A Hitchhiker's Guide to the Affine Grassmannian

Anne Dranowski

April 19, 2019

University of Toronto

Figure 1: Stratum of Gr_{SL2} (alias today's goal)

What is...an affine Grassmannian

Fix a complex reductive group G.

Write $O = \mathbb{C}[[t]]$ for power series (a PID) and K for Laurent series (Frac O).

Definition A. Gr = G(K)/G(O).

Fix a compact connected Lie group U.

Definition B. Write LU for maps $S^1 \rightarrow U$ and ΩU for those maps sending some fixed $z_0 \in S^1$ to $1 \in U$. $LU, \Omega U$ are groups under $f \cdot g(z) = f(z)g(z)$. Call them loop groups. $\Omega U \cong LU/U$ by

- 1. constructing a map $LU \rightarrow \Omega U : f \mapsto f(z_0)^{-1}f$
- 2. considering the "loop rotation" action $w \cdot f(z) = f(wz)$ of S^1 on LU

Fix $n \in \mathbb{Z}$.

Let O be a PID and K its field of fractions.

Recall. A lattice *L* is a free *O*-module of the vector space K^n such that $K \otimes_O L \cong K^n$ as vector spaces.

Definition C1. $Gr = \{L : L \cong O^n\}$ (as *O*-modules).

This set carries a natural action of GL_nK . We recover **Definition A** by checking that the stabilizer of a given lattice is (isomorphic to) GL_nO .

Henceforth $G = GL_nK$, $O = \mathbb{C}[[t]]$ and $K = \mathbb{C}((t))$ and note the other-way-map

$$[g] \in G(K)/G(O) \mapsto O^n g^{-1}$$

Fix $L \in Gr$. Set $V_d(L) = \frac{t^{-d}L \cap O^n}{(tO)^n} \subseteq \frac{O^n}{(tO)^n} \cong \mathbb{C}^n$

Lemma. $V_d(L)$ is increasing in d from 0 to \mathbb{C}^n .

 $L \in Gr$ has a basis whose elements have some least power of t. Therefore multiplication by t^{-d} for d > 0 has the effect of pulling L over O^n .

Corollary. *Gr* can be written as a union of finite dimensional schemes.

Reason. Gr is a union of

$$Gr[a,b] = \{t^b O^n \subseteq L \subseteq t^a O^n\} \quad (a \le b)$$

which can be identified with closed subschemes in some Gr(k, (b-a)n) since $t^aO^n/t^bO^n \cong \mathbb{C}^{(b-a)n}$.

Thus e.g. the "Bruhat decomposition" -every invertible matrix M can be reduced to a unique permutation matrix \tilde{w} by upward row operations, rightward column operations and scaling columns- used to produce a basis of Schubert cycles for H^{\bullet} of finite Grs can be carefully generalized to affine Grs.

For a finer decomposition consider the \mathbb{C}^{\times} action on *Gr*

$$z \in \mathbb{C}^{\times} : L \mapsto zL = L$$

which scales t so that for $L = \text{Span}_O(v_1, \dots, v_n)$ for $v_i = \sum v_{ik}^i e_j t^k$

$$tv_i = \sum v^i_{jk} e_j (zt)^k$$

Taking $z \to 0$ has the effect of picking off least powers of basis elements, a tuple in \mathbb{Z}^n which can be interpreted as a vertex of a moment polytope or as a coweight for G.

$$z \cdot (3e_1t^{-1} + 7e_3t^5 + e_6)$$

= $z^{-1}(3e_1t^{-1} + 7e_3z^6t^5 + ze_6)$
= $3e_1t^{-1} + 7e_3z^6t^5 + ze_6 \rightarrow 3e_1t^{-1}$

For $T \subset G$ a maximal torus, $X_*(T) = \operatorname{Hom}(\mathbb{C}^{\times}, T) \cong \mathbb{Z}^n$. There is a map $X_*(T) \to Gr$ via the map $X_* \to G(K)$ defined by post-composing $\lambda : \mathbb{C}^{\times} \to T$ and Spec $K \to \mathbb{C}^{\times}$ identifying $\lambda \in X_*$ and $t^{\lambda} \equiv \operatorname{diag}(t^{\lambda_1}, \ldots, t^{\lambda_n}) \in GL_nK$ or under the other-way map $L_{\lambda} = \operatorname{Span}_O(e_i t^{\lambda_i} : 1 \le i \le n)$.

