x of length
≤ l1 + l2 + 4d + o(1) ≤ length(γt) + 4d + o(1) ≤ 6d + o(1). Indeed, we can
first insert the segment xy travelled twice in the opposite direction, then
contract σ1 (as based loop) and the contract σ2.

Now note that we can homotope σi first to a nonself-intersecting geo-
desic loop based at x by a path homotopy, and then either to a point or a
non-trivial simple periodic geodesic by the application of a curve-shortening
process. If we obtain a non-trivial periodic geodesic, then we find ourselves
in the situation of 1.4.2. Otherwise, we can proceed exactly as in Section 1.2
to obtain a path homotopy that contracts σi via loops based at x of length
≤ li + 4d + o(1) as desired. 2

2 Geodesics between distinct points.

The purpose of this section is to prove the following theorem:

Theorem 2.1 Let M be a Riemannian manifold diffeomorphic to S2. Let

d denote the diameter of M , and let x, y ∈ M be two points of M such that

dist(x, y) = d. Then for every k > 3 there exist k distinct geodesics of length

≤ (12k − 37)d connecting x and y for every positive integer k.

Remark 2.2. Classical Berger’s lemma implies that x and y are connected
by at least two distinct minimal geodesc segments. Moreover, if they are
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connected by exactly two minimal geodesic segments, then these two seg-
ments form a periodic geodesic γ of length 2d. In this last case one can
construct infinitely many distinct geodesics between x and y by going along
γ a variable number of times, and then going to y along γ. In particular,
the length of the third geodesic connecting x and y does not exceed 3d.

Proof. C. Croke observed that if x, y,M are as in the text of the theo-
rem, then there exists a finite number N of minimal geodesic segments li
connecting x and y such that they divide M into digonal domains Di with
angles at x and y ≤ π (see [Cr]), (∂Di = li

⋃
li+1, lN+1 = l1). Therefore

the Birkhoff curve-shortening process contracts the boundary of Di either
to a simple periodic geodesic inside Di or to a point inside Di.

In the case, when one of those geodesic digons αi is contracted to a
non-trivial periodic geodesic β we can proceed as follows: Connect x with
a closest point of β by a geodesic (in M) that we will denote τ1. Note that
τ1 must be in Di as the boundary of Di is formed by two minima geodesics
from x to y which because of their minimality cannot intersect τ1. Therefore
the length of τ does not exceed d. Similarly connect y with a closest point of
β by a geodesic τ2. Now consider paths γk = τ1 ∗βk ∗τ−1

2 for all k = 1, 2, . . ..
Procceding as in the proof in Section 1.3 we can prove that the Birkhoff
curve-shortening process with fixed end points produces distinct geodesics
connecting x and y as it happens inside Di, and, therefore, does not change
the winding number with respect to a point inside the subdomain of Di

bounded by β. (In order to define the winding number we can transform
these paths into closed curves by attaching a minimal geodesic from y to x
forming a part of the boundary of Di.)

Assume now that for every i the Birkhoff curve-shortening process con-
tracts the boundary di of Di to a point yi ∈ Di through a monotonous (in
the sense of section 2.2) family of curves dit. Connect x and yi by a minimal
geodesic τ . This geodesic cannot intersect the boundary of Di as it is formed
by two minimal geodesic from x to y. Therefore, τ is contained in Di. Now
we transform the family of curves dit into a strictly monotonous family of
curves that we will denote dt. Consider loops ̺t formed by following τ for
time t, then travelling around a curve from the family dt, and then returning
back to x along τ . The lengths of these loops do not exceed 4d. The last of
them is formed by tracing τ from x to y, and then returning back to x along
τ . It can be contracted to x by gradually cancelling its longer and longer
segments. So, we obtain a homotopy contracting di via loops of length ≤ 4d
based at x. Denote loops in this homotopy by bt

i, t ∈ [0, 1]. Without any loss
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of generality we can assume that the boundary of Di is oriented as follows:
One first goes from x to y along li+1 and then returns along li to x. Now
we can construct a meridional sweep-out of M such that one of the poles is
mapped to x, another to y, and the lengths of the meridians are bounded
by 5d as follows: Start from l1. For every t consider b1−t

1 ∗ li. Of course,
b1
1 ∗ l1 = l1 and b0

1 ∗ l1 = l2 ∗ l−1
1 ∗ l1, where l−1

1 denotes l1 travelled in the
opposite direction, that is from y to x. Now cancel l−1

1 ∗ l1 alomg itself. We
end up with l2. So, we constructed a path homotopy between l1 and l2. Now
we can construct a path homotopy between l2 and l3 using b1−t

2 in exactly
the same way. Then we proceed by induction constructing apth homotopies
between li and li+1 using b1−t

i for i = 3, . . . , N and end up with lN+1 = l1.
Combining those path homotopies we obtain a meridional sweep-out f of M
by curves of length ≤ 5d, where one of the poles is mapped into x and the
other into y.

Now one can homotope this sweep-out into another sweep-out that will
map both poles of S2 into x and where every meridian will be mapped into
the join of its image under f and l1. The lengths of curves in this sweep-out
will not exceed 6d. Now we use the even-dimensional homology classes of
ΩxM of the space of loops based at x and the well-known fact that attaching
any path (e.g. l1) from x to y to all loops based at x yields a homotopy
equivalence from ΩxM to the space Ωx,yM of paths from x to y.

In order to get k distinct geodesics between x and y we can use N ≥ 3
minimal geodesics between x and y. (If N = 2, then there is a periodic
geodesic γ through x and y, and the geodesic segments γi ∗ l1 will satisfy
the conditions of the theorem.) Then we will need k − N ≤ k − 3 geodesics
of non-zero indices corresponding to the homology classes H2m(Ωx,y, R) of
non-zero even degrees. Note that the lengths of paths in the constructed
explicit realizations of these cycles do not exceed (2m)(6d)+d, but each path
ends by two copies of l1 travelled in different directions. We can cancel these
copies and will obtain families of paths from x to y of length ≤ (12m− 1)d.
Thus, the lengths of these k− 3 geodesics connecting x and y do not exceed
(12(k − 3) − 1)d = (12k − 37)d for k > 3. 2

Remark 2.3. It was essential in this proof that in the case, when the
Birkhoff curve-shortening process ends at a periodic geodesic x and y are on
the same side of this geodesic. This prevents us from directly generalizing
our proof for the case of arbitrary x and y.
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