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Preface

These notes for a graduate course in set theory are on their way to be-
coming a book. They originated as handwritten notes in a course at the
University of Toronto given by Prof. William Weiss. Cynthia Church pro-
duced the first electronic copy in December 2002. James Talmage Adams
produced a major revision in February 2005. The manuscript has seen many
changes since then, often due to generous comments by students, each of
whom I here thank. Chapters 1 to 11 are now close to final form. Chapters
12 and 13 are quite readable, but should not be considered as a final draft.
One more chapter will be added.
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Chapter 0

Introduction

Set Theory is the true study of infinity. This alone assures the subject of a
place prominent in human culture. But even more, Set Theory is the milieu
in which mathematics takes place today. As such, it is expected to provide
a firm foundation for all the rest of mathematics. And it does — up to a
point; we will prove theorems shedding light on this issue.

Because the fundamentals of Set Theory are known to all mathemati-
cians, basic problems in the subject seem elementary. Here are three simple
statements about sets and functions. They look like they could appear on a
homework assignment in an elementary undergraduate course.

1. If there is a function from X onto Y and also a function from Y onto
X, then there is a one-to-one function from X onto Y .

2. For any two sets X and Y , either there is a function from X onto Y or
a function from Y onto X.

3. If X is a subset of the real numbers, then either there is a function
from X onto the set of real numbers or there is a function from the set
of integers onto X.

They won’t appear on an assignment, however, because they are quite dif-
ficult to prove. Statement (1) is true; it is called the Schröder-Bernstein
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8 CHAPTER 0. INTRODUCTION

Theorem. The proof, if you haven’t seen it before, is quite tricky but never-
theless uses only standard ideas from the nineteenth century. Statement (2)
is also true, but its proof needed a new concept from the twentieth century,
a new axiom called the Axiom of Choice.

Statement (3) actually was on a homework assignment of sorts. It was
the first problem in a tremendously influential list of twenty-three problems
posed by David Hilbert to the 1900 meeting of the International Congress of
Mathematicians. Statement (3) is a reformulation of the famous Continuum
Hypothesis. We don’t know whether it is true or not, but there is hope that
the twenty-first century will bring a solution. We do know, however, that
another new axiom will be needed here. Each of these statements will be
discussed later in the book.

Although Elementary Set Theory is well-known and straightforward, the
modern subject, Axiomatic Set Theory, is both more difficult and more in-
teresting. It seems that complicated conceptual issues arise in Set Theory
more than any other area of pure mathematics; in particular, Mathematical
Logic must be used in a fundamental way. Although all the necessary mate-
rial from Logic is presented in this book, it would be beneficial for the reader
to already have had an introduction to Logic under the auspices of Math-
ematics, Computer Science or Philosophy. In fact, this would be beneficial
for everyone, but most people seem to make their way in the world without
it and I do not require it of the reader.

In order to introduce one of the thorny issues, let’s consider the set of
all those numbers which can be easily described, say, in fewer then twenty
English words. This leads to something called the Berry Paradox, attributed
to G. G. Berry, an English librarian, by B. Russell in 1908. The set

{x : x is a number which can be described

in fewer than twenty English words}

must be finite since there are only finitely many English words. Now, there
are infinitely many counting numbers (i.e., the natural numbers) and so there
must be some counting number, in fact infinitely many of them, not in our
set. So there is a smallest counting number which is not in the set. This
number can be uniquely described as “the smallest counting number which
cannot be described in fewer than twenty English words”. Count them — 14
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words. So the number must be in the set. But it can’t be in the set. That’s
a contradiction! What is wrong here?

Our naive intuition about sets is wrong here. Not every collection of
numbers with a description is a set. In fact it would be better to stay
away from using natural languages like English to describe sets. Our first
task will be to build a new language for describing sets, one in which such
contradictions do not arise.

We also need to clarify exactly what is meant by “set”. What is a set? In
truth, we do not know the complete answer to this question. Some problems
are still unsolved simply because we do not know whether or not certain
things constitute a set. Many of the proposed new axioms for Set Theory
are of this nature. Nevertheless, there is much that we do know about sets
and this book is the beginning of the story.
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Chapter 1

LOST

We construct a formal language suitable for describing sets. Those who have
already studied logic will find that most of this chapter is quite familiar.
Those who have not may find the notation too pedantic for effective math-
ematical communication. But worry not, we will soon relax the notation.
It is much more important to know that statements in Set Theory can be
precisely written as formulas of this language than to physically write them
out. Because the formal Language Of Set Theory is at first quite perplexing,
former students gave it the acronym which is the title of this chapter.

Balance is achieved in the next chapter and for a first perusal of this book,
the reader may want to skip to it immediately after reading only the first
part of this one — up to but not including the section entitled ”Substitution
for a Variable”.

LOST, the language of set theory will consist of symbols and some ways
of stringing them together to make formulas. We will need mathematical
symbols as well as purely logical symbols. Logical symbols include the con-
junction symbol ∧ read as “and”, the disjunction symbol ∨ read as “or”,
the negation symbol ¬ read as “not”, the implication symbol→ read as “im-
plies”, the universal quantifier ∀ read as “for all” and the existential quantifier
∃ read as “there exists”.
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12 CHAPTER 1. LOST

Here is a complete list of all the symbols of the language:

variables v0, v1, v2, . . .

equality symbol =

membership symbol ∈
connectives ¬,∧,∨,→
quantifiers ∀,∃

parentheses ), (

The atomic formulas are strings of symbols of the form:

(vi ∈ vj) or (vi = vj)

The collection of formulas of set theory is defined as follows:

1. An atomic formula is a formula.

2. If Φ is any formula, then (¬Φ) is also a formula.

3. If Φ and Ψ are formulas, then (Φ ∧Ψ) is also a formula.

4. If Φ and Ψ are formulas, then (Φ ∨Ψ) is also a formula.

5. If Φ and Ψ are formulas, then (Φ→ Ψ) is also a formula.

6. If Φ is a formula and vi is a variable, then (∀vi)Φ is also a formula.

7. If Φ is a formula and vi is a variable, then (∃vi)Φ is also a formula.

Furthermore, any formula is built up this way from atomic formulas and a
finite number of applications of the inferences 2 through 7. That is, each
formula of LOST is either atomic or built up from atomic formulas in a
sequence of construction steps.

We have the usual logical equivalences which are common to everyday
mathematics and can be easily verified using “common sense logic”. In par-
ticular, for any formulas Φ and Ψ:
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(¬(¬Φ)) is equivalent to Φ;

(Φ ∧Ψ) is equivalent to (Ψ ∧ Φ);

(Φ ∨Ψ) is equivalent to (Ψ ∨ Φ);

(Φ ∧Ψ) is equivalent to (¬((¬Φ) ∨ (¬Ψ)));

(Φ ∨Ψ) is equivalent to (¬((¬Φ) ∧ (¬Ψ)));

(Φ→ Ψ) is equivalent to ((¬Φ) ∨Ψ);

(Φ→ Ψ) is equivalent to ((¬Ψ)→ (¬Φ));

(∃vi)Φ is equivalent to (¬(∀vi)(¬Φ)); and,

(∀vi)Φ is equivalent to (¬(∃vi)(¬Φ)).

Other than the supply of variables, there are only a small number of symbols
of LOST. However there are quite a number of useful abbreviations that have
been introduced. One such is the symbol↔. It is a symbol not formally part
of LOST; however, whenever we have a formula containing this expression,
we can quickly convert it to a proper formula of the language of set theory
by replacing

(Φ↔ Ψ) with ((Φ→ Ψ) ∧ (Ψ→ Φ))

whenever Φ and Ψ are formulas. Another example of an abbreviation con-
cerns restricted, sometimes called bounded, quantifiers

(∃vi ∈ vj)Φ abbreviates (∃vi)((vi ∈ vj) ∧ Φ); and,

(∀vi ∈ vj)Φ abbreviates (∀vi)((vi ∈ vj)→ Φ).

where Φ any formula of LOST. We will introduce many more abbreviations
later.

A class is just a string of symbols of the form {vi : Ψ} where vi is a variable
and Ψ is a formula of LOST. Two important and well-known examples are:

{v0 : (v0 = v0)} and {v0 : (¬(v0 = v0))}

and we will see many more in the next chapter. It is important to realise that
“class” and “set” are two quite different notions. A class is just a description
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of, or a name for, something in the languge of set theory; it may or may not
exist. A set, on the other hand, is a mathematical object of study. A class
is a string of symbols — you can see it. You can’t see a set with your eyes;
you have to use your imagination.

A term is defined to be either a class or a variable. Terms are the names for
what the language of set theory talks about. A grammatical analogy is that
terms correspond to nouns and pronouns — classes to nouns and variables
to pronouns. Continuing the analogy, the predicates, or verbs, are = and ∈.
The atomic formulas are the basic relationships among the predicates and
the variables.

We are able to incorporate classes into our language by showing how the
predicates relate to them. For example, when Ψ is a formula of LOST, we
write (vk ∈ {vj : Ψ}) to stand for the statement that Ψ holds when vk is
substituted for vj in Ψ. Continuing in this manner, we write (vk = {vj : Ψ})
to mean that

(∀vi)((vi ∈ vk)↔ (vi ∈ {vj : Ψ}))

when the variable vi is distinct from the others. In order to make this suffi-
ciently complete and precise, we must carefully specify the notion of substi-
tution. There are, however, surprising technical complications.

If the reader is comfortable with an intuitive grasp of the concept of
substitution, then the remainder of this chapter could be skipped for now.
However, the material is a prerequisite for fully understanding Chapter 11.

Substitution for a Variable

Variables can occur in a formula in two ways: as parameter variables
whose values affect the truth of the formula or otherwise as “dummy” vari-
ables. For example, the truth of the formula

(∃v0)(∀v1)((v1 = v0)→ ((v1 = v2) ∧ (v1 = v3)))

depends entirely upon the values taken by the variables v2 and v3; in fact,
in this example, whether or not they take on equal values. However, the
variables v0 and v1 do not have this property and it even seems meaningless
to speak of their precise values. The variables v2 and v3 are free to take
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on values but v0 and v1 are bound up with a quantifier. Let’s make this
observation precise.

That a variable vi occurs free in a formula Φ means that at least one of
the following is true:

1. Φ is an atomic formula and vi occurs in Φ;

2. Φ is (¬Ψ), Ψ is a formula and vi occurs free in Ψ;

3. Φ is (Θ ∧ Ψ), Θ and Ψ are formulas and vi occurs free in Θ or occurs
free in Ψ;

4. Φ is (Θ ∨ Ψ), Θ and Ψ are formulas and vi occurs free in Θ or occurs
free in Ψ;

5. Φ is (Θ→ Ψ), Θ and Ψ are formulas and vi occurs free in Θ or occurs
free in Ψ;

6. Φ is (∀vj)Ψ and Ψ is a formula and vi occurs free in Ψ and i 6= j; or,

7. Φ is (∃vj)Ψ and Ψ is a formula and vi occurs free in Ψ and i 6= j.

Notice that the determination of whether or not a variable occurs free
in a formula is reduced to such a determination in slightly simpler formu-
las. In fact these simpler formulas appear in the construction of the initial
formula. We may thus retrace the construction of our formula back to the
original atomic formulas before finally being able to declare whether or not
the variable occurred free in the initial formula.

Those formulas which appear somewhere in the construction of a formula
Φ are called subformulas of Φ. The complete collection of subformulas of a
formula Φ is precisely defined as follows:

1. Φ is a subformula of Φ;

2. If (¬Ψ) is a subformula of Φ, then so is Ψ;

3. If (Θ ∧Ψ) is a subformula of Φ, then so are Θ and Ψ;
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4. If (Θ ∨Ψ) is a subformula of Φ, then so are Θ and Ψ;

5. If (Θ→ Ψ) is a subformula of Φ, then so are Θ and Ψ;

6. If (∀vi)Ψ is a subformula of Φ and vi is a variable, then Ψ is a subformula
of Φ; and,

7. If (∃vi)Ψ is a subformula of Φ and vi is a variable, then Ψ is a subformula
of Φ.

To say that a variable vi occurs bound in a formula Φ means that either
of the following two conditions holds:

1. for some subformula Ψ of Φ, (∀vi)Ψ is a subformula of Φ; or,

2. for some subformula Ψ of Φ, (∃vi)Ψ is a subformula of Φ.

A variable can occur both free and bound in a formula as in this example.

((∀v1)((v1 = v2)→ (v1 ∈ v0)) ∧ (∃v2)(v2 ∈ v1))

However, we usually avoid writing such formulas because it is easier to un-
derstand formulas in which this double role does not occur.

Notice that if a variable occurs in a formula at all it must occur either
free, or bound, or both (but not at the same occurrence).

The result, Φ∗, of substituting the variable vj for each bound occurrence
of the variable vi in the formula Φ is defined by constructing a Ψ∗ for each
subformula Ψ of Φ as follows:

1. If Ψ is atomic, then Ψ∗ is Ψ;

2. If Ψ is (¬Θ) for some formula Θ, then Ψ∗ is (¬Θ∗);

3. If Ψ is (Γ ∧Θ) for some formula Θ, then Ψ∗ is (Γ∗ ∧Θ∗);

4. If Ψ is (Γ ∨Θ) for some formula Θ, then Ψ∗ is (Γ∗ ∨Θ∗);

5. If Ψ is (Γ→ Θ) for some formula Θ, then Ψ∗ is (Γ∗ → Θ∗);



17

6. If Ψ is (∀vk)Θ for some formula Θ then Ψ∗ is just (∀vk)Θ∗ if k 6= i, but
if k = i then Ψ∗ is (∀vj)Γ where Γ is the result of substituting vj for
each occurrence of vi in Θ; and,

7. If Ψ is (∃vk)Θ for some formula Θ then Ψ∗ is just (∃vk)Θ∗ if k 6= i, but
if k = i then Ψ∗ is (∃vj)Γ where Γ is the result of substituting vj for
each occurrence of vi in Θ.

If the variable vj does not originally occur in the formula Φ the result of
this substitution is a formula Φ∗ which is logically equivalent to Φ. However,
notice that substituting v2 for each bound occurrence of v1 in the formula
(∃v1)(¬(v1 = v2)) gives rise to something quite different.

We can now formally define the important notion of the substitution of a variable
vj for each free occurrence of the variable vi in the formula Φ. This procedure
is as follows.

1. Substitute a new variable vl for all bound occurrences of vi in Φ.

2. Substitute another new variable vk for all bound occurrences of vj in
the result of (1).

3. Directly substitute vj for each occurrence of vi in the result of (2).

Example. Let us substitute v2 for all free occurrences of v1 in the formula

((∀v1)((v1 = v2)→ (v1 ∈ v0)) ∧ (∃v2)(v2 ∈ v1))

The steps are as follows.

1. ((∀v1)((v1 = v2)→ (v1 ∈ v0)) ∧ (∃v2)(v2 ∈ v1))

2. ((∀v3)((v3 = v2)→ (v3 ∈ v0)) ∧ (∃v2)(v2 ∈ v1))

3. ((∀v3)((v3 = v2)→ (v3 ∈ v0)) ∧ (∃v4)(v4 ∈ v1))

4. ((∀v3)((v3 = v2)→ (v3 ∈ v0)) ∧ (∃v4)(v4 ∈ v2))
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For the reader who is new to this abstract game of formal logic, step (2)
in the substitution procedure may appear to be unnecessary. It is indeed
necessary, but the reason is not obvious until we look again at the example
to see what would happen if step (2) were omitted. This step essentially
changes (∃v2)(v2 ∈ v1) to (∃v4)(v4 ∈ v1). We can agree that each of these
means the same thing, namely, “v1 is non-empty”. However, when v2 is
directly substituted into each we get something different: (∃v2)(v2 ∈ v2)
instead of (∃v4)(v4 ∈ v2). The latter says that “v2 is non-empty” and this is,
of course what we would hope would be the result of substituting v2 for v1

in “v1 is non-empty”. But the former statement, (∃v2)(v2 ∈ v2), seems quite
different, making the strange assertion that “v2 is an element of itself”, and
this is not what we have in mind. What caused this problem? An occurrence
of the variable v2 became bound as a result of being substituted for v1. We
will not allow this to happen. When we substitute v2 for the free v1 we must
ensure that this freedom is preserved for v2.

For a formula Φ and variables vi and vj, let Φ(vi|vj) denote the formula
which results from substituting vj for each free occurance of vi. In order
to make Φ(vi|vj) well defined, we insist that in steps (1) and (2) of the
substitution process, the first new variable available is used. Of course, the
use of any other new variable gives an equivalent formula. In the example, if
Φ is the formula on the first line, then Φ(v1|v2) is the formula on the fourth
line.

As a simple application we can show how to express “there exists a unique
element”. For any formula Φ of the language of set theory we denote by
(∃!vj)Φ the formula

((∃vj)Φ ∧ (∀vj)(∀vl)((Φ ∧ Φ(vj|vl))→ (vj = vl)))

where vl is the first available variable which does not occur in Φ. The expres-
sion (∃!vj) is another abbreviation in the language of set theory — whenever
we have a formula containing this expression we can quickly convert it to a
proper formula of LOST.

We can use substitution to express the Equality Principle which states
that for any variable vi of a formula Φ of LOST, all of whose variables lying
among v0, . . . , vn and for any variables vj and vk we have:

(∀v0) . . . (∀vi) . . . (∀vn)(∀vj)(∀vk)((vj = vk)→ (Φ(vi|vj)↔ Φ(vi|vk)))
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Notice that the Equality Principle is not just one formula, but a scheme of
formulas, one for each appropriate Φ, vi, vj and vk. These formulas are basic
assumptions of virtually any logical system and we shall assume them here
as well.

We are now able to formally incorporate classes into the language of
set theory by showing how the predicates relate to them. Let Ψ and Θ be
formulas of the language of set theory and let vj, vk and vl be variables. We
write:

(vk ∈ {vj : Ψ}) instead of Ψ(vj|vk)
(vk = {vj : Ψ}) instead of (∀vl)((vl ∈ vk)↔ Ψ(vj|vl))
({vj : Ψ} = vk) instead of (∀vl)(Ψ(vj|vl)↔ (vj ∈ vk))

({vj : Ψ} = {vk : Θ}) instead of (∀vl)(Ψ(vj|vl)↔ Θ(vk|vl))
({vj : Ψ} ∈ vk) instead of (∃vl)((vl ∈ vk) ∧ (∀vj)((vj ∈ vl)↔ Ψ))

({vj : Ψ} ∈ {vk : Θ}) instead of (∃vl)(Θ(vk|vl) ∧ (∀vj)((vj ∈ vl)↔ Ψ))

whenever vl is neither vj nor vk and occurs in neither Ψ nor Θ.

We can now show how to express, as a proper formula of set theory,
the substitution of a term t for each free occurrence of the variable vi in the
formula Φ. We denote the resulting formula of set theory by Φ(vi|t). The
case when t is a variable vj has already been discussed. Now we turn our
attention to the case when t is a class {vj : Ψ} and carry out a proceedure
similar to the variable case.

1. Substitute the first available new variable for all bound occurrences of
vi in Φ.

2. In the result of (1) substitute, in turn, the first available new variable
for all bound occurrences of each variable in Φ which occurs free in Ψ.

3. In the result of (2) directly substitute {vj : Ψ} for vi into each atomic
subformula in turn, using the table above.

For example, the atomic subformula (vi ∈ vk) is replaced by the new subfor-
mula

(∃vl ∈ vk)(∀vj)((vj ∈ vl)↔ Ψ))
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where vl is the first available new variable. Likewise, the atomic subformula
(vi = vi) is replaced by the new subformula

(∀vl)(Ψ(vj|vl)↔ Ψ(vj|vl))

where vl is the first available new variable (although it is not important to
change from vj to vl in this particular instance).

Relativisation of a Formula to a Term

Let t be a term and Φ any formula of the language of set theory.

(∃vi ∈ t)Φ abbreviates (∃vi)((vi ∈ t) ∧ Φ); and,

(∀vi ∈ t)Φ abbreviates (∀vi)((vi ∈ t)→ Φ).

This allows us to define the relativisation of Φ to t, denoted by Φt, as follows:

1. If Φ is atomic then Φt is Φ;

2. If Φ is (¬Ψ) then Φt is (¬Ψt);

3. If Φ is (Ψ1 ∧Ψ2) then Φt is (Ψt
1 ∧Ψt

2);

4. If Φ is (Ψ1 ∨Ψ2) then Φt is (Ψt
1 ∨Ψt

2);

5. If Φ is (Ψ1 → Ψ2) then Φt is (Ψt
1 → Ψt

2);

6. If Φ is (∀vi)Ψ then Φt is (∀vi ∈ t)Ψt; and,

7. If Φ is (∃vi)Ψ then Φt is (∃vi ∈ t)Ψt.

Informally, the relativisation of a formula Φ to a term t states that Φ
holds under the interpretation for which everything is required to be in t. A
formula and its relativisation may express quite different ideas. For example,
the formula:

(∃v1)(v1 = v1)

is true by logical assumption. Indeed, if it were not true then there would be
very little mathematics!
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However, the relativisation to the class {v0 : (¬(v0 = v0))} is:

(∃v1 ∈ {v0 : (¬(v0 = v0))})(v1 = v1)

which is an abbreviation for:

(∃v1)((v1 ∈ {v0 : (¬(v0 = v0))}) ∧ (v1 = v1))

which when written as a proper formula of LOST is:

(∃v1)((¬(v1 = v1)) ∧ (v1 = v1))

which is, of course, absolutely false.

On the other hand, the formula (∀v1)(v1 = v1) is also true and yet the
reader can now easily verify that its relativisation to the same class is the
formula

(∀v1)((¬(v1 = v1))→ (v1 = v1)).

which is, in fact, logically equivalent to the original formula (∀v1)(v1 = v1).

Suppose that from the formula Θ we were able to logically infer the for-
mula Φ. This means that there could be no counterexample to the fact that
Θ implies Φ. That is, Φ would hold under any interpretation in which Θ
would hold. So for any term t, Φt would hold whenever Θt would hold.

But wait! This contradicts the examples with Θ as (∀v1)((v1 = v1), Φ as
(∃v1)(v1 = v1) and t as {v0 : (¬(v0 = v0))}. What causes this problem?

Relativising to the class {v0 : (¬(v0 = v0))} is really a very special case
because there is no value of v0 which satisfies the condition to be in the class
— the class is empty. As such, it cannot satisfy the logically true formula
(∃v0)(v0 = v0). However, the class {v0 : (¬(v0 = v0))} is, in fact, the only
one with this odd property.

Indeed, if t is any term such that (∃v0)(v0 ∈ t) then Ψt holds whenever
Ψ is a basic assumption of pure logic, including, for example, any instance
of the Equality Principle. Furthermore, if we are able to infer Φ from Θ by
purely logical means, then Φt holds whenever Θt holds.

Those familiar with Mathematical Logic will notice that the discussion
above can be made precise by specifying a formal deduction system and
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invoking the Soundness Theorem of Mathematical Logic which essentially
says that any formula which is the product of a logical deduction has no
interpretation in which it is false. Trusting that the conclusion of the previous
paragraph is intuitively satisfactory, we will not need to do this.

With this in mind traditional (informal) mathematical proofs will do as
well for Set Theory as for other areas of mathematics. But in order to avoid
paradoxes it is crucial that all of our mathematical assumptions and all of
our theorems are able to be stated in LOST.



Chapter 2

FOUND

The language of set theory is very precise, but it is extremely difficult for
us to read mathematical formulas in that language. We need to find a way
to make these formulas more intelligible, yet still avoiding inconsistencies
associated with Berry’s paradox.

In the previous chapter we defined a term to be either a variable v0, v1, v2, . . .
or a class, which is something of the form {vj : Φ} where Φ is a formula of
the language of set theory, LOST. In order to avoid inconsistencies we need
to ensure that the formula Φ in the class {vj : Φ} is indeed a proper for-
mula of LOST — or, at least, can be converted to a proper formula once
abbreviations are eliminated. It is not so important that we actually write
classes using proper formulas, but what is important is that whatever for-
mula we write down can be converted into a proper formula by eliminating
abbreviations.

We can now relax our formalism if we keep the previous paragraph in
mind. Let’s adopt these conventions.

1. We can use any letters that we like for variables, not just v0, v1, v2, . . . .

2. We can freely omit parentheses and sometimes use brackets ] and [
instead. We can sometimes use “⇒” and “⇔” instead of “→” and
“↔”, respectively.

23
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3. We can write out “and” for “∧”, “or” for “∨”, “implies” for “→” and
use the “if...then...” format as well as other common English expres-
sions for the logical connectives and quantifiers.

4. We will use the notation t(w1, . . . , wk) to indicate that all of the vari-
ables of the term t lie among w1, . . . , wk. As well, we will use the nota-
tion Φ(x, y, w1, . . . , wk) to indicate that all variables of the formula Φ
lie among x, y, w1, . . . , wk.

5. When the context is clear we use the notation Φ(x, t, w1, . . . , wk) for
the result of substituting the term t for each free occurrence of the
variable y in Φ; that is, we don’t substitute for those occurences where
y is under the scope of a quantifier. In Chapter 1 this was denoted by
Φ(y|t).

6. We can write out formulas, including statements of theorems, in any
way easily seen to be convertible to a proper formula in the language
of set theory.

For any terms s and t, we make the following abbreviations of formulas.

s /∈ t for ¬(s ∈ t)
s 6= t for ¬(s = t)

s ⊆ t for (∀x)(x ∈ s→ x ∈ t)
s ⊂ t for (s ⊆ t) ∧ (s 6= t)

Whenever we have a finite number of terms t1, t2, . . . , tn the notation
{t1, t2, . . . , tn} is used as an abbreviation for the class:

{x : x = t1 ∨ x = t2 ∨ · · · ∨ x = tn}.

We also have abbreviations for certain special classes; we denote the class
{x : x = x} by V and call it the universe. We denote the class {x : x 6= x}
by ∅ and call it the empty set. This terminology comes from the fact that
(x = x) holds for all x and, as such, (¬(x = x)) holds for no x.

Whenever t is a term and Φ is a formula of LOST, {x ∈ t : Φ} will
abbreviate {x : (x ∈ t) ∧ Φ}. Furthermore, for a class term t(w1, . . . , wk),
{t : Φ} will denote {x : ∃w1, . . . ,∃wk[(x = t) ∧ Φ]}.
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We make the standard abbreviations for these often-used classes.

