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Preface

These lectures (the first 16 chapters) cover a one term course taken by a mixed
group of senior undergraduate and junior graduate students specializing either in
mathematics or physics. The mathematics students had some background in ad-
vanced analysis, while physics students had introductory quantum mechanics. To
satisfy such a disparate audience, we decided to select material which is interesting
from the viewpoint of modern theoretical physics, and which illustrates an interplay
of ideas from various fields of mathematics such as operator theory, probability, dif-
ferential equations, and differential geometry. Given our time constraint, we have
pursued mathematical content at the expense of rigor. However, wherever we have
sacrificed the latter, we have tried to explain whether the result is an established
fact, or, mathematically speaking, a conjecture, and in the former case, how a given
argument can be made rigorous.

Moreover, even in dealing with mathematics students we found it useful, if not
necessary, to review basic mathematical notions such as the spectrum of an operator,
and the Fréchet or variational derivative, which we needed for the course. As a result,
the text is interspersed with mathematical detours which occupy in total about half
of the material. A mathematically sophisticated reader can skim through them,
or skip them altogether, and concentrate on physical applications. On the other
hand, a reader familiar with the physical content of quantum mechanics, and who
would like to enhance his or her mathematics, could concentrate on those detours
and consider the physics chapters as an application of the mathematics in a familiar
setting.

Acknowledgment: The authors are grateful to V. Buslaev, J. Froehlich, W. Hun-
ziker, and Yu. Ovchinnikov for useful discussions.
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Chapter 1

Physical background

In this introductory chapter, we present a very brief overview of the basic structure
of quantum mechanics, and touch on the physical motivation for the theory. A de-
tailed mathematical discussion of quantum mechanics is the focus of the subsequent
chapters of the book.

1.1 The double-slit experiment

Suppose a stream of electrons is fired at a shield in which two narrow slits have been
cut (see figure 1.1). On the other side of the shield is a detector screen.

N < shied
gun 1/
- _
- screen >
experimental set-up (1.1)

Pictured in figures 1.2-1.3 is the intensity distribution observed on the screen
when either of the slits is blocked.
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- P_1 (brightness)
> L
%
> _
9
first dlit blocked (1.2)
%
> _
> 7
> P2
%
second dlit blocked (1.3)

When both slits are open, the observed intensity distribution is shown in figure 1.4.
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PzP 1+P 2
- N
5 N <
> |
- _
N
both dlits open (1.4)

Remarkably, this is not the sum of the previous two distributions; ie, P # P;+ Ps.
We make some observations based on this experiment.

1. We cannot predict exactly where a given electron will hit the screen, we can
only determine the distribution of locations.

2. The intensity pattern (called an interference pattern) we observe when both
slits are open is similar to the pattern we see when a wave propagates through
the slits: the intensity observed when the waves F; and E, (the waves here
are represented by complex numbers encoding the amplitude and phase) orig-
inating at each slit are combined, is proportional to |E; + Fy|? # |E1|*> + |Fy|?
(see figure 1.5).

N
> )
N
S <
N
wave interference (1.5)

We can draw some conclusions based on these observations.
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1. Matter behaves in a random way.

2. Matter exhibits wave-like properties.

In other words, the behaviour of individual electrons is intrinsically random, and this
randomness propagates according to laws of wave mechanics. These observations
form a central part of the paradigm shift introduced by the theory of quantum
mechanics.

1.2 Wave functions

In quantum mechanics, the state of a particle is described by a complex-valued
function of position and time, ¢ (z,t), x € R® ¢t € R. This is called a wave function
(or state vector). In light of the above discussion, the wave function should have the
following properties.

1. |¢(-,t)[* is the probability distribution for the particle’s position. That is, the
probability that a particle is in the region Q C R® at time ¢ is [, [¢(z,t)[*dz.
Thus, we require the normalization [p, [¢(z,t)[*dz = 1.

2. 1 satisfies some sort of wave equation.

For example, in the double-slit experiment, if 1); gives the state beyond the shield
with the first slit closed, and 1), gives the state beyond the shield with the second slit
closed, then 1 = 11 + 1y describes the state with both slits open. The interference
pattern observed in the latter case reflects the fact that [1|* # |1 |® + [1)o]2.

1.3 State-space

The space of all possible states of the particle at a given time is called the state
space. For us, the state space of a particle will usually be the square-integrable
functions:

LPR)={y:R - C| Ag\¢|2<m}

(we can impose the normalization condition as needed). This is a vector space, and
has an inner-product given by

(W, 0)= | v
R3

(in fact, it is a “Hilbert space”; i.e. it is complete - see section 2.1).
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1.4 The Schrodinger equation

We now give a motivation for the equation which governs the evolution of a particle’s
wave function. This is the celebrated Schrddinger equation.
Our equation should satisfy certain physically sensible properties.

1. The state (-, %) at time ¢ = ¢y should determine the state (-, ¢) for all later
times ¢ > ty (causality).

2. If 1) and ¢ are evolutions of states, then at) + 5¢ («, [ constants) should also
describe the evolution of a state (the superposition principle).

3. In “everyday situations,” quantum mechanics should be close to the classical
mechanics we are used to (the correspondence principle).

The first requirement means that v should satisfy an equation which is first-order
in time, namely

0
b= Ay (1.6)

for some operator A on the state space. The second requirement implies that A
must be a [inear operator.

We use the third requirement in order to find the correct form of A. We first
recall that one of the fundamental equations of classical mechanics is of the first
order in time. It is the Hamilton-Jacobi equation,

0
aS = —h(x,V,S) (1.7)
where h(z,k) = |k|?/2m + V(z) is the classical Hamiltonian function, V is the
potential,m is the mass, and S(x,t) is the classical action. This equation, in turn,
is similar to the eikonal equation,

(06/0t)* = |V26|* =0

which is a high-frequency approximation of the wave equation for u = ae*®. We make
an analogy between the passage from the wave equation to the eikonal equation (that
is, from wave optics to geometric optics) and the passage from quantum mechanics
to classical mechanics. Thus, we seek equation (1.6), requiring that is has solutions
of the form
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where 7 is some very small constant, with S satisfying equation (1.7). Assuming
a, S, and their derivatives are of order one in A, then to the leading order in A, ¥
satisfies the equation

2

ih%w(x, ) = —;—mAm(x, B+ V (@), 1), (1.8)

This equation is of the desired form (1.6). In fact it is the right equation, and is
called the Schrodinger equation. It can be written as

)
i = Hi (1.9)

where the linear operator H, given by

2

h
Hy = —%A¢ + Vi

is called a Schrddinger operator. The operator A = ijl 8? is the Laplacian (d =
spatial dimension, usually 3), and the function (and multiplication operator) V is
the potential. The small constant & is called Planck’s constant; it is one of three
fundamental constants in nature. For the record, its value is roughly

i =~ 6.6255 x 1077 erg sec.

Example 1.1 Here are just a few examples of potentials.
1. Free motion : V = 0.
2. A wall: V =0 on one side, V' = oo on the other (meaning ¢ = 0 here).
3. The double-slit experiment: V = oo on the shield, and V' = 0 elsewhere.
4. The Coulomb potential : V(z) = —a/|z| (describes a hydrogen atom).
5. The harmonic oscillator : V(z) = mT“’Q\x\Z

We will analyze some of these examples, and others, in Chapter 8.



Chapter 2

Mathematical detour: operator
theory

We have seen in Chapter 1 that the space of quantum-mechanical states of a system
is a vector space with an inner-product (in fact a Hilbert space). We saw also
that an operator (a Schrédinger operator) on this space enters the basic equation
(the Schrédinger equation) governing the evolution of states. In fact, the theory of
operators on a Hilbert space provides the basic mathematical framework of quantum
mechanics. This chapter is devoted to an overview of those aspects of operator theory
that are essential to a study of quantum mechanics.

2.1 Operators on Hilbert spaces

Let ‘H be a (complex) vector space. We assume # is endowed with an inner-product,
(-,-). Recall that this means the map

(, ) HxH—->C
satisfies the properties

1. linearity (in the second argument):

(v, 0w + fz) = alv,w) + (v, z)

2. conjugate symmetry: (w,v) = (v, w)

3. positive definiteness: (v,v) > 0 for v # 0

13
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for any v, w,z € ‘H and «, f € C. It follows that the map || - || : H — [0, c0) given
by
1> = (v, v)

is a morm on H. Recall that this means that for any v, w € H and a € C,

lv

L law]l = [e]lv]l
2. v+ wll < Jlvll + [[uwl]
3. ||v|| > 0 for v # 0.

If H is complete in this norm (that is, all Cauchy sequences converge), then H is
called a Hilbert space.

We recall here two frequently used facts about Hilbert spaces (see, eg, [Fo] or
[RSI] for proofs).

Proposition 2.1 (Cauchy-Schwarz inequality) For v,w € H, a Hilbert space,
(v, w)| < [[v[[[w]l-

Recall that a set {v,} C H, n = 1,2,...is called orthonormal if ||v,|| = 1 for all
n and < v, v, >= 0 for n # m. It is a complete orthonormal set (or basis) if the
collection of finite linear combinations of the v,’s is dense in H.

Proposition 2.2 (Parseval relation) Suppose {v,} C H is a complete orthonor-
mal set. Then for any w € H,

lwll> = [{w, va) .

n

In this chapter, the main objects of study are linear operators on H (that is,
maps A from H to itself, which are linear: A(av+ fw) = aAv+ BAw). Actually, we
only require an operator A to be defined on a domain D(A) C H which is dense in
H (that is, given any v € H and € > 0, there is a w € D(A) such that ||[v —w|| < €).

Example 2.3 Our usual example of a Hilbert space is
PE) =R o c| [ P <)
with the inner-product
w.0)= [ bo.

An example of a dense subset of L?(R?) is C$°(R?), the infinitely-differentiable
functions with compact support (meaning they vanish outside of some ball in R?).
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Example 2.4 Here is a list of examples of linear operators, A, on L2(R?). In each
case, we can simply choose D(A) to be the obvious domain D(A) = {¢ € L?|A¢ €
L?}.

1. The identity map
id:— 1

2. Multiplication by a coordinate
Tj = 3
(ie. (z;9)(z) = z;(x))
3. Multiplication by a continuous function V : R — C
Viyp—=Vy

(again meaning (V)(z) = V(z)y(x)).

