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Abstract. The subject of this talk is Morse landscapes of natural functionals on infinite-
dimensional moduli spaces appearing in Riemannian geometry.

First, we explain how recursion theory can be used to demonstrate that for many nat-
ural functionals on spaces of Riemannian structures, spaces of submanifolds, etc., their
Morse landscapes are always more complicated than what follows from purely topologi-
cal reasons. These Morse landscapes exhibit non-trivial “deep” local minima, cycles in
sublevel sets that become nullhomologous only in sublevel sets corresponding to a much
higher value of functional, etc.

Our second topic is Morse landscapes of the length functional on loop spaces. Here the
main conclusion (obtained jointly with Regina Rotman) is that these Morse landscapes
can be much more complicated than what follows from topological considerations only if
the length functional has “many” “deep” local minima, and the values of the length at
these local minima are not “very large”.
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1. Introduction.

In this talk we will discuss Morse landscapes of functionals on infinite-dimensional
moduli spaces naturally arizing in Differential Geometry.

Our first message is that in many cases these Morse landscapes are much more
complicated than what would follow just from the Morse theory. The examples in-
clude some Riemannian functionals (i.e.functionals of the space of isometry classes
of Riemannian metrics), functionals on spaces of submanifolds, and so on. Our
approach initiated in [N1], [N2], [N3] and further developed in collaboration with
Shmuel Weinberger ([NW1], [NW2], [NW3]) is based on recursion theory. In many
cases we are able to prove disconnectedness of sublevel sets of functional of inter-
est, and, moreover, the exponential growth of the number of connected components

∗The author gratefully acknowledges a partial support from his NSERC Discovery Grant.
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that merge only inside a much larger sublevel set. Sometimes this technique im-
plies the existence of an infinite set of distinct local minima of the functional of
interest, where only the existence of the global minimum was previously known. In
other cases this recursion-theoretic approach is the only known method that can
be used to establish the existence of critical points of a functional of interest.

In particular, methods using ideas from mathematical logic led to only known
general results on the following problem posed by R. Thom “What is the best
(or the nicest) metric on a given smooth manifold?” for compact manifolds of
dimension ≥ 5 (joint work with Shmuel Weinberger). They also constitute the
only known tool to demonstrate that the theory of (high-dimensional) “thick”
knots is drastically different from the “usual” knot theory.

In a different direction I will discuss Morse landscapes of the length functional
on loop spaces ΩpM

n and spaces ΩpqM
n of paths between points p, q on a closed

simply-connected Riemannian manifold Mn. In [N5] I proved that if the length
functional has a “very deep” non-trivial local minimum on ΩpM

n, then it has
“many” “deep” local minima. 0 The proof used the idea of “effective universal
coverings”. A stronger form of this result can be proven using direct geometric
methods recently invented by Regina Rotman. These methods also can be used to
demonstrate that if the length functional has a critical point of a positive index of
a “large” but finite depth, then it must have “many” “deep” local minima ([NR]).

2. “Thick” knots.

Knots are sometimes defined as submanifolds of R3 (or S3) diffeomorphic to S1.
More generally, one can consider higher-dimensional knots that are submanifolds
of Rn+k (or Sn+k) diffeomorphic to Sn, where k is usually equal to two. Two
knots have the same knot type, if they are isotopic. It makes sense to consider also
“physical” or “thick” knots on a rope of small but non-zero thickness; two thick
knots have the same type if they can be connected by an isotopy that preserves the
thickness of the rope and does not increase its length. In the multidimensional case
the isotopy should not increase the volume. Note that the thickness of the rope
cannot exceed the injectivity radius of the normal exponential map. Therefore, the
study of “thick” knot types is equivalent to the study of connected components

of sublevel sets of the crumpledness functional κv = vol
1

n

r
, where vol denotes the

volume, and r denotes the injectivity radius of the normal exponential map. (In
other words, r is equal to the supremum of x such that every two normals to the
knot of length ≤ x starting at its different points do not intersect. Informally
speaking, r(Σ) is the largest radius of a nonself-intersecting tube arounf Σ.)

The paper [N1] was one of the first papers on “thick” knots. 1 The most

0The depth of a local minimum µ of a functional f can be defined as infγ supt f(γ(t)) − f(µ),
where the infimum is taken over the set of all paths γ starting at µ and ending at a point γ(1)
such that f(γ(1)) < f(µ). If µ is a global minimum, then, by definition, it has infinite depth.

1I am sure that the very natural idea to study knots of non-zero thickness occured indepen-
dently to many other mathematicians, yet I found only one paper on “thick” knots preceding
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basic question (in every dimension and codimension) is whether or not there exist
“thick” knots that are trivial as usual knots but not trivial as “thick” knots. This
question still remains open for the “classical” dimension one and codimension
two, despite the fact that it is easy to sketch plausible candidates. The question
becomes especially interesting for n = 2 and codimension one, where I cannot even
guess what answer to expect. In [N1] I answered this question in affirmative for the
dimension n ≥ 5 and codimension one. Observe, that Smale’s h-cobordism theorem
implies that every embedded n-sphere of codimension one in Rn+1, (n > 3), is
isotopic to the standard sphere. In other words, there exists only the trivial knot
type. Yet in [N1] (see also [N2]) I proved that:

Theorem 2.1. For every n ≥ 5 and for each sufficiently large x the set of n-
dimensional hypersurfaces Σn ⊂ Rn+1 diffeomorphic to Sn and such that κv(Σ

n) ≤
x is not connected.

For every knot Σn ⊂ Rn+1 denote the infimum of y such that there exists an
isotopy that passes through knots with κv(Σ

n) ≤ y and connects Σn with the
round sphere of radius one by C(Σn). An easy compactness argument implies that
for every positive x there exists the supremum of C(Σn) over the set of all knots Σn

such that κv(Σn) ≤ x. Denote this supremum by Cn(x). Note that the previous
theorem follows from the assertion that for every n ≥ 5 for all sufficiently large x
Cn(x) > x. We deduced this assertion (and, thus, the previous theorem) from the
following much stronger assertion: 2

Theorem 2.2. Let φ be any computable 3 function. Then for every n ≥ 5 and for
all sufficiently large x Cn(x) > φ(⌊x⌋)).