Union s ∪ t for {x : x ∈ s ∨ x ∈ t}
Intersection s ∩ t for {x : x ∈ s ∧ x ∈ t}

Difference s \ t for {x : x ∈ s ∧ x /∈ t}
Symmetric Difference s4t for (s \ t) ∪ (t \ s)

Ordered Pair 〈s, t〉 for {{s}, {s, t}}
Cartesian Product s× t for {〈x, y〉 : x ∈ s ∧ y ∈ t}

Domain dom(f) for {x : ∃y 〈x, y〉 ∈ f}
Range rng(f) for {y : ∃x 〈x, y〉 ∈ f}
Image f→A for {y : ∃x ∈ A 〈x, y〉 ∈ f}

Inverse Image f←B for {x : ∃y ∈ B 〈x, y〉 ∈ f}
Restriction f |A for {〈x, y〉 : 〈x, y〉 ∈ f ∧ x ∈ A}

Inverse f−1 for {〈y, x〉 : 〈x, y〉 ∈ f}
Composition g ◦ f for {〈x, z〉 : ∃y 〈x, y〉 ∈ f ∧ 〈y, z〉 ∈ g}

These latter abbreviations are most often, but not always, used in the
context of functions. We say f is a function provided

∀p ∈ f ∃x ∃y p = 〈x, y〉 ∧ (∀x)(∃y 〈x, y〉 ∈ f → ∃!y 〈x, y〉 ∈ f).

We write f : X → Y for

f is a function and dom(f) = X and rng(f) ⊆ Y.

The class {f : (f : X → Y )} is denoted by XY or alternatively by Y X .

We also write:

f is one to one for ∀y ∈ rng(f) ∃!x 〈x, y〉 ∈ f
f is onto Y for Y = rng(f)

and use the common terms injection for a one to one function, surjection for
an onto function and bijection for both properties together.



26 CHAPTER 2. FOUND

There are several ways other authors denote the image and the inverse
image; f→A is sometimes written as f ′′A. However, notation like f(A) can
become confusing whenever, as frequently happens in Set Theory, the set
A is both an element of and a subset of the domain of the function f . Of
course, we all prefer notation which is straightforward and unambiguous.

The famous statement known as Russell’s Paradox is the following theo-
rem:

¬∃z z = {x : x /∈ x}.
The proof of this is simple. Just ask whether or not z ∈ z.

The paradox is only for the naive, not for us. {x : x /∈ x} is a class — just
a description in the language of set theory. There is no reason why what it
describes should exist. In everyday life we describe many things which don’t
exist, fictional characters for example. Bertrand Russell did exist and Peter
Pan did not, but they both have descriptions in English. Although Peter
Pan does not exist, we still find it worthwhile to speak about him. The same
is true in mathematics.

Upon reflection, you might say that in fact, nothing is an element of itself
so that

{x : x /∈ x} = {x : x = x} = V
and so Russell’s paradox leads to:

¬(∃z z = V).

It seems we have proved that the universe does not exist. A pity!

The mathematical universe fails to have a mathematical existence in the
same way that the physical universe fails to have a physical existence. The
things that have a physical existence are exactly the things in the universe,
but the universe itself is not an object in the universe.

This does bring up an important issue — do any of the usual mathe-
matical objects exist? What about the other things we described as classes?
What about ∅? Can we prove that ∅ exists?

Actually, we can’t; at least not yet. You can’t prove very much if you
don’t assume anything to start. We could prove Russell’s Paradox because,
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amazingly, it only required the basic rules of logic and required nothing
mathematical — that is, nothing about the “real meaning” of ∈. Continuing
from Russell’s Paradox to

¬(∃z z = V)

required us to assume that
∀x x /∈ x

which is not an unreasonable assumption by any means, but a mathematical
assumption none-the-less. The existence of the empty set ∅ may well be
another necessary assumption.

Generally set theorists, and indeed all mathematicians, are quite willing
to assume anything which is obviously true. It is, after all, only the things
which are not obvious that require some form of proof. The problem, of
course, is that we must somehow know what is “obviously true”. Naively,

∃z z = V

would seem to be true, but it is not and if it or any other false statement is
assumed, all our proofs become infected with the virus of inconsistency and
all of our theorems become suspect.

Historically, considerable thought has been given to the construction of
the basic assumptions for Set Theory because all of the rest of mathematics
is based on them. They are the foundation upon which everything else is
built. These assumptions are called axioms and the system is called the ZFC

Axiom System. We shall begin to study it in the next chapter.
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Chapter 3

The Axioms of Set Theory

We will explore the ZFC Axiom System. Each axiom should be “obviously
true” in the context of those things that we desire to call sets. Because we
cannot give a mathematical proof of a basic assumption, we must rely on
intuition to determine truth, even if this feels uncomfortable. Beyond the
issue of truth is the question of consistency. Since we are unable to prove
that our assumptions are true, can we at least show that together they will
not lead to a contradiction? Unfortunately, we cannot even do this — it is
ruled out by the famous incompleteness theorems of K. Gödel. Intuition is
our only guide. We begin.

We have the following axioms:

The Axiom of Existence ∃z z = z

The Axiom of Extensionality ∀x ∀y [∀u (u ∈ x ↔ u ∈ y)↔ x = y]

The Axiom of Pairing ∀x ∀y ∃z z = {x, y}

Different authors give slightly different formulations of the ZFC axioms
but these formulations are all equivalent. Here, the Axiom of Existence is
only stated for emphasis. It is unnecessary since it is an axiom of pure logic
and we already implicitly assume all such logical axioms such as ∀z z = z
and the Equality Principle from Chapter 1.

As well, the Axiom of Pairing will follow from other axioms to be stated

29
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later. So there is considerable redundancy in this system, but redundancy is
not always a bad thing.

We now assert the existence of unions and intersections. No doubt the
reader has experienced a symmetry between these two concepts. However,
while the Union Axiom is used extensively, the Intersection Axiom is omitted
in many developments of the subject because it follows from the rest of
the ZFC axioms. We include it here because it adds educational value; see
Theorem 1 and the remarks after Theorem 4.

The Union Axiom ∀x [x 6= ∅ → ∃z z = {w : (∃y ∈ x)(w ∈ y)}]

For any term t the class {w : (∃y ∈ t)(w ∈ y)} is abbreviated as
⋃
t and

called the “big union of t”.

The Intersection Axiom ∀x [x 6= ∅ → ∃z z = {w : (∀y ∈ x)(w ∈ y)}]

For any term t the class {w : (∀y ∈ t)(w ∈ y)} is abbreviated as
⋂
t and

called the “big intersection of t”.

The Axiom of Foundation ∀x [x 6= ∅ → (∃y ∈ x)(x ∩ y = ∅)]

This axiom, while it may be “obviously true”, is not immediately obvious,
so let’s investigate what it says.

Suppose, for the sake of argument, that there were a non-empty x such
that (∀y ∈ x)(x∩ y 6= ∅). For any z1 ∈ x we would be able to get z2 ∈ x∩ z1.
Since z2 ∈ x we would be able to get z3 ∈ x ∩ z2. The process continues
forever:

· · · ∈ z4 ∈ z3 ∈ z2 ∈ z1 ∈ x

We wish to rule out such an infinite regress since it never occurs in other
areas of mathematics. We want our sets to be founded: each such sequence
should eventually end. Hence the name of the axiom, which is also known
as the Axiom of Regularity. In truth, it must be admitted that an impor-
tant practical reason for the adoption of this axiom is that it allows us to
develop a clear and elegant theory, so perhaps the Axiom of Foundation is
best understood by its consequences.
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Our first theorem states a number of simple results which we would be
quite willing to assume outright, were they not to follow readily from the
axioms. Notice that the third statement (with y = x) leads to the result

∀x x /∈ x

which is exactly what we needed to extend Russell’s Paradox in order to
obtain

¬(∃z z = V).

Theorem 1.

1. ∀x ∀y ∃z z = x ∪ y.

2. ∀x ∀y ∃z z = x ∩ y.

3. ∀x ∀y x ∈ y → y /∈ x.

4. ∃z z = ∅.

Exercise 1. Prove Theorem 1.

Our next theorem gives the basic facts about ordered pairs. Let f(x)
denote the class

⋃
{w : 〈x,w〉 ∈ f}.

Theorem 2.

1. ∀x ∀y ∃z z = 〈x, y〉.

2. ∀u ∀v ∀x ∀y [〈u, v〉 = 〈x, y〉 ↔ (u = x ∧ v = y)].

3. For any function f and x ∈ dom(f) we have: 〈x, y〉 ∈ f ⇔ y = f(x).

Exercise 2. Prove this theorem.

Suppose that x is a set and that there is some way of removing each
element u ∈ x and replacing u with some element v. Would the result be
a set? Well, of course — provided there are no tricks here. That is, there
should be a well defined replacement procedure which ensures that each u is
replaced by only one v. This well defined procedure should be described by
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a formula, Φ, in the language of set theory. We can guarantee that each u is
replaced by exactly one v by insisting that ∀u ∈ x ∃!v Φ(x, u, v).

We would like to obtain an axiom, written in the language of set theory
stating that for each set x and each such formula Φ we get a set z. However,
this is impossible. We cannot express “for each formula” in the language
of set theory — in fact this formal language was designed for the precise
purpose of avoiding such expressions which bring us perilously close to Berry’s
Paradox.

The answer to this conundrum is to utilise not just one axiom, but in-
finitely many — one axiom for each formula of the language of set theory.
Such a system is called an axiom scheme.

The Replacement Axiom Scheme

For each formula Φ(x, u, v, w1, . . . , wk) of the language of set theory, we have
the axiom:

∀w1 . . . ∀wk ∀x [∀u ∈ x ∃!v Φ→ ∃z z = {v : ∃u ∈ x Φ}]

Note that we have allowed Φ to have w1, . . . , wk as parameters, that is,
free variables which may be used to specify various objects in various contexts
within a mathematical proof. This is illustrated by the following theorem.

Theorem 3. ∀x ∀y ∃z z = x× y.

Proof. Heuristically, for a given t ∈ y we first replace each u ∈ x with 〈u, t〉,
which is like a “horizontal line” of x × y. Next, we replace each t ∈ y with
x×{t} to obtain the complete collection of all “horizontal lines”. The union
of this collection is x× y.

More precisely, from Theorem 2, for all t ∈ y we get

∀u ∈ x ∃!v v = 〈u, t〉.

We now use Replacement with the formula “Φ(x, u, v, t)” as “v = 〈u, t〉”; t
is a parameter. We obtain, for each t ∈ y:

∃q q = {v : ∃u ∈ x v = 〈u, t〉}.
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By Extensionality, in fact ∀t ∈ y ∃!q q = {v : ∃u ∈ x v = 〈u, t〉}.

We again use Replacement, this time with the formula Φ(y, t, q, x) as
“q = {v : ∃u ∈ x v = 〈u, t〉}”; here x is a parameter. We obtain:

∃r r = {q : ∃t ∈ y q = {v : ∃u ∈ x v = 〈u, t〉}}

By the Union Axiom ∃z z =
⋃
r and so we have:

z = {p : ∃q [q ∈ r ∧ p ∈ q]}
= {p : ∃q [(∃t ∈ y) q = {v : ∃u ∈ x v = 〈u, t〉} ∧ p ∈ q]}
= {p : (∃t ∈ y)(∃q)[q = {v : ∃u ∈ x v = 〈u, t〉} ∧ p ∈ q]}
= {p : (∃t ∈ y)p ∈ {v : ∃u ∈ x v = 〈u, t〉}}
= {p : (∃t ∈ y)(∃u ∈ x) p = 〈u, t〉}
= x× y

The statement V × V ⊆ V is a true formula of LOST, since ∀x x ∈ V.
However, it is not true that ∃z z = V×V. Why not? Because, if so we could
use the first two parts of Theorem 2 and an instance of the Replacement
Scheme to obtain

∃z z = {v : (∃u ∈ V× V)[(∃w) u = 〈v, w〉]} = V.

It is natural to believe that for any set x, the collection of those elements
y ∈ x which satisfy some particular property should also be a set. Again: no
tricks — the property should be specified by a formula of the language of set
theory. Since this should hold for any formula of LOST, we are again led to
a scheme.

The Comprehension Scheme

For each formula Φ(x, y, w1, . . . , wk) of the language of set theory, we have
the statement:

∀w1 . . . ∀wk ∀x ∃z z = {y : y ∈ x ∧ Φ(x, y, w1, . . . , wn)}
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This scheme could be another axiom scheme and often is treated as such.
However, this would be unnecessary since the Comprehension Scheme follows
from what we have already assumed. It is, in fact, a theorem scheme — that
is, infinitely many theorems, one for each formula of the language of set
theory. Of course we cannot write down infinitely many proofs, so how can
we prove this theorem scheme?

We give a uniform method for proving each instance of the scheme. To
be certain that any given instance of the theorem scheme is true, we consider
this uniform method applied to that particular instance. We give this general
method below.

For each formula Φ(x, u, w1, . . . , wk) of the language of set theory we have:

Theorem 4. Φ

∀w1 . . . ∀wk ∀x ∃z z = {u : u ∈ x ∧ Φ}.

Proof. Fix such a formula Φ(x, u, w1, . . . , wk). Apply Replacement on the set
x with the formula Ψ(x, u, v, w1, . . . , wk) given by:

(Φ→ v = {u}) ∧ (¬Φ→ v = ∅)

to obtain:

∃y y = {v : (∃u ∈ x)[(Φ→ v = {u}) ∧ (¬Φ→ v = ∅)]}.

Notice that {{u} : u ∈ x ∧ Φ(x, u, w1, . . . , wn)} ⊆ y and that the only other
possible element of y is ∅. Now let z =

⋃
y to finish the proof.

Theorem 4 Φ can be thought of as infinitely many theorems, one for each
Φ. The proof of any one of those theorems can be done in a finite number
of steps, which invoke only a finite number of instances of axioms. A proof
cannot have infinite length, nor invoke infinitely many axioms or lemmas.

Notice that the Intersection Axiom can be shown to follow from an in-
stance of the Comprehension Scheme:

∃z z = {u : (u ∈
⋃

x) ∧ (∀y ∈ x)(u ∈ y)} =
⋂

x
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so that one is now tempted to declare the Intersection Axiom to be redundant.
However, in the proof of Comprehension, the existance of the empty set ∅
was used for the (unwritten) verification of the hypothesis of Replacement.
And didn’t you use the Intersection Axiom in your proof of the existance of
the empty set?

The Axiom of Choice

∀X [(∀x ∈ X ∀y ∈ X (x = y ↔ x ∩ y 6= ∅))→ ∃z (∀x ∈ X ∃!y y ∈ x ∩ z)]

In human language, the Axiom of Choice says that if you have a collection
X of pairwise disjoint non-empty sets, then you get a set z which contains
exactly one element from each set in the collection. Although the axiom
gives the existence of some “choice set” z, there is no mention of uniqueness
— there are quite likely many possible sets z which satisfy the axiom and we
are given no formula which would single out any one particular z.

The Axiom of Choice can be viewed as a kind of replacement, in which
each set in the collection is replaced by one of its elements. This leads to the
following useful reformulation which will be used in Theorem 21.

Theorem 5. There is a choice function on any set of non-empty sets; i.e.,

∀X [∅ /∈ X → (∃f)(f : X →
⋃

X and (∀x ∈ X)(f(x) ∈ x))].

Proof. Given such an X, by Replacement there is a set

Y = {{x} × x : x ∈ X}

which satisfies the hypothesis of the Axiom of Choice. So

∃z ∀y ∈ Y ∃!p p ∈ y ∩ z.

Let f = z ∩ (
⋃
Y ). Then f : X →

⋃
X and each f(x) ∈ x.

The Power Set Axiom ∀x ∃z z = {y : y ⊆ x}
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We denote {y : y ⊆ x} by P(x), called the power set of x. For reasons to
be understood later, it is important to know explicitly when the Power Set
Axiom is used. This completes the list of the ZFC axioms with one exception
to come later — Infinity.



Chapter 4

The Natural Numbers

We now construct the natural numbers. That is, we will represent the natural
numbers in our universe of set theory. We will construct a number system
which behaves mathematically exactly like the natural numbers, with exactly
the same arithmetic and order properties. We do not claim that what we
construct are the “actual” natural numbers — whatever they are. But since
what we shall define will have exactly those mathematical properties which
the “actual” natural numbers have, we will take the liberty of calling our
constructs simply, the natural numbers. We begin by taking 0 as the empty
set ∅. We write

1 for {0}
2 for {0, 1}
3 for {0, 1, 2}

succ(x) for x ∪ {x}

We write “n is a natural number” for

[n = ∅ ∨ (∃l ∈ n)(n = succ(l))] ∧ (∀m ∈ n)[m = ∅ ∨ (∃l ∈ n)(m = succ(l))]

and write:

N for {n : n is a natural number}

37
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The reader can gain some familiarity with these definitions by checking
that succ(n) ∈ N for all n ∈ N.

We now begin to develop the basic properties of the natural numbers by
introducing an important new concept. We say that a term t is transitive
whenever we have

(∀x)(x ∈ t→ x ⊆ t).

The Axiom of Foundation ensures that ∅ is an element of each non-empty
transitive set.

Theorem 6.

1. Each natural number is transitive.

2. N is transitive; i.e., every element of a natural number is a natural
number.

Proof. Suppose that (1) were false; i.e., some n ∈ N is not transitive, so that:

{k : k ∈ n and ¬(k ⊆ n)} 6= ∅.

By Comprehension ∃x x = {k ∈ n : ¬(k ⊆ n)} and so by Foundation there
is y ∈ x such that y ∩ x = ∅. Note that since ∅ /∈ x and y ∈ n we have that
y = succ(l) for some l ∈ n. But since l ∈ y, l /∈ x and so l ⊆ n. Hence
y = l ∪ {l} ⊆ n, contradicting that y ∈ x.

We also prove (2) indirectly; suppose n ∈ N with

{m : m ∈ n and m /∈ N} 6= ∅.

By Comprehension ∃x x = {m ∈ n : m /∈ N} and so Foundation gives y ∈ x
such that y ∩ x = ∅. Since y ∈ n, we have y = succ(l) for some l ∈ n.
Since l ∈ y and y ∩ x = ∅ we must have l ∈ N. But then y = succ(l) ∈ N,
contradicting that y ∈ x.

Theorem 7. (Trichotomy of Natural Numbers)

Let m,n ∈ N. Exactly one of three situations occurs:

m ∈ n, n ∈ m, m = n.
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Proof. That at most one occurs follows from Theorem 1. That at least one
occurs follows from this lemma.

Lemma. Let m,n ∈ N.

1. If m ⊆ n, then either m = n or m ∈ n.

2. If n /∈ m, then m ⊆ n.

Proof. We begin the proof of (1) by letting S denote

{x ∈ N : (∃y ∈ N)(y ⊆ x and y 6= x and y /∈ x)}.

It will suffice to prove that S = ∅. We use an indirect proof — pick some
n1 ∈ S. If n1∩S 6= ∅, Foundation gives us n2 ∈ n1∩S with n2∩(n1∩S) = ∅.
By transitivity, n2 ⊆ n1 so that n2 ∩ S = ∅. Thus, we always have some
n ∈ S such that n ∩ S = ∅.

For just such an n, choose m ∈ N with m ⊆ n, m 6= n, and m /∈ n. Using
Foundation, choose l ∈ n \m such that l ∩ (n \m) = ∅. Transitivity gives
l ⊆ n, so we must have l ⊆ m. We have l 6= m since l ∈ n and m /∈ n.
Therefore we conclude that m \ l 6= ∅.

Using Foundation, pick k ∈ m \ l such that k ∩ (m \ l) = ∅. Transitivity
of m gives k ⊆ m and so we have k ⊆ l. Now, because l ∈ n we have l ∈ N
and l /∈ S so that either k = l or k ∈ l. However, k = l contradicts l /∈ m
and k ∈ l contradicts k ∈ m \ l.

We prove the contrapositive of (2). Suppose that m is not a subset of n;
using Foundation pick l ∈ m \ n such that l ∩ (m \ n) = ∅. By transitivity,
l ⊆ m and hence l ⊆ n. Now by (1) applied to l and n, we conclude that
l = n. Hence n ∈ m.

These theorems show that “∈” behaves on N just like the usual ordering
“<” on the natural numbers. In fact, we often use “<” for “∈” when writing
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about the natural numbers. We also use the relation symbols ≤, >, and ≥
in their usual sense.

The next theorem scheme justifies ordinary mathematical induction.

For each formula Φ(n,w1, . . . , wk) of the language of set theory we have:

Theorem 8. Φ

For all w1, . . . , wk, if

∀n ∈ N [(∀m ∈ n Φ(m))→ Φ(n)]

then
∀n ∈ N Φ(n).

Proof. For brevity, we have suppressed explicit mention of the parameters
w1, . . . , wk in the formula Φ and from now on we will frequently do this.

We will assume that the theorem is false and derive a contradiction. Take
any fixed w1, . . . , wk and a fixed l ∈ N such that ¬Φ(l). Let t be any transitive
subset of N containing l, e.g. t = l ∪ {l}.

By Comprehension, ∃s s = {m ∈ t : ¬Φ(m)}. By Foundation, we get
n ∈ s such that n ∩ s = ∅. Transitivity of t guarantees that (∀m ∈ n) Φ(m).
This, in turn, contradicts that n ∈ s.

The statement ∀m ∈ n Φ(m) in the above Theorem 8 Φ is usually called
the inductive hypothesis. When n = 0 the inductive hypothesis is trivially
true, so verifying

(∀m ∈ n Φ(m))→ Φ(n)

when n = 0 just amounts to proving Φ(0).

Our first application of induction will be to show that ordinary counting
makes sense. A set X is said to be finite provided that there is a natural
number n and a bijection f : n → X. In this case n is said to be the size of
X. Otherwise, X is said to be infinite.
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Exercise 3. Use induction to prove the pigeon-hole principle: for n ∈ N
there is no injection f : succ(n) → n. Conclude that a set X cannot have
two different sizes when counted two different ways.

Do not believe this next result:

Proposition. All natural numbers are equal.

Proof. It is sufficient to show by induction on n ∈ N that if a ∈ N and b ∈ N
and max (a, b) = n, then a = b. If n = 0 then a = 0 = b. Assume the
inductive hypothesis for n and let a ∈ N and b ∈ N be such that

max (a, b) = n+ 1.

Then max (a− 1, b− 1) = n and so a− 1 = b− 1 and consequently a = b.

Exercise 4. Prove or disprove that for each formula Φ(n) if

(∀n ∈ N)[(∀m > n Φ(m))→ Φ(n)]

then
∀n ∈ N Φ(n).

Hint: prove the Proposition!

The Recursion Principle for the Natural Numbers

Recursion on N is a way of defining new terms (in particular, functions
with domain N). Roughly speaking, values of a function F at larger numbers
are defined in terms of the values of F at smaller numbers.

We begin with the example of a function F , where we set F (0) = 3 and
F (succ(n)) = succ(F (n)) for each natural number n. We have set out a short
recursive procedure which gives a way to calculate F (n) for any n ∈ N. The
reader may carry out this procedure a few steps and recognise this function
F as F (n) = 3 + n. However, all this is a little vague. What exactly is F?
In particular, is there a formula for calculating F? How do we verify that F
behaves like we think it should?
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In order to give some answers to these questions, let us analyse the ex-
ample. There is an implicit formula for the calculation of y = F (x) which
is

[x = 0→ y = 3] ∧ (∀n ∈ N)[x = succ(n)→ y = succ(F (n))]

However the formula involves F , the very thing that we are trying to describe.
Is this a vicious circle? No — the formula only involves the value of F at a
number n less than x, not F (x) itself. In fact, you might say that the formula
doesn’t really involve F at all; it just involves F |x. Let’s rewrite the formula
as

[x = 0→ y = 3] ∧ (∀n ∈ x)[x = succ(n)→ y = succ(f(n))]

and denote it by Φ(x, f, y). Our recursive procedure is then described by

Φ(x, F |x, F (x)).

In order to describe F we use functions f which approximate F on initial
parts of its domain, for example f = {〈0, 3〉}, f = {〈0, 3〉, 〈1, 4〉} or

f = {〈0, 3〉, 〈1, 4〉, 〈2, 5〉},

where each such f satisfies Φ(x, f |x, f(x)) for the appropriate x’s. We will
obtain F as the amalgamation of all these little f ’s. F is the union of

{f : (∃n ∈ N)[f : n→ V ∧ ∀m ∈ n Φ(m, f |m, f(m))]}.

But in order to justify this we will need to notice that

(∀x ∈ N)(∀f)[(f : x→ V)→ ∃!y Φ(x, f, y)],

which simply states that we have a well defined procedure given by Φ.

Let us now go to the general context in which the above example will be
a special case. For any formula Φ(x, f, y, w1, . . . , wk) of the language of set
theory, we denote by REC(Φ,N, w1, . . . , wk) the class⋃

{f : (∃n ∈ N)[f : n→ V ∧ ∀m ∈ n Φ(m, f |m, f(m), w1, . . . , wk)]}

We will show, under appropriate hypotheses, that REC(Φ,N, w1, . . . , wk) is
a function on N which satisfies the procedure given by Φ. This requires a
theorem scheme.

For each formula Φ(x, f, y, w1, . . . , wk) of the language of set theory we have:
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Theorem 9. Φ

For all w1, . . . , wk suppose that we have

(∀x ∈ N)(∀f)[(f : x→ V)→ ∃!y Φ(x, f, y, w1, . . . , wk)].

Then, letting F denote the class REC(Φ,N, w1, . . . , wk), we have:

1. F : N→ V;

2. ∀m ∈ N Φ(m,F |m,F (m), w1, . . . , wk).

Proof. For the sake of brevity, we will not always explicitly mention the pa-
rameters w1, . . . , wk occurring in the formula Φ. We first prove the following
claim.

Claim.

(∀x ∈ N)(∀y1)(∀y2)[(〈x, y1〉 ∈ F ∧ 〈x, y2〉 ∈ F → y1 = y2]

Proof of Claim. Since 〈x, y1〉 ∈ F we have a function f1 with domain n1 ∈ N
such that f1(x) = y1 and

(∀m ∈ n1) Φ(m, f1|m, f1(m)).

Similarly, we get f2 and n2 with f2(x) = y2 and

(∀m ∈ n2) Φ(m, f2|m, f2(m)).

Let n0 = n1 ∩ n2. We have x ∈ n0 ∈ N. It suffices to prove that

(∀m ∈ n0)(f1(m) = f2(m)),

which we do by induction on m ∈ N using the inductive hypothesis

(∀j ∈ m)(j ∈ n0 → f1(j) = f2(j))

with intent to show that

m ∈ n0 → f1(m) = f2(m).
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To do this suppose m ∈ n0 = n1 ∩ n2 so that we have both

Φ(m, f1|m, f1(m)) and Φ(m, f2|m, f2(m)).

By transitivity m ⊆ n0 so by the inductive hypothesis f1|m = f2|m. Now
by the hypothesis of this theorem with f = f1|m = f2|m we deduce that
f1(m) = f2(m). This concludes the proof of the claim.