4. Differentiation

pj Y — —ithoy
5. The Laplacian
d
A 23]21/1
j=1

6. Schrodinger operator
2

H:wH—h—Awnva
2m

7. integral operator with kernel K : R¢ x R? — C
v [ Ky

(ie. (K)(z) = [ K(z,y)(y)dy).

The domain of the first example is obviously the whole space L2. The domain of the
last example depends on K. The domains of the others are easily seen to be dense,
as they contain C§°.
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Remark 2.5 If the kernel K is allowed to be a distribution (a generalized function),
then the last example contains all the previous ones as special cases.

It is useful in operator theory to single out those operators with the property of
boundedness (which is equivalent to continuity).

Definition 2.6 An operator A is bounded if

[Al= sup |l < oo. (2.1)
| lvll=1}

In fact, the expression (2.1) defines a norm which makes the subspace B(H) of
bounded operators on H into a complete normed vector space (a Banach space)
As we will see, the bounded operators are, in some respects, much easier to deal
with than the unbounded operators. However, since some of the most important
operators in quantum mechanics are unbounded, we will need to study both.

2.2 Adjoints

In quantum mechanics, operators which are self-adjoint play a central role. The
present section is devoted to a discussion of this class of operators, and to the
broader class of symmetric operators. All operators A are assumed to be defined on
a dense domain D(A).

Definition 2.7 The adjoint of an operator, A, on H, is the operator A* defined by
(A", 6) = (16, Ag) (2.2)
for all ¢ € D(A), for 1 in the natural domain
DAY ={ypeH |d— (Y, Ap) extends to a bounded functional on all of H}.

It is left as an exercise to show this definition makes sense.

Problem 2.8 Show that equation (2.2) defines a unique linear operator A* on
D(A*).

Definition 2.9 A is symmetric if
(A, ¢) = (¥, Ag)
for all ¥, ¢ in D(A).
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Definition 2.10 A is self-adjoint if A = A* (that is, A is symmetric and D(A) =
D(A%)).

It is usually much easier to show that a given operator is symmetric than to show that
it is self-adjoint, as the latter question involves additional domain considerations.

Problem 2.11 Referring to our list of examples of operators on L? (example 2.4),
show that the following operators are symmetric.

1. The multiplication operator V' (if V'(z) is real-valued).

2. The differentiation operator, p; (hint: integrate by parts).
3. The Laplacian, A.

4. The Schrédinger operator, H (again if V is real).

5. The integral operator K (if K (y, ) = K(z,v)).

In fact, p; and A are actually self-adjoint on L?, as is V if it is a “nice enough”
function (we will be more specific in section 7.2).

The subtleties surrounding domains and the question of self-adjointness are ab-
sent for bounded operators, as the following lemma demonstrates.

Lemma 2.12 If A is bounded, then we can assume D(A) = H.

Proof: For any u € #, there is a sequence {u,} C D(A) such that u, — u as
n — oo (by the density of D(A)). Then the relation

[Aun = Au || < [[All[Jun = vl

(by definition of ||A||) shows that {Au,} is a Cauchy sequence, so Au,, — v, some
v € H (by completeness of H), and we set Au = v. This extends A to a bounded
operator on all of H. [J

Corollary 2.13 If A is bounded and symmetric, it is self-adjoint.

Proof: Since A is bounded, we may assume D(A) = H. Thus D(A*) = H (check
this), and so D(A) = D(A*). Hence A is self-adjoint. [J

We will, however, have to deal with unbounded operators. As an example,
consider the following:

Problem 2.14 Show p; = —i/id; is unbounded on L?(R%).
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2.3 Exponentials and unitary operators

For a bounded operator, A, we can define the operator e through the power series
o
An
A — -
e = Z n!
n=0

which converges absolutely as

A" | IAI™ 4
e e D

Problem 2.15 Find e *H for

v-(20) w2 7)

For an unbounded self-adjoint operator A, it is still possible to define the bounded
operator e*4 using the so-called functional calculus (see, eg, [RSI]) which is beyond
the scope of this book. We will, however, see how to define operators like e™i, ¢*®
and e® using the Fourier transform in Chapter 4.

Definition 2.16 An operator U is unitary if UU* = U*U =1 (ie U* =U"").

Using the power series definition of ¢4 for bounded A, we can check the following
relationship between unitary and self-adjoint operators:

Theorem 2.17 (Stone’s Theorem) e is unitary iff A is self-adjoint

Formal check:

€ € =€ €

iA(gidys iA —iA* _ i(A—AY)
which is the identity iff A = A*.
Problem 2.18 Prove this theorem properly for the case of bounded A.

In fact, the theorem holds even if A is unbounded and self-adjoint. The following
simple example illustrates.

Example 2.19 If ¢ : R — R is continuous, then the bounded operator
U:— ey

is easily checked to be unitary on L? (just note that U* is multiplication by e~*®).
Now ¢ is bounded as a multiplication operator iff it is a bounded function. Note,
however, that U is well-defined (and unitary) even if ¢ is unbounded.
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We conclude this section with a couple of useful definitions.

Definition 2.20 A self-adjoint operator A is called positive (denoted A > 0) if

(¢, Ap) >0

for all v € D(A), ¥ # 0. Similarly, we may define non-negative, negative, and
non-positive operators.

Problem 2.21 Show that —A > 0 on L? (hint: integrate by parts, or, equivalently,
use the divergence theorem).

Definition 2.22 The commutator, [A, B], of two bounded operators A and B is the
operator defined by
[A,B] = AB — BA.

Defining the commutator of two operators when one of them is unbounded requires
caution, due to domain considerations. Given this warning, we will deal with com-
mutators of unbounded operators formally without giving them a second thought.
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Chapter 3

Dynamics

We recall that the evolution of the wave function, 1, for a particle in a potential,
V', is determined by the Schrodinger equation:

Lo
ihs = Hi (3.1)

where

h2
H=-"A+V
2m

is the appropriate Schrédinger operator. We supplement equation (3.1) with the
initial condition
Bleo = to (3.2)

where 1y € L?. The purpose of this chapter is to investigate the existence, and basic
properties, of solutions of the Schrodinger equation, and the establish the connection
between these issues and the self-adjointness of H.

3.1 Conservation of probability

Since we interpret the wave function at a given instant in time as a probability
distribution, we require

[Y(z,t)|Pdr = 1 (3.3)
R3
at all times. If (3.3) holds, we say that probability is conserved.

Theorem 3.1 Under the evolution given by (3.1), probability is conserved iff H is
symmetric.

21
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Proof: For v solving the Cauchy problem (3.1-3.2), we compute
d/dt(y, ) = (,9) + (¥, 9)
1 1
= (- HY ) + (b, = HY)

_ %[w,Hw) — (H, )]

which is zero for all times iff (H¢, ¢p) = (¢, Hp) for all ¢ € D(H) (for the “only if”
part, take ¥y = ¢). This, in turn, holds iff H is a symmetric operator (this follows
from a version of the polarization identity - see, eg, [RSI]). O

3.2 Existence of dynamics

Definition 3.2 We say the dynamics exist if the Cauchy problem (3.1-3.2) has a
unique solution which conserves probability.

Theorem 3.3 The dynamics exist iff H = H*.

Sketch of proof: =-: as we have seen, conservation of probability implies that H
must be symmetric. The self-adjointness part is difficult, and we omit it.
<: On the domain

D = {¢y € D(H)|||H"Y|| < M", some M}

we can define U(t) = e~%" by a convergent power series. Set ¢ = U (t)1pg. Then o
satisfies (3.1-3.2). The hard part is to extend this to all of L?. It is here that the
self-adjointness of H is used (as was remarked earlier, we may define U(¢) on L? via
the functional calculus). We have seen already that a solution conserves probability
(by symmetry of H). Finally, we note that solutions are unique by the following
argument. Given any two solutions, their difference, v, solves (3.1) with |,y = 0.
By symmetry of H, ||[¢(-,t)|| = ||¢(-, 0)|| = 0 for all ¢, hence ¢ = 0. O

Problem 3.4 Check formally that
1. U(t)1o solves the Schrodinger equation.

2. U(t+s)=U(t)U(s) (group property).

We conclude this section by emphasizing that for our Schrodinger equation for-
mulation of quantum mechanics to make sense, the Schrodinger operator must be

self-adjoint. We will address the important question of which potential functions,

V', give rise to self-adjoint operators H = —PA4Vin Chapter 7.

2m



Chapter 4

Mathematical detour: the Fourier
transform

The Fourier transform is a useful tool in many areas of mathematics and physics.
The purpose of the present chapter is to review the properties of the Fourier trans-
form, and to discuss the important role it plays in quantum mechanics.

4.1 Definition of the Fourier transform

The Fourier transform is a map, F, which sends a function v : R — C into another
function 1 : R — C where for k € R¢,

zﬁ(k) = (27rh)_d/2/ e‘ik'“/hz/)(x)d:r
Rd

(it is convenient to introduce the Planck constant, 7, into our Fourier transform).
It is clear that F is a linear operator.

In the following exercise, the reader is asked to compute a few basic Fourier
transforms.

Problem 4.1 Show that under F

2
1. e~ slal® oy q=42e=3ma (Re(a) > 0) (hint: complete the square in the exponent
and move the contour of integration in the complex plane)

2. e 2w A% s (det A)~Y2e¢~ w547k (A4 is a positive d x d matrix) (hint: diago-
nalize and use the previous result)

23
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3.

4.2

§(z) — (2mh)~4? (here § is the Dirac delta function (not really a function,
but a distribution), characterized by the property [ f(z)d(z)dz = f(0)).

Properties of the Fourier transform

The great utility of the Fourier transform derives from the following properties.

1.

4.

d.

6.

Here

The Plancherel theorem: F is a unitary map from L?(R?) to itself (note that
initially the FT is defined only for integrable (L') functions - the statement
here is that the FT extends from L' N L? to a unitary map on L?).

. The inversion formula: the adjoint F* of F is given by the map ¢ — ¥ where

U(x) = (2rh) "2 / ekl (k) dk

R4

(and by the Plancherel theorem, this is also the inverse).

~

—ihV (k) = ki (k).
(k) = ihV (k).
o = (2mh) =42 x4
b+ = (2mh)* G0,

(f % 9)() = / f@)a(e — y)dy

is the convolution of f and g. The last four properties can be loosely summarized
by saying that the Fourier transform exchanges differentiation and coordinate mul-
tiplication, and products and convolutions.