Related Facts.

- The fixed points of the T action on Gr are indexed by $X_*(T)$.
- The $z \to 0$ limits of the \mathbb{C}^{\times} action on Gr are indexed by $X_*(T)$.
- The G(O) orbits of Gr contain unique T-fixed points.
- Finally

$$Gr = \bigsqcup_{\lambda \in X_*} Gr^{\lambda}$$

Geometric Satake : (

$$H^{\bullet}: IC_{Gr^{\lambda}} \in \mathcal{P}_{G} \mapsto V(\lambda) \in \underline{Rep}_{G}$$

Case
$$\lambda = \omega_k$$
 :)
 $H^{\bullet}(Gr(k, n)) \cong \bigwedge^k \mathbb{C}^n \quad \dim = \binom{n}{k}$

Schubert varieties make up the basis on the left and k-element subsets of n index a basis on the right.

Emulating ω_k . Consider the linear map $t \colon K^n \to K^n$ sending $e_i t^j$ to $e_i t^{j+1}$ induced by multiplication by t on K.

Definition C2. $Gr^> = \{L \in Gr : t \cdot L \subset L\}$ sometimes called the *positive part of Gr*.

Fix $\lambda, \mu \in X_*(T)$ non-decreasing. Write Gr^{λ} for the set

$$\{L \in Gr^{>} : t \big|_{L/L_0} \text{ has jordan type } \lambda\}$$

and S^{μ} for the set

$$\{L \in Gr^{>} : \lim_{z \to 0} z \cdot L = L_{\mu}\}$$

where $L_{\mu} = \text{Span}_{O}(e_{1}t^{\mu_{1}-1} \dots e_{n}t^{\mu_{n}-1})$ and $z \cdot \text{ is our } \mathbb{C}^{\times}$ action from before.

Fact. The set $\overline{Gr^{\lambda} \cap S^{\mu}}$ has dimension equal dim $V(\lambda)_{\mu}$ and its irreducible components, the so-called MV cycles, form a basis for $H^{\bullet}(\overline{Gr^{\lambda}})$ endowing it with a X_* grading, generalizing the case $\lambda = \omega_k$.

There is an action on $H^{\bullet}(Gr^{\lambda})$ by multiplication by $c(\mathcal{L})$ where \mathcal{L} denotes the det bundle on Gr and c Chern class.

Fact. This action is secretly an action of gl_n . It decomposes as

$$c_{\mu
u}: H^{ullet}(\overline{\mathit{Gr}^{\lambda}\cap S^{\mu}}) o H^{ullet}(\overline{\mathit{Gr}^{\lambda}\cap S^{
u}})$$

with $c_{\mu\nu}$ nonzero only if $\nu = \mu + \alpha_i$ so that letting $E_i, F_i \in gl_n$ act by the appropriate components of $c(\mathcal{L}), c(\mathcal{L})^*$ defines $H^{\bullet}(\overline{Gr^{\lambda}})$ as an irrep of gl_n . **Definition D.** Let $\lambda \ge \mu \in X_*$ viewed as partitions of N and consider the subset of gI_N defined by $\overline{\mathcal{O}_{\lambda}} \cap \mathcal{T}_{\mu}$ where $\mathcal{O}_{\lambda} = GL_N \cdot J_{\lambda}$ and by example $\mathcal{T}_{(3,2,2)}$ is elements of the form

0	1					_
	0	1				
*	*	*	*	*	*	*
			0	1	0	
	*	*	*	*	*	*
					0	1
_	*	*	*	*	*	*

call it M^{λ}_{μ} .