In order to verify (1), it suffices to show that

(∀x ∈ N)(∃y) [〈x, y〉 ∈ F ]

by induction on x ∈ N. To this end, we use the inductive hypothesis

(∀j ∈ x)(∃y) [〈j, y〉 ∈ F ]

with intent to show that ∃y 〈x, y〉 ∈ F .

By the inductive hypothesis, for each j ∈ x there is nj ∈ N with j ∈ nj
and a function fj : nj → V such that

(∀m ∈ nj) Φ(m, fj|m, fj(m)).

Let h =
⋃
{fj : j ∈ x}. By the claim the fj’s agree on their common domains,

so that h is a function with domain including x as a subset. Furthermore,
nj is transitive for each j ∈ x, so that dom(h) is also transitive Hence each
h|j = fj|j so that

(∀j ∈ x) Φ(j, h|j, h(j)).

By the hypothesis of the theorem applied to g = h|x there is a unique y
such that Φ(x, g, y). Define f to be the function f = h ∪ {〈x, y〉}. It is
straightforward to verify that f witnesses that 〈x, y〉 ∈ F .

To prove (2), note that, by (1), for each x ∈ N there is n ∈ N and
f : n→ V such that F (x) = f(x) and

(∀m ∈ n) Φ(m, f |m, f(m)).

In fact, F |n = f so that (2) follows immediately.
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Return now to the example. By applying this theorem, we see that
REC(Φ,N, w1, . . . , wk) does indeed give us a function F . Since F is de-
fined by recursion on N, we use induction on N to verify the properties of
F . For example, it is easy to use induction to check that F (n) ∈ N for all
n ∈ N.

We do not often explicitly state the formula Φ in a definition by recursion.
The definition of F would be more often given by:

F (0) = 3

F (succ(n)) = succ(F (n))

This is just how the example started; nevertheless, this allows us to construct
the formula Φ immediately, should we wish. Of course, in this particular
example we can use the plus symbol in the usual way to denote the defined
function and give the recursion by the following formulas.

3 + 0 = 3

3 + succ(n) = succ(3 + n)

Now, let’s use definition by recursion in other examples. We can define
general addition on N by the formulas

a+ 0 = a

a+ succ(b) = succ(a+ b)

for each a ∈ N. Here a is a parameter which is allowed by the inclusion of
w1, . . . , wk in our analysis. The same trick can be used for multiplicaton:

a · 0 = 0

a · (succ(b)) = a · b+ a

for each a ∈ N, using the previously defined notion of addition. In each
example there are two cases to specify — the zero case and the successor
case. Exponentiation is defined similarly:

a0 = 1

asucc(b) = ab · a
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The reader is invited to construct, in each case, the appropriate formula Φ,
with a as a parameter, and to check that the hypothesis of the previous
theorem is satisfied. For example, for addition the formula Φ(x, f, y, a) is

(x = 0→ y = a) ∧ (∀b ∈ x)(x = succ(b)→ y = succ(f(b))

and it is easy to see that

(∀x ∈ N)(∀f)[(f : x→ V)→ ∃!y Φ(x, f, y, a)].

The properties of the natural numbers may now be verified by induction
on N in a straightforward manner.

Another example of recursion on N gives the famous Fibonacci numbers:

F (0) = 1

F (1) = 1

F (n+ 2) = F (n) + F (n+ 1)

and the relevant formula Φ(x, f, y) is:

(x = 0 ∨ x = 1→ y = 1)∧(∀n ∈ x)[x = succ(succ(n))→ y = f(n)+f(succ(n))].



Chapter 5

The Ordinal Numbers

The natural number system can be extended to the system of ordinal num-
bers.

An ordinal is a transitive set of transitive sets. More formally: for any
term t, “t is an ordinal” is an abbreviation for

(t is transitive) ∧ (∀x ∈ t)(x is transitive).

We often use lower case Greek letters to denote ordinals. We denote
{α : α is an ordinal} by ON.

From Theorem 6 we see immediately that N ⊆ ON.

Theorem 10.

1. ON is transitive.

2. ¬(∃z)(z = ON).

Proof.

1. Let α ∈ ON; we must prove that α ⊆ ON. Let x ∈ α; we must prove
that

47
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(a) x is transitive; and,

(b) (∀y ∈ x)(y is transitive).

Clearly (a) follows from the definition of ordinal. To prove (b), let
y ∈ x; by transitivity of α we have y ∈ α; hence y is transitive.

2. Assume (∃z)(z = ON). From (1) we have that ON is a transitive
set of transitive sets, i.e., an ordinal. This leads to the contradiction
ON ∈ ON.

Theorem 11. (Trichotomy of Ordinals)

Let α, β ∈ ON. Exactly one of three situations occurs:

α ∈ β, β ∈ α, α = β.

Proof. The reader may check that a proof of this theorem can be obtained
simply by replacing “N” with “ON” in the proof of Theorem 7.

Because of this theorem, when α and β are ordinals, we often write α < β
for α ∈ β as we do with natural numbers. Note that with this notation,
trichotomy implies that α ≤ β if and only if α ⊆ β.

Since N ⊆ ON, it is natural to wonder whether N = ON. As we shall
see, the formula “N = ON” essentially says that there are no infinite sets
whereas the formula “N 6= ON” says that there are indeed infinite sets. Since
it seems that we cannot prove either of these statements, we find ourselves
at a crossroads in Set Theory. We can either add “N = ON” to our axiom
system, or we can add “N 6= ON”.

Of course, we go for the infinite!

The Axiom of Infinity N 6= ON

As a consequence, there is a set of all natural numbers; in fact, N ∈ ON.
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Theorem 12. (∃z)(z ∈ ON ∧ z = N).

Proof. Since N ⊆ ON and N 6= ON, pick α ∈ ON\N. We claim that for each
n ∈ N we have n ∈ α; in fact, this follows immediately from the trichotomy
of ordinals and the transitivity of N. Thus N = {x ∈ α : x ∈ N} and by
Comprehension ∃z z = {x ∈ α : x ∈ N}. The fact that N ∈ ON now follows
immediately from Theorem 6.

The lower case Greek letter ω is reserved for the set N considered as an
ordinal; i.e., ω = N. Theorems 6 and 12 now show that the natural numbers
are the smallest ordinals, which are immediately succeeded by ω, after which
the rest follow. The other ordinals are generated by two processes illustrated
by the next lemma.

Lemma.

1. ∀α ∈ ON ∃β ∈ ON β = succ(α).

2. ∀S [S ⊆ ON→ ∃β ∈ ON β =
⋃
S].

Exercise 5. Prove this lemma.

For S ⊆ ON we write supS for the least element of

{β ∈ ON : (∀α ∈ S)(α ≤ β)}

if such an element exists.

Lemma. ∀S [S ⊆ ON→
⋃
S = supS]

Exercise 6. Prove this lemma.

An ordinal α is called a successor ordinal whenever ∃β ∈ ON α = succ(β).
If α = sup α, then α is called a limit ordinal.

Lemma. Each ordinal is either a successor ordinal or a limit ordinal, but
not both.
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Exercise 7. Prove this lemma.

We are able to carry out induction on the ordinals in a way similar to
induction on the natural numbers via a process called transfinite induction.
In order to justify transfinite induction we need a theorem scheme.

For each formula Φ(n,w1, . . . , wk) of the language of set theory we have:

Theorem 13. Φ

For all w1, . . . , wk, if

∀n ∈ ON [(∀m ∈ n Φ(m))→ Φ(n)]

then
∀n ∈ ON Φ(n).

Proof. The reader may check that a proof of this theorem scheme can be
obtained by replacing “N” with “ON” in the proof of Theorem Scheme 8.

The Recursion Principle for the Ordinal Numbers

We can also carry out recursive definitions on ON. This process is called
transfinite recursion. For any formula Φ(x, f, y, w1, . . . , wk) of the language
of set theory, we denote by REC(Φ,ON, w1, . . . , wk) the class⋃

{f : (∃n ∈ ON)(∃f)[f : n→ V ∧ ∀m ∈ n Φ(m, f |m, f(m))]}.

Transfinite recursion is justified by the following theorem scheme.

For each formula Φ(x, f, y, w1, . . . , wk) of the language of set theory we
have:

Theorem 14. Φ

For all w1, . . . , wk suppose that we have

(∀x ∈ ON)(∀f)[(f : x→ V)→ ∃!y Φ(x, f, y, w1, . . . , wk)].

Then, letting F denote the class REC(Φ,ON, w1, . . . , wk), we have:
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1. F : ON→ V;

2. ∀m ∈ ON Φ(m,F |m,F (m), w1, . . . , wk).

Proof. The reader may check that a proof of this theorem scheme can be
obtained by replacing “N” with “ON” in the proof of Theorem Scheme 9.

When applying transfinite recursion on ON we often have three sepa-
rate cases to specify, rather than just two as with recursion on N. This is
illustrated by the recursive definitions of the arithmetic operations on ON.

Addition:

α + 0 = α;

α + succ(β) = succ(α + β);

α + δ = sup {α + η : η ∈ δ}, for a limit ordinal δ > 0.

Multiplication:

α · 0 = 0;

α · succ(β) = (α · β) + α;

α · δ = sup {α · η : η ∈ δ}, for a limit ordinal δ > 0.

Exponentiation:

α0 = 1;

αsucc(β) = (αβ) · α;

αδ = sup {αη : η ∈ δ}, for a limit ordinal δ > 0.

Note that, in each case, we are extending the operation from N to all of
ON. The following theorem shows that these operations behave somewhat
similarly on N and ON.

Theorem 15. Let α, β, and δ be ordinals and S be a non-empty set of
ordinals. We have,

1. 0 + α = α;

2. If β < δ then α + β < α + δ;
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3. α + supS = sup {α + η : η ∈ S};

4. α + (β + δ) = (α + β) + δ;

5. If α < β then α + δ ≤ β + δ;

6. 0 · α = 0;

7. 1 · α = α;

8. If 0 < α and β < δ then α · β < α · δ;

9. α · supS = sup {α · η : η ∈ S};

10. α · (β + δ) = (α · β) + (α · δ);

11. α · (β · δ) = (α · β) · δ;

12. If α < β then α · δ ≤ β · δ;

13. 1α = 1;

14. If 1 < α and β < δ then αβ < αδ;

15. αsupS = sup {αη : η ∈ S};

16. α(β+δ) = αβ · αδ;

17. (αβ)δ = αβ·δ; and,

18. If α < β then αδ ≤ βδ.

Exercise 8. Build your transfinite induction skills by proving two parts of
this theorem. Be prepared to use this theorem repeatedly as a lemma for
future exercises.

The extension of arithmetic operations from N to ON gives something
new and different. Ordinal addition and multiplication are not commutative.
This is illustrated by the following examples, which are easy to verify from
the basic definitions.

Examples.

1. 1 + ω = 2 + ω
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2. 1 + ω 6= ω + 1

3. 1 · ω = 2 · ω

4. 2 · ω 6= ω · 2

5. 2ω = 4ω

6. (2 · 2)ω 6= 2ω · 2ω

We do have a form of subtraction, as in this subtraction lemma.

Lemma. ∀α ∈ ON ∀β ∈ α ∃!γ ∈ ON α = β + γ.

Exercise 9. Prove this lemma and show that every ordinal can be written
uniquely as δ + n where δ is a limit ordinal and n ∈ ω.

Lemma. If β is a non-zero ordinal then ωβ is a limit ordinal.

Exercise 10. Prove this lemma.

Lemma. If α is a non-zero ordinal, then there is a largest ordinal β such
that ωβ ≤ α.

Exercise 11. Prove this lemma. Show that the β ≤ α and that there are
cases in which β = α. Such ordinals β are called epsilon numbers (The
smallest such ordinal α = ωα is called ε0.)

Commonly, any function f with dom(f) ⊆ ω is called a sequence. If
dom(f) ⊆ n+ 1 for some n ∈ ω, we say that f is a finite sequence; otherwise
f is an infinite sequence. As usual, we denote the sequence f by {fn}, where
each fn = f(n).

Lemma. There is no infinite decreasing sequence of ordinals.

Proof. Let’s use an indirect proof. Suppose x ⊆ ω is infinite and f : x→ ON
such that if n < m then f(n) > f(m). Let X = {f(n) : n ∈ x}. By the
Axiom of Foundation there is y ∈ X such that y ∩X = ∅; i.e., there is n ∈ x
such that f(n) ∩X = ∅. However, if m ∈ x and m > n then f(m) ∈ f(n),
which is a contradiction.
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If n ∈ ω and s : (n + 1) → ON is a finite sequence of ordinals, then the

sum
n∑
i=0

s(i) is defined by recursion as follows.

0∑
i=0

s(i) = s(0); and,

m+1∑
i=0

s(i) =
m∑
i=0

s(i) + s(m+ 1), for m < n.

This shows that statements like the following theorem can be written
precisely in the language of set theory.

Theorem 16. (Cantor Normal Form)

For each non-zero ordinal α there is a unique n ∈ ω and finite sequences
m0, . . . ,mn of positive natural numbers and β0, . . . , βn of ordinals which sat-
isfy β0 > β1 > · · · > βn such that

α = ωβ0 ·m0 + ωβ1 ·m1 + · · ·+ ωβn ·mn.

Proof. Using the penultimate lemma, let

β0 = max {β : ωβ ≤ α}

and then let
m0 = max {m ∈ ω : ωβ0 ·m ≤ α}

which must exist since ωβ0m ≤ α for all m ∈ ω would imply that ωβ0+1 ≤ α.

By the subtraction lemma, there is some α0 ∈ ON such that

α = ωβ0 ·m0 + α0

where the maximality of m0 ensures that α0 < ωβ0 . Now let

β1 = max {β : ωβ ≤ α0}

so that β1 < β0. Proceed to get

m1 = max {m ∈ ω : ωβ1 ·m ≤ α0}
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and α1 < ωβ1 such that α0 = ωβ1 · m1 + α1. We continue in this manner
as long as possible. We must have to stop after a finite number of steps or
else β0 > β1 > β2 > . . . would be an infinite decreasing sequence of ordinals,
contradicting the previous lemma. The only way we could stop would be if
some αn = 0. This proves the existence of the sum.

Exercise 12. Prove that whenever k ∈ ω, andm0, . . . ,mk < ω, and α0, . . . , αk <
β, we have

ωβ > ωα0 ·m0 + · · ·+ ωαk ·mk

and use this to finish the proof of Theorem 16 by showing that the sum is
unique.

There is an interesting application of ordinal arithmetic to Number The-
ory. Pick a number — say x = 54.

We have 54 = 25 + 24 + 22 + 2 when it is written as the simplest sum
of powers of 2. In fact, we can write out 54 using only the the arithmetic
operations and the numbers 1 and 2. This will be the first step in a recursively
defined sequence of natural numbers, {xn}. It begins with n = 2 and is
constructed as follows.

x2 = 54 = 2(22+1) + 222 + 22 + 2.

Subtract 1.
x2 − 1 = 2(22+1) + 222 + 22 + 1.

Change all 2’s to 3’s, leaving the 1’s alone.

x3 = 3(33+1) + 333 + 33 + 1.

Subtract 1.
x3 − 1 = 3(33+1) + 333 + 33.

Change all 3’s to 4’s, leaving any 1’s or 2’s alone.

x4 = 4(44+1) + 444 + 44.

Subtract 1.

x4 − 1 = 4(44+1) + 444 + 43 · 3 + 42 · 3 + 4 · 3 + 3.
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Change all 4’s to 5’s, leaving any 1’s, 2’s or 3’s alone.

x5 = 5(55+1) + 555 + 53 · 3 + 52 · 3 + 5 · 3 + 3.

Subtract 1 and continue, changing 5’s to 6’s, subtracting 1, changing 6’s to
7’s and so on, obtaining:

x6 = 6(66+1) + 666 + 63 · 3 + 62 · 3 + 6 · 3 + 2,

x7 = 7(77+1) + 777 + 73 · 3 + 72 · 3 + 7 · 3 + 1,

x8 = 8(88+1) + 888 + 83 · 3 + 82 · 3 + 8 · 3,
x9 = 9(99+1) + 999 + 93 · 3 + 92 · 3 + 9 · 2 + 7,

and so on.

One may ask the value of the limit

lim
n→∞

xn.

What is your guess? The answer is surprising.

Theorem 17. (Goodstein)

For any initial choice of x there is some n such that xn = 0.

Proof. We use an indirect proof; suppose x ∈ N and for all n ≥ 2 we have
xn 6= 0. From this sequence, we construct another sequence. For each n ≥ 2
we let gn be the result of replacing each occurrence of n in xn by ω. So, in
the example above we would get:

g2 = ω(ωω+1) + ω(ωω) + ωω + ω,

g3 = ω(ωω+1) + ω(ωω) + ωω + 1,

g4 = ω(ωω+1) + ω(ωω) + ωω,

g5 = ω(ωω+1) + ω(ωω) + ω3 · 3 + ω2 · 3 + ω · 3 + 3,

g6 = ω(ωω+1) + ω(ωω) + ω3 · 3 + ω2 · 3 + ω · 3 + 2,

g7 = ω(ωω+1) + ω(ωω) + ω3 · 3 + ω2 · 3 + ω · 3 + 1,

g8 = ω(ωω+1) + ω(ωω) + ω3 · 3 + ω2 · 3 + ω · 3,



57

g9 = ω(ωω+1) + ω(ωω) + ω3 · 3 + ω2 · 3 + ω · 2 + 7,

and so on. Now use the inequality of Exercise 12 to show that {gn} would be
an infinite decreasing sequence of ordinals contradicting the previous lemma.

It is interesting that, although the statement of the theorem does not
mention infinity in any way, we used the Axiom of Infinity in its proof. We
do not need the Axiom of Infinity in order to verify the theorem for any one
particular value of x — we just need to carry out the arithmetic. The reader
can do this for x = 4; doing it for x = 5 would be tedious. Finishing our
example x = 54 would be humanly impossible.

Moreover, the calculations are somewhat different for different values of
x. Mathematical logicians have proved that, in fact, there is no uniform
method of finitary calculations which will give a proof of the theorem for all
x. The Axiom of Infinity is necessary for the proof.
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Chapter 6

Relations and Orderings

We say R is a relation whenever

∀p ∈ R ∃x ∃y p = 〈x, y〉

and we say that R is a relation on X provided R ⊆ X ×X.

An example of a relation R is given by the membership relation:

〈x, y〉 ∈ R iff x ∈ y.

Another example is the inclusion relation:

〈x, y〉 ∈ R iff x ⊂ y.

Let us set out some terminology for properties of relations. In the follow-
ing definitions, R and X are terms.

1. We say a relation R is reflexive on X whenever ∀x ∈ X 〈x, x〉 ∈ R.

2. We say a relation R is irreflexive on X whenever ∀x ∈ X 〈x, x〉 /∈ R.

3. We say a relation R is transitive on X whenever

∀x ∈ X ∀y ∈ X ∀z ∈ X [(〈x, y〉 ∈ R ∧ 〈y, z〉 ∈ R)→ 〈x, z〉 ∈ R].
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4. We say a relation R is symmetric on X whenever

∀x ∈ X ∀y ∈ X (〈x, y〉 ∈ R→ 〈y, x〉 ∈ R).

5. We say a relation R is well founded on X whenever

∀Y [(Y ⊆ X ∧ Y 6= ∅)→ (∃y ∈ Y ∀x ∈ Y 〈x, y〉 /∈ R)].

Such an y is called minimal for Y .

6. We say a relation R is total on X whenever

∀x ∈ X ∀y ∈ X [〈x, y〉 ∈ R ∨ 〈y, x〉 ∈ R ∨ x = y].

7. We say R is extensional on X whenever

∀x ∈ X ∀y ∈ X [x = y ↔ ∀z ∈ X (〈z, x〉 ∈ R↔ 〈z, y〉 ∈ R)].

Notice the use of the word transitive again; this time for transitive relation
rather than transitive set. The terminology is unfortunate — the membership
relation is not necessarily transitive on a transitive set; for example:

{0, 1, {1}}

However the Axiom of Extensionality ensures that the membership relation
is extensional on any transitive set and the Axiom of Foundation says that
the membership relation is well founded on any set whatsoever.

Exercise 13. Prove that any relation which is both well founded and total
is also irreflexive, extensional and transitive.

There is an interesting and useful characterisation of well founded rela-
tions, giving an ordinal number ”rank” to each element of a well founded
set.

Theorem 18. For a relation R on a set X the following are equivalent:

1. R is well founded on X.
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2. There a function f : X → ON with f(x) < f(y) whenever 〈x, y〉 ∈ R.

3. There is no function f : ω → X such that ∀n ∈ N 〈f(n+ 1), f(n)〉 ∈ R

Proof. We first treat the implication from (1) to (2). Using recursion on ON
we define g : ON→ P(X) by

g(β) =
{
x : x is a minimal element of X \

⋃
{g(α) : α < β}

}
.

From g we obtain f : X → ON by

f(x) =

{
the unique α ∈ ON with x ∈ g(α), if possible;

0, otherwise.

By Theorem 10 and the Axiom of Replacement there must be some least
δ ∈ ON such that δ /∈ rng(f). This means that g(δ) = ∅, and since R is well
founded we must have

X =
⋃
{g(α) : α < δ}.

To finish the proof suppose 〈x, y〉 ∈ R and f(y) = β. We have y ∈ g(β)
so that y is a minimal element of

X \
⋃
{g(α) : α < β},

and hence we have that

x /∈ X \
⋃
{g(α) : α < β}.

In other words x ∈ g(α) for some α < β and so f(x) = α < β = f(y).

The implication from (2) to (3) is quick. If (3) were false and there were
such an f ′ : ω → X then, using f from (2), we see that f ◦ f ′ would give an
infinite decreasing sequence of ordinals.

We now verify the implication from (3) to (1) by proving the contrapos-
itive. Suppose that X is not well founded; this means that there is some
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non-empty Y ⊆ X with no minimal element. Fix some y0 ∈ Y . We will
construct f : ω → X by recursion beginning with f(0) = y0.

We have:
(∀y ∈ Y )(∃!z) z = {x ∈ Y : 〈x, y〉 ∈ R}

and so by Replacement:

∃Z Z = {z : (∃y ∈ Y )z = {x ∈ Y : 〈x, y〉 ∈ R}

and since Y has no minimal element each set in Z is non-empty. We now
invoke Theorem 5 to obtain

g : Z →
⋃

Z such that for all z ∈ Z we have g(z) ∈ z.

That is, for each y ∈ Y :

g({x ∈ Y : 〈x, y〉 ∈ R}) ∈ {x ∈ Y : 〈x, y〉 ∈ R}

and so for each y ∈ Y :

〈g({x ∈ Y : 〈x, y〉 ∈ R}), y〉 ∈ R.

We can now use Theorem 9 to obtain f : ω → Y defined by f(0) = y0 and

f(n+ 1) = g({x ∈ Y : 〈x, f(n)〉 ∈ R}).

The ordinal-valued function arising in the second part of the theorem is
call a rank function for the relation R. It will allow us to prove statements
about R by induction on rank, as we shall see below.

A relation R on a set A is said to be isomorphic to a relation S on a set
B provided that there is a bijection f : A→ B, called an isomorphism, such
that for all x and y in A we have

〈x, y〉 ∈ R iff 〈f(x), f(y)〉 ∈ S.

One of the key facts in Set Theory is the Mostowski Collapsing Theorem.
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Theorem 19. Let R be a well founded extensional relation on a set X. There
is a unique transitive set M and a unique isomorphism h : X →M .

Proof. In order to show the existence of the isomorphism, we first obtain
a rank function f : X → ON directly from the characterisation of well
foundedness, Theorem 18. Let δ be an ordinal such that rng(f) ⊆ δ. By
recursion on the ordinals we define for each β ∈ δ a function hβ : f←{β} → V
such that

hβ(y) = {hα(x) : α < β and 〈x, y〉 ∈ R}.

Let h =
⋃
{hβ : β < δ}. Clearly h is a function with domain X. Note that if

y ∈ f←{β} and 〈x, y〉 ∈ R then x ∈ f←{α} for some α < β, so that in fact

h(y) = hβ(y) = {hα(x) : α < δ and 〈x, y〉 ∈ R} = {h(x) : 〈x, y〉 ∈ R}.

Letting M = rng(h), it is now straightforward to see that h is a surjection
onto a transitive set and that h(x) ∈ h(y) iff 〈x, y〉 ∈ R.

Induction on rank, that is, on β ∈ δ will show that h is an injection. For
x ∈ X, call f(x) the rank of x; the inductive hypothesis is:

(∀y1)(∀y2)((f(y1) ≤ β ∧ f(y2) ≤ β ∧ h(y1) = h(y2)) → y1 = y2)

Assuming this is true for all α < β, let y1 and y2 be in X such that f(y1) ≤ β
and f(y2) ≤ β. If h(y1) = h(y2), then

{h(x) : 〈x, y1〉 ∈ R} = {h(w) : 〈w, y2〉 ∈ R}.

Let x ∈ X with 〈x, y1〉 ∈ R. There is w ∈ X with h(x) = h(w) and
〈w, y2〉 ∈ R. The ranks of x and w must be strictly less than β so by
inductive hypothesis we must have x = w and therfore 〈x, y2〉 ∈ R.

Similarly, for each w ∈ X with 〈w, y2〉 ∈ R we see that 〈w, y1〉 ∈ R. Since
R is extensional we must have y1 = y2 and so h is an injection and hence an
isomorphism.

Uniqueness follows rather immediately from the following surprising re-
sult.
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Exercise 14. Prove that any isomorphism between transitive sets is the
identity and show how this can be used to finish the proof of the Mostowski
Collapsing Theorem.. Of course, the relation on the transitive set is the
membership relation, which is extensional and well founded.

We say that a relation R is a partial ordering or partial order whenever
it is both irreflexive and transitive; if in addition it is total, then it is called a
linear ordering or linear order; furthermore, if in addition it is well founded,
then it is called a well ordering or well order. For those orderings we usually
write < instead of R and we write x < y for 〈x, y〉 ∈ R.

Whenever

∃z z = 〈P,<〉 and < is a partial ordering on P,

we say that 〈P,<〉 is a partially ordered set. Whenever the context is clear,
we just write P instead of 〈P,<〉. The concepts of linearly ordered set and
well ordered set are defined similarly.

The study of partially ordered sets continues to be a major theme in
contemporary Set Theory and the construction of elaborate partial orders is
of great technical importance. In contrast, well orders have been thoroughly
analysed and we shall now classify all well ordered sets.

Theorem 20. Each well ordered set is isomorphic to a unique ordinal.

Proof. Since well orders are extensional and well founded we can use the
Mostowski Collapsing Theorem, Theorem 19. The membership relation is
transitive on the resulting transitive set. It follows directly that each element
of this transitive set is transitive.