Proof: The proof of property 1 is somewhat technical and we just sketch it here
(see, eg, [Fol]) for details). In particular, we will show that || f|| = ||f||. Suppose
f € C§, and let C, be the cube of side length 2/e centred at the origin. Choose €
small enough so that the support of f is contained in C. One can show that

{Ey = (¢/2)%2e* /M | k € ehrZ®}
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is an orthonormal basis of the Hilbert space L?(C,). Thus by the Parseval equation

(proposition 2.2),
Jise=[ 1P =Y 1< Bus>p
C. P

= (me) Y f WP~ [ 17
keehnzd
ase— 0. O

Problem 4.2 Show that {Ej} is an orthonormal set.

Now we will prove property 3, and we leave the proofs of the other properties as
exercises. Integrating by parts, we have

(—ihVY(k) = (2nh)~9/? / e~ Tk (iR )y (x)da

= k- (2nh)"Y? / e~ =Ry (z)da = ki (k).

To justify these manipulations we can take ¢y € C§° and use the density of C§° in
L?, and the continuity of F, in an approximation argument. [J

4.3 Functions of the derivative

As an application, we now show how the FT can be used to define functions of the
derivative operator. We recall our notation p = —iAV. Motivated by property 3
of the FT, we define an operator g(p) (for sufficiently nice functions g) on L? as
follows.

Definition 4.3 (g(p)v)(k) = g(k)v(k) or, equivalently, g(p)y = (2rh) /2§ * 1.
Let us look at a few examples.
Example 4.4

1. If g(k) = k, then by property 3 of the FT, the above definition gives us back
g(p) = p (so at least our definition makes some sense).

2. Now suppose g(k) = |k[?. Then m(k) = |k|2¢.
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Problem 4.5 Show that —A2Av = |k[29.

Thus we have |p|*> = —h?A. In fact, extending this example, we can define
g(p) when g is a polynomial “with our bare hands”. It is easily seen that this
definition coincides with the one above.

3. Let g(k) = e~ o (a Gaussian). Then using the result of problem 4.1, we have

g(p)y(z) = (2mh)~ Y2 [ e |==P/2h)(y)dy. In light of the previous example, we
can write this as (setting i = 1 for tidiness)

(e29) (x) = (4m) 412 / e =V Ay dy.



Chapter 5

Observables

In any physical theory, the quantities that can be experimentally measured - the
observables - are of obvious importance. In this chapter, we discuss the observables
of quantum mechanics, as well as the notion of “quantizing” a classical theory.

5.1 Mean values and the momentum operator

We recall that in quantum mechanics, the state of a particle at time ¢ is described
by a wave function v (z,t). The probability distribution for the position, z, of
the particle, is [1(-,7)|2. Thus the mean value of the position at time ¢ is given
by [z|¢(z,t)|?dz (note that this is a vector in R?). If we define the coordinate
multiplication operator

zjP(x) = z(x)
then the mean value of the j» component of the coordinate z in the state 1 is

Now compute ‘ ‘
dfdt(p, zj9p) = (P, mj9b) + (b, z;9)
1 1
= <EH1/J, xﬂ@ + <w’x1EH¢>
1

h
1

= <wa E[Ha x]],d))

(where recall [A, B = AB — BA is the commutator of A and B).

Ha) — (i, ;- HY)

=, .

27
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We compute
A(z) = zA¢ + 2V

and use this to get

l ih
%[H’ xj] = _Evj
giving finally
1 .
d/dt(y, xjv) = E(w, —ihV j1).

As before, we denote the operator —iAV; by p;. As well, we denote the mean value
(1, Ay) of an operator A by < A >,. Then the above becomes

d
m% < Zj >yp=<DPj >y (51)

which is reminiscent of the definition of the classical momentum. We call the oper-
ator p the momentum operator. In fact, p; is a self-adjoint operator on L*(RY).
Using the FT, we compute the mean value of the momentum operator

(%, ) = (O, ;)
= (¢, ki) = /k\q/}(k)de.

This, and similar computations, show that [)(k)|? is the probability distribution for
the particle momentum.

5.2 QObservables

Definition 5.1 An observable is a self-adjoint operator on the state space L*(R®).

We have already seen a few examples of observables, including the position operators,
xj, the momentum operators, p; and the Hamiltonian operator,

h? 1

H=—-——A+V=—p?+V.

2m 2m
Another example (with an obvious classical analogue) is furnished by the angular
momentum operators, L; = (x x p)j.

The reader is invited to derive the following equation for the evolution of the

mean value of an observable.
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Problem 5.2 Check that for any observable, A, we have
djdt < A >y= (1), %[H, Al).

We would like to use this result on the momentum operator. Simple computations
give [A,p] = 0 and [V, p] = iAiVV, so that

"H,p| = —VV
h ’p -

and hence

d/dt <pj >yp=< —VjV > - (52)

This is a quantum mechanical mean-value version of Newton’s equation of classical
mechanics. Or if we include equation (5.1), we have the analogue of Hamilton’s
equations.

Since obviously [H, H] = 0, we also have d/dt < H >= 0, which is the mean-
value version of the conservation of energy.

5.3 Heisenberg representation

The framework outlined up to this point is called the Schrodinger representation of
quantum mechanics. Chronologically, quantum mechanics was first formulated in
the Heisenberg representation, which we now describe. For an observable A, define

Alt) = itH/h g —itH/h

Since ¢ = e~®H/Mqjy (the solution of Schrédinger’s equation), and e *#/% is unitary,
we have (by a simple computation which is left as an exercise) that
<A >yp=< A(t) >y, - (5.3)

Problem 5.3
1. Prove equation (5.3).

2. Prove that J )
i

—A(t) = < [H, A(t)].

SA() = +[H, A()
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This last equation is called the Heisenberg equation for the time evolution of the
observable A. In particular, taking x and p for A, we obtain the quantum analogue
of the Hamilton equations of classical mechanics:

mi(t) = p(t) (5.4)
and
p(t) = =V V(x(t)). (5.5)

In the Heisenberg representation, then, the state is fixed (at 1), and the observ-
ables evolve according to the Heisenberg equation. Of course, the Schrodinger and
Heisenberg representations are completely equivalent (by a unitary transformation).

5.4 Quantization

We now describe a procedure for passing from classical mechanics to quantum me-
chanics, called quantization.

We start with the Hamiltonian formulation of classical mechanics, where the
basic objects are as follows.

1. The phase space (or state space) R® x R} equipped with the Poisson bracket,
{-,-}. The latter is defined on pairs of functions on R x R? by

_ N~ 0f 09 _ 9f 9y
{f,g}—Z(a—kj%j—a—%a—]%)-

7j=1
2. The Hamiltonian, h(z, k), a real function on R3 x R? (which gives the energy
of the classical system).

Then the classical dynamics of the system are given by Hamilton’s equations:
i={Hz} k={Hk}.
The corresponding fundamental objects in quantum mechanics are the following.

1. The state space L?(R%), and the commutator, [-.-], of two operators acting
on L*(R3)

2. A Schrédinger operator, H = h(x,p) (the Hamiltonian) acting on the state
space.
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Recall that the dynamics of the quantum system can be described by the Heisenberg
equations

7 7
&= +[H,1] p=z[H,p]
(which are the same as (5.4) and (5.5)).
We note that for classical mechanics
{ziy 25}y = {ki, kit =0 {ki,z;} = d;5
and for quantum mechanics
7
(23, 25] = [pips] =0 2 [pi 23] = bi5.

These are the canonical commutation relations. x and k are called canonical variables
of classical mechanics, and x and p, canonical operators of quantum mechanics.

The following table provides a summary of the classical mechanical objects and
their quantized counterparts:

Object CM QM
state R,’ x Ry® and L*(R®) and
space Poisson brackets commutator
evolution path in path in
of state phase-space L?(R3)
observable real function self-adjoint operator
on state space on state space
result of measuring  deterministic probabilistic
observable
objects controlling Hamiltonian Schrodinger operator
dynamics
canonical x and k operators
coordinates z (mult.) and p

5.5 Pseudodifferential operators

The correspondence between classical observables and quantum observables is a
subtle one. For canonical variables, we have that the variable x is mapped to the
operator of multiplication by x, and the variable k is mapped to the operator p =
—ihV . Continuing this, we should have a function f(x) mapping to an operator of
multiplication by f(z), and a function f(k) mapping to an operator f(p). However,
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the following simple case shows the ambiguity of this correspondence. The function
x -k =k -x could be mapped into any of the following three distinct operators:

1
T-p, p-, §(x-p+p-x)-

In this case, the ambiguity is resolved by requiring that the resulting operator is
self-adjoint. But in the general situation

f(z,k) = f(z,p),

showing that this condition resolves the ambiguity and that it can be implemented
in terms of a mathematical formula requires some work.

In mathematics, operators obtained by a certain quantization rule from func-
tions f(z, k) satisfying certain estimates are called pseudodifferential operators. Dif-
ferential operators with smooth coefficients, as well as certain integral and singular
operators are examples of pseudodifferential operators.



Chapter 6

The uncertainty principle

One of the fundamental implications of quantum theory is the uncertainty principle
- that is, the fact that certain physical quantities cannot be measured simultane-
ously with arbitrary accuracy. In this chapter, we establish precise mathematical
statements of the uncertainty principle.

6.1 The Heisenberg uncertainty principle

We consider a particle in a state ¥ and think of the observables z and p as random
variables with probability distributions |¢|*> and WP respectively. The dispersion of
x; in the state 9 is

(A.’L‘j)Q =< (ij— <z >¢)2 >

and the dispersion of p; is
(Ap;)* =< (pj— <pj >4)" >¢ -
Theorem 6.1 (The Heisenberg uncertainty principle) For any state 9,
Az;Ap; > h/2.

Proof: The basic ingredient is the commutation relation
1
—Ip,z] = id
28

(this is a matrix equation, meaning %[p;, zx] = 6;4). For notational simplicity, we
assume < T >,=< p >,= 0. Noting that for two self-adjoint operators A, B,

(i[4, By, = —2Im(Ay, By)

33
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we obtain .
)

2

= — = Im{p;th, 70) < 5 |(pﬂ/)a%¢>|

2
< Zllpillllz;dl = (Apg)(A%)
This does it. O

6.2 Refined uncertainty principle

We also have the following related result.