We will explain the proof of this theorem in the next section. The preceding
discussion does not depend on a particular choice of the smoothness of considered
knots as long as the considered knots are at least C1,1-smooth, which is the mini-
mal smoothness required for r to be defined and positive. Now consider the space
of all C1,1-smooth n-dimesnional knots in Rn+1 with C1 topology. Consider the
following equivalence relation on this space: two knots are equivalent if they can
be transormed one into the other by a similarity transformation of the ambient

[N1], namely, [KV]. Although [N1] dealt mainly with high-dimensional “thick” knots of codimen-
sion one, some of its results, such as a C1,1-compactness theorem remain valid for an arbitrary
dimension/codimension. It also contained several basic problems about 1-dimensional “thick”
knots in R3 (Section 4, B,C,D in [N1]) that still remain unsolved. In recent years “thick” 1-
dimensional knots in R3 became the subject of a constantly growing number of publications -cf.
[LSDR], [Dur] or [CFKSW].

2To be more precise in [N1] we proved that this inequality holds only for an infinite unbounded
sequence of values of x. To prove that it holds for all sufficiently large values of x one needs either
to apply a trick from [N2] involving the busy beaver function or to use time-bounded Kolmogorov
complexity as in [N3] and subsequent papers [NW1], [NW2], [NW3].

3Formally speaking, here “computable” means ”Turing computable” or, equivalently, “re-
cursive”. Equivalently, a reader can take any computer programming language, strip it of all
restrictions on the size of data (if there are any), and strip it of all data types but the integer
numbers. A function is computable if and only if it can be described by a computer program in
this language.
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Euclidean space. Clearly each equivalence class is connected, and the crumpled-
ness functional is constant on every equivalence class. Denote the space of the
equivalence classes by Knotsn,1. In [N1] we proved that sublevel sets of κv are
compact subsets of Knotsn,1. Therefore κv attains its local minimum on every
connected component of each of its sublevel sets. These local minima will be auto-
matically local minima of κv on the whole space Knotsn,1. The disconnectedness
of κ−1

v ((0, x]) for arbitrarily large values of x implies that the set of local minima
of κv is unbounded, and the set of values of κv at its local minima is infinite.
Combining this observation with the previous theorem we see that there exists an
infinite set of local minima of κv, where the depth is much higher than the value
of κv.

Theorem 2.3. For every n ≥ 5 and every computable function φ : N −→ N there
exists an infinite sequence Σn

i of local minima of κv on Knotsn,1 such that the set
of values of κv at these local minima is unbounded, and the depth of each of these
local minima Σn

i is greater than φ(⌊κv(Σn
i )⌋).

This theorem holds for other versions of the crumpledness functional , e.g.
κd = diam

r
as well as for many other functionals (see [N1]). The theorem can be

also generalized to spaces of trivial knots of arbitrary codimension (of dimension
n > 4), as well as for the spaces of trivial knots of dimension 3 or 4 and codimen-
sion 2. (The last generalization follows from the results of [NW0].) The theorem
and its generalizations for other crumpledness functionals obviously hold for the
space of trivial C1,1-smooth n-dimensional knots in Rn+k, where one does not take
the quotient with respect to the action of the group of similarities of the ambient
Euclidean space. In this form the theorem can be generalized for the cases, when
1) The submanifold can be diffeomorphic to an arbitrary closed manifold Mn ,
(n > 4), instead of Sn; and 2) The ambient manifold can be not Rn but an arbi-
trary closed Riemannian manifold, as well as a complete non-compact Riemannian
manifold from a wide class. (Of course, the considered space of submanifolds needs
to be non-empty; if it is not connected, the theorem holds for each of its connected
components.)

3. Methods I: Algorithmic unsolvability of the dif-

feomorphism problem and its applications.

The following theorem was first proven by Sergei Novikov (see its proof in the
Appendix of [N4]):

Theorem 3.1. For every n ≥ 5 there is no algorithm deciding whether or not a
given manifold Mn is diffeomorphic to the n-sphere.

To make this theorem precise one needs to explain how Mn is presented in a
finite form. In [N4] we observed that this theorem is true even in the case when
Mn is a non-singular real algebraic hypersurface {x ∈ Rn+1|p(x) = 0}, where p
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is a polynomial with rational coefficients. In this case Mn can be presented by
the vector of coefficients of p. The other ways to present Mn in a finite form
include: 1) C∞-semialgebraic atlases (also known as Nash atlases; see [BHP]); 2)
Smooth triangulations; 3) Smooth real algebraic subvarieties of Euclidean spaces
of a higher codimension defined over the field of algebraic numbers.

Here is a very brief sketch of the proof of this theorem. According to the
classical theorem independently proven by S. Adyan and M. Rabin there exists
an infinite sequence of finite presentations of groups Gi, i = 1, 2, . . . such that
there is no algorithm deciding for every given i whether or not Gi is isomorphic
to the trivial group. (In other words, the set I of all i such that Gi is trivial
is non-recursive.) The standard proof of this theorem (cf. [Mil]) produces Gi

that are perfect, that is H1(Gi) = Gi/[Gi, Gi] is trivial. S. Novikov observed
that one can alter finite presentations of these groups in a certain explicit way
to obtain a new sequence of finite presentations of superperfect groups Ḡi so that
Ḡi is trivial if and only if Gi is trivial. (Thus, there is no algorithm deciding
for a given value of i whether or not Ḡi is trivial. Superperfectness of a group
means the vanishing of the first two homology groups of a group. Also, note that
groups Ḡi are universal central extensions of groups Gi.) According to [Ke] the
superperfectness of a finitely presented group G is the necessary and sufficient
condition of the realizibility of G as the fundamental group of a smooth homology
n-sphere, that is a smooth closed manifold with the same homology groups as
Sn, for every n ≥ 5. Thus, we can effectively realize groups Ḡi as fundamental
groups of homology spheres Σn

i . Moreover, the proof of the quoted result from [Ke]
implies that this construction can be carried in Rn+1 so that Σn

i will be a smooth
hypersurface in Rn+1. Smale’s h-cobrdism theorem implies that a homology sphere
Σn

i embedded as a hypersurface in Rn+1 is diffeomorphic to Sn if and only if it is
simply-connected, and, therefore, if and only if Ḡi is trivial. This completes the
proof of the theorem.