The unique ordinal given by this theorem is called the order type of the
well ordered set. We denote the order type of 〈X,<〉 by type(〈X,<〉). In
case X is a set of ordinals with the usual ordering we just write type(X).
For example type({n ∈ ω : n is even}) = ω.

Corollary. Whenever α ∈ ON and A ⊆ α we have type(A) ≤ α.
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Proof. Let type(A) = δ and f : δ → A be the isomorphism given by The-
orem 20. Let γ ∈ δ. Since f is order preserving, if f(γ) < γ we would
be able to recursively construct a strictly decreasing sequence of ordinals
γ, f(γ), f(f(γ)) . . . etc. Therefore we must have that γ ≤ f(γ) ∈ A ⊆ α
and so δ ⊂ α.

A partially ordered set T with a smallest element is said to be a tree
provided that for each t ∈ T the predecessors of t, <← {t}, form a well
ordered set; the order type of <← {t} is called the height of t in the tree T .

Exercise 15. Prove these two results about trees.

1. For any setX and β ∈ ON the partially ordered set 〈
⋃
{αX : α ∈ β},⊂〉

is a tree.

2. For any tree T there is a set X and an ordinal α such that T is iso-
morphic to a subset S of the partial order above. Theorem 20 may be
helpful.

We now come to the Well Ordering Principle, which is the fundamental
theorem of Set Theory due to E. Zermelo. In order to prove it we use the
Axiom of Choice and, for the first time, the Power Set Axiom.

Theorem 21. (∀X)(∃ <) [〈X,<〉 is a well ordered set].

Proof. We begin by immediately using the Power Set Axiom and invoking
Theorem 5 to obtain a choice function

f : P(X) \ {∅} → X

such that for each nonempty A ⊆ X we have f(A) ∈ A.

By recursion on ON we define g : ON→ X ∪ {X} as:

g(β) =

{
f(X \ {g(α) : α < β}), if X \ {g(α) : α < β} 6= ∅;
X, otherwise.

(6.1)

Now replace each x ∈ X ∩ ran(g) by the unique ordinal β such that g(β) = x.
The Axiom of Replacement gives the resulting set S ⊆ ON, where

S = {β ∈ ON : g(β) ∈ X}.
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By Theorem 10 there is a δ ∈ ON \ S. Choosing any such, we must have
g(δ) /∈ X; that is, g(δ) = X and so X ⊆ {g(α) : α < δ}. It is now
straightforward to verify that

{〈x, y〉 ∈ X ×X : x = g(α) and y = g(β) for some α < β < δ}

is a well ordering of X, which completes the proof.

This Well Ordering Principle is used frequently in modern Set Theory. In
fact, most uses of the Axiom of Choice are via the Well Ordering Principle.
We illustrate this by proving the famous Hausdorff Maximal Principle.

A subset Y of a partially ordered set X is said to be a chain provided
that the ordering is total when restricted to just Y . On the other hand, a
subset Y of a partially ordered set X is said to be an antichain provided that
the ordering is empty when restricted to Y so that no two elements of Y are
related. Furthermore, we say that a subset Y of X is centred provided that
for each finite Y ′ ⊆ Y there some x ∈ X such that x ≤ y for all y ∈ Y ′. Of
course, every chain is centred.

Theorem 22. Let X be a partially ordered set.

1. Let Y ⊆ X be a chain. There is a maximal chain C with Y ⊆ C ⊆ X;
that is, no larger C ′ including C is a chain.

2. Let Y ⊆ X be an antichain. There is a maximal antichain A with
Y ⊆ A ⊆ X; that is, no larger A′ including A is an antichain.

3. Let Y ⊆ X be a centred subset. There is a maximal centred G with
Y ⊆ G ⊆ X; that is, no larger G′ including G is centred.

Proof. We address the first part of the theorem. Obtain a well ordering of X
from Theorem 21. By Theorem 20 there is an ordinal κ and an isomorphism
f : κ→ X. Denoting each f(α) by xα, we are able to enumerate X in order
type κ as {xα : α ∈ κ}.

We define F : (κ+ 1)→ P(X) by transfinite recursion.

F (0) = Y



67

F (λ) =
⋃
{F (α) : α ∈ λ} if λ is a limit ordinal

F (α + 1) = F (α) ∪ {xα} if this is a chain

F (α + 1) = F (α) otherwise

Transfinite induction on β may now be used to verify that:

1. (∀α ≤ κ)(∀β ≤ κ) (α ≤ β → F (α) ⊆ F (β) ⊆ X).

2. (∀β ≤ κ) F (β) is a chain.

Now, if x ∈ X then x = xα for some α ∈ κ and furthermore if xα /∈ F (κ)
it must be that xα /∈ F (α + 1). By the definition of F , this means that
F (α) ∪ {xα} is not a chain and hence neither is F (κ) ∪ {x}. So taking
C = F (κ) gives a proof of the first part of the theorem except for verify-
ing (1) and (2).

The proof of the second part of the theorem is much like the first.

Exercise 16. Give, for the third part of the theorem, the verifications of (1)
and (2).
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Chapter 7

Cardinality

In this chapter, we extend the concept of the size of a finite set to include
infinite sets as well. By Zermelo’s Well Ordering Principle, Theorem 21, every
set can be well ordered. By Theorem 20, every well ordered set is isomorphic
to an ordinal. Therefore, for any set x there is some ordinal κ ∈ ON and a
bijection f : x→ κ.

We define the cardinality of x, |x|, to be the least κ ∈ ON such that there
is some bijection f : x→ κ. Every set has a cardinality.

Those ordinals κ such that κ = |x| for some x are called cardinals. Of
course, κ is a cardinal iff κ = |κ|.

Exercise 17. Show that the pigeonhole principle implies that each n ∈ ω
is a cardinal and so the concept of cardinality extends the concept of size.
Show also that ω is a cardinal but ω + 1 is not a cardinal and that, in fact,
every other cardinal is a limit ordinal.

Theorem 23. For any x and y we have:

1. |x| = |y| iff ∃ bijection f : x→ y,

2. |x| ≤ |y| iff ∃ injection f : x→ y, and

3. |x| ≥ |y| iff ∃ surjection f : x→ y. (Here y 6= ∅).
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Exercise 18. Look over the corollary to Theorem 20 and prove Theorem 23.
Indicate how it answers two of the questions mentioned in the introduction
to this book.

A set with cardinality at most ω is said to be countable and otherwise it
is said to be uncountable. A ground-breaking theorem of G. Cantor shows
that there exist uncountable sets and so there are different infinitudes. Here
we must call upon the Power Set Axiom and from now on we will use it
without special mention.

Theorem 24. For all x |x| < |P(x)|.

Proof. First note that if |x| ≥ |P(x)|, then there would, by Theorem 23, be
a surjection

g : x→ P(x).

But this cannot happen, since {a ∈ x : a /∈ g(a)} /∈ g→(x). Notice the
similarity to the argument for Russell’s Paradox which was patterned after
this proof.

For any ordinal α, we denote by α+ the least cardinal greater than α; by
Cantor’s Theorem, Theorem 24, this is guaranteed to exist. We often denote
the first uncountable cardinal ω+ by ω1, the second uncountable cardinal ω+

1

by ω2 and so on.

Cantor’s Theorem implies |P(ω)| ≥ ω1. The Continuum Hypothesis is the
statement |P(ω)| = ω1. This hypothesis, abbreviated as CH, was proposed
by G. Cantor in the nineteenth century and has been continually arising
in applications of Set Theory ever since. Unfortunately, we do not know
whether it is true or false.

We do know that CH does not follow from the other ZFC axioms (P.
Cohen, 1963). Nevertheless, we also know that adding CH to ZFC will not
give rise to any new inconsistencies (Gödel, 1938). So ZFC alone will not
determine the truth of CH and we find ourselves in a dilemma. Our axiom
system ZFC is too weak — we need to add some new axiom in order to
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strengthen it. This new axiom should be powerful enough to decide CH and
yet this new axiom should be obviously true. How is it possible that we could
have overlooked such a thing?

Exercise 19. Prove these two statements.

1. The supremum of a set of cardinals is a cardinal.

2. ¬∃z z = {κ : κ is a cardinal}.

The aleph function ℵ : ON→ ON is defined as follows:

ℵ(0) = ω

ℵ(α) = sup {ℵ(β)+ : β ∈ α}, α > 0.

We write ℵα for ℵ(α). For small α we sometimes write ωα for ℵ(α).

Exercise 20. Prove that

∀κ [κ is an infinite cardinal → (∃α ∈ ON)(κ = ℵα)].

and use this to conclude that each singular cardinal contains a cofinal subset
of regular cardinals.

The beth function i : ON→ ON is defined as follows:

i(0) = ω

i(α) = sup {|P(i(β))| : β ∈ α}, α > 0.

We write iβ for i(β). It is apparent from Cantor’s Theorem 24 that ℵα ≤ iα
for all α ∈ ON.

The Continuum Hypothesis, CH, can be written as ℵ1 = i1. It can
be strengthened to the Generalised Continuum Hypothesis, abbreviated as
GCH, which is the statement:

∀α ∈ ON ℵα = iα.

Using Exercise 20 it is easy to see that the GCH is equivalent to requiring
that |P(κ)| = κ+ for all infinite cardinals κ.
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Interestingly, there are cardinals at which the GCH holds provided it
holds at all smaller cardinals. That is:

(∀β ≤ α)(iβ = ℵβ) ⇒ iα+1 = ℵα+1

is true for all ordinals α such that ℵα is a singular cardinal of uncountable
cofinality (J. Silver). However the implication does not hold when ℵα is a
singular cardinal of countable cofinality (M. Magidor) nor does it hold when
ℵα is a regular cardinal (P. Cohen).

Ideally, we would like to know if, for a limit ordinal δ, we can determine
iδ+1 in terms of iδ. A substantial amount of work has produced striking
results. As examples (S. Shelah):

iω = ℵω ⇒ iω+1 < ℵα for some α < |P(ω)|+

and (F. Galvin and A. Hajnal):

iω1 = ℵω1 ⇒ iω1+1 < ℵα for some α < |P(ω1)|+

and most remarkable of all (S. Shelah):

iω = ⇒ iω+1 < ℵω4 .

But the best bounds are still a mystery.

Theorem 25. For any infinite cardinal κ, |κ× κ| = κ.

Proof. Let κ be an infinite cardinal. Since κ = |κ× {0}| and

κ× {0} ⊆ κ× κ

we have that κ ≤ |κ×κ|. In order to show that |κ×κ| ≤ κ, we use induction
and assume that |ρ× ρ| = ρ for each infinite cardinal ρ < κ. We can look at
this as a transfinite induction, proving that for all β ∈ ON:

∀α ∈ β |ℵα × ℵα| ≤ ℵβ.

We define an ordering < on κ× κ by:

〈α0, β0〉 < 〈α1, β1〉 iff


max {α0, β0} < max {α1, β1};
max {α0, β0} = max {α1, β1} ∧ α0 < α1; or,

max {α0, β0} = max {α1, β1} ∧ α0 = α1 ∧ β0 < β1
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It is easy to check that < well orders κ× κ.

Let θ be the order type of 〈κ × κ,<〉. It suffices to show that θ ≤ κ,
which we will prove by contradiction. Suppose θ > κ; there must be some
〈α, β〉 ∈ κ× κ such that:

<← ({〈α, β〉}) = {〈γ, δ〉 : 〈γ, δ〉 < 〈α, β〉}

has order type κ and hence cardinality κ.

By Exercise 17 we know that κ is a limit ordinal and so there is some
λ ∈ κ such that {α, β} ⊂ λ and hence

<← ({〈α, β〉}) ⊆ λ× λ.

In order to get a contradiction and complete the proof, it suffices to show
that |λ× λ| < κ for every λ ∈ κ. Since

|λ× λ| = ||λ| × |λ||

this follows by induction if λ is infinite and trivially if λ is finite.

Corollary. Let X be an infinite set.

1. For any non-empty Y |X × Y | = max {|X|, |Y |}.

2. |
⋃
X| ≤ max {|X|, sup {|x| : x ∈ X}}.

Proof. The first part follows immediately from Theorem 23 and Theorem 25.

For the second part let κ = sup {|x| : x ∈ X}. Use Theorem 23 and the
Axiom of Choice to obtain, for each x ∈ X, a surjection fx : κ → x. Define
a surjection f : X × κ→

⋃
X by

f(〈x, β〉) = fx(β).

The result now follows from the first part and Theorem 23.

The second part of the corollary is a generalization of the famous dictum
“the countable union of countable sets is countable”. The inequality can be
strict, as when X = P(ω).
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Exercise 21.

1. Prove an infinite version of the pigeonhole principle: if f : ω1 → ω then
there is some n ∈ ω such that f←({n}) is uncountable.

2. Use this and induction on N to prove the famous Delta System Lemma
which is stated below.

Lemma. Whenever A is an uncountable collection of finite sets, there is an
uncountable D ⊆ A and an R such that A ∩B = R for all distinct A and B
in D.

Exercise 22.

1. Prove that if g : ω1 → ω1 then for some 0 < α ∈ ω1 we get g→(α) ⊆ α.

2. Use this to prove the famous Pressing Down Lemma stated below.

Lemma. If f : ω1 → ω1 and f(α) < α whenever α 6= 0 then for some β ∈ ω1

we have |f←{β}| = ω1.

Along with the Delta System Lemma and the Pressing Down Lemma we
have the Free Set Lemma below.

Lemma. Whenever h : ω1 → {x : x is finite} there is an uncountable S ⊆ ω1

such that for all distinct α and β in S we have α /∈ h(β).

Proof. Let’s use the Pressing Down Lemma. Define f : ω1 → ω1 by letting
f(α) = 0 if h(α)∩α = ∅ and otherwise let f(α) be the maximum element of
h(α) ∩ α.

By the Pressing Down Lemma there is some uncountable S ⊆ ω1 such
that α /∈ h(β) whenever α < β and {α, β} ⊆ S. Therefore each α ∈ S is in
at most countably many members of {h(β) : β ∈ S}.

Now recursively define tα ∈ S for α ∈ ω1 by:

tα is the least element of S \
⋃
{h(tγ) : γ < α}

and check that {tα : α < ω1} is the set we seek.
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Let’s use the bracket notation. For a set X and a cardinal κ, [X]κ will
denote {a ∈ P(X) : |a| = κ} and [X]<κ will denote {a ∈ P(X) : |a| < κ}.

Theorem 26. Let κ and λ be cardinals.

1. If κ ≤ λ and λ is infinite, then |κλ| = |[λ]κ|.

2. If κ ≥ λ ≥ 2 and κ is infinite, then |κλ| = |P(κ)|.

Proof. To prove the first part notice that κλ ⊆ [κ× λ]κ and so |κλ| ≤ |[λ]κ|.
Furthermore, using the Axiom of Choice, for each x ∈ [λ]κ we can pick a
bijection fx : κ→ x. Since each fx ∈ κλ, we have an injection from [λ]κ into
κλ, so |[λ]κ| ≤ |κλ|.

To prove the second part, we use characteristic functions of subsets of κ
and the result of the first part with κ equal to λ to get

|P(κ)| = |κ2| ≤ |κλ| ≤ |κκ| = |[κ]κ| ≤ |P(κ)|

which finishes the proof.

Exercise 23. Verify the following facts:

1. for any infinite cardinal λ we have |[λ]<ω| = λ,

2. for any infinite cardinal κ we have |[κ]κ| = |P(κ)|,

3. |[P(ω)]ω| = |P(ω)|.

A subset S of an ordinal α is said to be cofinal whenever

∀β ∈ α ∃σ ∈ S β ≤ σ.

The cofinality of an ordinal α, cf(α), is the smallest cardinality of a cofinal
subset of α.

An infinite cardinal κ is said to be a regular cardinal whenever cf(κ) = κ.
Other infinite cardinals are said to be singular cardinals. It should be obvious
that ω is a regular cardinal. From the second part of the corollary to Theorem
25 it is easy to check that ω1 is a regular cardinal. In fact, for each infinite
ordinal κ, κ+ is a regular cardinal.
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Exercise 24. Prove this last statement and also prove that cf(δ) is a regular
cardinal for any infinite limit ordinal δ.

This next theorem of Gy. König will lead to a strengthening of Cantor’s
Theorem.

Theorem 27. For each infinite cardinal κ, |cf(κ)κ| > κ.

Proof. We show that there is no surjection g : κ → δκ, where δ = cf(κ).
Let f : δ → κ witness that cf(κ) = δ. Define h : δ → κ such that each
h(α) /∈ {g(β)(α) : β < f(α)}. Then h /∈ g→(κ), since otherwise h = g(β) for
some β < κ; pick α ∈ δ such that f(α) > β.

Corollary. For each infinite cardinal κ, cf(|P(κ)|) > κ.

Proof. Let λ = |P(κ)|. Suppose cf(λ) ≤ κ. Then

λ = |P(κ)| = |κ2| = |(κ×κ)2| = |κ(κ2)| = |κλ| ≥ |cf(λ)λ| > λ.

A regular uncountable cardinal κ is said to be inaccessible whenever

∀λ < κ |P(λ)| < κ.

An inaccessible cardinal is sometimes said to be strongly inaccessible, and
the term weakly inaccesible is given to uncountable regular cardinals κ such
that

∀λ < κ λ+ < κ.

Under the GCH these two notions are equivalent.

Axiom of Inaccessibles ∃κ κ is an inaccessible cardinal

Since ω would be inaccessible if only it were uncountable, the Axiom of
Inaccessibles is a stronger version of the Axiom of Infinity. However, the
mathematical community is not quite ready to replace the Axiom of Infinity
with it just yet. The Axiom of Inacessibles is not included in the basic ZFC

axiom system and so it is always explicitly stated whenever it is used.

This exercise will help you to get a feeling for the size of these cardinals.
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Exercise 25. Are the following two statements true? What if κ is assumed
to be a regular cardinal?

1. κ is weakly inaccessible iff κ = ℵκ.

2. κ is strongly inaccesssible iff κ = iκ.
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Chapter 8

What’s So Real About The
Real Numbers?

We now formulate three familiar number systems in the language of set the-
ory. From the natural numbers we shall construct the integers and from the
integers we shall construct the decimal numbers and the real numbers.

For each n ∈ N let −n denote {{m} : m ∈ n}. The integers, denoted of
course by Z, are defined as

Z = N ∪ {−n : n ∈ N}.

We can extend the ordering < on N to Z by letting x < y iff one of the
following holds:

1. x ∈ N ∧ y ∈ N ∧ x < y;

2. x /∈ N ∧ y ∈ N; or,

3. x /∈ N ∧ y /∈ N ∧
⋃
y <

⋃
x.

To form the reals, first let

F = {f : f ∈ ωZ}.
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We pose a few restrictions on such functions as follows. Let us write:

A(f) for (∀n ∈ ω)(f(n) ≥ 0) ∨ (∀n ∈ ω)(f(n) ≤ 0);

B(f) for (∀n > 0)(−9 ≤ f(n) ≤ 9);

C(f) for (∀m ∈ ω)(∃n ∈ ω \m)(f(n) /∈ {9,−9}); and,

D(f) for (∃m ∈ ω)(∀n ∈ ω \m)(f(n) = 0).

Finally, let
R = {f ∈ F : A(f) and B(f) and C(f)}

to obtain the real numbers and let

D = {f : f ∈ R and D(f)}

to obtain the decimal numbers. The number f(n) is the nth decimal place
of the real number f . As usual we will identify the integers with a subset of
the decimal numbers, identifying each z ∈ Z with the f ∈ D such that:

f(0) = z and f(n) = 0 for all other n ∈ ω.

We now order R as follows: let f < g iff

(∃n ∈ ω) [f(n) < g(n) ∧ (∀m ∈ n)(f(m) = g(m))].

This is clearly a linear ordering which extends our ordering on N and Z, and
restricts to D.

In light of these definitions, the operations of addition, multiplication and
exponentiation defined in Chapter 4 can be formally extended from N to Z,
D and then to R in a natural — if cumbersome — fashion. The real numbers
are complete; each bounded subset has a supremum and an infimum which
can be constructed recursively, decimal place by decimal place.

Theorem 28.

1. D is a countable dense subset of R.

2. R is uncountable; in fact |R| = |P(ω)|.

3. There is no subset of R with order type ω1.
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Exercise 26. Prove this theorem; dense is defined below.

That X is a dense subset of a linear order Y means that

(∀p ∈ Y)(∀q ∈ Y) [p < q → ∃d ∈ X p < d < q].

To simply say that a linear order is dense is to say that it is a dense subset
of itself, as in the following theorem.

Theorem 29. Any two non-empty countable dense linear orders without
endpoints are isomorphic.

Proof. This method of proof, the back-and-forth argument, is due to G.
Cantor. The idea is to define an isomorphism recursively in ω steps, such
that at each step we have an order-preserving finite function; at even steps
f(xi) is defined and at odd steps f−1(yj) is defined.

Precisely, if X = {xi : i ∈ ω} and Y = {yj : j ∈ ω} are two countable
dense linear orders we define f : X → Y by the formulas

f0 = {〈x0, y0〉}
fn+1 = fn ∪ {〈xi, yj〉}

where

1. if n is even, i = min {k ∈ ω : xk /∈ dom(fn)} and j is chosen so that
fn ∪ {〈xi, yj〉} is order-preserving; and,

2. if n is odd, j = min {k ∈ ω : yk /∈ rng(fn)} and i is chosen so that
fn ∪ {〈xi, yj〉} is order-preserving.

We then check that for each n ∈ ω, there is indeed a choice of j in (1) and i
in (2) and that f =

⋃
{fn : n ∈ ω} is an isomorphism.

This theorem leads to the fact that any non-empty complete dense linear
order without endpoints and with a countable dense subset is isomorphic
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to 〈R, <〉. It is natural to wonder if “with a countable dense subset” be
replaced by “in which every collection of disjoint intervals is countable”. The
affirmation of this is called the Suslin Hypothesis, one of the most important
issues in Set Theory. The next theorem, due to D. Kurepa, connects it to
the study of trees.

Theorem 30. The following are equivalent.

1. Suslin’s Hypothesis fails (there is a Suslin line).

2. There is an uncountable tree with no uncountable chains or antichains
(there is a Suslin tree).

Exercise 27. Prove this theorem.

First hint: construct the Suslin tree from intervals of the Suslin line with
an ordering of reverse inclusion. Second hint: construct the Suslin line from
maximal chains of the Suslin tree. Third hint: don’t attempt to prove either
statement directly. The Suslin Hypothesis, like the Continuum Hypothesis,
will require new axioms for its resolution.

A collection A of subsets of a set X is said to be almost disjoint provided
that a∩b is finite for all distinct a and b in A. Although any pairwise disjoint
family of subsets of ω is countable, there is an uncountable almost disjoint
subcollection of P(ω). In fact there is one of cardinality |P(ω)| = |R|. Since
|D| = ω, it suffices to find the almost disjoint collection as a subset of P(D).
For each f ∈ R, let af be

{d ∈ D : (∃n ∈ ω)[(∀m < n) d(m) = f(m) ∧ (∀m > n) d(m) = 0]

which is the set of decimal approximations to f . Clearly, if f ∈ R and g ∈ R
with f 6= g then af ∩ ag must be finite.

The famous American philosopher Yogi Berra once said, “It’s very diffi-
cult to predict what is going to happen — especially in the future”.

We will use Set Theory to show that predicting the future most of the
time is theoretically possible, but that it is very difficult. This example of
“applied mathematics” is due to C. S. Hardin and A. D. Taylor.
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Let T denote the real interval [0,∞). We think of t ∈ T as a moment in
time. We are trying to predict the values of a fixed but unknown function
f : T → R. At any time t we know the “history” of f up until time t, that
is, we know f |[0, t) and we wish to predict f |[t,∞).

To simplify matters we make all our predictions as functions with full
domain; so at time t ∈ T we will make a prediction g : T → R from the set
of functions H(t) which historically agree with f up to t.

H(t) = {g : (g : T → R) and g|[0, t) = f |[0, t)}.

The correct prediction would be f itself, but how can there be a way to
correctly guess f with no other information provided?

Surprisingly, there is a good strategy for correctly predicting the short
term future — that is, for predicting, at each time t ≥ 0 a function g such
that g|[t, t + ε) = f |[t, t + ε) for some ε > 0. We construct such a strategy
below.

From Theorem 21 we get a well ordering ≺ of TR which we now fix. From
this well ordering we make a strategy σ for predicting f :

σ : T → TR

where for each t ∈ T :

σ(t) is the least element of H(t) according to ≺ .

Let W = {t ∈ T : σ(s) 6= σ(t) for all s > t}. We claim that the strategy
σ correctly predicts the short term future of the function f at each time t
not in W .

Claim. For all t ∈ T \W there is ε > 0 such that

σ(t)(x) = f(x) for all x ∈ [t, t+ ε).

Proof of Claim. Let t ∈ T \W and fix s > t with σ(s) = σ(t). For all x with
t ≤ x < s we have:

σ(t)(x) = σ(s)(x) and

σ(s)(x) = f(x) since σ(s) ∈ H(s).

This proves the claim for ε = s− t.
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In order to show that σ is a good prediction strategy we need to show
that the set W is a small subset of T .

Claim. W is a well founded subset of R.

Proof of Claim. By Theorem 18 it suffices to show that W contains no infinite
decreasing sequence. Suppose then, for the sake of argument, that there were
such a sequence {tn : n ∈ ω}. Let σ(tn) = gn for each n ∈ ω; since each
tn+1 ∈ W we have that gn+1 6= gn.

Moreover, since tn+1 < tn we have

H(tn) ⊆ H(tn+1) and so {gn, gn+1} ⊆ H(tn+1).

Since gn+1 is the least member of H(tn+1) according to ≺, we must have that
gn+1 ≺ gn. Since ≺ is a well ordering, we get our desired contradiction.

Since it contains no infinite decreasing sequences, W cannot be dense in
any real interval; it is topologically small. It is also small in other ways. W
is a well ordered set and so by Theorem 20 it is isomorphic to an ordinal.
It cannot be isomorphic to an ordinal greater than or equal to ω1 because
that would contradict Theorem 28. Therefore W is countable and hence of
Lebesgue measure zero.

This latter fact means that there is some positive real number ε such that
the strategy σ correctly predicts the function f over the interval [t, t+ ε) for
at least 99% of the time t in [0, 1]. Unfortunately, the proof gives no idea
how large (or how very tiny) this ε might be.

Furthermore, implementing the prediction strategy σ seems to be imprac-
tical because we don’t have a good working knowledge of the well ordering ≺
on TR. Perhaps we should end this example with another quote attributed to
Yogi Berra. When asked to distinguish between theory and practice he said:
“In theory, theory and practice are the same; in practice — they ain’t.”