Fact. The lattice POV supplies $M^{\lambda}_{\mu} \cong Gr^{\overline{\lambda}}_{\mu}$ with $L \in Gr^{\overline{\lambda}}_{\mu}$ being sent to the matrix of t

 $[t|_{L_0/L}]_B$

in the basis

$$B = \{[e_1] \dots [e_1 t^{\mu_1 - 1}], \dots, [e_n] \dots [e_n t^{\mu_n - 1}]\}$$

Examples

Fix
$$G = SL_2$$
, $\lambda = (2, 0)$, and $\mu = (1, 1)$.

In Gr = G(K)/G(O) one defines

• $Gr_{\mu} = G_1[[t^{-1}]]t^{\mu}$ for $G_1 = \operatorname{Ker}(ev_{\infty}: Gr \mapsto G)$

•
$$Gr^{\lambda} = G(O)t^{\lambda}$$

• $Gr_{\mu}^{\overline{\lambda}} = \overline{Gr^{\lambda}} \cap Gr_{\mu}$

Fact. $K^{\times} \cong \mathbb{Z} \times O^{\times}$ or $0 \neq g \in K$ can be written $t^n f$ for $f = f_0 + hot$ and $n \in \mathbb{Z}$.

Using this fact and the definitions, check that

$$\overline{G(O)t^{(2,0)}G(O)} \cap G_1[[t^{-1}]]t^{(1,1)}G(O)$$

$$= \overline{\left\{ \begin{bmatrix} t+a & b \\ c & t+d \end{bmatrix} : \det = t^2 + (a+d)t + (ad-bc) = t^2 \right\}}$$

$$\cong \overline{\{a+d=0, a^2+bc=0\}}$$

the 2-dimensional variety from slide 1.

On the other side $M_{(1,1)}^{(2,0)}=\overline{\mathcal{O}_{(2,0)}}$ and we check that

$$\begin{bmatrix}
a & b \\
c & d
\end{bmatrix} \cdot \begin{bmatrix}
0 & 1 \\
& 0
\end{bmatrix} \begin{bmatrix}
a & b \\
c & d
\end{bmatrix}^{-1}$$

$$= \overline{\left\{ \begin{bmatrix}
-ac & a^2 \\
-c^2 & ac
\end{bmatrix} \right\}}$$

$$= \overline{\left\{ \begin{bmatrix}
z & x \\
-y & z
\end{bmatrix} : z^2 + xy = 0 \right\}}$$

What else is the affine Grassmannian

Definition E. Trivializable bundles definition.

4.2. Global picture. Let X be a curve, which in our case will always be \mathbb{A}^1 . Let $\mathbb{A}^{(n)} = \mathbb{A}^1 \times \cdots \times \mathbb{A}^1 / \mathfrak{S}_n$ be the symmetric *n*-fold product of \mathbb{A}^1

Beilinson-Drinfeld Grassmannian [BD, MVi1, MVi2] is a (reduced) ind-scheme $\mathfrak{G}_{\mathbb{A}^{(n)}}$ whose \mathbb{C} -points are described as follows:

(22) $\mathfrak{G}_{\mathbb{A}^{(n)}}(\mathbb{C}) = \{ (b, \mathcal{V}, t) \mid t : \mathcal{V}_{X-E} \to (X \times V) |_{X-E} \text{ is an isomorphism } \},\$

where $b = (b_1, \ldots, b_n) \in \mathbb{A}^{(n)}$, $E = \{b_1, \ldots, b_n\} \subseteq \mathbb{A}^1$, \mathcal{V} is a vector bundle of rank m, and t is the trivialization of \mathcal{V} off E. The pairs (\mathcal{V}, t) are considered up to an isomorphism.