This theorem (or rather its proof outlined above) has the following immediate
corollary:

Corollary 3.2. For every closed smooth manifold Mn
0 of dimension n > 4 there

is no algorithm that decides whether or not a given manifold Mn is diffeomorphic
to Mn

0 .

Indeed we can just construct a sequence Mn
i by forming connected sums of a

copy of Mn
0 with smooth homology spheres Σn

i from the outline of a proof of the
previous theorem. The manifold Mn

i is diffeomorphic to Mn
0 if and only if the

fundamental group of Σn
i is trivial.

Note that it is not known whether or not this theorem remains true in dimension
four. However, A. Markov proved that this theorem is true for manifolds M4

0

diffeomorphic to the connected sum of a sufficient number N0 of copies of S2 ×S2

with an arbitrary closed 4-manifoldi (cf. [BHP], [Sh]). Here one can take N0 =
14([Sh]). This theorem enables us to extend some of our techniques that we are
going to describe below to such four-dimensional manifolds.

Now the general idea behind the proof of Theorem 2.2 as well as of some
results stated in the next sections can be described as follows. Consider a class C



6 Alexander Nabutovsky

of diffeomorphism types of compact smooth n-dimensional manifold, where n > 4.
The class C can be the class of all n-manifolds, or, for example, the class of all
manifolds embeddable in Rn+1. We require that the class C is large enough to
ensure that S. Novikov’s theorem will be true in this class: For every manifold Mn

from C there is no algorithm deciding whether or not a given manifold from C is
diffeomorphic to Mn.

We consider situations, when for every manifold in Mn ∈ C there is a natural
“moduli space” Moduli(Mn). associated with this manifold. (In the situation of
Theorem 2.2 Moduli(Mn) = Knotsn,1. To prove theorems stated in section 5 be-
low we will be choosing Moduli(Mn) as certain subsets of the space of Riemannian
structures on Mn.) Let φ be a non-negative functional on a moduli space Modulin
defined as the disjoint union of connected spaces Moduli(Mn) associated with all
manifolds Mn ∈ C. We are assuming that Modulin is endowed with a metric, ρ.
First, we are going to make the following assumptions about φ, ρ and the class C:

0) There exists a countable dense set D ∈ Modulin. Elements of D are repre-
sentable in a finite form. For any Mn ∈ C there is no algorithm deciding whether
or not a given element µ ∈ D is in Moduli(Mn) (that is, represents Mn).

1) There exists an algorithm computing the distance ρ between every pair of
elements of D within to any prescribed (rational) accuracy.

2) The function φ can be effectively majorized: There exists an algorithm that
for a given element µ ∈ D computes an upper bound for φ(µ).

3) For every x the sublevel set φ−1([0, x]) ⊂ Modulin is precompact. Moreover,
there exists an algorithm that for every given positive rational x and ǫ constructs
a finite ǫ-net in φ−1([0, x]). All elements of this ǫ-net are in the countable set D.

4) There exists a computable decreasing positive function δn(x) such that every
two δn(x)-close points from φ−1([0, x]) are points from Moduli(Mn) for the same
manifold Mn.

Now we are going to demonstrate that for every Mn ∈ C there exists an un-
bounded increasing sequence of values of x such that sublevel sets Sx = φ−1([0, x])

⋂
Moduli(Mn)

are disconnected. Moreover, for these values of x Sx is a union of two non-empty
subsets S1x, S2x such that the distance between each pair of points µ1 ∈ S1x,
µ2 ∈ S2x is at least δn(x).

Indeed, assume the opposite. Then we will construct an algorithm deciding
whether or not a given manifold Nn ∈ C is diffeomorphic to Mn, thus obtaining
a contradiction with our assumptions. We start from calculating an upper bound
y for the value of φ at the given manifold (which is presented as an element from
D). We can always make it large enoung to ensure that φ−1([0, y])

⋂
Moduli(Mn)

is connected. Then we construct δn(y)/10-net in φ−1([0, y]) ⊂ Modulin. The next
step is to construct a graph such that the points of the constructed net will be its
vertices, and two vertices are connected by an edge, if the corresponding points
are approximately δn(y)/2-close. Here we are allow ourselves an error in these
calculations that does not exceed δn(y)/4. Now our connectedness assumption
implies that exactly one component of the constructed graph contains elements of
Moduli(Mn). We can assume that our algorithm knows one vertex v0 from this
connected component. (This vertex will be in this connected component for all
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sufficiently large values of y). Now our algorithm needs to determine a vertex w of
the net which is δn(y)/10-close to the given element of Modulin, and to determine
whether or not w and v0 are in the same component of the constructed graph. The
given element of Modulin represents a manifold diffeomorphic to Mn if and only
if w and v0 are in the same component.

The obtained contradiction demonstrates that the sets Sx must be disconnected
for some arbitrarily large values of x. An argument from [N2] (that involves Rado’s
busy beaver function) can be used to prove this assertion for all sufficiently large
values of x. Yet there is another method using the notion of Kolmogorov complexity
that can be used to prove not only the disconnectedness of sets Sx but lower bounds
for their number. This idea will be described in more details in the next section.

If sublevel sets of φ are not only precompact, but compact, then we can find
distinct local minima of φ at the bottom of different connected components of its
sublevel sets. In some applications of this method sublevel sets of φ are compact,
when the manifold belongs to a class C′ ⊂ C but not necessarily in the general
case. Then we establish the compactness of some of the connected components of
sublevel sets of φ by using the fact that there is no algorithm that distinguishes a
manifold Mn ∈ C of interest for us from manifolds known to be in the subclass
C′. (Of course, this fact should be true for this idea to work.)