Theorem 6.2 (Refined uncertainty principle) On L?(R?),
S 1
— Az?

(recall that for operators A, B, we write A > 0 if (¢, Ayp) > 0 for all ¥, and we
write A> Bif A— B > 0).
Proof: Compute (formally!)

Y illel " pjlal ™ ;] = hdla| 2

J

(d = space dimension = 3). Hence

hd||[] l* =2 Im{|a| pylz] M, 250)
and therefore

h(d—2)||=[ " y* = —2ImZ i, W )-
Now the Cauchy-Schwarz inequality implies

1
\Z iy, | |2 ) < ||p¢llllmwll

(prove this!), which together with the previous inequality gives the desired result.
O

Problem 6.3 Show that the refined UP can be used to give a quick proof of the
Heisenberg UP.
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6.3 Application: stability of Hydrogen

In classical mechanics, the hydrogen atom is unstable: as the electron orbits the
nucleus (proton), it radiates and falls onto the nucleus. One of the first triumphs of
quantum mechanics was showing that this is not so in QM. The latter statement is
expressed mathematically by the property that the Hamiltonian, H (and therefore
the energy) is bounded from below.
The hydrogen atom is described by the Schrodinger operator
He PaA_ €

2m _m

on L*(R®) (m and —e are the mass and charge of the electron respectively). The
refined uncertainty principle gives

h? €2

sz ol
The r.h.s here reaches its minimum at |z|~! = 4me? /A% and so

2me*
H> -2

Thus, the energy of the hydrogen atom is bounded from below, and so the electron
does not collapse onto the proton.
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Chapter 7

Spectral theory

Our next task is to classify the orbits (i.e. solutions) of the Schrédinger equation

oy
h—=H
hge = 1Y
with given initial condition
Yli=o = Yo

according to their behaviour in space-time. Naturally, we want to distinguish be-
tween states which are localized for all time, and those whose essential support
moves off to infinity. Such a classification is made with the help of a very important
invariant - the spectrum of an operator. We begin by describing the general theory,
and then we proceed to applications.

7.1 The spectrum of an operator

Definition 7.1 The spectrum of an operator A on a Hilbert space H is the subset
of C given by

o(A)={A e C | A— X isnot invertible (has no bounded inverse)}
The usual reasons that A — )\ is not invertible are
1. (A — X))y = 0 has a non-zero solution, ¢ € H. Then A is an eigenvalue of A.

2. (A—X)y =0 “almost” has a non-zero solution. More precisely, we say {1, } C
H is a Weyl sequence for A and X if

37
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() [[¢nll =1 for all n
(b) (A =Nl > 0asn— oo
(¢) ¥ — 0 weakly as n — oo (this means (@, ,) — 0 for all ¢ € H).

This is what we mean by (A — A\)y = 0 “almost” having a non-zero solution.
Definition 7.2 The point spectrum of A is
0p(A) = {\| A is an isolated eigenvalue of A with finite multiplicity}
(isolated meaning some neighbourhood of X is disjoint from o(A)).
Here the multiplicity of an eigenvalue ) is the dimension of the subspace
Null(A—=XN)={vel* | (A-)\v=0}
Problem 7.3 Show Null(4 — ) is a vector space.

Problem 7.4 Show that for A = A*, eigenfunctions of A corresponding to different
eigenvalues are orthogonal.

Definition 7.5 The continuous spectrum of A s
0.(A) ={A| there is a Weyl sequence for A and \}.

When A is self-adjoint, these two sets make up the whole spectrum:

Theorem 7.6 (Weyl) If A= A*, then the spectrum of A is the union of the point
spectrum of A and the continuous spectrum of A:

0(A) = 0,(A)Uo.(A).

Problem 7.7 Show that for U : # — H unitary, o(U*AU) = o(A), 0,(U*AU) =
0p(A), and 0. (U*AU) = 0.(A).

Example 7.8 We show that

1. o(pj) = oc(p;) =R

2. O'(.Ij) = ac(xj) =R
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Proof of the second fact: assume, for simplicity, d = 1. For any A € R, we find a
Weyl sequence for z and A. This sequence is such that its square approximates the
delta-function ) (z) = 6(A — z) which solves the equation

(.’E—)\)d)\ =0

exactly. Such a sequence is sketched in figure 7.1.

Weyl sequence for x, A N (71)

How do we find such a sequence 1,7 Let ¢ be a fixed positive function supported
on [—1,1], and such that
[1or=1.

We compress this function, increasing its height, and shift the result to A:

Yn(z) = n'g(n(z - ).

[l = 167 =1

(@ = Aall? = / & — APnld(n(z — N)dz

Then

and

= [ PlowPdy o

as n — oo. Thus A € o(x) at least. Now we show that ¢, — 0 weakly. Indeed,

[asi=1]

<tfwrref
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which — 0 as n — oo by a well-known result of analysis. Thus, A € o.(z). It is easy
to convince yourself that x has no eigenvalues.
Now we prove the first fact. Using properties of the F'T, we have

1o = M bull = 1((p = Aol = [l (k = A)eball-

Take for 1/;71 the Weyl sequence constructed above:

by = n2(n(k — \))

with
197 =1
So we have X
|nll = l[¥nll = 1
and

/fwn=/f¢n—>0

1k = A)dball = 0 = [|(0 = A)¢oull = 0

for any f € L?. Further,

and so 1, is a Weyl sequence for p and A. Thus o(p) = o.(p) = R. Now let us see
how v, looks. We have

Ua(z) = 2mR)"2 / e Mnl/20(n (k — X))dk
— e_i‘”"\/hn_l/2¢(x/n).

We will assume ¢ = 1 for |z| < 1/2. Then 9, looks like a plane wave (with amplitude
n~!/2 and wave vector \), cut off at oo by @¢(x/n) (|1b,] is sketched in figure 7.2).

J \

! I
-n/2 n/2
Weyl sequence for p, \

(7.2)
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We remark that this fact also follows from the previous one, together with prob-
lem 7.7 and the Fourier transform.

The following exercise asks for the spectrum of two of our other favourite oper-
ators.

Problem 7.9 Prove

1. For V : R — C continuous, o(V) = range(V)

2. 0(—A) =0.(—A) =1[0,00)

We now show that self-adjoint operators have real spectrum.
Theorem 7.10 If A= A*, then o(A) C R

Proof: Suppose Im(A) # 0. Then we compute
1A = N9l* = (A= N, (A= N)
= || 49| — 2Re(N) (¥, Ap) + [AP[|¢]|*

SO

1A = Nll* > [|A¢I1* = 2[Re() [l Avl + AP
= ([ 4% = [Re(N)I[L1)* + [Tm(\) P[l¢]?

and

(A = Nyl > [ImN)[[[¥]]
and so A € o(A) by the Weyl theorem. [J

Proposition 7.11 Let A = A*. If X is an accumulation point of o(A), then A €
oc(A).

Proof: Suppose {¢,} is a sequence of eigenfunctions with eigenvalues converging
to A. By problem 7.4, we can assume the 1, are orthonormal. Then Y [{f, %,)|? <
| f]|? (Parseval’s relation) implies {f,,) — 0 for all f, so 1, — 0 weakly, and thus
it is a Weyl sequence for H. [J

If the operator A has the form of a Schrodinger operator on L2, we can strengthen
the Weyl theorem by showing that it is enough to consider Weyl sequences whose
support moves off to infinity.

Definition 7.12 {v,} C L?*(R?) is a spreading sequence for A and \ if
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1. ||n]l =1 for alln
2. for any bounded set B C RY, supp(1),,) N B = 0 for n sufficiently large
3. ||(A =Xy = 0 as n — oc.

Problem 7.13 Show that a spreading sequence for A, A is also a Weyl sequence
for A, A.

Theorem 7.14 If H = —A 4+ V s a self-adjoint Schridinger operator, then
o.(H) ={\| there is a spreading sequence for A and \}.

We skip the proof of this theorem (see [HS]).

7.2 Applications to Schrodinger operators

In this section we address two central issues. Firstly, we want to know for which
potentials, V', we can conclude that the Schrodinger operator H = —%A + Vs
self-adjoint. As we saw in Chapter 3, only when H is self-adjoint do we know that
the quantum dynamics exist. Secondly, we wish to describe the spectrum of H. As
we shall see in the next section, knowledge of o(H) gives us important information
about the nature of the solutions of Schrédinger’s equation (and hence, about the
evolution of physical states).

Our fist result covers confining potentials - that is, potentials which increase to
infinity with x.

Theorem 7.15 Let V(x) > 0 and V(z) = oo as |x| — oo. Then
1. H=—-A+YV is self-adjoint on L*(R®)
2. o(H) consists of isolated eigenvalues {\,}$° with A\, — 00 as n — oo.

Proof: The proof of self-adjointness is fairly technical, and can be found in [HS],
for example. To prove the second part, suppose A is in the continuous spectrum of
H, and let {1, } be a corresponding spreading sequence. Then

0« <¢m (H - A)@bn) = <¢m _Awn> + <wn: V¢n> —A

= Vn2+/V nl? = A > inf  V(y)—\— o0
[1vos [Viep -2z it Vi)
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(because {1, } is spreading), which is a contradiction. Thus the continuous spectrum
is empty. Further, there must be eigenvalues tending to 400 or else H would be
bounded from above (we clearly have H > 0, and operators with bounded spectrum
are bounded). It is easy to show that H is not bounded. [J

Our next theorem covers the case when the potential tends to zero at infinity.

Theorem 7.16 Let V' be continuous, with V(z) — 0 as |z| = co. Then
1. H=—-A+YV is self-adjoint

2. 0.(H) = [0,00) (so H can have only negative isolated eigenvalues, possibly
accumulating at 0).

Proof: Again, for a proof self-adjointness, we refer the reader to [HS], for example.
We prove the second part. We have, by the triangle inequality,

ICH = A)donll = [Vl < (=4 = Ntbull <NI(H = A)toall + [[Vehall-

Suppose {1, } is a spreading sequence. Then the term ||V1),|| goes to zero as n — oo
because V' goes to zero at infinity and {¢,} is spreading. So A is in the continuous
spectrum of H iff A € contspec (—A). We have (see problem 7.9) contspec(—A) =
[0,00). O

We conclude this section with a characterization of the continuous spectrum
of a Schrodinger operator in a manner similar to the characterization of the point
spectrum as a set of eigenvalues.