Let’s now turn to ordinary Euclidean space and prove a geometric theorem
of P. Komjáth and V. Totik in order to demonstrate a method of proof using
transfinite induction and transfinite recursion simultaneously. From R and
n ∈ N we construct Rn as nR, the set of sequences of reals of length n and
as usual, we identify R1 with R when no confusion can possibly arise.
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Theorem 31.

R3 is the disjoint union of straight lines, no two of which are parallel.

Proof. Induction is a method of proof, whereas recursion is a method of def-
inition. Until now, we would define something by recursion (for example,
ordinal addition) and then use induction to prove some properties about it
(for example, associativity). For this proof, however, we will use induction
concurrently with recursion, inductively verifying properties of our new ob-
jects as we recursively define them.

Let λ = |R|; since R3 ⊆ [3 × R]3 we also have |R3| = λ by Exercise 23.
Using a bijection between λ and R3 we can enumerate R3 as {pα : α < λ};
formally each pα = P (α) where P : λ→ R3 is a bijection.

We will now recursively choose straight lines lβ ⊆ R3 for β < λ such that
for each β we have:

1. {pα : α < β} ⊆
⋃
{lα : α < β},

2. lβ is disjoint from lα for all α < β and

3. lβ is not parallel to any lα for any α < β.

It is clear that if we can do this then {lα : α < λ} will satisfy the theorem.

To begin, we let l0 be any straight line through p0. Suppose now that we
are at stage β and that for all α < β we have properly chosen lα.

Let p be defined as the first point in the enumeration of R3 which is not
covered by the lines already defined. In particular if pβ /∈

⋃
{lα : α < β}

then p = pβ. For each α < β let Sα be the plane containing lα ∪ {p}.

Claim. R3 6=
⋃
{Sα : α < β}.

Proof of Claim. Since |β| < λ there is at least one horizontal plane, S, not in
the collection {Sα : α < β}. The non-horizontal members of the collection
intersect S in at most |β| straight lines. This resulting collection of straight
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lines in S does not include every line in S and any line in S not in the
collection is not covered by them.

Now choose q ∈ R3 \
⋃
{Sα : α < β} and let lβ be the straight line

containing {p, q}. Property (1) holds by definition.

If lβ would intersect some lα then they would both lie in the plane Sα;
since q /∈ Sα we must have Property (2). Similarly, Property (3) holds as
well, since if lβ would be parallel to lα they would both have to lie in the
plane Sα.

We often use this “concurrent recursion with induction” method, rather
than the “first recursion and then induction” method of proof. Technically,
what is being done here? In fact we are simply using induction to verify the
hypothesis of the theorem on recusion (that is, the existence of a unique set
with desired properties) and then taking the object that the theorem gives
us. More precisely, we verify

(∀x ∈ ON)(∀f)[(f : x→ V)→ ∃!y Φ(x, f, y, w1, . . . , wk)].

for those f which satisfy (∀j < x) Φ(j, f, y, w1, . . . , wk). The reader may
verify that in the proof of Theorem Scheme 14 this was all that was required.



Chapter 9

Ultrafilters Are Useful

It is intuitively clear that some infinite subsets of N may be considered “big-
ger” than others, for example {n ∈ N : n ≥ 9} may well be considered
“bigger” than {n ∈ N : n is even}. However, comparing other infinite sets
may be more problematic. It turns out to be useful to have a device which
can measure all subsets of N, even to divide them into just two types: big
and little, and even if some of the comparisons are done quite arbitrarily.

In order to accomplish this, we introduce the important notion of an
ultrafilter, which picks out the big subsets of a set S.

A collection of subsets U ⊆ P(S) is a filter provided that it satisfies the
first three of the following conditions:

1. S ∈ U and ∅ /∈ U .

2. If A ∈ U and B ∈ U , then A ∩B ∈ U .

3. If A ∈ U and A ⊆ B ⊆ S, then B ∈ U .

4. If A ⊆ S, then either A ∈ U or S \ A ∈ U .

5. For all x ∈ S, S \ {x} ∈ U .

87
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If a filter U obeys condition (4) it is called an ultrafilter, If U also satisfies
condition (5) it is said to be a free or non-principal ultrafilter; otherwise it
is a fixed or principal ultrafilter. The fixed ulrafilters over S are of the form
{A ⊆ S : x ∈ A} for some x ∈ S.

One classic example of a filter is the Fréchet filter F which is:

{A ⊆ ω : ω \ A is finite}

This can be generalised to any infinite S. Clearly, an ultrafilter U over ω is
free iff the Fréchet filter F ⊆ U . Fixed ultrafilters are trivial, but examples
of free ultrafilters are not so easy to come by.

Exercise 28. Consider the partial ordering of inclusion on P(ω)\{∅}. Apply
Theorem 22 to the Fréchet filter to prove the existence of a free ultrafilter
over ω. Generalise this from ω to any infinite set S..

Theorem 32. (F. Ramsey)

If P : [ω]2 → {1, 2}, then there is an infinite H ⊆ ω such that P is
constant on [H]2.

Proof. Let U be a free ultrafilter over ω. Either:

1. {α ∈ ω : {β ∈ ω : P ({α, β}) = 1} ∈ U} ∈ U ; or,

2. {α ∈ ω : {β ∈ ω : P ({α, β}) = 2} ∈ U} ∈ U .

As such, the proof breaks into two similar cases. We address case (1).

Let S = {α ∈ ω : {β ∈ ω : P ({α, β}) = 1} ∈ U}. Pick α0 ∈ S and let

S0 = {β ∈ ω : P ({α0, β}) = 1}.

Pick α1 ∈ S ∩ S0 and let

S1 = {β ∈ ω : P ({α1, β}) = 1}.

In general, recursively choose {αn : n < ω} such that for each n

αn+1 ∈ S ∩ S0 ∩ · · · ∩ Sn,
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where
Sn = {β ∈ ω : P ({αn, β}) = 1}.

Then H = {αn : n < ω} exhibits the desired property.

Ramsey used this in order to prove a finitary version.

Theorem 33. For each n ∈ N there is r ∈ N such whenever P : [r]2 → {1, 2}
there is an H ⊆ r of size n such that P is constant on [H]2.

Proof. We use an indirect proof. Fix n ∈ N such that for each r ∈ N there
is a partition function Pr : [r]2 → {1, 2} such that Pr is non-constant on [H]2

for any H ⊆ r of size n.

Let F be {f : (∃r ∈ N)f : [r]2 → {1, 2}}. F becomes a tree with the
ordering of proper function extention (equivalently: proper set inclusion).
For any r ∈ N the elements of T with height r are functions with domain [r]2

and range contained in {1, 2}. There are only finitely many (in fact exactly
2r(r+1)/2) possibilities for such functions. Therefore there are only finitely
many elements of the tree with height r.

Let T be the subtree of F given by:

{f ∈ F : f is not constant on [H]2 for any H ⊆ r of size n}

This tree is infinite because each Pr is in T . However, it has no infinite chains
because the union of an infinitely long chain in T would be a partition func-
tion contradicting the previous theorem. So the following exercise completes
the proof.

Exercise 29. Prove that if T is an infinite tree with only finitely many
elements of each finite height, then T must contain an infinite chain. Hint: let
U be a free ultrafilter over T and consider C = {s ∈ T : {t ∈ T : s < t} ∈ U}.

Theoren 33 gives us an r ∈ N for each n ∈ N, but does not tell us
whether r is large or small compared to n. The smallest such r = R(n) is
called the nth Ramsey number and must be determined by different means.
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It is elementary to show that R(3) = 6, somewhat more difficult to see that
R(4) = 18 and quite challenging to show that 43 ≤ R(5) ≤ 49 The exact
value of R(5) or the higher Ramsey numbers is unknown and determination
of the values of even the first few Ramsey numbers is thought to be one of
the most difficult problems in mathematics.

Ramsey’s Theorem is not true if ω is replaced by ω1 as this example of
W. Sierpinski shows.

Theorem 34. There is a function P : [ω1]2 → {1, 2} such that P is non-
constant on [H]2 for any uncountable H ⊆ ω1.

Proof. Let f : ω1 → R be an injection. Define P as follows: for α < β, let

P ({α, β}) =

{
1, if f(α) < f(β);

2, if f(α) > f(β).
(9.1)

Appealing to Theorem 28 now finishes the proof.

S. Todocevic has extended this by constructing a function P : [ω1]2 → ω1

such that P takes all values on [H]2 for any uncountable H ⊆ ω1. That is,
for any γ ∈ ω1 there are α and β in H such that P ({α, β}) = γ.

As we have seen, the intersection of finitely many members of an ultra-
filter is also a member of the ultrafilter. Given the rough analogy between
ultrafilters and two-valued measures, it is natural to ask for a free ultrafilter
over an uncountable set S such that the intersection of countably many mem-
bers of the ultrafilter is also a member of the ultrafilter. Such an ultrafilter
will be called countably complete.

More generally, given an uncountable cardinal κ, an ultrafilter U is said
to be κ−complete if ∀X ∈ [U ]<κ

⋂
X ∈ U , that is, the intersection of fewer

than κ members of U is also a member of U . So countably complete is
ω1−complete with this terminology.

Exercise 30. Let U be a countably complete free ultrafilter over a set S.
Prove that there is an uncountable cardinal κ ≤ |S| with a κ−complete free
ultrafilter over κ. Hint: let κ be the least cardinal such that the intersection



91

of κ many members of U is not a member of U and let this be witnessed by
{Aα : α ∈ κ}. Let Bβ =

⋂
{Aα : α < β} \ Aβ for all β ∈ κ.

An uncountable cardinal κ is said to be measurable whenever there exists
a κ−complete free ultrafilter over κ. Thus, Exercise 30 says that the exis-
tance of a countably complete ultrafilter entails the existence of a measurable
cardinal.

In some respects, a measurable cardinal acts like the cardinal ω.

Theorem 35. Let kappa be a measurable cardinal. If P : [κ]2 → {1, 2}, then
there is H ⊆ κ of size κ such that P is constant on [H]2.

Proof. The proof follows that of Ramsey’s Theorem 32, replacing ω with κ.
The κ−completeness of U will let us build the long sequence {αn : n ∈ κ}.

Theorem 36. Every measurable cardinal is inaccessible.

Proof. Let U be a κ−complete free ultrafilter over κ; then for each initial
segment α ⊆ κ we have that κ\α ∈ U . A cofinal subset of κ of size less than
κ would immediately contradict the completeness of U and hence κ must be
regular.

It remains to show that if λ < κ then |P(λ)| < κ which we do by contra-
diction: suppose λ < κ is the least cardinal such that |P(λ)| ≥ κ.

We impose a linear ordering on P(λ) by setting A < B provided that
there is some α < λ such that A∩ α = B ∩ α and α ∈ B \A. Checking that
this is indeed a linear ordering is straightforward. Furthermore, between any
A < B in P(λ) there is some C with A < C ≤ B and

C ∈ D = {D ∈ P(λ) : (∃α ∈ λ)D ⊆ α}.

By the choice of λ we have |D| < κ. An argument similar to that used for
the third part of Theorem 28 shows that this linear ordering on P(λ) can
have no increasing or decreasing sequences of order type κ. We now use a
variant of Sierpinki’s partition from Theorem 34. Let f : κ → P(λ) be an
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injection. Define P as follows: for α < β, let

P ({α, β}) =

{
1, if f(α) < f(β);

2, if f(α) > f(β).
(9.2)

We now apply Theorem 35 to get a contradiction.

Let U be a free ultrafilter over ω. Form an equivalence (i.e. reflexive,
symmetric and transitive) relation ∼ on ωR by the rule:

f ∼ g whenever {n ∈ ω : f(n) = g(n)} ∈ U .

In order to verify that this is an equivalence relation we only need to know
that U is a filter. The equivalence class of f is denoted by

[f ] = {g ∈ ωR : g ∼ f}.

The set of equivalence classes of ∼ is called the ultrapower of R with re-
spect to U and is usually denoted by ∗R. The elements of ∗R are called the
hyperreal numbers.

There is a natural embedding of R into ∗R given by

x 7→ [fx]

where fx : ω → R is the constant function; i.e., fx(n) = x for all n ∈ ω; we
identify R with its image under the natural embedding. We can also define
an ordering ∗< on ∗R by the rule:

a ∗< b whenever ∃f ∈ a ∃g ∈ b {n ∈ ω : f(n) < g(n)} ∈ U .

Exercise 31. Verify that ∗< is a linear ordering on ∗R which extends the
usual ordering of R and show where it is necessary to assume that U is an
ultrafilter, not just a filter.

We usually omit the asterisk, writing < for ∗<.

Note that R 6= ∗R; consider a = [f ], where f(n) = 1/n for each n > 0.
We have a > 0 but a < r for each positive r ∈ R; a member of ∗R with
this property is called a positive infinitesimal. Similarly, there are negative
infinitesimals; 0 is also considered to be an infinitesimal.



93

Exercise 32. Prove that there is a subset of ∗R of order type ω1, Theorem
28 notwithstanding.

We can also extend addition and multiplication to ∗R. For example, for
a, b and c in ∗R, a+ b = c means that

∃f ∈ a ∃g ∈ b ∃h ∈ c {n ∈ ω : f(n) + g(n) = h(n)} ∈ U .

Multiplication of hyperreals is defined similarly. With the same techniques
used for Exercise 31, it is now straightforward to show that ∗R is an ordered
field and the natural embedding places R as an ordered subfield of ∗R.

Since ∗R is an ordered field, for any positive infinitesimal a we have that
1/a exists and 1/a > r for any real number r; this is an example of a
positive infinite number.

A hyperreal number a is said to be finite whenever −r < a < r for some
real r. Two hyperreal numbers a and b are said to be infinitely close whenever
a− b is infinitesimal. We write a ≈ b.

Lemma. Each finite hyperreal number is infinitely close to a unique real
number.

Proof. Let a be finite. Let s = sup {r ∈ R : r < a}. Then a ≈ s. If we also
have another real t such that a ≈ t, then we have s ≈ t and so s = t.

If a is finite, the standard part of a, st(a), is defined to be the unique real
number which is infinitely close to a.

It is easy to check that for finite a and b,

st(a+ b) = st(a) + st(b); and,

st(a · b) = st(a) · st(b).

For each function F : R→ R there is a natural extension

∗F : ∗R → ∗R
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given, for each a ∈ ∗R, by

∗F (a) = [F ◦ s]

where s : ω → R is some element of a. It is easily verified that indeed ∗F is a
function which extends F . This allows us to write F for ∗F because omitting
the asterisk will cause no confusion.

In order to do elementary calculus we consider a function F : R → R
with y = F (x). We define, as usual, the increment 4y generated by 4x as
F (x+4x)− F (x).

We define the derivative, F ′, of F by setting F ′(x) to be

st

(
4y
4x

)
provided this exists and is the same for each non-zero infinitesimal4x. When
F is differentiable at x, we define the differential dy of F at x generated by
4x as dy = F ′(x)4x.

Assuming that F ′(x) exists it is straightforward to check that for each
infinitesimal 4x the quantities 4y and dy are both infinitesimal. Further-
more, if we also denote 4x by dx, the quantities 4x, 4y, dx and dy are all
infinitesimal and are related by:

dy

dx
= st(

4y
4x

) = F ′(x)

Theorem 37. (The Chain Rule)

Suppose y = F (x) and x = G(t) are differentiable functions.
Then y = F (G(t)) is differentiable and has derivative dy

dt
= dy

dx
· dx
dt

.

Proof. Let 4t = dt be any non-zero infinitesimal. Since G is differentiable,
we have that 4x = G(t +4t) − G(t) is infinitesimal. Now, in turn, we let
4y = F (x +4x) − F (x). We wish to calculate st(4y4t ), which will be the

derivative of y = F (G(t)). We consider two cases.
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Case 0: 4x = 0
We have 4y = 0, so st(4y4t ) = 0, and also dx

dt
= st(4x4t ) = 0.

So st(4y4t ) = dy
dx
· dx
dt

.

Case 1: 4x 6= 0
We have 4y4t = 4y

4x ·
4x
4t , so st(4y4t ) = st(4y4x) · st(4x4t ),

and again, st(4y4t ) = dy
dx
· dx
dt

.

The use of infinitesimals is now a valuable tool in both pure and applied
mathematics, allowing us to follow the intuition of Leibniz and Euler, yet
maintaining complete rigor. An important concept is the Leibniz Transfer
Principle: any statement true for all real numbers must also be true for all
hyperreal numbers. While we will not here make this more precise, it would,
for example, entail that if

F : Rn → R and G : Rn → R

then
∀~a ∈ Rn F (~a) = G(~a) iff ∀~a ∈ (∗R)n ∗F (~a) = ∗G(~a).

Here ∗F : (∗R)n → ∗R is the natual extension of F : Rn → R given by
∗F (~a) = [F ◦ ~s] where ~a = 〈a0, . . . , an−1〉 ∈ (∗R)n and ~s : ω → Rn such that
for each j ∈ ω we have ~s(j) = 〈s0(j), . . . , sn−1(j)〉 and si ∈ ai for each i.

But...let’s not go there now.
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Chapter 10

The Universe

Well, not THE universe — just the mathematical one. Nevertheless, V is
quite complicated and it would help to have some way of dividing V into
more manageable pieces, perhaps a hierarchy of collections of sets of greater
and greater complexity. In this chapter we shall discuss two methods of
measuring the complexity of a set, as well as their corresponding gradations
of the universe. For this discussion it will be helpful to develop both a new
induction procedure and a new recursion procedure, this time on the whole
universe. Each of these will depend upon the fact that every set is contained
in a transitive set, which we now demonstrate.

It is easy to see that a set X is transitive iff
⋃
X ⊆ X and this motivates

the following definition by recursion on N:

U(X, 0) = X and U(X,n+ 1) =
⋃

U(X,n) if n ∈ N,

and using this we define the transitive closure of X as:

trcl(X) =
⋃
{U(X,n) : n ∈ ω}.

It is now straightforward to check that, for any set X, trcl(X) is a transitive
set and that it is, in fact, the smallest transitive set including X as a subset.

As with N and ON, we can perform induction on the universe, called
∈-induction, as illustrated by the following theorem scheme.
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For each formula Φ(n,w1, . . . , wk) of the language of set theory we have:

Theorem 38. Φ

For all w1, . . . , wk, if

∀n ∈ V [(∀m ∈ n Φ(m))→ Φ(n)]

then
∀n ∈ V Φ(n).

Proof. We will assume that the theorem is false and derive a contradiction.
Take any fixed w1, . . . , wk and a fixed l ∈ V such that ¬Φ(l). Let t be any
transitive set containing l, e.g. t = trcl({l}).

The proof now proceeds verbatim as the proofs of Theorems 8 and 13.

The Recursion Principle for the Universe

We can also carry out recursive definitions over all of V. This process is
called ∈ −recursion. For any formula Φ(x, f, y, w1, . . . , wk) of the language
of set theory, we denote by REC(Φ,V, w1, . . . , wk) the class⋃

{f : (∃n ∈ T)[f : n→ V ∧ ∀m ∈ n Φ(m, f |m, f(m))]}.

where T denotes {n : n is transitive}.

Analogous to ordinary recursion and transfinite recursion, this recursion
is justified by a theorem scheme.

For each formula Φ(x, f, y, w1, . . . , wk) of the language of set theory we
have:

Theorem 39. Φ

For all w1, . . . , wk suppose that we have

(∀x ∈ V)(∀f)[(f : x→ V)→ ∃!y Φ(x, f, y, w1, . . . , wk)].

Then, letting F denote the class REC(Φ,V, w1, . . . , wk), we have:
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1. F : V→ V;

2. ∀m ∈ V Φ(m,F |m,F (m), w1, . . . , wk).

Proof. This proof, like that of Theorem 14 is almost identical to the proof of
Theorem 9. Just replace N by V or T where appropriate.

The main application of ∈-recursion is to define our first new measure of
the complexity of a set, the rank function. This associates, to each set x, an
ordinal rank(x) by the following rule:

rank(x) = sup {rank(u) + 1 : u ∈ x}

By Theorem 39 this is a recursive definition of a function:

rank : V → V

and by ∈-induction, Theorem 38, we have that

rank : V → ON

Note that rank(∅) = 0 and in fact, by transfinite induction we immediately
see that rank(α) = α for all α ∈ ON.

Since x ∈ y implies that rank(x) < rank(y), the rank function is a global
witness to the well founded nature of the membership relation in the sense
of Theorem 18.

The cumulative hierarchy, an ordinal-gradation on V due to J. von Neu-
mann, is defined by by recursion on ON .

R(0) = ∅;
R(α + 1) = P(R(α)); and,

R(δ) =
⋃
{R(α) : α < δ} if δ is a limit ordinal.

Sometimes we write Rα or Vα for R(α). The next lemma gives two ba-
sic properties of the cumulative hierarchy. The proofs are straightforward
transfinite inductions.
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Lemma.

1. ∀α ∈ ON R(α) is transitive.

2. ∀α ∈ ON ∀β ∈ ON β < α→ R(β) ⊆ R(α.

Using the concept of rank we obtain this important theorem.

Theorem 40. V =
⋃
{R(α) : α ∈ ON}; i.e., ∀x ∃α ∈ ON x ∈ R(α).

Proof. Since every set has a rank, the theorem will follow from this claim:

{x : rank(x) < α} ⊆ R(α)

which we prove by transfinite induction.

If α = β + 1 then, for any x with rank(x) < α we have:

β ≥ rank(x) = sup{rank(y) + 1 : y ∈ x}.

Thus, rank(y) < β for all y ∈ x, and by inductive hypothesis, y ∈ R(β).
That is, x ⊆ R(β) and so x ∈ P(R(β)) = R(α).

On the other hand, if α is a limit ordinal, then for any x with rank(x) < α
we have rank(x) < β for some β < α and so

x ∈
⋃
{R(β) : β < α} = R(α).

Exercise 33. Verify these finer points about the rank hierarchy.

1. ∀x ∀α ∈ ON (x ∈ R(α)↔ ∃β ∈ α x ⊆ R(β)).

2. ∀x ∀α ∈ ON (x ∈ R(α + 1) \R(α) ↔ rank(x) = α).

We have discussed cardinality; it is also a way of measuring the complexity
of a set. However, if the set is not transitive, cardinality does not tell the
whole story since it cannot distinguish among the elements of the set. Some
elements may have larger cardinality than others than others. For example,



101

although N ∈ {N}, |N| = ℵ0 while |{N}| = 1. However, in truth, if we
look deeper, {N} is no less complicated than N. We are led to define the
hereditary cardinality, hcard(x), of a set x, as the cardinality of its transitive
closure:

hcard(x) = |trcl(x)|
The corresponding cardinal-gradation is defined as follows.

For each cardinal κ,

H(κ) = {x : hcard(x) < κ}.

The members of H(ω) are called the hereditarily finite sets and the members
of H(ω1) are called the hereditarily countable sets.

Theorem 41.

1. For any infinite cardinal κ, ∃z z = H(κ).

2. V =
⋃
{H(κ) : κ is a cardinal}.

Proof. The first part follows from the exercise below. The second part follows
from the fact that every set x has a transitive closure trcl(x) and hence a
hereditary cardinality hcard(x) = λ; so x ∈ H(λ+).

Exercise 34. Prove these three statements and show how they lead to a
proof of the first part of Theorem 41.

1. For any infinite cardinal κ, H(κ) is transitive.

2. For any infinite cardinal κ, ∀x hcard(x) < κ→ rank(x) < κ.

3. For any infinite cardinal κ, H(κ) ⊆ R(κ).

Theorem 42. If either κ = ω or κ is an inaccessible cardinal, then H(κ) =
R(κ).

Proof. From Exercise 34 we have H(κ) ⊆ R(κ).

For the reverse inclusion, let x ∈ R(κ). Since κ is a limit ordinal there is
some α < κ such that x ∈ R(α). Since R(α) is transitive x ⊆ R(α) and so
trcl(x) ⊆ R(α).
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So it suffices to prove by induction that ∀α < κ |R(α)| < κ. For successor
α = β + 1, we note that |P(λ)| < κ, where λ = |R(β)|; for limit α we apply
the corollary to Theorem 25, observing that κ is regular.

It follows from this theorem that for each inaccessible cardinal κ, H(κ) is
a transitive set closed under the operations of pairing, taking the power set
and taking the union of a collection of elements of H(κ) which is indexed by
a member of H(κ) and is therefore, by definition, a Grothendieck universe.

Exercise 35. Show that the following two statements (one from Set Theory,
one from Algebraic Geometry) are equivalent.

1. ∀α ∈ ON ∃κ > α κ is an inaccessible cardinal.

2. ∀x ∃U x ∈ U and U is a Grothendieck universe.



Chapter 11

Reflection

It is natural to wonder how close to V are the approximations given by
rank and by hereditary cardinality. We ask: which statements true for V
are also true for the various H(κ) and R(κ), i.e. which true statements are
also true when relativised to these sets? We are particularly interested in the
formulas of our ZFC axiom system which includes: Existence, Extensionality,
Pairing, Union, Intersection, Foundation, Choice, Power Set, Infinity, and the
Replacement Scheme. Which of these truths of V reflect down to an H(κ)
or an R(κ)?

We will rely upon the definition of relativisation given in Chapter 1. For
reasons explained there, we will only speak about relativising to non-empty
classes.

Whenever Φ is a formula with no free variables, we write M |= Φ for ΦM

and we say that M is a model of Φ or that Φ is true in M . More generally, if
Φ(v0, . . . , vk) does have have free variables and {m0, . . . ,mk} ⊆M , we write

M |= Φ(v0|m0, . . . , vk|mk) or just M |= Φ(m0, . . . ,mk)

provided that
(Φ(v0|m0, . . . , vk|mk))

M holds.

Notice that if the variable vi does not occur free in the formula Φ then mi

does not play a role and can be omitted from the string (m0, . . . ,mk). A
formula of LOST with no free variables is called a sentence.
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Since we are only relativising to non-empty M , each one is a model of
the Axiom of Existence.

In the theorem schemes used to show M |= Φ, we use a new proof tech-
nique, called induction on complexity of a formula. We prove something true
for Φ using the fact that it is true for all subformulas of Φ. This is best first
illustrated in a simple, straightforward situation.

For each sentence Φ of LOST we have:

Theorem 43. Φ

Let A and B be sets and f : A → B be an isomorphism (with respect to
the membership relation). Then: A |= Φ iff B |= Φ

Proof. Let f : A→ B be fixed as in the statement of the theorem. We would
like to prove this theorem by a kind of induction over the subformulas of Φ,
the formulas used in the construction of the formula Φ. But we cannot use the
statement of the theorem itself as any kind of an inductive hypothesis because
the statement relates only to a formula with no free variables. Although Φ
has no free variables, its subformulas certainly will have free variables; in fact
all occurrences of variables in atomic formulas are always free.