To prove the theorems stated in the previous section one uses this idea in the
situation when Modulin is the space of equivalence classes of codimension one
closed submanifolds of Rn+1. (Two submanifolds are equivalent if they can be
transformed one into the other by a similarity of Rn+1.) Further, C is the class of
closed n-manifolds embeddable into Rn+1, Mn = Sn, and φ = κv or κd.

However, note that in most of the situations, when we would like to apply this
method, the assumptions 3) or 4) either do not hold, or are difficult to establish.
Nevertheless, the method sometimes can be salvaged using new ideas some of which
will be explained in sections 6 and 7.

4. Methods II: Kolmogorov complexity and time-

bounded Kolmogorov complexity.

In this section we will explain how to modify the method sketched in the previous
section so as to obtain not merely disconnectedness of sublevel sets φ−1([0, x]) of
a functional of interest on Moduli(Mn), but a lower bound for the number of
connected components that grows exponentially with x.

A decision problem consists of a countable set A and its subset B. Elements of
A are presentable in a finite form, and there is a computable complexity function
A −→ Z+. For each L there exist only finitely many elements of A of complex-
ity ≤ L. One is interested in existence/non-existence of an algorithm deciding
whether or not a given element of A is an element of B. Assume that there is
no such algorithm. Then one can ask for such an algorithm that uses arbitrary
oracle information. The amount of oracle information is allowed to grow with the
complexity of instances of the problem. We are assuming that the information is
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presented as a sequence of 0s and 1s. The “amount of information” is just the
length of this sequence. Of course, one can ask for the list of all answers for all
instances of the problem of complexity ≤ L. Yet one is interested in the minimal
amount of oracle information sufficient to solve the problem. The minimal number
of bits of oracle information sufficient to solve the problem for all instances of com-
plexity ≤ L is called Kolmogorov complexity of the decision problem. Of course,
one can “hide” a constant number of bits of oracle information in the algorithm, so
the Kolmogorov complexity is a function of L defined only up to adding a constant
summand. For example, let G be a finitely presented group with unsolvable word
problem, A the set of all words in the considered finite presentation, B the set of
all words representing trivial elements, and assume that we define the complexity
of words as their length. The resulting decision problem is the word problem for
G; it can be solved in a computable time using the following oracle information:
For each L we request (the binary representation of) the number w(L) of all triv-
ial words with ≤ L letters. To use this information we start generating trivial
words of length ≤ L using longer and longer products of conjugates of relations,
and stop when the length of the list reaches w(L). One can be sure that all the
remaining words correspond to non-trivial elements of G. So, the Kolmogorov
complexity of the word problem for words of length ≤ L grows not faster than
a linear function of L. However, it is not difficult to note that the time of work
of this “algorithm” grows faster than any computable function. Assume that we
impose an additional constraint: the time of work of the algorithm that uses the
oracle information should not exceed a given computable function λ. The resulting
notion is called time-bounded Kolomogorov complexity of the considered decision
problem (cf. [LV] for an introduction to its properties). A theorem of Barzdin ([B])
can be used to show that, in general, one cannot now do much better than to ask
for the list of all answers for the word problem: There exists a finitely presented
group G such that for every computable λ the time-bounded Kolmogorov com-

plexity of the word problem is not less than ConstL

c(λ) − const for some Const > 1,

c(λ) > 0. In [N3] we prove that for every closed smooth manifold Mn
0 of dimension

n > 4 and computable time λ the time-bounded Kolomogorov complexity of the
decision problem “Is a given smooth manifold diffeomorphic to Mn

0 ?” is also not

less than Const(n)L

c(λ) − const for some universal Const(n) > 1. Here the complexity

L can be, for example, the number of simplices in a smooth triangulation of the
given manifold. To relate this result to geometry of sublevel sets of φ note that
the mentioned diffeomorphism problem can be solved using a set of representatives
from every connected component of φ−1([0, x])

⋂
Moduli(Mn

0 ) as the oracle infor-
mation (see the previous section for the notations). Indeed, the diffeomorphism
problem can be restated as the decision problem of recognizing whether or not a
given element µ ∈ Modulin is in Moduli(Mn

0 ); the oracle information enables one
to solve the diffeomorphism problem for all µ ∈ Modulin such that φ(µ) ≤ x. For
this purpose one just needs to check whether or not an approximation to µ can be
connected with one of the elements provided by the oracle by a finite sequence of
sufficiently short “jumps” in Modulin. Now our lower bound for the time-bounded
Kolmogorov complexity can be used to produce a lower bound for the number of
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the connected components of φ−1([0, x])
⋂

Moduli(Mn). In many interesting cases
this lower bound is at least exponential in x.

5. Disconnectedness of sublevel sets of Riemannian

functionals.

In this section Mn denotes a closed Riemannian manifold of dimension n ≥ 5.
Consider the space of Riemannian structures Riem(Mn) (=isometry classes of
Riemannain metrics) on Mn endowed with the Gromov-Hausdorff metric. In this
section we will consider geometry of sublevel sets of various Riemannian functionals
on this space. Our goals are to prove that their sublevel sets are disconnected with
a growing number of connected components, and, when possible, to prove the
existence of infinitely many locally minimal values.

The first result of this kind was proven in [N2]: Let IMn(ǫ) denote the space of
Riemannian structures on Mn of volume equal to one and injectivity radius ≥ ǫ.

Theorem 5.1. If n ≥ 5, then for all sufficiently small ǫ IMn(ǫ) is not connected.
Moreover, there exist two non-empty subsets of IMn(ǫ) such that the Gromov-
Hausdroff distance between each point of one of these sets and each point of the
other is at least ǫ/9.

In fact, one can use the notion of time-bounded Kolmogorov complexity as
described in the previous section to show that there exist ∼ 1

ǫn non-empty subsets
of IMn(ǫ) such that the distance between each pair of points in different subsets
is at least ǫ/9. Moreover, assume that one would like to connect a point in one of
these subsets to a point in the other by a path in IMn(δ) for some positive δ < ǫ. It
is not difficult to prove using a precompactness argument that some such δ = δn(ǫ)
must exist. Yet 1

δn(ǫ) grows faster than any computable function of ⌊ 1
ǫ
⌋.