Theorem 7.17 (Schnol-Simon) For a Schridinger operator, H, with bounded po-
tential,

o(H) = closure {\| (H — A\ =0 for ¢ polynomially bounded }.

So we see that the continuous spectrum also arises from solutions of the eigenvalue
equation, but these solutions may not live in the space L?(R?).

Proof: We prove only that r.h.s C Lh.s., and refer the reader to [?] for a
complete proof. Let ¢ be a polynomially bounded solution of (H — A\)y = 0. Let
C, be the box of side-length 27 centred at the origin. Let j, have support in C, ;4
with j, =1 on C;, 0 < j, <1, and sup, , |05 (z)| < co. Our candidate for a Weyl
sequence is

Jr
[z

w, =
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Note that |w,|| =1 and if ¢ & L?, then (since ||j,%| — o0)

/ , 2 = 0
|z|<R

as 7 — oo for all R. We show that

(H— Nw, — 0.
Let F'(r) = [, [#[?, monotonically increasing. We claim there is a subsequence {r, }
such that

F(r, +2)
F(r,—1)

If not, then there is @ > 1 and ry > 0 such that
F(r+3) > aF(r)

for all 7 > ry. Thus F(ry+3k) > a*F(ry) and so F(r) > const b" with b = a'/3 > 1.
But F(r) < Cr" for some N (by assumption), a contradiction. Now,

(H - /\).71"1/] =Jr (H - )‘)1/1 + [—A,J}WJ
= (_A]r)w - 2er : V1/1

Since ||V"j||oo is uniformly bounded,

MH—»mmsc/ (WP+ww%sc/ 2.

So
I = Ay < ¢TI =)
pram

and so ||(H — Nw,, || — 0. O
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7.3 Spectrum and evolution

In this section we explain how the spectrum of a Schrodinger operator gives us useful
information about the solutions of the Schrodinger equation. We begin with some
simple notions.

Definition 7.18 A subspace W C L? is invariant under an operator A if Aw € W
whenever w € W.

Problem 7.19 Show that
1. The span of the eigenfunctions of A is invariant under A

2. For A symmetric, if W is invariant under A, then so is

Wr={ypel?| (,w)=0 Ywe W}

If we restrict a self-adjoint operator A to the invariant subspace orthogonal to the
span of all its eigenfunctions, the Weyl theorem (plus some abstract spectral theory)
imply that

A|{span of eigenfunctions of A}L

has a purely continuous spectrum.

Now we will see how the spectrum of a Schrédinger operator, H, gives us a
space-time characterization of the quantum mechanical evolution, ¢ = e /M.
We assume all functions below are normalized.

Suppose first that 1y € { span of eigenfunctions of H}. Then for any € > 0,

there is an R such that
inf/ Y2 >1—ce
t Jiel<r

To see this, note that if Hiyy = )y, then e_mth/)O = e_%wo, and so

[pI* = [tol* = 0
2/>R &>k

as R — oo. Such a v is called a bound state, as it remains essentially localized in
space for all time. On the other hand, if

1 € {span of eigenfunctions of H }L
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then for all R,
[ w0
z|<R

as t — oo. Strictly speaking, this convergence is in the sense of ergodic mean:
f(t) = 0 in ergodic mean as ¢t — oo means

%/OTf(t)dt—)O

as T" — oo. This result is called the Ruelle theorem (see, eg, [CFKS] for a proof).
Such a state, 1, is called a scattering state, as it eventually leaves any fixed ball in
space.

We conclude that the classification of the spectrum into point and continuous
parts corresponds to a classification of the dynamics into localized (bound) states
and locally-decaying (scattering) states.



Chapter 8

Special cases

In this chapter we will solve the Schrédinger eigenvalue equation in a few special
cases (ie, for a few particular potentials), which not only illustrate some of the
general arguments presented above, but, in fact, form a basis for our intuition about
quantum behaviour.

8.1 The infinite well
Let W be the box [0, L]> C R®. We take

wo-{ 2 15k

as our potential. This means that we impose Dirichlet boundary conditions

Y]ow =0 (8.1)
on the wave function. It is a simple matter to solve the eigenvalue equation

h2
—5— A = By (8.2)

in W with the boundary condition (8.1), using the method of separation of variables.
Doing so, we obtain eigenvalues (energy levels)
3

h2m? 9
En = o'mL2 Z n;

=1

47
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with corresponding eigenfunctions (bound states)

3

— (T2

= | |sm( 7 )
J=1

for each integer triple n = (n1,n2,n3), n; > 1. We see that the eigenvalue E,
appears with degeneracy equal to [{{m;}| > m} = > n2}|. We remark that the
ground-state (lowest) energy E( ;1) is non-degenerate.

Problem 8.1 Determine the spectra of the operators z and p on the space L*(W)
(with zero boundary conditions).

8.2 The torus

Now we consider a particle on a torus 7' = R® /Z3. This corresponds to taking V = 0
in the cube W, but this time with periodic boundary conditions. That is, we solve
the eigenvalue equation (8.2) with boundary conditions

¢(x)‘$j:0 = @b(x)‘wj:L

Y [0k |z;=0 = OV /Oy s;=L
for all j, k. This leads to (separation of variables again) eigenfunctions
3 - (2Tn;T;
B sin(—+1)

=1

with eigenvalues

27r2h2 i
1
(greater spacing than for the infinite well, but with higher degeneracy).

Problem 8.2 Determine the spectra of the operators z and p for this space (ie,
L*(W) with periodic boundary conditions).
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8.3 A potential step

Here we take the one-dimensional potential

Vo>0 >0
V(:r):{ 0O z < 0.

Solving the eigenvalue problem separately in the two different regions gives us a
general solution of the form

Cetk1T 4 De~thiz > () (h;ﬁ E-1) .

w:{AMM+Bfmmx<o "k — E)

There are no bound states, but we can say something about the scattering states.
Suppose E < Vj, and take k; = iK where K = /(2m/h2)(Vy — E) > 0. Then for
a bounded solution, we require D = 0. Imposing the condition that 1) be C! at 0,
that is

VYo =loy  OY/0z|o- = Op/Oxos
leads to the equations
A+B=C iko(A— B) = —KC

After manipulations, we find that

Rzg_%—m
T A ky+iK

(R is called the reflection coefficient), or, making the dependence on the energy F

explicit,
_VE-i/V,—FE
VE +iVV—E

R(E)

Similarly, if £ > V}, we obtain

VE-VE-T
VE+VE-T

R(E)

In particular, if F — Vj << 1, then
E -V
E

and almost all of the wave is reflected. This is in spite of the fact that the energy of
the particle is above the barrier. In classical mechanics, the particle would not feel
the barrier at all.

R(E)~1-2
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8.4 The square well

Now we consider a potential well of finite depth V5, and width a (see figure 8.3).

V(%)

-al2 a2

the finite well

(8.3)

The determination of the point and continuous spectra is straightforward, and is
left as an exercise.

Problem 8.3 Show
1. o.(H) =[0,00)
2. ap(H) C (=V0,0)
3. the equations for the eigenvalues are (—Vy; < E < 0)
ktan(ak/2) =K  kcot(ak/2) = —K
where
2mE 2m(E — V)

k=

K= T2 72

We now study the scattering states in more detail. If for F > 0 we write 7 in
the form
Vine = Ae *M g < —q/2

and '
Vipans = AT(E)e @ a/h 55 q/2

(T(E) is the transmission coefficient) then

T(E) = cos(ka/h) — z% sin(ka/h)
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where
k= +/2m(E - V;) and k= +V2mE.

This implies

IT(E)|* = cos*(ka/h) + sin?(ka/h)

E
VWo+E
which is sketched in figure 8.4.

2
[T

transmission coefficient

(8.4)
We see that at the energies satisfying sin(’%“) =0, i.e.

n’m?h?

ma

E=-Vy+

> 0, n=13,...

|T(E)|* has maxima (|T(F)|?> = 1) which are called resonances. The correspond-
ing values of E are the resonance energies. We remark that for large n these are
approximately equal to the energy levels of the infinite well of the same width.

8.5 The harmonic oscillator

The harmonic oscillator Hamiltonian is

h? 1
H= —%A + imw2|x|2.
We will solve the eigenvalue problem explicitly for this operator. For simplicity,
we consider the one-dimensional case. First, to remove all the constants we rescale:
T — Az so that p — +p where p = —ifi(d/dz). Setting A = /- gives H — AwH™"
where

1
Hnew — §((pnew)Q + LL‘Q)
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with p"®* = —i(d/dz). We introduce the creation and annihilation operators
* 1 S A LEW
o' =—(xr—1
7@ )
1 s A TLEW
a=—(x +ip"").

The commutation relation
[a,a"] =1 (8.5)

is easily verified. We can rewrite H in terms of a¢ and a* as follows:

1
H™ =da'a+ 5.

We say that this expression is in normal form as the a* appears to the left of a. We
introduce the particle number operator

N =a"a
which satisfies the relations
Na =a(N —1) (8.6)
Na* =a*(N +1) (8.7)
(use (8.5) to see these). Clearly,
1
H™™ =N + —.
+ 2

Theorem 8.4 We have

1. N>0

2. o(N) =Z* (the non-negative integers), each eigenvalue having multiplicity 1.
Proof:

1. This is easy, because a* is the adjoint of a, so

<, Ny >= [|a|? > 0.
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2. By the above, Ny = 0 iff ayp = 0. Note that the function

o = ce =/

(c a constant) is the unique family of solutions of
ap = (x +d/dx)yp =0

and hence of N1y = 0. Thus ) (normalized by setting ¢ = (27)~/*) is the
ground state. Now, the commutation relation (8.7) implies

Na*hy = a*1y

and in general
N(a*)"hy = n(a™) .
Thus
bn = (a*)"1ho

is an eigenfunction of N with eigenvalue n.

Problem 8.5 Show that ||@,||*> = n!. Hint: write ||¢,||* =< v, a™(a*)"1y >,
then push the a’s through the a*’s (including the necessary commutators) until
they hit 1y and annihilate it.