So we must create a variation of the theorem which will be meaningful for
any subformula Ψ of Φ and which will immediately give us the theorem when
Ψ is Φ. This is the lemma scheme which follows. It is a finite lemma scheme
— one lemma for each of the finitely many subformulas Ψ of our formula Φ.
Each of these finitely many lemmas plays a role in the proof of the theorem
for Φ.

Let all the variables occurring in the formula Φ lie among v0, . . . , vk. For
each subformula Ψ of Φ we have

Lemma. Ψ

Let f : A→ B be an isomorphism. For all a0, . . . , ak in A:

A |= Ψ(v0|a0, . . . , vk|ak) iff B |= Ψ(v0|b0, . . . , vk|bk)



105

where each b0 = f(a0), . . . , bk = f(ak).

Proof. We use induction on the complexity of Ψ.

There are two main steps. The base step proves all those instances of the
lemma scheme for which Ψ is an atomic subformula of Φ .

The inductive step proves the instances of the lemma scheme for each
subformula Ψ which is built from other subformulas Θ and Ω by an applica-
tion of a connective ¬, ∧, ∨ or →, or a quantifier ∀ or ∃. In this inductive
step we are permitted to assume that the instances of the lemma scheme for
Θ and for Ω are already known to be true; that is, the proof of the instance
of lemma scheme for Ψ will rely upon the instances of the lemma scheme for
Θ and for Ω.

We begin with the base step. There are two cases because there are two
types of atomic formulas.

1. When Ψ is the atomic formula vi = vj where i ≤ k and j ≤ k we need
to show that for all a0, . . . , ak in A

A |= Ψ(a0, . . . , ak) iff B |= Ψ(b0, . . . , bk).

But this is just
ai = aj iff bi = bj,

which, in turn, is just

ai = aj iff f(ai) = f(aj),

and this is true since f is an injection.

2. When Ψ is the atomic formula vi ∈ vj where i ≤ k and j ≤ k we need
to show that for all a0, . . . , ak in A

A |= Ψ(a0, . . . , ak) iff B |= Ψ(b0, . . . , bk).

But this is just
ai ∈ aj iff bi ∈ bj,



106 CHAPTER 11. REFLECTION

which, in turn, is just

ai ∈ aj iff f(ai) ∈ f(aj),

and this is true since f is an isomorphism.

We now turn to the inductive step. There are six cases, one for each
of the four connectives ¬, ∧, ∨ and →, as well as one for each of the two
quantifiers ∀ and ∃. We will assume, as an inductive hypothesis, that for all
a0, . . . , ak in A:

A |= Θ(v0|a0, . . . , vk|ak) iff B |= Θ(v0|b0, . . . , vk|bk)

and

A |= Ω(v0|a0, . . . , vk|ak) iff B |= Ω(v0|b0, . . . , vk|bk)

where each b0 = f(a0), . . . , bk = f(ak).

1. In the case that Ψ is (¬Θ), we prove

A |= Ψ(a0, . . . , ak) iff B |= Ψ(b0, . . . , bk)

by a chain of equivalences. We begin with: for all a0, . . . , ak in A

A |= (¬Θ)(v0|a0, . . . , vk|ak)

using the definition of relativisation in Chapter 1, we obtain

iff it is not true that A |= Θ(v0|a0, . . . , vk|ak))

and now using the inductive hypothesis applied to Θ, we have

iff it is not true that B |= Θ(v0|b0, . . . , vk|bk))

again using the definition of relativisation, we finish with

iff B |= (¬Θ)(v0|b0, . . . , vk|bk).
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2. In the case that Ψ is (Θ ∧ Ω), we use a chain of equivalences as in the
previous case. We begin with: for all a0, . . . , ak in A

A |= (Θ ∧ Ω)(v0|a0, . . . , vk|ak)

using the definition of relativisation, we get

iff both A |= Θ(v0|a0, . . . , vk|ak) and A |= Ω(v0|a0, . . . , vk|ak)

by the inductive hypothesis applied to Θ and to Ω, we get

iff both B |= Θ(v0|b0, . . . , vk|bk) and B |= Ω(v0|b0, . . . , vk|bk)

again using the definition of relativisation, we finish with

iff B |= (Θ ∧ Ω)(v0|b0, . . . , vk|bk).

3. The case that Ψ is (Θ ∨ Ω) is similar to the previous case.

4. The case that Ψ is (Θ→ Ω) is similar to the previous cases.

5. In the case that Ψ is (∀vj)Θ , we once more use a chain of equivalences.
We begin with: for all a0, . . . , ak in A

A |= (∀vj)Θ(v0|a0, . . . , vk|ak).

But since vj does not occur free in (∀vj)Θ, we have

iff A |= (∀vj)Θ(v0|a0, . . . , vj−1|aj−1, vj+1|aj+1, . . . vk|ak).

Now by the definition of relativisation and the simple logical equiva-
lence obtained by replacing the bound variable vj by the new variable
a, we obtain

iff for all a in A : A |= Θ(v0|a0, . . . , vj|a, . . . , vk|ak)

We now invoke the inductive hypothesis applied to Θ. Notice that here
we use the fact that f is a surjection.

iff for all b in B : B |= Θ(v0|b0, . . . , vj|b, . . . , vk|bk)

Again by a simple logical equivalence and the definition of relativisation
we get

iff B |= (∀vj)Θ(v0|b0, . . . , vj−1|bj−1, vj+1|bj+1, . . . vk|bk)

and since vj does not occur free in (∀vj)Θ we finish with

iff B |= (∀vj)Θ(v0|b0, . . . , vk|bk)
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6. The case that Ψ is (∃vj)Θ is similar to the previous case and so is left
for the reader.

We say that a formula Φ(v0, . . . , vk) is absolute for M provided that for
all m0, . . . ,mk in M we have:

M |= Φ(m0, . . . ,mk) iff Φ(m0, . . . ,mk).

By the definition of relativisation, every atomic formula is absolute for any
term M ; in fact, any formula without quantifiers is absolute for any M . It
will become valuable for us to know which formulas Φ are absolute for which
models M , especially transitive sets M .

Let’s look at a detailed example: a non-empty transitive set M and the
formula “v0 = ∅”. Formally, to show that the formula is absolute for M we
need to verify that for any m in M :

M |= (v0 = ∅)(v0|m) iff (v0 = ∅)(v0|m)

which is just a long way of writing:

for all m ∈M M |= m = ∅ iff m = ∅

To prove this, we must unravel the abbreviations of LOST. Let m ∈M :

M |= m = ∅ iff M |= m = {x : x 6= x}

iff M |= (∀x)(x ∈ m↔ x 6= x) iff ∀x ∈M M |= (x ∈ m↔ x 6= x)

iff ∀x ∈M [M |= x ∈ m⇔M |= x 6= x] iff ∀x ∈M [x ∈ m⇔ x 6= x]

iff ∀x ∈M x /∈ m iff M ∩m = ∅ iff m = ∅.

The assumption that M is transitive only gets used for the last step.

As another example, let’s check that “being disjoint” is absolute for tran-
sitive models. Let M be a transitive set containing a and b.

M |= a ∩ b = ∅ iff M |= {u : (u ∈ a) ∧ (u ∈ b)} = {u : u 6= u}
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iff M |= (∀u)((u ∈ a ∧ u ∈ b) ↔ u 6= u)

iff ∀u ∈M [(M |= u ∈ a and M |= u ∈ b) ⇔ M |= u 6= u]

iff ∀u ∈M [(u ∈ a and u ∈ b)⇔ u 6= u]

iff ∀u ∈M [u /∈ a ∩ b] iff a ∩ b ∩M = ∅ iff a ∩ b = ∅
where, again, transitivity is only invoked for the last step.

The Axiom of Extensionality and the Axiom of Foundation are absolute
for transitive models. Since they are each true (by assumption) all we need
to verify is the following lemma.

Theorem 44. Any transitive set M is a model of the Axiom of Extentionality
and the Axiom of Foundation.

Proof. M is a model of the Axiom of Extensionality because the member-
ship relation is extensional on any transitive set. We address the Axiom of
Foundation.

M |= ∀x [x 6= ∅ → (∃y ∈ x)(x ∩ y = ∅)]
iff ∀x ∈M [M |= x = ∅ or M |= (∃y ∈ x)(x ∩ y = ∅)].

We use the above examples to help us get:

iff ∀x ∈M [x = ∅ or (∃y ∈ x ∩M)(x ∩ y = ∅)].

Now since M is transitive, we get:

iff ∀x ∈M [x = ∅ or (∃y ∈ x)(x ∩ y = ∅)],

and this obviously follows from the Axiom of Foundation.

Before continuing to investigate models, we pause to extend our analysis
of the formulas of LOST; this will make our later work a lot easier.

A bounded formula (also called a 40 formula or a restricted formula) is
one which is built up as usual with respect to atomic formulas and connec-
tives, but where the (∃vi)Φ clause is replaced by (∃vi ∈ vj)Φ, and the (∀vi)Φ
clause is replaced by (∀vi ∈ vj)Φ. Thus each bound variable is bounded by
another variable.

Bounded formulas are absolute for transitive models. We prove this for-
mally as a theorem scheme. For each bounded formula Φ(v0, . . . , vk) we have:
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Theorem 45. Φ If M is a (non-empty) transitive set and {m0, . . . ,mk} ⊆
M , then

M |= Φ(m0, . . . ,mk) iff Φ(m0, . . . ,mk)

Proof. We again use the technique of induction on complexity of the formula.
This time the atomic formula step is trivial. The connective cases in the
inductive step slide by with no problem. Only the quantifier cases of the
inductive step require some discussion. In fact, these two cases are similar
to each other, so we will only address the existential quantifier case.

Since Φ is a bounded formula we can suppose that Φ is (∃vi ∈ vj)Θ where
vi and vj are among v0, . . . , vk. Without loss of generosity we shall assume
that vi and vj are different variables.

Let M and {m0, . . . ,mk} be as in the statement of the theorem. We
assume as inductive hypothesis that

M |= Θ(m0, . . . ,mk) iff Θ(m0, . . . ,mk)

and carry out the proof through a chain of equivalences.

Since vi does not occur free in Φ

M |= Φ(m0, . . . ,mk) iff M |= Φ(m0, . . . ,mi−1,mi+1, . . . ,mk)

and when the abbreviation is unraveled we obtain

M |= (∃vi)((vi ∈ vj) ∧Θ)(m0, . . . ,mi−1,mi+1, . . . ,mk).

We now use the definition of relativisation and change the bound variable vi
to the new variable m to get

∃m ∈M M |= (m ∈ vj) ∧Θ)(m0, . . . ,mi−1,m,mi+1, . . . ,mk).

Again using the definition of relativisation gives

∃m ∈M M |= (m ∈ mj) and M |= Θ(m0, . . . ,mi−1,m,mi+1, . . . ,mk).

Using the inductive hypothesis, this simplifies to

∃m ∈M m ∈ mj and Θ(m0, . . . ,mi−1,m,mi+1, . . . ,mk).
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We now use that M is transitive; mj ⊆M , so we get the equivalence

∃m ∈ mj Θ(m0, . . . ,mi−1,m,mi+1, . . . ,mk).

This immediately gives us

(∃vi ∈ vj)Θ(m0, . . . ,mi−1,mi+1, . . . ,mk),

and since vi does not occur free, we finish with

(∃vi ∈ vj)Θ(m0, . . . ,mk).

Many mathematical concepts can be expressed by bounded formulas.
Many more concepts have definitions which are formulas that are logically
equivalent to bounded formulas. That is, the original formula Φ can be
proved to be equivalent to a bounded formula Φ∗ by purely logical means
without invoking any of the axioms of ZFC. According to the discussion at
the end of Chapter 1, this equivalence will persist to the relativised formulas,
so that ΦM ⇔ (Φ∗)M and we have:

Φ ⇔ Φ∗ ⇔ M |= Φ∗ ⇔ M |= Φ

which shows that Φ is absolute for M . As a matter of fact, for transitive
models M , according Theorem 44, we would be permitted to invoke the
Axioms of Extensionality and Foundation in the proof of equivalence.

For example x = ∅ is formally an abbreviation for a formula which is not
a bounded formula:

(∀v)(((v ∈ x)→ (v 6= v)) ∧ ((v 6= v)→ (v ∈ x))).

But v 6= v is false (by logical assumption) so that ((v 6= v) → (v ∈ x)) is
logically true. Hence x = ∅ is logically equivalent to (∀v)((v ∈ x)→ (v 6= v))
which is the bounded formula (∀v ∈ x)(v 6= v).

The formula y = succ(x) is (∀v)[(v ∈ y) ↔ (v ∈ x ∪ {x}) and this is
logically equivalent to:

[x ∈ y] ∧ [(∀v ∈ x)(v ∈ y)] ∧ (∀v ∈ y)[(v ∈ x) ∨ (v = x)]
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which is a bounded formula. As a consequence we see that the formula “n is
a natural number” is also logically equivalent to a bounded formula. Other
examples of formulas logically equivalent to bounded formulas include:

x is transitive iff (∀y ∈ x)(∀z ∈ y)(z ∈ x)

x is an ordinal iff (x is transitive) ∧ (∀y ∈ x)(y is transitive)

z = {x, y} iff (x ∈ z) ∧ (y ∈ z) ∧ (∀u ∈ z)(u = x ∨ u = y)

Of course, applying the connectives (¬, ∧, ∨ and →) to bounded formulas
results in another bounded formula. In particular, the formula x ∈ ON\N is,
by Theorem 45 and the discussion above, absolute for any transitive model.
We use this observation below to show that a transitive set is a model of the
Axiom Of Infinity exactly when it contains ω.

Theorem 46. Let M be transitive. ω ∈M iff M |= N 6= ON.

Proof. Suppose ω ∈M . Then (∃x ∈M)(x ∈ ON \ N). By absoluteness

(∃x ∈M)M |= (x ∈ ON \ N)

and so M |= (∃x)(x ∈ ON \ N) so M |= N 6= ON.

Conversely, suppose that

M |= (∃x)(x ∈ ON \ N) ∨ (∃x)(x ∈ N \ON)

By absoluteness, we get:

(∃x ∈M)(x ∈ ON \ N) or (∃x ∈M)(x ∈ N \ON).

Since N \ ON = ∅, we must have the first statement holding. This means
that M contains an ordinal α ≥ ω. Since M is transitive α ⊆ M and so
ω ∈M .

The formula p = 〈x, y〉, that is

(∀z)[(z = {x} ∨ z = {x, y})→ z ∈ p] ∧ (∀z ∈ p)(z = {x} ∨ z = {x, y})
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is not absolute for all transitive models M . In fact it is is not absolute for the
transitive set M = 1 = {∅}. This means that the formula cannot be logically
equivalent to a bounded formula, even using the axioms of Extensionality
and Foundation. Nevertheless, using the Axiom of Pairing the formula is
equivalent to

(∃z ∈ p)(z = {x}) ∧ (∃z ∈ p)(z = {x, y}) ∧ (∀z ∈ p)(z = {x} ∨ z = {x, y})

and is therefore absolute for transitive models of the Axiom of Pairing.

Exercise 36. Verify the statements in the last paragragh.

This immediately gives more formulas which are logically equivalent to
bounded formulas assuming the Axioms of Extensionality, Foundation and
Pairing.

p is an ordered pair iff (∃u ∈ p)(∃x ∈ u)(∃v ∈ p)(∃y ∈ v)(p = 〈x, y〉)
f is a function iff (∀p ∈ f)(p is an ordered pair) and

(∀p ∈ f)(∀q ∈ f)[(∃u ∈ p)((u ∈ q) ∧ (∃x ∈ u)(u = {x}))→ (p = q)]

x ∈ dom(f) iff (∃p ∈ f)[(p is an ordered pair) ∧ (∃u ∈ p)(u = {x})
X ⊆ dom(f) iff (∀x ∈ X)(x ∈ dom(f))

dom(f) ⊆ X iff (∀p ∈ f)(∀u ∈ p)(∀x ∈ u)[x ∈ dom(f)→ x ∈ X]

f : X → ON iff f is a function and dom(f) ⊆ X and X ⊆ dom(f) and

(∀x ∈ X)(∃p ∈ f)(∃v ∈ p)(∃y ∈ v)[(p = 〈x, y〉) ∧ (y is an ordinal)]

A transitive model M of the Axiom of Pairing is simply a transitive set
such that

∀x ∈M ∀y ∈M ∃z ∈M z = {x, y}

which means that M is closed under pairing, the formation of pairs. So these
formulas above are absolute for transitive models closed under pairing, for
example H(θ) for an infinite cardinal θ or R(λ) for a limit ordinal λ.

The following observation will be helpful. For any formula Φ(v, w1, . . . , wk)
of LOST, we have:
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Lemma. Φ

If M is a transitive set and z ∈M , then for all m1, . . . ,mk in M we have:

M |= z = {v : Φ(v,m1, . . . ,mk)} iff z = {v ∈M : ΦM(v.m1, . . . ,mk)}.

Exercise 37. Prove this lemma scheme and use it to show that whenever
λ is a limit ordinal R(λ) is a model of the Intersection Axiom, the Union
Axiom, the Axiom of Choice and the Power Set Axiom.

Let us now investigate whether a transitive setM is a model of an instance
of the Axiom of Replacement scheme for a formula Φ(x, u, v, w1, . . . , wk). To
this end, let w1, . . . , wk and x be in M and assume that

M |= (∀u ∈ x)(∃!v)Φ

while we attempt to show that

M |= ∃z z = {v : ∃u ∈ x Φ}.

From our assumption, after a little unravelling we get:

(∀u ∈M ∩ x)(∃v ∈M)M |= Φ ∧ (∀t)(Φ(v|t)→ v = t)

which, since M is transitive, is equivalent to:

(∀u ∈ x)(∃v)[v ∈M ∧ ΦM ∧ (∀t)(t ∈M ∧ ΦM(v|t)→ v = t)].

Notice that this does not give us the right to invoke Replacement for the
formula ΦM because we are not guaranteed a unique v for each u; v will only
be unique among the elements of M , not necessarily among all sets.

However, we are not at a standstill. Let Ψ be the formula (v ∈M)∧ΦM .
We can rewrite the assumption as

(∀u ∈ x)(∃v)[Ψ ∧ (∀t)(Ψ(v|t)→ v = t)]

which is (∀u ∈ x)(∃!v)Ψ and this enables us to use the instance of Replace-
ment for the formula Ψ. Doing this, we obtain:

∃z z = {v : (∃u ∈ x)Ψ}
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which when put in terms of our original formula Φ is:

∃z z = {v : (∃u ∈ x) (v ∈M) ∧ ΦM}.

This is logically equivalent to

∃z z = {v ∈M : (∃u ∈ x)ΦM}.

which, since M is transitive and x ⊆M gives:

∃z z = {v ∈M : ((∃u ∈ x)Φ)M}.

Now we are close; if there were such a z in M , by the previous lemma we
would immediately get:

M |= ∃z z = {v : ∃u ∈ x Φ}.

which is exactly what we are seeking. But of course, we are not always
guaranteed that there is such a z in M . For example, R(ω + ω) does not
contain the set

{v ∈ R(ω + ω) : (∃u ∈ ω)(v = ω + u)R(ω+ω)}

and so R(ω + ω) is not a model of this instance of the Replacement scheme.
Nevertheless, to show that the instance of Replacement for the formula Φ
holds in a transitive model M we only need to verify that for all x ∈M :

{v ∈M : (∃u ∈ x)ΦM} ∈M.

For each axiom Φ of ZFC except for the Axiom of Infinity and the Power
Set Axiom, we have the following.

Theorem 47. Φ

For each regular cardinal κ H(κ) |= Φ.

Exercise 38. Verify this theorem scheme.

Since H(ω) = R(ω) a consequence of all this work is that the hereditarily
finite sets, H(ω) is a model of each axiom of ZFC except for the Axiom of
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Infinity. This allows us to draw some conclusions about the ZFC axioms
which cannot be expressed as formulas of LOST. These will be statements
about Set Theory rather than statements of Set Theory.

Gödel’s Second Incompleteness Theorem tells us that even if the ZFC ax-
ioms are consistent we cannot prove this from these same ZFC axioms alone.
Nevertheless, assuming only the ZFC axioms we can infer the consistency of
the collection of all of ZFC except the Axiom of Infinity. We reason as fol-
lows. If this collection of axioms were inconsistent they would entail a proof
of the formula (0 = 1). This proof could involve only finitely many axioms
from the collection and we form the formula Θ as the conjunction of these
finitely many axioms. According to the discussion at the end of Chapter 1,
the relativisation of Θ to a non-empty set would entail the relativisation of
(0 = 1) to that same set. In particular, we would get:

H(ω) |= Θ ⇒ H(ω) |= (0 = 1)

But we have that H(ω) |= Θ because H(ω) is a model of each of the finitely
many formulas in the conjunction. This gives a contradiction since H(ω) is
definitely not a model of (0 = 1).

In a similar way, we can also show that the Axiom of Infinity is not
redundant — it does not follow from the remainder of the ZFC axioms. If it
did, then as above, we would get a formula Θ, a conjunction of finitely many
of these axioms and which logically implies the Axiom of Infinity. But, as
above, since H(ω) |= Θ we would get that H(ω) would be a model of the
Axiom of Infinity. Since ω /∈ H(ω) this would contradict Theorem 46.

We also have H(κ) = R(κ) whenever κ is an inaccessible cardinal. Using
H(κ) instead of H(ω) in the arguments above gives us that with the addition
of the Axiom of Inaccessibles to ZFC we can show the consistency of ZFC.
Furthermore, we can use the result of the following exercise to show that the
Axiom of Inacessibles does not follow from ZFC.

Exercise 39. Prove that if κ is the least inaccessible cardinal then

H(κ) |= “there are no inaccessible cardinals”

and use this to argue that we cannot prove the Axiom of Inaccessibles from
ZFC.
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The hereditarily countable sets also give us something interesting.

Exercise 40. Prove that H(ω1) |= (∀x)(x is countable). Use this to argue
that we cannot prove the existence of uncountable sets if we remove the
Power Set Axiom from ZFC.

The proof of this next theorem shows how to obtain absoluteness results
for some formulas which are not bounded.

Theorem 48.

For any infinite cardinal κ with X ∈ H(κ) and R ∈ H(κ) we have:

R is a well founded relation on X ⇔

H(κ) |= “R is a well founded relation on X”

Proof. The reader may check that that the definition of “R is a well founded
relation on X” is equivalent to a formula of the form ∀Y Φ(Y,X,R) where Φ
is a bounded formula and the Axiom of Pairing is used for the equivalence.
Furthermore, the last characterisation of well foundedness in Theorem 18 can
similarly be written in the form ∃fΨ(f,X,R) where Ψ is another bounded
formula. Since the proof of Theorem 18 did not use the Power Set Axiom,
we have that H(κ) |= ∀Y Φ(Y,X,R)↔ ∃fΨ(f,X,R). To finish the proof we
use Theorem 45 in the following chain of implications.

R is a well founded relation on X

⇒ ∀Y Φ(Y,X,R)

⇒ ∀Y ∈ H(κ) Φ(Y,X,R)

⇒ ∀Y ∈ H(κ) H(κ) |= Φ(Y,X,R)

⇒ H(κ) |= ∀Y Φ(Y,X,R)

⇒ H(κ) |= “R is a well founded relation on X”

⇒ H(κ) |= ∃fΨ(f,X,R)

⇒ ∃f ∈ H(κ) H(κ) |= Ψ(f,X,R)

⇒ ∃f ∈ H(κ) Ψ(f,X,R)

⇒ ∃fΨ(f,X,R)

⇒ R is a well founded relation on X
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From the previous exercise we see that no H(κ+) can be expected to be a
model of the Power Set Axiom. Our first use of that axiom was in the proof
of the Well Ordering Principle. It is remarkable that nevertheless this latter
result still holds in each H(κ).

Exercise 41. Use Theorem 48 to prove that Theorem 21 holds in H(κ) for
any infinite cardinal κ. Moreover, show that:

H(κ) |= every set has a cardinality.

This tells us that most of what we have proven from the ZFC axioms will
actually hold in H(κ) for some κ large enough so that H(κ) contains all the
relevant parameters.

The next theorem scheme is called the Levy Reflection Principle. It shows
that the global truth of any sentence in V is reflected locally to some R(β)
in the rank hierarchy. More poetically: the truth will eventually be revealed.

For each formula Φ(v0, . . . , vk) of the language of set theory, we have:

Theorem 49. Φ

∀α ∈ ON ∃β ∈ ON [β ≥ α and Φ is absolute for R(β)].

Proof. We will use the method of induction on complexity of formulas to
verify the absoluteness, but first, for a fixed formula Φ and ordinal α we
must find an appropriate corresponding ordinal β.

For each subformula Θ of Φ, for each variable vi with i ≤ k, for each
ordinal γ and for each sequence ~s : (k + 1) → V of length k + 1, we let
E(Θ, vi, γ, ~s) = γ if there is no ordinal δ ≥ γ with the property that for some
a ∈ R(δ):

Θ(v0|~s(0), . . . , vi−1|~s(i− 1), vi|a, vi+1|~s(i+ 1), . . . , vk|~s(k))

holds. On the other hand, if such an ordinal δ does exist, then we let
E(Θ, vi, γ, ~s) be the least such ordinal.

In an analogous manner, for each subformula Θ of Φ, for each variable vi
with i ≤ k, for each ordinal γ and for each sequence ~s : (k+1)→ V of length
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k + 1, we let U(Θ, vi, γ, ~s) = γ if there is no ordinal δ ≥ γ with the property
that for some a ∈ R(δ):

Θ(v0|~s(0), . . . , vi−1|~s(i− 1), vi|a, vi+1|~s(i+ 1), . . . , vk|~s(k))

fails to hold. On the other hand, if such an ordinal δ does exist, then we let
U(Θ, vi, γ, ~s) be the least such ordinal.

For each ordinal γ and each sequence ~s : (k + 1)→ V, let B(γ,~s) be the
maximum of the finitely many ordinals E(Θ, vi, γ, ~s) and U(Θ, vi, γ, ~s) where
Θ is a subformula of Φ and vi is one of the variables v0, . . . , vk.

We now use recursion on N to define F : N→ ON and β.

f(0) = α

f(n+ 1) = sup{B(f(n), ~s) : ~s : (k + 1)→ R(f(n))}
β = sup{f(n) : n ∈ N}

Clearly β ≥ α. In order to show that β satisfies the statement of the theorem,
it suffices to prove that for each subformula Ψ of Φ we have the following.

For all {a0, . . . , ak} ⊆ R(β) : Φ(a0, . . . , ak) ⇔ R(β) |= Φ(a0, . . . , ak).