Studies of variational problems for Riemannian functionals are motivated by
the following problem posed by R. Thom (cf. [Be] , p. 499): “What is the best
Riemannian structure on a given compact manifold?”. (This question also appears
in a well-known list of unsolved problems in Differential Geometry composed by
S.T. Yau ([Y]).) A possible idea here is to choose a natural Riemannian functional
and to look for its minima (or local minima) on the set of Riemannian structures
on a given closed manifold Mn. However, for n ≥ 5 (and probably n = 4) there
is no really good notion of the “best” Riemannian structures on all n-dimensional
manifolds ([N4]): Assume that for every Mn there exists a non-empty subset
Best(Mn) ⊂ Riem(Mn). Also assume that there exists an algorithm recognizing
when a given Riemannian metric is very close to one of the best Riemannian
metrics. (This assumption is required to eliminate the following “solution” of the
problem: Use the axiom of choice to choose one Riemannian structure on every
Mn.) Then for every Mn Best(Mn) is an infinite set.

Indeed, assume the opposite. Then there exists the following algorithm deciding
whether or not a given n-dimensional manifold is diffeomorphic to Mn yielding a
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contradiction with S.P. Novikov theorem: Start from any Riemannian metric on a
given manifold. Do a trial and error search until we find a Riemannian metric close
to one of the best Riemannian metrics on the considered manifold. As we assumed
that the set of the best Riemannian metrics on Mn is finite, we can assume that
the algorithm “knows” them all (or, more precisely, it knows a sufficiently close
approximation to each of them). Now we can check if the found approximation
to a best metric is sufficiently close to one of the known best Riemannian metrics
on Mn. The given manifold is diffeomorphic to Mn if and only if the answer is
positive.

This argument strongly suggests that if a Riemannian functional φ has local
minima on Riem(Mn) for every Mn, and the set of its local minima is locally
compact, then for every Mn the set of local minima of φ must have an infinite set
of connected components. Thus, the following result obtained by the author and
Shmuel Weinberger seems to provide a reasonably good solution of the problem
posed by R. Thom. The naive idea is that one can try to define the best Riemannian
metrics by fixing a scale (i.e. the diameter or volume) and looking for (local) min-
ima of a curvature functional, for example, sup |K|, where K denotes the sectional
curvatuture. Equivalently, one can consider Riemannian metrics with sup |K| ≤ 1
and to look for local minima of the diameter. More formally, let Al(Mn) denote the
Gromov-Hausdorff closure of the subset of Riem(Mn) formed by all Riemannian
structures satisfying sup |K| ≤ 1 in the space of all metric spaces homeomorphic to
Mn. The elements of this space are Alexandrov structures on Mn with curvature
bounded above and below. They have virtually the same nice analytic and geomet-
ric properties as smooth Riemannian manifolds with sectional curvature between
−1 and 1 (see [BN]). In particular, they are C1,α-smooth Riemannian manifolds
for each α < 1. For each element of Al(Mn) its sectional curvature is defined at
almost all points, and the absolute value of the sectional curvature does not exceed
1. It is well-known that sublevel sets of the diameter d regarded as a functional
on

⋃
Mn Al(Mn) are precompact. However, there exist manifolds Mn such that

Al(Mn) is complete, and, therefore, sublevel sets of d on Al(Mn) are compact, as
well as manifolds Mn such that sublevel sets of d on Al(Mn) are not compact.
For example, tori T n admit flat metrics with arbitrarily small diameter, so that
infAl(T n) d = 0 for every n. Therefore, even the existence part in the following
theorem proven by the author and Shmuel Weinberger is non-obvious:

Theorem 5.2. ([NW1]) For every closed manifold Mn of dimension n > 4 the
set of locally minimal values of d on Al(Mn) is an unbounded set.

In particular, this theorem implies that the set of locally minimal values of d
on Al(Mn) is infinite. However, it is not difficult to see that the set of its locally
minimal values is countable. We also proved many additional results about distri-
bution of local minima of d on Al(Mn) and geometry of connected components of
sublevel sets d−1((0, x]) of d : Al(Mn) −→ (0,∞). For example, we proved that
the assertion of Theorem 5.2 will remain true for the values of d at its “very deep”
local minima. Here one can define “very deep” local minima by first choosing a
(preferably rapidly growing) strictly increasing computable function φ : N −→ N
and postulating that a local minimum µ of d is “very deep” if there is no path
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γ : [0, 1] −→ Al(Mn) starting at µ such that d(γ(1)) < d(γ(0)) = d(µ), and
d(γ(t)) ≤ φ(⌊d(µ)⌋) for each t ∈ [0, 1]. Moreover, the result remains true if one
considers only those “very deep” local minima of d, where the value of the volume
is not less than 1 (or any other fixed value). Furthermore, we proved that the
number of these “very deep” local minima of d on Al(Mn), such that the value of
d does exceed x, grows at least exponentially with xn. Later Shmuel Weinberger
observed that this distribution function for the number of very deep local minima
has even a doubly exponential lower bound ([We]). (To explain the last observa-
tion note that the volume of manifolds with |K| ≤ 1 and diam ≤ x can be as
large as exp(c(n)x). Thus, one can “fit” an exponential number of nonintersecting
metric balls of radius ∼ 1 and volume ∼ 1 inside such a manifold. Therefore,
one can reduce the halting problem for a universal Turing machine with inputs of
lengths up to exp(const(n)x) to a certain version of the diffeomorphism problem
relevant here and explaned in the next section. This version of diffeomorphism
problem involves only Riemannian manifolds with |K| ≤ 1 and diam ≤ x. The
time-bounded Kolmogorov complexity of the halting problem grows exponentially
with the length of the inputs, and the number of the local minima grows at least
as the time-bounded Kolmogorov complexity, as it was explained in the previous
section.)

We refer the reader to our paper [NW2] for further results about depths of
the local minima of d on Al(Mn) and the distribution of local minima of different
depths.

6. Methods III: Simplicial norm, homology surgery,

arithmetic groups.