So
1

Yp = ﬁ(a*)”zﬁo

is a normalized eigenfunction of NV with eigenvalue n. We now show that these
are the only eigenfunctions. It follows from the commutation relations that if
1 is any eigenfunction of N with eigenvalue A > 0, then

Na™p = (A —m)a™. (8.8)

If we choose m so that A — m < 0 we contradict N > 0 unless a™ = 0. But
this implies

') = ey
for some integer j (¢ a constant), so by (8.8), A = j. Applying now (a*)’ to
this equation, and using the commutation relations, we can show ¢ = c); (c
another constant). So we are done. OJ
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Corollary 8.6
o(H")={n+1/2|n=0,1,2,...}

with eigenfunctions V¥, = (1/v/n!)(a*)™by.
Finally, then, the spectrum of the original harmonic oscillator Hamiltonian is
o(H)={hw(n+1/2)|n=0,1,2,...}

with eigenfunctions obtained by rescaling the ,’s.

8.6 The Hydrogen atom

A hydrogen atom consists of a proton and an electron, interacting via a Coulomb
force law. We will first make the simplifying assumption that the nucleus (the
proton) is infinitely heavy, and so does not move. Thus we have the electron moving
under the influence of the external potential V(z) = —e?/|z|, where e is the charge
of the proton, and —e that of the electron. The appropriate Schrodinger operator is
therefore

h? 9

acting on the Hilbert space L*(R*). In Chapter 9 we will see how to reduce the
problem of the more realistic Hydrogen atom - when the nucleus has a finite mass
(a two-body problem) - to the problem studied here.

As usual, we want to study the spectrum of H. The first step is to invoke
theorem 7.16. However, the fact that our potential V(x) = —e?/|z| is singular at
the origin is a possible obstacle. In fact, theorem 7.16 can be extended to cover this
case (see, eg, [CFKS]), and we may conclude that H is self-adjoint, with continuous
spectrum equal to the half-line [0, 00). Our goal, then, is to find the bound-states
(eigenfunctions) and bound-state energies (eigenvalues). It is a remarkable fact that
we can find these explicitly. Indeed, aside from the infinite well, the only multi-
dimensional potentials for which the Schrodinger eigenvalue problem can be solved
explicitly are the harmonic oscillator and the Coulomb potential.

Because the Coulomb potential is radially-symmetric (depends only on r = |z|),
it is natural to work in spherical coordinates (r, 8, ¢), where

x1 = rsin(f) sin(¢p) x5 = rsin(f) cos(¢p) x3 =rcos(),
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0<6<m, 0<¢<2r. In spherical coordinates, the Laplacian becomes

1

A=A+ 5Aq

r

where 5
A, = 0*/or* + =0/0,
r

depends only on the radial variable, and

1 1

Bo = 2B ()/00) + Ok /0¢

depends only on the “spherical” variables 6, ¢.
The eigenfunctions of Ag are the well-known spherical harmonics, which take
the form
Y™ (0, 6) = comP;™ (cos(6))e™ (8.9)

where [ = 0,1,..., m=—-l,-l+1,...,l — 1,1, ¢, is a constant, and the Legendre
function P™ can be written

1 — 2 m/2
P (u) = %d”m/dul“"(u2 - 1)L (8.10)
In fact, we have
=AY =1(l+1)Y" (8.11)

Problem 8.7 Check (8.11) using (8.9) and (8.10) (a bit tedious).

It turns out that the spherical harmonics, ¥, comprise an orthonormal basis of the
Hilbert space L?(S? dQ2) of L? functions on the sphere S? = {z € R® | |z| = 1} with
the measure d€) = sin?(#)dfd¢ (see, eg, [LL]).

Before completing the solution of the eigenvalue problem for the hydrogen atom,
we make a few remarks about the connection to angular momentum. The quantum-
mechanical angular momentum L = (Ly, Lo, L3) is the self-adjoint (vector-valued)
operator

L=xzxp

where p = —ihV as usual. We define also the squared magnitude of the angular
momentum, L? = L? + L% + L2. The following facts are easily checked:

1. L? = —=h*Aq (hence L?Y;™ = R2(1 + 1)Y;™)
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2. LyY™ = hmY;™.

Thus we see that the spherical harmonics are, in fact, simultaneous eigenfunctions
of the angular momentum operators Ls and L2.

To complete the solution of the eigenvalue problem, we seek eigenfunctions of H
in the separated-variables form

¥(r,8,0) = R(r)Y;™(6, ¢).
Plugging this into the eigenvalue equation Hvy = E1), we obtain

a0y e pr= R (5.12)

The solutions of the ODE (8.12) are well-studied (see, eg, [LL]). Without going into
details, we remark that one can show (by power-series methods) that (8.12) has
square-integrable solutions only for

e [-m
—1\ == 1 2,...}.
n=4 2E€{l+ J+2,..0

The corresponding eigenfunctions, R, are of the form

Il

Rnl(r) = ple_p/2Fnl(p)
where p = 27’;;,;27“, and F},; is a polynomial.
In full, then, the solutions of the eigenvalue problem H = E are

’(ﬁ(?‘, 0’ ¢) = Rnl(T)Y;m(g’ ¢)

where

1=0,1,2,... m=-=l,-l+1,...;,1 n=014+11+2,...
and
me*, 1
20 )
So we see that the Hydrogen atom has an infinite number of bound states below the
continuous spectrum (which starts at zero), which accumulate at zero. The ground
state energy, obtained for | = m = 0,n = 1, is E; = —me*/2h%. An easy count finds
the degeneracy of the energy level E, to be

E(= En) = —( (8.13)

—

n—

(20 +1) = n®.

N
Il
)
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Finally, we note that the expression (8.13) is in agreement with the empirical
formula (“Balmer series”)
1
AE = R(— — —)

ny o

(1 < ny < n; integers, R a constant) for differences AE in energy levels, which
predates quantum mechanics, and was based on measurements of absorption and
emission spectra.

8.7 A particle in an external EM field

Now we extend our quantization procedure to the case of a charged particle in an
external electro-magnetic field. Of course, if the external field is purely electric, then
it is a potential field, and fits within the framework we have considered already (as
we saw in section 8.6).

Suppose, then, that a magnetic field B, and an electric field, E, are present
(and are time-independent: B, E : R® — R?®). We know from the theory of electro-
magnetism (Maxwell’s equations) that these fields can be expressed in terms of the
vector potential, 4 : R? — R3, and the scalar potential, ® : R? — R via

EF=-Vd B = curlA

(we are using units in which the speed of light, ¢, is equal to one).
According to our general quantization procedure, we write the classical Hamil-
tonian function for a particle of charge e subject to the fields F and B,
e, k) = 5 (k — eA(@))” + eB(2)
r, k) = —(k — eA(x ed(z
’ 2m
and then replace the canonical variables z and k£ with the quantum canonical oper-
ators x and p. The resulting Schrédinger operator is

1
H(A, Q) = %(p —eA)? + ed

acting on L?(R®). We remark that the self-adjointness of H (A, ®) can be established
by using Kato’s inequality ([CFKS]).

An important feature of the operator H(A, ®) is its gauge invariance. We recall
that in the theory of electro-magnetism, the vector potential A is not uniquely
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determined by the magnetic field B. In fact, if we add the gradient of any function
X to A (a gauge transformation), we obtain the same magnetic field B:

curl(A+ Vx) = curlA = B.
Gauge invariance of the quantum Hamiltonian H (A, ®) is reflected in the relation
H(A+Vx,®) =e"XH(A, ®)e "X, (8.14)
Problem 8.8 Check that equation (8.14) holds.

Thus if A and A differ by a gradient vector-field, then the operators H(A,®) and
H(A, ®) are unitarily equivalent via the unitary map

P X

on L*(R?). Thus the two Hamiltonians are physically equivalent. Of course, this is
to be expected as A and A correspond to the same magnetic field.

One can impose restrictions (called gauge conditions) on the vector potential
A in order to remove some, or all, of the freedom involved in the choice of A. A
common choice is divA = 0, known as the Coulomb gauge. By an appropriate gauge
transformation, the Coulomb gauge can always be achieved.

We now consider an important special case - a constant magnetic field with no
electric field present. A possible choice for A is

1
Another possibility, supposing B to be directed along the z3 axis - B = (0,0, b) - is
A(z) = b(—29,0,0). (8.16)

Problem 8.9 Check that both (8.15) and (8.16) yield the magnetic field B, and
that the two are gauge-equivalent.

Using the second choice for A, the appropriate Schrodinger operator is

1
H(A) = —

(4) = 5|
To analyze H(A), we apply the Fourier transform to only the first and third variables
(21,3 — k13). This results in the unitarily equivalent operator

(p1 + ebza)” + p5 + 3.
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where w = eb/m and k1, k3 act as multiplication operators. We remark that H acts
as a harmonic oscillator in the variable x5, and as a multiplication operator in k;
and k3. In the following problem you are asked to determine the spectrum of this
operator.

Problem 8.10

1. Show that the energy levels of H (called Landau levels) are given by
1 2
(n + §)hw +a/2m

where n = 0,1,2,... and o € R. Show that the corresponding generalized
eigenfunctions are

Un,alky, Ta, k3) = ¢n(w2 + k1/eb)d (ks — )
where ¢,, is the nth eigenfunction of the harmonic oscillator.

2. Analyze the same problem in two dimensions, with the magnetic field perpen-
dicular to the plane.
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Chapter 9

Many-particle systems

In this chapter we describe an extension of the concepts developed previously to
many-particle systems. Specifically, we consider a physical system consisting of N
particles of masses my, ..., my which interact pairwise via the potentials V;;(z;—x;),
where z; is the position of the j-th particle. Examples of such systems include atoms
or molecules - ie, a system consisting of electrons and nuclei interacting via Coulomb
forces. We will write this example out explicitly later.

9.1 Quantization of a many-particle system

According to our general framework, we begin with the classical Hamiltonian for-
mulation of this system. The appropriate phase-space is R3V x RV where z =
(x1,...,zy) are the particle coordinates, and k = (ki,. .., ky) are the particle mo-
menta. The Hamiltonian function is
|
2
H(z, k)= ok + V()

m.
j=1 =

where V' is the total potential of the system, given in this case by

V(z) = % > V(@i — z5).

i#j

The quantization proceeds in the standard way by replacing R3N x R}V with
L?*(R3N), x with the multiplication operator x, k with p = —ihV,, and H(z, k) with

61
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the operator H = H(z,p). Explicitly, the Schrédinger operator H is given by

N
1
H = —p? .
El 2m]-p3 + V(x) (9.1)

acting on L?(R3N).