We prove this by induction on complexity. As usual, the atomic formula
step and the connective cases of the inductive step are straightforward. We
proceed to the case of the existential quantifier. Suppose Ψ is ∃viΘ; as
inductive hypothesis we have:

For all {a0, . . . , ak} ⊆ R(β) : Θ(a0, . . . , ak) ⇔ R(β) |= Θ(a0, . . . , ak).

Fix {a0, . . . , ak} ⊆ R(β); there is some n ∈ N with {a0, . . . , ak} ⊆ R(f(n)).
Since vi is not free in ∃viΘ:

∃vi Θ(a0, . . . , ak) ⇔ ∃a Θ(a0, . . . , ai−1, a, ai+1, . . . , ak)

by the definition of E(Θ, vi, f(n), ~s) where ~s(j) = aj for each j ≤ k, we get:

⇔ ∃a ∈ R(β) Θ(a0, . . . , ai−1, a, ai+1, . . . , ak)

by inductive hypothesis

⇔ ∃a ∈ R(β) R(β) |= Θ(a0, . . . , ai−1, a, ai+1, . . . , ak)
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and since vi is not free

⇔ R(β) |= ∃viΘ(a0, . . . , ak).

With the same inductive hypothesis we take up the case of the universal
quantifier; Ψ is ∀viΘ. Again fix {a0, . . . , ak} ⊆ R(β); there is again some
n ∈ N with {a0, . . . , ak} ⊆ R(f(n)). Since vi is not free in ∀viΘ:

∀viΘ(a0, . . . , ak) ⇔ ∀aΘ(a0, . . . , ai−1, a, ai+1, . . . , ak)

by the definition of U(Θ, vi, f(n), ~s) where ~s(j) = aj for each j ≤ k, we get:

⇔ ∀a ∈ R(β) Θ(a0, . . . , ai−1, a, ai+1, . . . , ak)

by inductive hypothesis

⇔ ∀a ∈ R(β) R(β) |= Θ(a0, . . . , ai−1, a, ai+1, . . . , ak)

and since vi is not free

⇔ R(β) |= ∀viΘ(a0, . . . , ak).

The astute reader will have already noticed that we actually proved that
not only is Φ absolute for R(β), but so also is each subformula of Φ. We
state this as a corollary scheme; each fixed instance of the corollary scheme
can be formalised in LOST.

For each formula Φ(v0, . . . , vk) of LOST we have

Corollary. Φ

For any ordinal α there is an ordinal β ≥ α such that each subformula of Φ
is absolute for R(β).

The extra information given by this corollary to the Levy Reflection Prin-
ciple is important for the hypothesis of this next result.
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Exercise 42. Fix a formula Φ of LOST and a set S ⊆ ON such that for
each α ∈ S, each subformula of Φ is absolute for R(α). Prove, using the
technique of induction on the complexity of the suformulas of Φ that Φ is
absolute for R(δ) where δ = supS.

We can now demonstrate that ZFC cannot be finitely axiomatised. That
is, there is no finite collection of sentences, each of which is implied by our
ZFC axioms and which in turn, together imply all the axioms of ZFC.

If such a finite collection of sentences would exist, let Φ be their conjunc-
tion. Let Ω be the formula (∃α ∈ ON)(R(α) |= Φ). This is a formula of
LOST which follows from the instance of the Levy Reflection Principle for
the sentence Φ. Since this instance of the Levy Reflection Principle follows
from ZFC, it must follow from Φ. That is, Ω is provable from Φ using only
our basic logical assumptions. By the discussion at the end of Chapter 1,

R(β) |= Φ ⇒ R(β) |= Ω

for all ordinals β > 0, in particular for the least β (given by the Levy Re-
flection Principle) such that R(β) |= Φ. For this β we have R(β) |= Ω, that
is:

R(β) |= (∃α ∈ ON)(R(α) |= Φ).

So
∃α ∈ (R(β) ∩ON) R(β) |= (R(α) |= Φ).

Since β = R(β) ∩ON we get:

(∃α ∈ β) R(β) |= (R(α) |= Φ)

and by the definition of relativisation this becomes:

(∃α ∈ β) (R(β) ∩R(α)) |= Φ.

Since R(α) ⊆ R(β) we get that (∃α ∈ β) R(α) |= Φ and this contradicts the
minimality of β.

Exercise 43. Enumerate the (countably many) axioms of ZFC as Ψn : n ∈ N
in such a way that each axiom appears infinitely often in the enumeration.
Using the corollary to Theorem 49, recursively construct a strictly increasing
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sequence of ordinals {βn : n ∈ N} such that each subformula of Ψn is absolute
for R(βn). Let δ0 = sup{βn : n ∈ N}. According to Exercise 42 we have that
R(δ0) |= Ψ for each axiom Ψ of ZFC, so we have proven that:

∃δ ∈ ON R(δ) |= ZFC.

Now, since each axiom of ZFC holds in R(δ0) so too does their logical con-
sequence, that is:

(∃δ ∈ ON R(δ) |= ZFC)R(δ0).

So there is some δ1 ∈ δ0 such that R(δ1) |= ZFC. Again, since each axiom of
ZFC holds in R(δ1) so too does their logical consequence:

(∃δ ∈ ON R(δ) |= ZFC)R(δ1).

We obtain δ2 ∈ δ1 such that R(δ2) |= ZFC. We can continue in the same
manner, obtaining {δn : n ∈ N}. This is an infinite decreasing sequence of
ordinals, so something is wrong here. What?
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Elementary Submodels

In order to introduce some elementary set operations, we use the ordered
triple notation: 〈x, y, z〉 is 〈〈x, y〉, z〉 and the ordered quadruple notation:
〈w, x, y, z〉 is 〈〈w, x, y〉, z〉.

G0(A,B) = {〈u, v〉 : u ∈ A ∧ v ∈ B}; i.e., A×B
G1(A,B) = {〈v, u〉 : u ∈ A ∧ v ∈ A ∧ 〈u, v〉 ∈ B}
G2(A,B) = {〈u, 〈v, w〉〉 : {u, v, w} ⊆ A ∧ 〈u, v, w〉 ∈ B}
G3(A,B) = {〈u, v, w〉 : {u, v, w} ⊆ A ∧ 〈u, 〈v, w〉〉 ∈ B}
G4(A,B) = {〈v, u, w〉 : {u, v, w} ⊆ A ∧ 〈u, v, w〉 ∈ B}
G5(A,B) = {〈t, v, u, w〉 : {t, u, v, w} ⊆ A ∧ 〈t, u, v, w〉 ∈ B}
G6(A,B) = {u : u ∈ A ∧ u = B}; i.e., {B} or ∅
G7(A,B) = {u : u ∈ A ∧ u ∈ B}; i.e., A ∩B
G8(A,B) = {u : u ∈ A ∧B ∈ u}
G9(A) = {〈u, v〉 : u ∈ A ∧ v ∈ A ∧ u = v}
G10(A) = {〈u, v〉 : u ∈ A ∧ v ∈ A ∧ u ∈ v}

G11(A,B) = {u : u ∈ A ∧ u /∈ B}; i.e., A \B
G12(A,B,C) = {u : u ∈ A ∧ ∃v ∈ B 〈u, v〉 ∈ C}
G13(A,B,C) = {u : u ∈ A ∧ ∀v ∈ B 〈u, v〉 ∈ C}

123
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Elementary set operations were first proposed by K. Gödel; he had nine el-
ementary operations, but we shall enlarge the number to fourteen Gödel Operations
in order to make the proofs run smoothly.

It is natural to extend the ordered pair notation past triples and quadru-
ples to ordered n-tuples by recursion on N:

Tuples(0, X) = ∅
Tuples(1, X) = X

Tuples(2, X) = X ×X
Tuples(n+ 1, X) = Tuples(n,X)×X.

We denote a typical member of Tuples(m,X) by 〈x1, . . . , xm〉. Notice that
for m ∈ N, Tuples(m,X) is the (m− 1)− fold composition of G0:

Tuples(m,X) = G0(G0 . . . (G0(X,X), . . . X), X).

Shuffling the coordinates of an m-tuple can be done with Gödel operations
via the following Shuffle Lemma.

Lemma. For any m ∈ N \ {0, 1} and any permutation

σ : {1, . . . ,m} → {1, . . . ,m}

there is a composition Fσ of the operations G1, G2, G3, G4 and G5 such that
for any X and any S ⊆ Tuples(m,X),

Fσ(X,S) = {〈xσ(1), . . . , xσ(m)〉 ∈ Tuples(m,X) : 〈x1, . . . , xm〉 ∈ S}.

Proof. Fix m ∈ N, X and S. For ease of reading, let’s denote the function of
one variable G1(X, ·) by F1(·) and similarly for G2, G3, G4 and G5. It may
be of independent interest that each of our Fσ’s will be compositions of F1,
F2, F3, F4 and F5 only.

Binary exchanges generate the symmetric group. So, noting that the
identity permutation is given by F1 ◦ F1, it suffices to consider only those σ
such that for some 1 ≤ l < m ≥ 2:

σ(i) =


i+ 1, if i = l;

i− 1, if i = l + 1;

i, otherwise.
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Letting F
(n)
1 denote the n-fold composition of F1, etc., we address all cases.

if m = 2 Fσ = F1

if m = 3, and l = 1 Fσ = F4

if m ≥ 3, and l = m− 1 Fσ = F3 ◦ F1 ◦ F4 ◦ F1 ◦ F2

if m ≥ 4, and l = 1 Fσ = F
(m−3)
3 ◦ F4 ◦ F (m−3)

2

if m ≥ 4, and 2 ≤ l ≤ m− 2 Fσ = F
(m−l−2)
3 ◦ F5 ◦ F (m−l−2)

2

It is remarkable that many sets can be realised as the result of the fourteen
Gödel operations. For each formula Φ of the language of set theory with free
variables x, w0, . . . , wk we have:

Theorem 50. Φ
For all X and for all w0, . . . , wk in X, {x ∈ X : ΦX(x,w0, . . . , wk)} is

the result of a finite composition of Gödel operations on X,w0, . . . wk.

Proof. Fix the formula Φ. Without loss of generosity we may assume that
the free variables x, w0, . . . , wk do not also occur bound in Φ. Let x be x1

and let x2, . . . , xm be the bound variables of Φ.

We prove the theorem by induction on the complexity of the subformulas
of Φ, using the finite lemma scheme below; there is one lemma for each
subformula Ψ of Φ. The theorem follows from the lemma in which Ψ is
Φ after an (m − 1)−fold application of the Gödel operation G12(X, ·) to
{〈x1, . . . , xm〉 ∈ Tuples(m,X) : ΦX}

Continuing the notation of the previous theorem, for each subformula Ψ
of Φ we denote {〈x1, . . . , xm〉 ∈ Tuples(m,X) : ΨX} by AΨ and we have this
lemma.

Lemma. Ψ
AΨ is the result of a finite composition of Gödel operations onX,w0, . . . wk.

Proof. There are two steps in a proof by induction on complexity. This time
neither the base step nor the inductive step is immediate.
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For the base step we consider atomic formulas. Since we have treated the
variables xi different from the variables wi we have nine different types of
atomic formulas. We must address each case separately.

1. In the case that Ψ is wi = wj for i, j ≤ k the set AΨ is either
Tuples(m,X) or ∅ = G11(X,X) depending simply upon whether or
not wi is actually equal to wj or not.

2. The case where Ψ is wi ∈ wj for i, j ≤ k is similar to the previous case.

3. In the case that Ψ is wi = xj for i ≤ k and 1 ≤ j ≤ m the Shuffle
Lemma allows us to reduce to the situation in which j = 1 so that:

AΨ = G0(G0 . . . (G0(G6(X,wi), X) . . . X), X),

where the composition is (m− 1)−fold.

4. In the case that Ψ is xj ∈ wi for i ≤ k and 1 ≤ j ≤ m the Shuffle
Lemma again allows us to reduce to the situation in which j = 1, so
that:

AΨ = G0(G0 . . . (G0(G7(X,wi)) . . . X), X),

where the composition is (m− 1)−fold.

5. In the case that Ψ is wi ∈ xj for i ≤ k and 1 ≤ j ≤ m the Shuffle
Lemma again allows us to reduce to the situation in which j = 1 and

AΨ = G0(G0 . . . (G0(G8(X,wi), X) . . . X), X),

where the composition is (m− 1)−fold.

6. In the case that Ψ is xj = xj for 1 ≤ j ≤ m we simply have AΨ =
Tuples(m,X).

7. In the case that Ψ is xi = xj for 1 ≤ i, j ≤ m and i 6= j the Shuffle
Lemma allows us to reduce to the situation in which i = 1 and j = 2.

AΨ = G0(G0 . . . (G0(G9(X), X) . . . X), X),

where the composition is (m− 2)−fold.
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8. In the case that Ψ is xj ∈ xj for 1 ≤ j ≤ m we simply have AΨ = ∅ =
G11(X,X).

9. In the case that Ψ is xi ∈ xj for 1 ≤ i, j ≤ m and i 6= j the Shuffle
Lemma allows us to reduce to the situation in which i = 1 and j = 2.

AΨ = G0(G0 . . . (G0(G10(X), X) . . . X), X),

where the composition is (m− 2)−fold.

In the six cases of the inductive step, for the inductive hypothesis, we
assume that

both AΘ = {〈x1, . . . , xm〉 ∈ Tuples(m,X) : ΘX}
and AΩ = {〈x1, . . . , xm〉 ∈ Tuples(m,X) : ΩX}

are the result of a finite composition of Gödel operations on X,w0, . . . wk.

1. In the case that Ψ is ¬Θ we have AΨ = Tuples(m,X) \ AΘ and so
AΦ = G11(Tuples(m,X), AΘ)

2. In the case that Ψ is Θ ∧ Ω we have AΨ = AΘ ∩ AΩ. Noticing that
A ∩ B = A \ (A \ B), this case finishes in a manner similar to the
previous one.

3. In the case that Ψ is Θ ∨ Ω we have AΨ = AΘ ∪ AΩ

= Tuples(m,X) \ [(Tuples(m,X) \ AΘ) ∩ (Tuples(m,X) \ AΩ)]

and so this case finishes like the previous two.

4. In the case that Ψ is Θ→ Ω we have AΨ = (Tuples(m,X) \AΘ) ∪AΩ

so that this case is also similar.

5. In the case that Ψ is ∃xjΘ we use the Shuffle Lemma to reduce to the
situation in which j = m. Now, since the variable xm occurs bound in
Ψ we have

AΨ = {〈x1, . . . , xm−1〉 ∈ Tuples(m− 1, X) : (∃xmΘ)X} ×X

so that
AΨ = G0(G12(Tuples(m− 1, X), X,AΘ), X).
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6. In the case that Ψ is ∀xjΘ we again use the Shuffle Lemma to reduce
to the situation in which j = m. In a manner similar to the previous
case, we have:

AΨ = G0(G13(Tuples(m− 1, X), X,AΘ), X).

It is evident that not all possible compositions of Gödel operations were
used in this proof. In fact G0(A,B) was only used in the form G0(·, X). We
have already noted that G1 through G5 were only used in the form G(X, ·).
Moreover G6, G7 and G8 were only used in the form G(X,w) where w was a
parameter; G9 and G10 were only used in the form G(X). G12 and G13 were
only used in the form G(Tuples(n,X), X.·). Only G11 was fully used, yet all
of its inputs were subsets of Tuples(n,X) for some n ∈ N. Furthermore, all
outputs of all compositions were subsets of Tuples(n,X) for some n ∈ N.

We will enumerate all compostions of Gödel operations actually used
in the proof of Theorem Scheme 50. However, one complicating factor is
that although a composition of functions of one variable is a function of
one variable, the composition of functions of two variables can be a function
of more than two variables; in general the input to a finite composition of
functions of two variables is a finite sequence ~s.

We define a master operation G : V× V× N→ V such that for each X,
each finite sequence ~w and each X ∈ N the value G(X, ~w, n) is the result of a
composition of Gödel operations on X and the range of ~w. Furthermore, each
composition of Gödel operations used in proving any instance of Theorem
Scheme 50 involving a fixed set X and parameters w0, . . . , wk is G(X, ~w, n)
for some n ∈ N where {w0, . . . , wk} is the range of ~w.

More precisely, for each X and each ~s we define G(X,~s, ·) : N → V by
recursion on N as follows:



129

G(X,~s, n) =



X if n = 1;

G0(G(X,~s, i), X) if n = 3i and i > 0;

G1(X,G(X,~s, i)), if n = 2 · 3i;
G2(X,G(X,~s, i)), if n = 22 · 3i;
G3(X,G(X,~s, i)), if n = 23 · 3i;
G4(X,G(X,~s, i)), if n = 24 · 3i;
G5(X,G(X,~s, i)), if n = 25 · 3i;
G6(X,~s(i)) if n = 26 · 3i;
G7(X,~s(i)) if n = 27 · 3i;
G8(X,~s(i)) if n = 28 · 3i;
G9(X,X) if n = 29;

G10(X,X) if n = 210;

G11(G(X,~s, i),G(X,~s, j)) if n = 211 · 3i · 5j;
G12(G(X,~s, i), X,G(X,~s, j)) if n = 212 · 3i · 5j;
G13(G(X,~s, i), X,G(X,~s, j)) if n = 213 · 3i · 5j;
∅, otherwise.

Although we will be mainly interested in situations for which ~s : l → X
for some l ∈ N, we can nevertheless show by a straightforward induction
on N that for any X and ~s, each G(X,~s, n) ⊆ Tuples(m,X) for some m.
Moreover, we obtain an immediate corollary to (the proof of) Theorem 50.

Corollary. Φ
For all X and for all w0, . . . , wk in X there is an n ∈ N such that

{x ∈ X : ΦX(x,w0, . . . , wk)} = G(X, ~w, n))

where ~w(j) = wj for each j ∈ dom(~w).

We are now prepared for the most important definition of this chapter.

M is said to be an elementary submodel of N and we write M ≺ N

whenever M ⊆ N and for all k ∈ N, for all ~w ∈ kM and for all n ∈ N

G(N, ~w, n) ∩N 6= ∅ ⇔ G(N, ~w, n) ∩M 6= ∅.
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Two theorems help us obtain elementary submodels. The first is some-
times called the Löwenheim-Skolem Theorem.

Theorem 51. Suppose X ⊆ N . Then there is an M such that

1. M ≺ N ;

2. X ⊆M ; and,

3. |M | ≤ max{ω, |X|}.

Proof. Define F : ω ×
⋃
{kN : k ∈ ω} → N by choice:

F (n,~s) =

{
some element of G(N,~s, n) if G(N,~s, n) 6= ∅
any element of N otherwise

Now define {Xm}m∈ω by recursion on N as follows:

X0 = X

Xm+1 = Xm ∪ F→(ω ×Xm)

Let M =
⋃
m∈ωXm. As such, (2) and (3) are clearly satisfied. To check (1)

let n ∈ N and ~w ∈ kM such that G(N, ~w, n) ∩N 6= ∅. Then ~w ∈ kXm for
some m ∈ ω so that F (n, ~w) ∈ G(N, ~w, n) ∩Xm+1 and G(N, ~w, n) ∩M 6= ∅.

The second way of obtaining elementary submodels is through a version
of the Elementary Chain Theorem:

Theorem 52. Suppose that δ is a limit ordinal and {Mα : α < δ} is a set of
elementary submodels of N such that

∀α ∀α′ (α < α′ < δ →Mα ⊆Mα′).

Let
Mδ =

⋃
{Mα : α < δ}.

Then Mδ ≺ N .
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Proof. Let k ∈ ω, let ~w ∈ kMδ, and let n ∈ ω. We need to show that

G(N, ~w, n) ∩N 6= ∅ ⇒ G(N, ~w, n) ∩Mδ 6= ∅.

But this is easy since ~w ∈ kMα for some α < δ.

The power of elementary submodels arises from the following theorem
scheme. For each formula Φ(v0, . . . , vk) of LOST we have:

Theorem 53. Φ

Suppose M ≺ N . Then for all m0, . . . ,mk in M we have:

M |= Φ(m0, . . . ,mk) iff N |= Φ(m0, . . . ,mk).

Proof. Fix a formula Φ with all of its variables lying among v0, . . . , vk. We
will prove the theorem using the technique of induction on the complexity of
the subformulas Ψ of Φ.

Both cases of the atomic subformula step and the four connective cases
of the inductive step follow immediately from the definition of relativisation.
This allows us to directly proceed with the two quantifier cases of the induc-
tive step. In these cases, the existential quantifier case in which Ψ is (∃vi)Θ
and the universal quantifier case in which Ψ is (∀vi)Θ, we have the following
inductive hypothesis.

For all {m0, . . . ,mk} ⊆M : M |= Θ(m0, . . . ,mk) iff N |= Θ(m0, . . . ,mk).

We first take up the existential quantifier case. Let m0, . . . ,mk be in M .
We begin a chain of equivalences with

M |= (∃vi)Θ(m0, . . . ,mk).

By the definition of relativisation, since vi is not free, this is equivalent to

for some x ∈M M |= Θ(m0, . . . ,mi−1, x,mi+1, . . .mk).
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By inductive hypothesis this is equivalent to

for some x ∈M N |= Θ(m0, . . . ,mi−1, x,mi+1, . . .mk).

Since M ⊆ N , this is equivalent to

M ∩ {x ∈ N : ΘN(m0, . . . ,mi−1, x,mi+1, . . .mk)} is nonempty.

By Theorem 50 there is n ∈ ω such that this latter set is G(N, ~m, n) where
~m is a sequence with ~m(j) = mj for all 0 ≤ j ≤ k. So we get the equivalence:

M ∩G(N, ~m, n) 6= ∅.

Since M ≺ N this is equivalent to

N ∩G(N, ~m, n) 6= ∅,

that is:

N ∩ {x ∈ N : ΘN(m0, . . . ,mi−1, x,mi+1, . . .mk)} is nonempty.

This is equivalent to

for some x ∈ N N |= Θ(m0, . . . ,mi−1, x,mi+1, . . .mk)

which, since vi is not free in (∃vi)Θ, is also equivalent to

N |= (∃vi)Θ(m0, . . . ,mk).

We now turn our attention to the universal quantifier case, beginning
with

M |= (∀vi)Θ(m0, . . . ,mk).

By the definition of relativisation, since vi is not free, this is equivalent to

for all x ∈M M |= Θ(m0, . . . ,mi−1, x,mi+1, . . .mk).

By inductive hypothesis this is equivalent to

for all x ∈M N |= Θ(m0, . . . ,mi−1, x,mi+1, . . .mk).
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This is equivalent to

for no x ∈M does N |= (¬Θ)(m0, . . . ,mi−1, x,mi+1, . . .mk).

Since M ⊆ N , this is equivalent to

M ∩ {x ∈ N : (¬Θ)N(m0, . . . ,mi−1, x,mi+1, . . .mk)} is empty

By Theorem 50 there is n′ ∈ ω such that this latter set is G(N, ~m, n′) where
~m is a sequence with ~m(j) = mj for all 0 ≤ j ≤ k. So we get the equivalence:

M ∩G(N, ~m, n′) = ∅.

Since M ≺ N this is equivalent to

N ∩G(N, ~m, n′) = ∅,

that is:

N ∩ {x ∈ N : (¬Θ)N(m0, . . . ,mi−1, x,mi+1, . . .mk)} = ∅.

This is equivalent to

for all x ∈ N N |= Θ(m0, . . . ,mi−1, x,mi+1, . . .mk)

which, since vi is not free in (∀vi)Θ, is also equivalent to

N |= (∀vi)Θ(m0, . . . ,mk).

We need some lemmas. Assume M ≺ H(θ) where θ is an uncountable
regular cardinal. For each 40 formula Φ(v0, . . . , vk) we have:

Lemma. Φ

(∀y0 ∈M) . . . (∀yk ∈M) [M |= Φ(y0, . . . , yk)⇔ Φ(y0, . . . , yk)].

Proof.

M |= Φ(y0, . . . , yk)⇔ H(θ) |= Φ(y0, . . . , yk) by elementarity,

⇔ Φ(y0, . . . , yk) since H(θ) is transitive.
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Remark. The same is true for 4T
1 formulas where T is ZFC without Power

Set.

For any formula Φ(v0, . . . , vk) of LOST, we have:

Lemma. Φ

∀y0 ∈M ∀y2 ∈M . . . ∀yk ∈M ∀x ∈ H(θ)

[H(θ) |= z = {x : Φ(x, y0, . . . , yk)} → z ∈M ].

Proof. Let y0, . . . , yk ∈M and z ∈ H(θ) be given such that

H(θ) |= z = {x : Φ(x, y0, . . . , yk)}.

Then,

H(θ) |= ∃u u = {x : Φ(x, y0, . . . , yk)}
⇒M |= ∃u u = {x : Φ(x, y0, . . . , yk)}
⇒∃p ∈M [M |= p = {x : Φ(x, y0, . . . , yk)}]
⇒H(θ) |= p = {x : Φ(x, y0, . . . , yk)}
⇒H(θ) |= p = z.

H(θ) is transitive; therefore, p = z and hence z ∈M .

Corollaries. 1. If M ≺ H(θ), then

(a) ∅ ∈M ;

(b) ω ∈M ; and,

(c) ω ⊆M .

2. If also θ > ω1, then ω1 ∈M .

Proof. ∅ and ω are direct. For ω ⊆M show that y ∈M ⇒ y ∪ {y} ∈M .
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Lemma. Suppose M ≺ H(θ) where θ is regular and uncountable. Suppose
p is countable and p ∈M . Then p ⊆M .

Proof. Let q ∈ p; we must show that q ∈M . Let f0 : ω → p be a surjection.
Since {ω, p} ⊂ H(θ) we must have f0 ∈ H(θ). Since the formula “f : ω →
p and p is surjective” is a40 formula and {f0, ω, p} ⊂ H(θ), we have H(θ) |=
(f0 : ω → p and p is surjective). So

H(θ) |= (∃f)(f : ω → and p is surjective).

Since {ω, p} ⊂M we have,

M |= (∃f)(f : ω → p and p is surjective).

That is, (∃fp ∈M)(fp : ω → p and p is surjective).

Pick n ∈ ω such that fp(n) = q, and again use the first lemma as follows.
Since {p, fp, n} ⊂M and (∃!x)(x ∈ p and fp(n) = x) is a 40 formula

M |= (∃!x)(x ∈ p and fp(n) = x).

That is, (∃!x)(x ∈ p ∩M and fp(n) = x). Since x is unique, x = q and thus
q ∈M .

Corollary. ω1 ∩M ∈ ω1.

Proof. It is enough to show that ω1 ∩M is a countable initial segment of ω1.
If α ∈ ω1 ∩M , then by the above lemma, α ⊆M .

The use of elementary submodels of the H(θ) can be illustrated.