Our proof of Theorem 5.2 follows the scheme outlined in section 3 but contains
several new ideas. We start from recalling a classical result of Gromov ([G1], [Gr])
that if a closed Riemannian manifold has a positive simplicial volume, then a lower
bound for the Ricci curvature implies a positive lower bound for the volume. More
precisely, if Ric ≥ −(n − 1), then vol(Mn) ≥ c(n)‖Mn‖, where ‖Mn‖ denotes
the simplicial volume, and c(n) is an explicit constant depending only on the
dimension. Simplicial volume is a homotopy invariant of manifolds (see [G1] for
its definition and basic properties.) It depends only on the fundamental group of
the manifold and the image of its fundamental class under the classifying map. As
the isomorphism problem for groups is algorithmically unsolvable, the following
theorem proven in [NW1] is not especially surprising:

Theorem 6.1. Let Mn be a closed manifold of dimension n > 4. There is no
algorithm that decides whether or not a given manifold Nn is diffeomorphic to Mn

even if it is a priori known that, if Nn is not diffeomorphic to Mn, then it has a
simplicial volume greater than 1.

Here one can replace 1 by any constant, if desired. Thus, having a large sim-
plicial volume is not helpful, when one tries to distinguish between manifolds by
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means of an algorithm. This theorem immediately follows from its particular case,
when Mn = Sn. To prove this theorem we need a large stock of n-dimensional
smooth homology spheres of non-zero simplicial volume. (Homology groups are
computable, and there exists an easy algorithm that is able to distinguish between
Sn and a manifold which is not a homology n-sphere.) Further, it turned out that
given one homology n-sphere with a non-zero simplicial volume, one is able to con-
struct a collection of different homology spheres with simplicial volume > 1 which
is sufficiently rich to prove Theorem 6.1. Thus, proving the following theorem
turned out to be by far the most difficult part of the proof of Theorem 6.1:

Theorem 6.2. ([NW1]) For every n ≥ 5 there exists an n-dimensional smooth
homology sphere of a non-zero simplicial volume.

Prior to our work such homology spheres were known only for n = 3. Very
informally speaking, such manifolds enjoy simultaneously certain hyperbolicity
properties (namely, non-zero simplicial volume) as well as ellipticity properties
(homology of a sphere). Their construction starts from an application of work of
J.P. Hausmann and P. Vogel ([H], [V]) based on the theory of homology surgery by
S. Cappell and J. Shaneson ([CS]). This work enables us to reduce the topological
problem to an algebraic problem of constructing finitely presented groups with
certain homological properties. The resulting algebraic problem can be essentially
resolved by using certain discrete cocompact subgroups of SU(2n − 1, 1) investi-
gated by L. Clozel ([Cl]), who proved that these groups have very few non-trivial
real homology classes below dimension n. We obtain the desired groups from
the groups investigated by Clozel by taking certain amalgamated free products
and passing to the universal central extension to kill the remaining real homology
classes below dimension n.

Once Theorem 6.1 was established, we followed a line of reasoning similar to the
outline described in section 3. In particular, we needed to design an algorithm that
constructed sufficiently dense nets in the spaces of Riemannian structures on all
closed n-dimensional manifolds satisfying |K| ≤ 1, vol ≥ const > 0 and diam ≤ x
for a variable x. For this purpose we used the Ricci flow to smooth out the Rieman-
nian metric and to obtain a control over derivatives of the curvature tensor, and
a subsequent algebraic approximation to reduce the infinite-dimensional situation
to a finite dimensional one.

7. Disconnectedness of sublevel sets of Riemannian

functionals: current work and some open ques-

tions.

The smoothing out of Riemannian metrics by means of the Ricci flow is not avail-
able if one replaces the two-sided bound for the sectional curvature by the lower
bound (or by the two-sided bound for the Ricci curvature). Therefore, we do not
know how to prove the existence of an algorithm constructing a sufficiently dense
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net in the space of Riemannian structures on all n-dimensional manifolds satis-
fying K ≥ −1 (or |Ric| ≤ 1) and diam ≤ x despite the fact that these spaces
are well-known to be precompact. The difficulty can be captured in the following
problem:

Problem: Does there exist an algorithm that given a positive ǫ and a finite
metric space X decides whether or not X is ǫ-close (in the Gromov-Hausdorff
metric) to an n-dimensional Riemannian manifold with K ≥ −1? We allow here a
certain room for an error: a positive answer must imply only the 1.01ǫ-closeness,
whenever a negative answer needs to imply only that X is not 0.99ǫ-close to any
such manifold. (Here we assume that ǫ and all distances between points of X are
algebraic numbers.)

The problem remains open if one would consider the class of n-dimensional
Alexandrov spaces with K ≥ −1 instead of Riemannian manifolds with K ≥ −1.
(It is also open, if one would replace the condition K ≥ −1 by Ric ≥ −(n − 1) or
|Ric| ≤ n − 1.)

The main purpose of our paper [NW3] is to bypass this difficulty, and to prove
the analogues of Theorem 5.2 and all results about geometry of sublevel sets of
diameter on Al(Mn) mentioned in section 5 in the situation, when the two-sided
bound for the sectional curvature is replaced by the lower bound. In other words,
we replace Al(Mn) by a (larger) space al(Mn) of Alexandrov structures with
curvature ≥ −1 on Mn. More formally, al(Mn) is the Gromov-Hausdorff closure
of the set of all Riemannian structures on Mn satisfying K ≥ −1 in the space of
isometry classes of metric spaces homeomorphic to Mn.

Our basic idea is to “approximate” the space of Riemannian structures of sec-
tional curvature bounded below on closed n-manifolds by a space of isometry classes
of simplicial length spaces that share some important metric and topological prop-
erties with manifolds with curvature bounded from below. One chooses these prop-
erties so that they can be verified by means of an algorithm (in order to be able to
construct the desired nets). For example, one needs to have a lower bound for the
volume in terms of the simplicial volume for these length spaces. To ensure this
property one can use Theorem 5.38 in [Gr]. This theorem yelds a desired general-
ization of the mentioned result from [G 1] providing a lower bound for the volume
in terms of simplicial volume in the case, when the Ricci curvature is bounded
from below. According to Theorem 5.38 in [Gr] an analogous lower bound will be
valid for a length space if a packing function for its universal covering admits an
upper bound which is similar to Bishop-Gromov upper bounds for manifolds with
Ricci curvature bounded below. However, note that universal coverings cannot
be constructed by means of an algorithm (as, for example, there is no algorithm
deciding whether or not the fundamental group is trivial). Nevertheless, one can
modify this constraint so that it becomes verifiable by means of an algorithm: It
is sifficient to require the desired upper bound for the packing function for the
effective universal covering (that will be explained below in section 9) instead of
the usual universal covering.