Example 9.1 Consider a molecule with /V electrons of mass m and charge —e, and
M nuclei of masses m; and charges Z;, j = 1,..., M. In this case, the Schrodinger
operator, H,,,, is

mol - Zp] + Z —(]J + V .’L‘ y) (92)

acting on L2(R*M+M)) Here z = (z1,...,7y) are the electron coordinates, y =
(Y1, - --ym) are the nucleus coordinates, p; = —ihV,, is the momentum of the j-th
electron, ¢; = —1hV,, is the momentum of the j-th nucleus, and

Z | —fcgl Z vaz Z Iyz

For a neutral molecule, we have

M
Y " Z; = Ne.
1

If M =1, the resulting system is called an atom, or Z-atom (Z = Z,).

Since nuclei are much heavier than electrons, in the leading approximation one
takes nuclei frozen at their positions, and considers, instead of (9.2), the Schrédinger
operator

N
1 2
Hpo = om El p; + V(z,y)

on L?(R3") with y € R*™ | the positions of the nuclei, playing the role of parameters.
This is called the Born-Oppenheimer approximation. It plays a fundamental role in
quantum chemistry, where most computations are done with the operator Hgo. The
eigenvalues of the operator Hgp are functions of the coordinates, y, of the nuclei.
Minimizing the lowest eigenvalue - the ground state energy - with respect to y gives
the equilibrium positions of the nuclei, i.e. the shape of the molecule.
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A spectral analysis of operator (9.1) is a more delicate problem than it is for
one-particle operators. One adapts the tools we have seen so far to take into ac-
count the particle geometry. The resulting spectral analysis is described in [CFKS].
The main result, due to W. Hunziker, C. van Winter, and G.M. Zhislin (the HWZ
theorem), gives a description of the spectra of many-particle Schrédinger operators,
generalizing the results of Chapter 7. We will not go into the theory of many-body
Schrodinger operators here. However, we will discuss two of its distinct features,
which are not present in the one-body case.

9.2 Separation of the centre of mass motion

The Schrédinger operator (9.1) commutes with the operator of total translation of
the system

¢($1,...,$N)'—)’(p(.’l?1+h,...,.’131v+h)

and one can show, therefore, that its spectrum is purely continuous. So in order to
obtain interesting spectral information about our system, we have to remove this
translational invariance (“break” it). One way of doing this is by fixing the centre
of mass of the system at, say, the origin:

N
E mjxj =0.
1

We will not describe a general mathematical procedure for fixing the centre of
mass, but will show how to do it in the case of two particles, N = 2. In this case,
we change the particle variables as follows:

miT1 + Mex
T1,To =Y =T — T, 2 = Mt BNl (9.3)
mq + ma
Here y is the coordinate of the relative position of the two particles, and z is the
coordinate of their centre of mass. Using this change of variables in the two-particle
Schrodinger operator
1

1
Hy=—pi4+_—pi+V(z, —
2 2m2p1+ 2m2p2+ (xl 332)

acting on L?(IR%), we arrive easily at the operator
.

1
Hy=—p’+—P?
2 2Mp +2M +V(y)
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where p = —ihV,, P = —ihV,, p = 7172 (the reduced mass), and M = my + my
(the total mass). In fact, it can be shown that H and H are unitarily equivalent,
with the equivalence given by a unitary realization of the change of coordinates (9.3).

The point now is that one can separate variables in the operator H,. In formal

language, this means that H, can be written in the form

on L2(R%) = L2(R,*) ® L%(R,") where

L,
H= ﬂp +V(y)
acts on L%(R,*), and
1
Hoy = 5 P°

2M

acts on L?(R,?). Clearly H and H¢y, are the Schrédinger operators of the relative
motion of the particles, and of their center of mass motion respectively. It is equally
clear that of interest for us is H, and not Hgsps. Note that H has the form of a
one-particle Schrédinger operator with external potential V(y). All the analysis we
developed for such operators is applicable now to H.

9.3 Identical particles

Many-particle systems display a remarkable new feature of quantum physics. Unlike
in classical physics, identical particles (i.e., particles with the same masses and
charges, or, more generally, which interact in the same way) are indistinguishable
in quantum physics. This means that all probability distributions which can be
extracted from an N-particle wave function v (z1, ..., xy), should be symmetric with
respect to permutations of the coordinates of identical particles. This is equivalent
to the property that v (z1,...,zy) is invariant under such a permutation modulo
change of sign.

Assume for simplicity that all N particles are identical. Then the invariance
property of ¢(z1,...,zy) formulated above means that 1(xy,...,zx) belongs to a
representation of the symmetric group Sy (the group of permutations of N indices)
corresponding to a Young tableau with at most two columns. The shape of the
Young tableau is determined by the spin of the particles involved. One-column
Young tableaux - i.e. purely symmetric ¢(x1,...,zy) - correspond to particles with
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integer spins, or Bosons, while two-column tableaux correspond to particles with
half-integer spins, or Fermions. This relation between the symmetry properties of
wave functions and the spin of particles, is known as the relation between spin and
statistics. We will not go into this topic here, and refer the interested reader to any
of the standard books on quantum mechanics given in the references.
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Chapter 10

The Feynman path integral

In this chapter, we derive a convenient representation for the integral kernel of the
Schrédinger evolution operator, e *#/" This is the “Feynman path integral.” First,
we need some mathematical tools.

10.1 Mathematical detour: the Trotter product
formula

Let A, B, and A + B be self-adjoint operators on a Hilbert space H. If [A, B] # 0,
then e'(A+B) £ ¢14¢iB in general. But we do have the following.

Theorem 10.1 (Trotter product formula) Let either A and B be bounded or
A, B, and A+ B self-adjoint and bounded from below. Then for Re(\) <0,

A 4B
MNAB) _ o PP

: = n
aleme)
Remark 10.2 The convergence here is in the sense of the strong operator topology.
For operators A, and A on a Hilbert space H, A, — A in the strong operator
topology (written s — lim,_,o0o Ap, = A) iff ||Antp — AY|| — 0 for all € H. For
bounded operators, we can take morm convergence. In the formula above we used
a uniform decomposition of the interval [0,1]. The formula still holds for a non-

uniform decomposition.

Proof (for A,B bounded): We can take A = 1. Let S, = eA+5)/n and T, =
emeB/™ Now by telescoping,

St T = 8" — T, 5" 4+ T, 8" e = T

n

67
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i
L

=D TH(Su—T,)Sp "

n
0

=
Il

SO

n—1
1S5 =Tl < D NTallFl1Sh = TulllSall™ *
k=0

-1

< > (max(|Tul, [Sal))™HISu = Tl

k=0

3

< nel|A||+|IBII||Sn —Tl|-

Using a power series expansion, we see ||S, — T,|| = O(1/n?) and so ||S? —T*|| = 0
as n — oo. [

10.2 Mathematical detour: integral operators
We consider integral operators, K, on a function space:
(0)a) = [ Ko, wowiy

(K (x,y) is the kernel of the operator). Examples include

1. K = g(—iV) for which the kernel is

K(z,y) = 2m)"g(z —y) (10.1)

2. K =V (multiplication operator) for which the kernel is

K(z,y) = V(2)d(x —y).

Proposition 10.3 If Ky and K, are integral operators (with kernels K, and K,),
then the integral kernel of IC = KKy s

K(z,y) :/Kl(:v,z)Kg(z,y)dz.

Problem 10.4 Prove this.
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Remark 10.5 If K is an integral operator with kernel satisfying

/|K(x,x)\dx < 00,
then the trace of K is

tr K = /K(z,x)dm.

10.3 The Feynman path integral

Recall that the solution to the Schrodinger equation

ihoy /0t = Hy
with the initial condition
1/’|t:0 = 1o
is given in terms of the evolution operator U(t) = e **/" ag
¥ =U(t)vo.
Here H is a self-adjoint Schrodinger operator, say
h2

H=—A }
o + V(x)

iHt

Our goal in this section is to understand the evolution operator U(t) = e~ &
by finding a convenient representation of its integral kernel. We denote the integral
kernel of U(t) by U;(y, ) (also called the propagator from z to y).

Using the Trotter product formula, we have

iHt : ﬁ _ .
e o= elamAtVO/h — o im K}
n—oo

ikt iVt
where K,, = e?mn”e” % . So

Ui(y,z) = lim /---/Kn(y,xnl) - Ky (29, 21) Ky (21, 2)d2y 1 - - -dxp. (10.2)

n—oo

Now,
htA _iV(y)t

K,(y,x) = egm(y,x)e hn

—iVt/nh

as V, and hence e is a multiplication operator (check this).
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Lemma 10.6 For Re(a) > 0,

Q%A([L‘, y) = (Q_W)_d/2e_%|$—y|2'

a
Proof: For Re(a) > 0, problem 4.1 shows that the FT (with & = 1) of a%/2e 5/%”
is e~2*” and the result follows from (10.1). In fact, this FT equality is valid for
Rea = 0 as well (in a distributional sense). [

Now setting a = %2 and plugging into (10.2) gives us

) 271
Ut(y7 x) = llm / . e / ezsﬂ/h(ﬂ)_nd/Qd{L‘I e dmn_l
mn

n—00

where S, = S0 i (mn|zyyy — 2 [2/2t — V(2441)t/n) with 2o = 2, , = y. Define
the piecewise linear function ¢, such that ¢,(0) = z, ¢,(t/n) = x1, -+, du(t) =y
(see figure 10.3).

| | | |
- \ \
th  2Un -htn ot S

piecewise linear function (10,3)

Then

2(t/n)?

Now, S, is a Riemann sum for the classical action

t o
S 9 = a 2 - V d
01) = [ (5o = Vies
of the path ¢,. So we have shown

Ui(y,z) = lim S/ Dg,, (10.4)

n—oo n
Pm,y,t
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where P, , is the (n — 1)-dimensional space of paths ¢, with ¢,(0) = z, ¢ (t) = ¥,
and which are linear on (kt/n,(k + 1)t/n) for £k = 0,1,...,n — 1, and D¢, =
(22t =012, (1 /) - - ds, ((n — 1)1/m).