Theorem 54. Erdős-Dushnik-Miller

If P : [ω1]2 → {1, 2}, then either
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1. there is an infinite H ⊆ ω1 such that P ({α, β}) = 1 for all distinct α
and β in H, or

2. there is an uncountable H ⊆ ω1 such that P ({α, β}) = 2 for all distinct
α and β in H.

Theorem 55. (Pressing Down Lemma)

Let f : ω1 \ {0} → ω1 be regressive; i.e., f(α) < α for all α.

Then ∃β ∈ ω1 such that f←{β} is uncountable.

Theorem 56. (Delta System Lemma)

Let A be an uncountable collection of finite sets.

Then ∃D ⊆ A ∃R such that

1. D is uncountable, and

2. ∀D1, D2 ∈ D D1 ∩D2 = R.

Proof of Pressing Down Lemma

Let M ≺ H(ω2) such that M is countable and f ∈ M . Let δ = ω1 ∩M
and let β = f(δ) < δ. Then,

(∀α < δ)(∃x ∈ ω1) [x > α ∧ f(x) = β].

So ∀α < δ H(ω2) |= (∃x ∈ ω1)(x > α ∧ f(x) = β), since everything relevant
is in H(ω2). Hence,

∀α < δ M |= (∃x ∈ ω1)(x > α ∧ f(α) = β)

since {α, β, ω1, f} ⊂M . Now, since δ = ω1 ∩M we have,

M |= (∀α ∈ ω1)(∃x ∈ ω1) [x > α ∧ f(α) = β].

So H(ω2) |= (∀α ∈ ω1)(∃x ∈ ω1) [x > α ∧ f(α) = β]. Thus we have

H(ω2) |= f←{β} is uncountable.

Again, since everything relevant is in H(ω2) we conclude that f←{β} is
uncountable.
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2

Proof of the Delta System Lemma

Let A be as given. We may, without loss of generosity, let

A = {a(α) : α < ω1}

where a : ω1 → V. We may also assume that a : ω1 → P(ω1).

Let M be countable with {A,a} ⊆M and M ≺ H(ω2). Let δ = ω1∩M .
Let R = a(δ) ∩ δ. Since R ⊆M , we know R ∈M by the second lemma. So,

∀α < δ ∃β > α a(β) ∩ β = R

⇒H(ω2) |= (∀α < δ)(∃β > α) [a(β) ∩ β = R]

⇒(∀α < δ) [H(ω2) |= (∃β > α)(a(β) ∩ β = R)]

⇒(∀α < δ) [M |= (∃β > α)(a(β) ∩ β = R)]

⇒M |= (∀α < ω1)(∃β > α) [a(β) ∩ β = R]

⇒(∀α < ω1)(∃β > α) [a(β) ∩ β = R].

Now recursively define D : ω1 → A as follows:

D(α) = a(0);

D(γ) = a(β)

where β is the least ordinal such that

β > sup {D(γ) : γ < α} and a(β) ∩ β = R.

Now if γ1 < γ2 < ω1, then D(γ1) ⊆ γ2. So,

R ⊆ D(γ1) ∩D(γ2) ⊆ γ2 ∩D(γ2) = R.

Thus we let D = {D(α) : α < ω1}.

2



138 CHAPTER 12. ELEMENTARY SUBMODELS



Chapter 13

Constructibility

The Gödel closure of a set X is denoted by

cl(X) = {X ∩G(n, ~y) : n ∈ ω and ∃k ∈ ω ~y ∈ k(X)}.

The constructible sets are obtained by first defining a function

L : ON→ V

by recursion as follows:

L(0) = ∅
L(α + 1) = cl(L(α) ∪ {L(α)})

L(δ) =
⋃
{L(α) : α < δ} for a limit ordinal δ

We denote by L the class
⋃
{L(α) : α ∈ ON}. Sets in L are said to be

constructible.

Lemma. For each ordinal α, L(α) ⊆ R(α).

Proof. This is proved by induction. L(0) = ∅ = R(0) and for each α ∈ ON
we have, by definition,

L(α + 1) ⊆ P(L(α))

⊆ R(α + 1)

139
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Lemma.

1. ∀X X ⊆ cl(X).

2. If X is transitive, then cl(X) is transitive.

3. For each ordinal α, L(α) is transitive.

Proof.

1. For any w ∈ X, w = G(1, ~s), where ~s(0) = w.

2. Now, if z ∈ cl(X) then z ⊆ X so z ⊆ cl(X).

3. This follows from (1) by induction on ON.

Lemma.

1. For all ordinals α < β, L(α) ∈ L(β).

2. For all ordinals α < β, L(α) ⊆ L(β).

Proof.

1. For each α, L(α) ∈ L(α + 1) by Part (1) of the previous lemma. We
then apply induction on β.

2. This follows from (1) by transitivity of L(β).

Lemma.

1. For each ordinal β, β /∈ L(β).

2. For each ordinal β, β ∈ L(β + 1).
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Proof.

1. This is proved by induction on β. The case β = 0 is easy. If β = α+ 1
then β ∈ L(α + 1) would imply that β ⊆ L(α) and hence

α ∈ β ⊆ L(α)

contradicting the inductive hypothesis. If β is a limit ordinal and β ∈
L(β) then β ∈ L(α) for some α ∈ β and hence α ∈ β ∈ L(α), again a
contradiction.

2. We employ induction on β. The β = 0 case is given by 0 ∈ {0}. We
do the sucessor and limit cases uniformly. Assume that

∀α ∈ β α ∈ L(α + 1).

Claim 1. β = L(β) ∩ON.

Proof of Claim 1. If α ∈ β, then α ∈ L(α + 1) ⊆ L(β). If α ∈ L(β),
then α ∈ β because otherwise α = β or β ∈ α, which contradicts
β /∈ L(β) from (1).

Claim 2. ∀x x ∈ ON iff

[(∀u ∈ x ∀v ∈ u v ∈ x) ∧ (∀u ∈ x ∀v ∈ x (u ∈ v ∨ v ∈ u ∨ u = v))

∧(∀u ∈ x ∀v ∈ x ∀w ∈ x (u ∈ v ∧ v ∈ w → u ∈ w))].

Proof of Claim 2. The statement says that x is an ordinal iff x is a tran-
sitive set and the ordering ∈ on x is transitive and satisfies trichotomy.
This is true since ∈ is automatically well founded.

The importance of this claim is that this latter formula, call it Φ(x), is
40 and hence absolute for transitive sets.

We have:

β = L(β) ∩ON = {x ∈ L(β) : x is an ordinal}
= {x ∈ L(β) : Φ(x)}
= {x ∈ L(β) : ΦL(β+1)(α)}
∈ cl(L(β)) using Theorem 50

= L(β + 1).
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Lemma.

1. For each ordinal β, β = L(β) ∩ON.

2. ON ⊆ L.

Proof. This is easy from the previous lemmas.

Lemma.

1. If W is a finite subset of X then W ∈ cl(X).

2. If W is a finite subset of L(β) then W ∈ L(β + 1).

Proof.

1. We apply Theorem 50 to the formula “x = w0 ∨ · · · ∨ x = wn”, where
W = {w1, w2, . . . , wn}.

2. This follows immediately from (1).

Lemma.

1. If X is infinite then |cl(X)| = |X|.

2. α ≥ ω then |L(α)| = |α|.

Proof.

1. By Theorem 50 we can construct an injection cl(X)→ ω×
⋃
{kX : k ∈

ω}. Hence, |X| ≤ |cl(X)| ≤ max (ℵ0, |{kX : k ∈ ω}|) = |X|.
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2. We proceed by induction, beginning with the case α = ω. We first note
that from the previous lemma, we have L(n) = R(n) for each n ∈ ω.
Therefore,

|L(ω)| = |
⋃
{L(n) : n ∈ ω}|

= max (ℵ0, sup {|L(n)| : n ∈ ω})
= max (ℵ0, sup {|R(n)| : n ∈ ω})
= ℵ0.

For the successor case,

|L(β + 1)| = |L(β)| by (1)

= |β| by inductive hypothesis

= |β + 1| since β is infinite .

And if δ is a limit ordinal then

|L(δ)| = |
⋃
{L(β) : β ∈ δ}|

= max (|δ|, sup {|L(β)| : β ∈ δ})
= max (|δ|, sup {|(β)| : β ∈ δ}) by inductive hypothesis

= |δ|.

Lemma. (∀x) [x ⊆ L→ (∃y ∈ L)(x ⊆ y)].

Proof. x ⊆ L means that ∀u ∈ x ∃α ∈ ON x ∈ L(α). By the Axiom of
Replacement,

∃z z = {α : (∃u ∈ x)(α is the least ordinal such that u ∈ L(α))}.

Let β = sup z; then β ∈ ON and for each u ∈ x, there is α ≤ β such that
u ∈ L(α) ⊆ L(β). Since L(β) ∈ L(β + 1) ⊆ L, we can take y = L(β).

Remark. The above lemma is usually quoted as “L is almost universal”.
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Lemma. L |= V = L.

Proof. This is not the trivial statement

∀x ∈ L x ∈ L

but rather
∀x ∈ L (x ∈ L)L

which is equivalent to (∀x ∈ L)(∃α ∈ ON x ∈ L(α))L; which is, in turn, since
ON ⊆ L, equivalent to (∀x ∈ L)(∃α ∈ ON)(x ∈ L(α))L.

This latter statement is true since “x ∈ L(α)” is a 40 formula when
written out in full in LOST, and since L is transitive.

For each Axiom Φ of ZFC we have:

Theorem 57. Φ

L |= Φ.

Proof. Transitivity of L automatically gives Equality, Extensionality, Exis-
tence and Foundation. We get Infinity since ω ∈ L and “z = N” is a 40

formula.

For Comprehension, let Φ be any formula of LOST; we wish to prove

∀y ∈ L ∀w0 ∈ L . . . ∀wn ∈ L ∃z ∈ L z = {x ∈ y : ΦL(x, y, w0, . . . , wn)}

since L is transitive.

Fix y, w0, . . . , wn and α ∈ ON such that {y, ~w} ⊆ L(α). By the Levy
Reflection Principle, there is some β > α such that Φ is absolute between L
and L(β).

By Theorem 50, there is an n ∈ ω such that

G(n,L(β), y, ~w) = {x ∈ L(β) : ΦL(β)(x, y, ~w)}.
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and so by definition, {x ∈ L(β) : ΦL(β)(x, y, ~w)} ∈ L(β + 1). Now by
absoluteness, {x ∈ L(β) : ΦL(β)(x)} = {x ∈ L(β)ΦL(x)}. So we have

{x ∈ L(β) : ΦL(x, y, ~w)} ∈ L(β + 1).

Moreover, since y ∈ L(β + 1),

{x ∈ y : ΦL(x, y, ~w)} = y ∩ {x ∈ L(β + 1) : ΦL(x, y, ~w)}
∈ L(β + 2)

and since L(β + 2) ⊆ L we are done.

For the Power Set Axiom, we must prove that (∀x ∃z z = {y : y ⊆ x})L.
That is, ∀x ∈ L ∃z ∈ L z = {y : y ∈ L and y ⊆ x}. Fix x ∈ L; by the Power
Set Axiom and the Axiom of Comprehension we get

∃z′ z′ = {y ∈ P(x) : y ∈ L ∧ y ⊆ x} = {y : y ∈ L ∧ y ⊆ x}.

By the previous lemma L is almost universal and z′ ⊆ L so

∃z′′ ∈ L z′ ⊆ z′′.

So z′ = z′ ∩ z′′ = {y ∈ z′′ : y ∈ L ∩ y ⊆ x}. By the fact that the Axiom of
Comprehension holds relativised to L we get

(∃z z = {y ∈ z′′ : y ⊆ x})L;

i.e.,

∃z ∈ L z = {y ∈ z′′ : y ∈ L ∧ y ⊆ x}
= {y : y ∈ L ∧ y ⊆ x}

The Union Axiom and the Replacement Scheme are treated similarly. To
prove (the Axiom of Choice) L, we will show that the Axiom of Choice follows
from the other axioms of ZFC with the additional assumption that V = L.

It suffices to prove that for each α ∈ ON there is a β ∈ ON and a
surjection fα : bα → L(α).
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To do this we define fα recursively. Of course f0 = β0 = ∅ = L(0). If α
is a limit ordinal, then we let

βα =
∑
{βε : ε < α}

and fα(σ) = fδ(τ) where σ =
∑
{βε : ε < δ}+ τ and τ < βδ.

If α = γ + 1 is a successor ordinal, use fγ to generate a well ordering of
L(γ) and use this well ordering to generate a lexicographic well ordering of⋃
{k(L(γ)) : k ∈ ω} and use this to obtain an ordinal β̄α and a surjection

f̄γ : β̄γ →
⋃
{k(L(γ)) : k ∈ ω}.

Now let βα = βγ+1 = β̄γ × ω and let

fα : βα → L(α) = {G(n,L(α), ~y) : n ∈ ω and ∃k ∈ ω ~y ∈k L(γ)}

be defined by fα(σ) = G(n,L(γ), f̄γ(τ)) where σ = β̄γ × n+ τ , τ < β̄γ.

This completes the proof of Theorem 57 Φ and motivates calling “V = L”
the Axiom of Constructibility.

Remark. V = L is consistent with ZFC in the sense that no finite subcollec-
tion of ZFC can possibly prove V 6= L; To see this, suppose

{Ψ0, . . . ,Ψn} ` V 6= L.

Then
ΨL

0 , . . . ,Ψ
L
n} ` (V 6= L)L.

by Theorem 57. This contradicts the preceding lemma.

Remark. Assuming V = L we actually can find a formula Ψ(x, y) which gives
a well ordering of the universe.

We denote by ΦL the conjunction of a finite number of axioms of ZFC

conjoined with “V = L” such that ΦL implies all our lemmas and theorems
about ordinals and ensures that x ∈ L(α) is equivalent to some 40 formula
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(but I think we have already defined it to be 40). In particular, x ∈ ON will
be equivalent to a 40 formula.

Furthermore, we explicitly want ΦL to imply that ∀α ∈ ON ∃z z = L(α)
and that there is no largest ordinal.

We shall use the abbreviation o(M) = ON ∩M .

Lemma. ∀M(M is transitive and ΦM
L →M = L(o(M))).

Proof. Let M be transitive such that M |= ΦL. Note that o(M) ∈ ON. We
have M |= ∀α ∈ ON ∃z z = L(α). So,

∀α ∈ o(M) M |= ∃z z = L(α)

⇒∀α ∈ o(M) ∃z ∈M M |= z = L(α)

⇒∀α ∈ o(M) ∃z ∈M z = L(α)

⇒∀α ∈ o(M) L(α) ∈M
⇒∀α ∈ o(M) L(α) ⊆M.

Since M |= ΦL, o(M) is a limit ordinal and hence

L(o(M)) =
⋃
{L(α) : α ∈ o(M)} ⊆M.

Now let a ∈M . Since M |= V = L we have

M |= ∀x ∃y ∈ ON x ∈ L(y)

⇒M |= ∃y ∈ ON a ∈ L(y)

⇒∃α ∈ o(M) M |= a ∈ L(α)

⇒∃α ∈ o(M) a ∈ L(α)

⇒a ∈ L(o(M)).

Lemma. χC

If ON ⊆ C, C is transitive, and ΦC
L , then C = L.
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Proof. The proof is similar to that of the previous lemma.

Theorem 58. (K. Gödel)

If V = L then GCH holds.

Proof. We first prove the following:

Claim. ∀α ∈ ON P(L(α)) ⊆ L(α+).

Proof of Claim. This is easy for finite α, since L(n) = R(n) for each n ∈ ω.

Let’s prove the claim for infinite α ∈ ON. Let X ∈ P(L(α)); we will
show that X ∈ L(α+).

Let A = L(α) ∪ {X}. A is transitive and |A| = |α|.

By the Levy Reflection Principle, there is a β ∈ ON such that both
A ⊆ L(β) and L(β) |= ΦL, where ΦL is the formula introduced earlier.

Now use the Lowenheim-Skolem-Tarski Theorem to obtain an elementary
submodel K ≺ L(β) such that A ⊆ K and |K| = |A| = |α| so by elementarily
we have K |= ΦL.

Now use the Mostowski Collapsing Theorem to get a transitive M such
that K ∼= M . Since A is transitive, the isomorphism is the indentity on A
and hence A ⊆M . We also get M |= ΦL and |M | = |α|.

Now we use the penultimate lemma to infer that M = L(o(M)). Since
|M | = |α| we have |o(M)| = |α| so that o(M) < |α+|.

Hence A ⊆M = L(o(M)) ⊆ L(α+), so that X ∈ L(α+).

We now see that the GCH follows from the claim. For each cardinal κ we
have κ ⊆ L(κ) so that |P(κ)| ≤ |P(L(κ))| ≤ |L(κ+).

Since |L(κ+)| = κ+ we have |P (κ)| = κ+.
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We now turn our attention to whether V = L is true.

Let µ be a cardinal and let U be an ultrafilter over µ. Recalling that
µV = {f : f : µ→ V}, let ∼U be a binary relation on µV defined by

f ∼U g iff {α ∈ µ : f(α) = g(α)} ∈ U .

It is easy to check that ∼U is an equivalence relation.

For each f ∈ µV let ρ(f) be the least element of

{α ∈ ON : rank(g) = α ∧ f ∼U g}.

Let [f ] = {g ∈ R(ρ(f) + 1) : g ∼U f} and let ULTU V = {[f ] : f ∈ µV}.

Define a relation ∈U on ULTU V by

[f ] ∈U [g] iff {α ∈ µ : f(α) ∈ g(α)} ∈ U .

It is easy to check that ∈U is well defined.

For each cardinal κ, we use the abbreviation

[X]<κ = {Y ⊆ X : |Y | < κ}.

Given an uncountable cardinal κ, an ultrafilter U is said to be κ−complete
if ∀X ∈ [U ]<κ

⋂
X ∈ U .

An uncountable cardinal κ is said to be measurable whenever there exists
a κ−complete free ultrafilter over κ.

Lemma. If U is a countably complete ultrafilter (in particular if U is a
µ−complete ultrafilter) then ∈U is set-like, extensional and well founded.

Proof. To see that ∈U is set-like, just note that

{[g] : [g] ∈U [f ]} ⊆ R(ρ(f) + 2).

For extentionality, suppose [f ] 6= [g]; i.e., {α ∈ µ : f(α) = g(α)} /∈ U .
Then either {α ∈ µ : ¬f(α) ⊆ g(α)} ∈ U or {α ∈ µ : ¬g(α) ⊆ f(α)} ∈ U .
This leads to two similar cases; we address the first.
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Pick any h ∈ µV such that h(α) ∈ f(α) \ g(α) whenever ¬f(α) ⊆ g(α).
Then [h] ∈U [f ] and [h] ∈U [g].

To see that ∈U is well founded, suppose ∃{fn}n∈ω such that

∀n ∈ ω [fn+1] ∈U [fn].

Let
A =

⋂
{{α ∈ µ : fn+1(α) ∈ fn(α)} : n ∈ ω} ∈ U .

A ∈ U by the countable completeness of U , so that A 6= ∅. Pick any β ∈ A.
Then Fn+1(β) ∈ fn(β) for each n ∈ ω, which is a contradiction.

We now create a Mostowski collapse of ULTU V

hU : ULTU V→MU

given by the recursion

hU([f ]) = {hU([g]) : [g] ∈U [f ]}

As per the Mostowski Theorem, h is an isomorphism and MU is transitive.

The natural embedding iU : V→ ULTU V is given by iU(x) = [fx] where
fx : µ→ V such that fx(α) = x for all α ∈ µ.

This natural embedding iU combines with the unique isomorphism hU to
give

jU : V→MU

given by jU(x) = hU(iU(x)).

jU is called the elementary embedding generated by U , since for all for-
mulas Φ(v0, . . . , vn) of LOST we have:

Lemma. ∀v0 . . . ∀vn Φ(v0, . . . , vn)↔ ΦMU (jU(v0), . . . , jU(vn)).

Proof. This follows from two claims, each proved by induction on the com-
plexity of Φ.
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Claim 1. ∀v0 . . . ∀vn Φ(v0, . . . , vn)↔ Φ̄(iU(v0), . . . , iU(vn)).

Claim 2. ∀v0 . . . ∀vn Φ̄(iU(v0), . . . , iU(vn))↔ ΦMU (jU(v0), . . . , jU(vn)), where
Φ̄ is Φ with ∈ replaced by ∈U and all quantifiers restricted to ULTU V.

We leave the proofs to the reader.

Theorem 59. Every measurable cardinal is inaccessible.

Proof. We first prove that κ is regular. If cf(κ) = λ < κ, then κ is the union
of λ sets each smaller than κ. This contradicts the existence of a κ−complete
free ultrafilter over κ.

We now prove that if λ < κ, then |P(λ)| < κ. Suppose not; then there
is X ∈ [P(λ)]κ and a κ−complete free ultrafilter U over X. Now, for each
α ∈ λ let Aα = {x ∈ X : α ∈ x} and Bα = {x ∈ X : α /∈ x}. Let
I = {α ∈ λ : Aα ∈ U} and J = {α ∈ λ : Bα ∈ U}. Since U is an ultrafilter,
I ∪ J = λ. Since U is κ−complete and λ < κ we have⋂

{Aα : α ∈ I} ∩
⋂
{Bα : α ∈ J} ∈ U .

But this intersection is equal to X∩{I}, which is either empty or a singleton,
contradicting that U is a free filter.

Lemma. Let U be a µ−complete ultrafilter over an measurable cardinal µ.
Let M = MU , h = hU , i = iU and j = jU as above. Then for each β ∈ ON
we have j(β) ∈ ON and j(β) ≥ β. Furthermore, if β < µ then j(β) = β and
j(µ) > µ.

Proof. For each β ∈ ON we get, by the elementary embedding property of j,
that M |= j(β) ∈ ON; since M is transitive, j(β) ∈ ON.

Let β be the least ordinal such that j(β) ∈ β. Then M |= j(j(β)) ∈ j(β)
by elementarity, and j(j(β)) ∈ j(β) by transitivity of M . This contradicts
the minimality of β.
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Now let’s prove that j(β) = β for all β < µ by induction on β. Suppose
that j(γ) = γ for all γ < β < µ. We have

j(β) = h(i(β))

= {h([g]) : [g] ∈U i(β)}
= {h([g]) : [g] ∈U [fβ]} where fβ(α) = β for all α ∈ µ
= {h([g]) : {α ∈ µ : g(α) ∈ fβ(α)} ∈ U}
= {h([g]) : {α ∈ µ : g(α) ∈ β} ∈ U}
= {h([g]) : ∃γ ∈ β {α ∈ µ : g(α) = γ} ∈ U} by µ− completeness of U
= {h([g]) : ∃γ ∈ β [g] = [fγ]} where fγ(α) = γ for all α ∈ µ
= {h([fγ]) : γ ∈ β}
= {h(i(γ)) : γ ∈ β}
= {j(γ) : γ ∈ β}
= {γ : γ ∈ β} by inductive hypothesis

Hence j(β) = β.

We now show that j(µ) > µ. Let g : µ→ ON such that g(α) = α for each
α. We will show that β ∈ h([g]) for each β ∈ µ and that h([g]) ∈ j(µ).

Let β ∈ µ.

{α ∈ µ : fβ(α) ∈ g(α)} = {α ∈ µ : β ∈ α}
= µ \ (β + 1)

∈ U

Hence [fβ] ∈U [g] and so h([fβ]) ∈ h([g]). But since β ∈ µ,

β = j(β)

= h(i(β))

= h([f(β)])

Hence β ∈ h([g]).

Now, {α ∈ µ : g(α) ∈ fµ(α)} = {α ∈ µ : α ∈ µ} = µ ∈ U . Hence
[g] ∈U [fµ] and so h[g] ∈ h([fµ]) = h(i(µ)) = j(µ).
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Theorem 60. (D. Scott)

If V = L then there are no measurable cardinals.

Proof. Assume that V = L and that µ is the least measurable cardinal; we
derive a contradiction. Let U be a µ−complete ultrafilter over µ and consider
j = jU and M = MU as above.

Since V = L we have ΦL and by elementarity of j we have ΦM
L . Note that

ΦL is a sentence; i.e., it has no free variables.

Since M is transitive, ON ⊆M by the previous lemma. So, by an earlier
lemma M = L. So we have

L = V |= (µ is the least measurable cardinal)

and
L = M |= (j(µ) is the least measurable cardinal).

Thus L |= j(µ) = µ; i.e., j(µ) = µ, contradicting the previous theorem.

Remark. We have demonstrated the existence of an elementary embedding
j : V→M . K. Kunen has shown that there is no elementary j : V→ V.

Large cardinal axioms are often formulated as embedding axioms. For
example, κ is said to be supercompact whenever

∀λ ∃j [j : V→M and j(κ) > λ and j|R(λ) = id|R(λ) and λM ⊆M ].
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Chapter 14

Appendices

.1 The Axioms of ZFC

Zermelo-Frankel (with Choice) Set Theory, abbreviated to ZFC, is consti-
tuted by the following axioms.

1. Axiom of Extensionality

∀x ∀y [x = y ↔ ∀u (u ∈ x↔ u ∈ y)]

2. Axiom of Existence
∃z z = z

3. Axiom of Pairing
∀x ∀y ∃z z = {x, y}

4. Union Axiom

∀x [x 6= ∅ → ∃z z = {w : (∃y ∈ x)(w ∈ y)]

5. Intersection Axiom

∀x [x 6= ∅ → ∃z z = {w : (∀y ∈ x)(w ∈ y)]
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6. Axiom of Foundation

∀x [x 6= ∅ → (∃y ∈ x)(x ∩ y = ∅)]

7. Replacement Axiom Scheme

For each formula Φ(x, u, v, w1, . . . , wk) of the language of set theory,

∀w1 . . . ∀wk ∀x [∀u ∈ x ∃!v Φ→ ∃z z = {v : ∃u ∈ x Φ}]

8. Axiom of Choice

∀X [(∀x ∈ X ∀y ∈ X (x = y ↔ x ∩ y 6= ∅))

→ ∃z (∀x ∈ X ∃!y y ∈ x ∩ z)]

9. Power Set Axiom

∀x ∃z z = {y : y ⊆ x}

10. Axiom of Infinity

N 6= ON

.2 Tentative Axioms

Here is a summary of potential axioms which we have discussed but which
lie outside of ZFC.

1. Axiom of Inaccessibles

∃κ κ is an inaccessible cardinal

2. Continuum Hypothesis

|P(ω)| = ω1
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3. Generalised Continuum Hypothesis

∀κ [κ is a cardinal→ |P(κ)| = κ+]

4. Suslin Hypothesis

Suppose that R is a complete dense linear order without endpoints in
which every collection of disjoint intervals is countable. Then R ∼= R.

5. Axiom of Constructibility

V = L