We believe that this approach can also be used to generalize Theorem 5.2
to the situation, when the bound |K| ≤ 1 is replaced by |Ric| ≤ n − 1 (or by
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Ric ≥ −(n − 1)).

Furthermore, we conjecture that an analogue of Theorem 5.2 will hold in the
situation, when one replaces diam by vol. In particular, we would like to establish
disconnectedness of sublevel sets of vol on Al(Mn) (and al(Mn)). This problem
is interesting, because sets vol−1([v, V ]) ⊂ Al(Mn) are not precompact, yet the
failure of the precompactness is not too “severe”.

Finally note, that it is possible that the technique used to prove Theorem 5.2
is applicable to the Einstein-Hilbert action, and can even lead to a proof of the
existence of infinitely many isometry classes of singular Einstein metrics of scalar
curvature equal to −1 on every compact manifold of dimension > 4.

8. Higher-dimensional cycles in sublevel sets.

In the previous sections we discussed deep local minima (or, more generally, deep
basins on graphs) of some functionals. In principle, one can regard a non-trivial
deep local minimum of a functional F on a simply-connected space X as a homo-
logically non-trivial 0-dimensional cycle in a sublevel set of F that becomes trivial
in an ambient sublevel set that corresponds to a much higher value of F . (This
0-cycle is the linear combination of the deep non-trivial local minimum and the
global minimum taken with opposite signs.)

One can provide the following intuitive explanation of the appearance of the
non-trivial deep basins in situations that we have considered: As the manifold
of interest is algorithmically indistinguishable from other manifolds of the same
dimension but with different fundamental groups, there will be deep basins where
the manifold “looks” like it has a certain fundamental group which is different from
what it actually is.

Similar phenomena for higher-dimensional cycles were explored in [NW2]. We
found various sources of higher-dimensional cycles in sublevel sets of Riemannian
functionals, say diam on Al(Mn), that become null-homologous only in a much
larger sublevel set corresponding to a much higher value of the functional.

To explain this phenomenon note that Al(Mn) is weakly homotopy equivalent
to the space Riem(Mn) of Riemannian structures on Mn. This last space is the
quotient of the contractible space of Riemannian metrics on Mn by the pullback
action of the diffeomorphism group. Therefore, the topology of Riem(Mn) (and
Al(Mn)) is closely related to the topology of BDiff(Mn). (For example, if all
compact groups non-trivially acting on Mn are finite, then Riem(Mn) is ratio-
nally homotopy equivalent to BDiff(Mn).). On the other hand, BDiff(Mn)
has a very rich topology - especially in the case, when Mn has a non-trivial funda-
mental group. For example, in many interesting cases one can identify a subgroup
of a homology group of BDiff(Mn) isomorphic to a lattice in a homology group
of the fundamental group of Mn with real coefficients. (For this purpose one can
use Hρ-invariant introduced by Shmuel Weinberger in [We0].) Now we can use the
logical method, and to argue that as Mn is algorithmically undistinguishable from
manifolds Nn with arbitrary large fundamental groups, the homology classes of
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π1(N
n) corresponding to non-trivial homology classes of BDiff(Nn) and Al(Nn)

will correspond to “virtual” homological classes of Mn, that is, to cycles in sub-
level sets of diam on Al(Mn) that will become null-homologous only in much
large sublevel sets. This approach works under some restrictions on topology of
Mn, and produces “virtual” k-cycles for k << n. Another approach to construct-
ing “virtual” k-cycles in Al(Mn) is based on connections between Diff(Nn) and
Out(π1(N

n)) and works for all closed manifolds Mn of dimension > 4 and all k.
For example, one can always choose Nn (algorithmically undistinguishable from
Mn), so that Diff(Nn) admits a split surjection on Zm for arbitrarily large values
of m. As the result, for every k one obtains “virtual” k-cycles in Al(Mn).

On the other hand, Shmuel Weinberger noticed that if Mn admits a non-trivial
smooth compact group action, then one can similarly exploit a part of topology
of Riem(Mn) based on singularities that does not come from the topology of
BDiff(Mn). In particular, in [NW2] we used the non-existence of an algorithm
deciding whether or not the fixed point set of an S1-action on Sn is diffeomorphic
to Sn−2 to prove the existence of 5-dimensional (or, more generally, (4i + 1)-
dimensional) “virtual” rational cycles in Al(Sn) that are close to the round metric
in the path metric on Al(Sn) (see Theorem 17.1 in [NW2] and Theorem 5 in section
4.1 of [We] for precise statements).

9. Morse landscapes of the length functional.

Assume that Mn is a simply-connected Riemannian manifold, p ∈ Mn. Consider
the length functional l on the space ΩpM

n of loops on Mn based at p. Note that,
in principle, l can have no local minima other than the trivial loop. If there exists
another local minimum α, we can define its depth as the minimal possible difference
between the length of the longest loop in a path homotopy connecting α with a
loop of a smaller length and the length of α. One can generalize this definition for
the situation, when the length is regarded as a functional on the space Ωp,qM

n of
paths connecting a pair of points p, q ∈ Mn. (Of course, Ωp,pM

n = ΩpM
n.)

It is clear that one can give a similar definition of depth in the case, when α
is a critical point of the length functional of a higher index i. (One needs to look
at the minimal x ≥ l(α) such that an appropriately defined i-cycle in l−1([0, l(α)])
that “hangs” at α becomes a boundary in l−1([0, x]); the depth is then defined as
x − l(α). If no such x exists, then we say that α has infinite depth.)

