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Figure 1: Stratum of GrSL2 (alias today’s goal)
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What is. . . an affine Grassmannian



Fix a complex reductive group G .

Write O = C[[t]] for power series (a PID) and K for Laurent series

(FracO).

Definition A. Gr = G (K )/G (O).
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Fix a compact connected Lie group U.

Definition B. Write LU for maps S1 → U and ΩU for those maps

sending some fixed z0 ∈ S1 to 1 ∈ U. LU,ΩU are groups under

f · g(z) = f (z)g(z). Call them loop groups.

ΩU ∼= LU/U by

1. constructing a map LU → ΩU : f 7→ f (z0)−1f

2. considering the “loop rotation” action w · f (z) = f (wz) of S1

on LU
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Fix n ∈ Z.

Let O be a PID and K its field of fractions.

Recall. A lattice L is a free O-module of the vector space Kn such

that K ⊗O L ∼= Kn as vector spaces.

Definition C1. Gr = {L : L ∼= On} (as O-modules).

This set carries a natural action of GLnK . We recover Definition

A by checking that the stabilizer of a given lattice is (isomorphic

to) GLnO.

Henceforth G = GLnK , O = C[[t]] and K = C((t)) and note the

other-way-map

[g ] ∈ G (K )/G (O) 7→ Ong−1
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Fix L ∈ Gr .

Set

Vd(L) =
t−dL ∩ On

(tO)n
⊆ On

(tO)n
∼= Cn

Lemma. Vd(L) is increasing in d from 0 to Cn.
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L ∈ Gr has a basis whose elements have some least power of t.

Therefore multiplication by t−d for d > 0 has the effect of pulling

L over On.
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Corollary. Gr can be written as a union of finite dimensional

schemes.

Reason. Gr is a union of

Gr [a, b] = {tbOn ⊆ L ⊆ taOn} (a ≤ b)

which can be identified with closed subschemes in some

Gr(k , (b − a)n) since taOn/tbOn ∼= C(b−a)n.

Thus e.g. the “Bruhat decomposition” -every invertible matrix M

can be reduced to a unique permutation matrix w̃ by upward row

operations, rightward column operations and scaling columns- used

to produce a basis of Schubert cycles for H• of finite Grs can be

carefully generalized to affine Grs.
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For a finer decomposition consider the C× action on Gr

z ∈ C× : L 7→ zL = L

which scales t so that for L = SpanO(v1, . . . , vn) for vi =
∑

v ijkej t
k

tvi =
∑

v ijkej(zt)k

Taking z → 0 has the effect of picking off least powers of basis
elements, a tuple in Zn which can be interpreted as a vertex of a
moment polytope or as a coweight for G .

z · (3e1t
−1 + 7e3t

5 + e6)

= z−1(3e1t
−1 + 7e3z

6t5 + ze6)

= 3e1t
−1 + 7e3z

6t5 + ze6 → 3e1t
−1
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For T ⊂ G a maximal torus, X∗(T ) = Hom(C×,T ) ∼= Zn.

There is a map X∗(T )→ Gr via the map X∗ → G (K ) defined by

post-composing λ : C× → T and SpecK → C× identifying λ ∈ X∗

and tλ ≡ diag(tλ1 , . . . , tλn) ∈ GLnK or under the-other-way map

Lλ = SpanO(ei t
λi : 1 ≤ i ≤ n).
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Related Facts.

• The fixed points of the T action on Gr are indexed by X∗(T ).

• The z → 0 limits of the C× action on Gr are indexed by

X∗(T ).

• The G (O) orbits of Gr contain unique T -fixed points.

• Finally

Gr =
⊔
λ∈X∗

Grλ
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Geometric Satake :(

H• : ICGrλ ∈ PG 7→ V (λ) ∈ Rep
G

Case λ = ωk :)

H•(Gr(k , n)) ∼=
k∧
Cn dim =

(
n

k

)

Schubert varieties make up the basis on the left and k-element

subsets of n index a basis on the right.
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Emulating ωk . Consider the linear map t· : Kn → Kn sending ei t
j

to ei t
j+1 induced by multiplication by t on K .

Definition C2. Gr> = {L ∈ Gr : t · L ⊂ L} sometimes called the

positive part of Gr .

Fix λ, µ ∈ X∗(T ) non-decreasing. Write Grλ for the set

{L ∈ Gr> : t
∣∣
L/L0

has jordan type λ}

and Sµ for the set

{L ∈ Gr> : lim
z→0

z · L = Lµ}

where Lµ = SpanO(e1t
µ1−1 . . . ent

µn−1) and z · is our C× action

from before.
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Fact. The set Grλ ∩ Sµ has dimension equal dimV (λ)µ and its

irreducible components, the so-called MV cycles, form a basis for

H•(Grλ) endowing it with a X∗ grading, generalizing the case

λ = ωk .

13



There is an action on H•(Grλ) by multiplication by c(L) where L
denotes the det bundle on Gr and c Chern class.

Fact. This action is secretly an action of gln. It decomposes as

cµν : H•(Grλ ∩ Sµ)→ H•(Grλ ∩ Sν)

with cµν nonzero only if ν = µ+ αi so that letting Ei ,Fi ∈ gln act

by the appropriate components of c(L), c(L)∗ defines H•(Grλ) as

an irrep of gln.
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Definition D. Let λ ≥ µ ∈ X∗ viewed as partitions of N and

consider the subset of glN defined by Oλ ∩ Tµ where

Oλ = GLN · Jλ and by example T(3,2,2) is elements of the form

0 1

0 1

∗ ∗ ∗ ∗ ∗ ∗ ∗

0 1 0

∗ ∗ ∗ ∗ ∗ ∗

0 1

∗ ∗ ∗ ∗ ∗ ∗


call it Mλ

µ .
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Fact. The lattice POV supplies Mλ
µ
∼= Grλµ with L ∈ Grλµ being

sent to the matrix of t

[t
∣∣
L0/L

]B

in the basis

B = {[e1] . . . [e1t
µ1−1], . . . , [en] . . . [ent

µn−1]}
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Examples



Fix G = SL2, λ = (2, 0), and µ = (1, 1).
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In Gr = G (K )/G (O) one defines

• Grµ = G1[[t−1]]tµ for G1 = Ker(ev∞ : Gr 7→ G )

• Grλ = G (O)tλ

• Grλµ = Grλ ∩ Grµ
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Fact. K× ∼= Z× O× or 0 6= g ∈ K can be written tnf for

f = f0 + hot and n ∈ Z.

Using this fact and the definitions, check that

G (O)t(2,0)G (O) ∩ G1[[t−1]]t(1,1)G (O)

=

{[
t + a b

c t + d

]
: det = t2 + (a + d)t + (ad − bc) = t2

}
∼= {a + d = 0, a2 + bc = 0}

the 2-dimensional variety from slide 1.
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On the other side M
(2,0)
(1,1) = O(2,0) and we check that

[
a b

c d

]
·

[
0 1

0

][
a b

c d

]−1

=

{[
−ac a2

−c2 ac

]}

=

{[
z x

−y z

]
: z2 + xy = 0

}
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What else is the affine

Grassmannian



Definition E. Trivializable bundles definition.
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Thank you for listening
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