In [N5] we proved a theorem with the following informal meaning (see Theorem
2.1 in [N5] for an exact statement):

Theorem 9.1. Let Mn be a simply-connected Riemannian manifold. Assume that
the length functional has a “very deep” non-trivial local minimum on ΩpM

n. Then
it has “many” “deep” local minima.

In other words, this theorem asserts that if there exists a loop γ based at p that
cannot be contracted to a point via loops of length ≤ L+ length(γ), then there
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exist at least k(L) geodesic loops providing “deep” local minima for the length
functional on ΩpM

n, where k(L) −→ ∞, as L −→ ∞.

Note that a counterexample to Theorem 9.1 must “look” like a Riemannian
manifold with a “small” finite fundamental group. Otherwise we will be able to
construct “many” deep local minima of the length functional by taking powers and
products of powers of the already constructed geodesic loops based at p and short-
ening them to geodesic loops providing new local minima. Therefore, informally
speaking, Theorem 9.1 implies that a closed simply-connected Riemannian mani-
fold cannot “look” like it has a finite fundamental group. (Of course, we saw in the
previous sections that a closed simply-connected Riemannain manifold can “look”
like it has an infinite fundamental group, and this fact was one of the cornerstones
of all applications of recursion theory to geometry discussed in this paper.)

The proof of this theorem given in [N5] is based on the idea of the “effective
univeral covering”. (Recall that this concept can also be used for proving analogues
of Theorem 5.2 for weaker curvature constraints - see section 7 above.) This idea
can be explained as follows: 4

The universal covering space of a topological space X is usually constructed
as the quotient of the space of paths on X starting at a base point x ∈ X by the
following equivalence relation: Two paths are equivalent if they end at the same
point, and together form a contractible loop (based at x). Let X = Mn be a closed
Riemannian manifold. One can try to make the following natural modification of
this construction: Assume that one takes into consideration the length of paths,
and allows only a controlled increase of length during a homotopy contracting the
loop formed by two paths. More specifically, one can choose parameters U and
V > 2U , consider the set P (U) of all paths of length ≤ U based at x, and then try
to introduce the equivalence relation ∼V on this set by identifying paths forming
loops contractible via loops of length ≤ V . However, in general, this relation
will not be an equivalence relation. Nevertheless, we observed that there exists a
“large” set of values of V such that ∼V is an equivalence relation. In particular,
one can choose a “controllably” large V = V (U, Mn), and to obtain an effectively
constructible connected space P (U, V ) of ∼V -equivalence classes of elements of
P (U) so that the map P (U, V ) −→ Mn sending each equivalence class of paths
into their common endpoint is a covering “away from the boundary” in the sense
of Definition 1.1 in [N5]. One can regard sets P (U, V ) as constructive analogs of
metric balls of radius U in the universal covering of Mn.

Now one can demonstrate Theorem 9.1 by contradiction. Assume that there
exists a counterexample. It must “look” like a manifold with a finite fundamental
group formed by “few” “deep” local minima of the length functional on ΩpM

n.
Observe that when one constructs the usual universal covering of a closed Rie-
mannian manifold with a finite fundamental group, one does not need to consider
arbitrarily long paths. Paths of length ≤ 2d|π1M

n| are sufficient. (Longer paths
are equivalent to some of the shorter paths.) A similar phenomenon occurs, when
we construct the “effective universal covering” P (U, V ) of Mn for approprately

4Note similarities between this idea and the notion of fundamental pseudogroups introduced
by Gromov in [G2].
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chosen U and V using p as the base point: Longer paths become equivalent to
shorter paths, P (U, V ) becomes a closed manifold and the covering “away from
the boundary” becomes the covering of Mn in the usual sense. Our assumption
about the existence of at least one “very deep” non-trivial local minimum of the
length functional implies that the cardinality of the fiber of this covering is at
least two, and so it cannot be a homeomorphism. However, all coverings of Mn

are trivial, as Mn was assumed to be simply-connected, and we obtain a desired
contradiction.

Note that this proof implies that if the depth of a non-trivial local minimum
is λd, then there exist at least k(λ) ∼

√
λ local minima. Moreover, according

to Theorem 2.1 in [N5] the lengths of the geodesic loops γi providing these local
minima do not exceed 4id, i = 1, . . . , k.

Both these estimates were recently improved in [NR] using a different approach
that was based on geometric constructions invented largely by Regina Rotman. In
particular, we demonstrated that if the the length functional on ΩpM

n has a non-
trivial local minimum of depth > λd + S, for some S ≥ 2d and λ, then there
exist k ≥ [λ

6 + 1
2 ] non-trivial local minima of depth > S. In addition, one can

ensure that the length of γi is in the interval (2(i − 1)d, 2id]. (This is a direct
corollary of Theorem 7.3 in [NR] for m = 1.) The same technique also implies that
the existence of a “very deep” critical point of any index m ≥ 0 of a finite depth
of the length functional on ΩpM

n also implies the existence of “many” “deep”
local minima of the length functional; explicit bounds for the number, lengths and
depths of these minima are available. For example, if the depth of a critical point
of index m is finite but greater than λd + (2m− 1)S, for some S ≥ 2d and λ, then
one is guaranteed k ≥ [ λ

4m+2 − 2m−5
4m+2 ] local minima of depth > S with lengths in

the intervals (2(i − 1)d, 2id], i = 1, . . . , k. Furthermore, Theorems 7.3, 7.4 in [NR]
immediately imply similar results for the length functional on spaces Ωp,q(M

n).
Thus, in particular, the results of [NR] imply that:

Theorem 9.2. (Imprecise version) If the length functional l on Ωp,q(M
n) has a

critical point of an arbitrary index of a “large” finite depth, then l has “many”
“deep” local minima.

For the lack of time I will not attempt to give a more detailed presentation
of these and related results and methods, and most notably applications of these
methods to quantitative geometric calculus of variations. Instead I refer the readers
to [NR], [NR0], [R1], [R2], [R3] for some of the highlights of this emerging theory
that has its origins in some of Gromov’s ideas from [G3].
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