Heuristically, as n — oo, ¢, approaches a path from z to y (in time t). Thus we
write

Uiy, x) :/ SN/ pDg. (10.5)
Pac,y,t

Here P, ,; is the space of paths from z to y defined as

Pogs = {6:0,] 5 RY / P <o, B0) =z, 6(t)=y}.

This is the Feynman path integral. 1t is not really an integral, but a formal expression
whose meaning is given by (10.4). Useful results are obtained non-rigorously by
treating it formally as an integral. Answers we get this way are intelligent guesses
which must be justified by rigorous tools.

Note that P, ; is an (n — 1)-dimensional subspace of the co-dimensional space
Prys It satlsﬁes P"yt C P27, and (in some sense) limy,_,o Py, ; = Prys. We call
such subspaces finite dimensional approzimations of P, ;.

In (non-rigorous) computations, it is often useful to use finite-dimensional ap-
proximations to the path space other than the polygonal one above.

We can construct more general finite-dimensional approximations as follows.
Pick a fixed function ¢,y € Py 4. Then

z,y,t

Pac,y,t = ¢wy + PO,O,t-

Note Py, is a Hilbert space. Choose an orthonormal basis {{;} in Py, and define

P(;fo,t = Span {fj}?

and

Pn,yt ¢$y+P(’)nOt'

Then P, ; is a finite dimensional approximation of Py, ;. Typical choices of ¢y
and {gj} are

1. ¢4y is piecewise linear and {;} are splines. This gives the polygonal approxi-
mation introduced above.
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2. ¢4y is a classical path (a critical point of the action functional S(¢)) and {&;}
are eigenfunctions of the Hessian of S at ¢,, (see the next section). In this
case, if n € P, ,, then

2mith 2 [m. —
Dp = (22~ —d/2,2n0  [T0\p I I )
where

n
n=)_a
=1
It is reasonable to expect that if

lim ei5(¢,t)/ﬁD¢

n—oo n
Pw,y,t

exists, then it is independent of the finite-dimensional approximation, P ., that

z,y,l?
we choose.

Problem 10.7

1. Compute (using (10.5) and a finite-dimensional approximation of the path
space) U, for
(a) V(z) = 0 (free particle)
(b) V(z) = ™22 (harmonic oscillator).

2

2. Derive a path integral representation for the integral kernel of e
3. Use this to find a path integral representation for Z(3) = tr e (you should
get the expression (13.9)).
10.4 Generalizations of the path integral

Here we mention briefly two extensions of the Feynman path integral we have just
introduced.
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1. Phase-space path integral:

Lt
Uy, x) = et o @m=H@m)/h D e

/Pm,,t x anything

where IPr is the path measure, normalized as

/e—;fgnwnmﬂ _1

(recall in QM #p = d3p/(27)%/?). To derive this representation, we use the
Trotter product formula, the expression e*¥ =~ 1 + ieH for € small, and the
symbolic (pseudo-differential) composition formula. Unlike the representation
Ik eilo SD¢, this formula holds also for more complicated H, which are not
quadratic in p!

2. A particle in a vector potential A(z). In this case, the Hamiltonian is

(p— eA(2))” + V(z)

1
H(l'ap) = om

and the Lagrangian is
L(z,4) = %ﬁ — V() + e - A(z).
The propagator still has the representation
Uia) = [ eSODg,
Pz,y,t
but with
¢ . ¢ m ., t .
56)= [ Lo.d)is= [ (G- VieNds+e [ 4(0)- das.
0 0 0

Since, in general, A(z) does not commute with V, care should be exercised in
computing a finite-dimensional approximation: one should take

Z A(%(xz + Tit1)) * (Tip1 — i)
Z %(A(J%) + A(Ti11)) - (i1 — 74)

and not

ZA(.IZ) (Tiy1 — ;) O ZA(aciH) (Tig1 — xi)-
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Chapter 11

Mathematical detour: the calculus
of variations

The calculus of variations, an extensive mathematical theory in its own right, plays a
fundamental role throughout physics. This chapter contains an overview of some of
the basic aspects of the variational calculus. We will use this material in Chapters 13
and 14, in conjunction with the path integral introduced in the previous chapter, to
obtain useful quantitative results about quantum systems.

11.1 Functionals

The basic objects of study in the calculus of variations are functionals, which are just
functions defined on function spaces. That is, we specify a space, X, of functions,
and the functionals are just maps S : X — R.

Example 11.1 Here are some common examples of functionals, S, and the spaces
X on which they are defined.

1. X = L*([a,b;R), f € X is fixed, and
b
S d)n—)/ fo.

2. Evaluation functional: X = C([a, b)), 2o € [a, b] fixed, and
St ¢ d(z0)

75
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10.

(we can actually think of this as a special case of example 1 with f(x) =
d(z — xp)).-

X ={¢: R 5> R"|V(¢) € L}(RY)}, V: R™ - R, and

S:dp— V(o).

Rd
Dirichlet functional: X = H'(R?) = {¢ € L*(R%) | V¢ € L?}, and
S:om 3 [ Vo
Classical action: X = {¢ € C'([0,T];R™) | ¢(0) = a, ¢(T) = b}, and
s:o0 [ {ymdt - Vi),
Classical action: X as in the previous example, and
S:¢ /OTL(qs,q's)dt

(here L : R™ x R™ — R is the Lagrangian).

. Action of a classical field theory: X = {¢ € H'(R? x [0,T];R™) | ¢(z,0) =

f(@),8(z,T) = g(x)}
T 1., 1
Siorms [ [ {5160+ 5IVa0 + V()
Quadratic form: X = D(B), B a self-adjoint operator, and

S %<¢,B¢>. (11.1)

. Action of an EM field: X = {4 € H'(R® x [0,T];R*)|V - A =0} and

e ,
S:An—)—/ / (=|AP + |V x AP}
2 0 R3
Lagrangian functional: £: R x R — R

S:ém /[,(qﬁ(z), Vo(2))dz.

We will encounter many of these functionals in applications to quantum mechanics
and quantum field theory.
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11.2 The first variation and critical points

The notion of a critical point of a functional is a central one. It is a direct extension
of the usual notion of a critical point of a function of finitely many variables (ie, a
place where the derivative vanishes). The solutions of many physical equations are
critical points of certain functionals (action functionals).

In what follows, X is some space of functions. It will almost always be a linear
(ie vector) space, or an affine space, and will vary from example to example.

Definition 11.2 A variation of ¢ € X along & is a path ox in X (X varying in a
neighbourhood of 0), such that ¢po = ¢ and 0py/ON =0 =

In this definition, if X is a linear space (as it usually is), we may take £ € X, and
o = ¢ + A&, More generally, X could be a manifold. In this case, the direction &
of the variation lies in the tangent space T,.X.

Example 11.3 Define X,, = {¢ € C([a,b],X)|¢(a) = z,¢(b) = y} (an affine
space). Then T,X,, = Xy (see figure 11.2), and an example of a variation of
¢ € Xy in the direction § € X is ¢y = ¢ + A € Xy

variations of a path (112)

We now define a notion of differentiation of functionals which is a direct extension
of usual differentiation of functions of finitely many variables.

Definition 11.4 Let S : X — R be a functional on a function space X. The Fréchet
derivative (or variational derivative or gradient map) of S at ¢ is the function 0S(9)
defined by

—S (6x)r=0 = /85 (11.3)

for any n, and variation ¢, of ¢ along n.

Remark 11.5 This definition also applies to functionals defined on an abstract
Hilbert space (eg (11.1)) with the integral replaced by the inner-product.
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It is a fairly easy matter to compute the Fréchet derivatives of the functionals in
example (11.1) from the above definition, and the task is left as an exercise (hint:
usually, one has to integrate by parts).

Problem 11.6 Referring to the list of functionals given in example 11.1, show
that:

1. 05(¢) = f

3. 9S(¢) = VV(¢)

4. 9S(9) =

5. 05(¢) = —md — VV(9)

6. 3S(¢) = —L(9;L) + dyL

7. 8S(¢) = O¢ + VV(¢) where 0 = 92 — A is the D’Alembertian operator
(

S(¢) = B¢ (in this case the variational derivative is defined with respect to
the abstract inner-product rather than the integral)

9. 0S(4) =04
10. 9S(¢) = —=V(dypL) + 0L

As in the finite-dimensional case, a critical point is a place where the derivative
vanishes.

Definition 11.7 A function ¢ in X is a critical point (CP) of a functional S if
95(¢) =

In fact, many physical equations are critical point equations for certain functionals.

Example 11.8 Continuing with the same list of examples of functionals, we can
write down some of the equations describing their critical points:

4. A¢ = 0 (Dirichlet equation, ¢ harmonic)

5. mé = —VV(¢) (Newton’s equation)

6. %(%L) = (0pL) (Euler-Lagrange equation)

7. O¢ + VV(¢) = 0 (nonlinear wave/Klein-Gordon equation)
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9. OA = 0 (wave equation)
10. —V(0vsL) + 0sL = 0 (classical field equation)

Remark 11.9 Strictly speaking, the Fréchet derivative, 0S of a functional S, lives
in the cotangent bundle T*X over X. That is, for all ¢ € X, 0S(p) is the linear
functional from TyX into R given by & — 0xS(¢a)|a=0 where ¢, is a variation of ¢
in the direction .

The following connection between critical points and minima (or maxima) is
familiar from multi-variable calculus.

Theorem 11.10 If ¢y minimizes a functional S, then ¢q is a critical point of S.
Problem 11.11 Prove this (similar to the usual finite-dimensional case).

As we have seen, the equations for a critical point of the functional

5@ = [ G#-vie)

are exactly Newton’s equation of classical mechanics. This is a special case of
the principle of minimal action: solutions of physical equations minimize (more
precisely, make stationary) certain functionals, called action functionals. It is one
of the basic principles of modern physics.

11.3 The second variation

In the usual calculus, if one wishes to know if a critical point is actually a minimum
(or maximum), one looks at the second derivative. For the same reason, we need to
define the second derivative of a functional.

Definition 11.12 A variation of ¢ along n and ¢ is a two-parameter family, ¢y, €
X: such that ¢0,0 = (b: 8¢/6A|)\:M:0 = 67 and a¢/aﬂ|>\:u:0 =7

Definition 11.13 Let S be a functional on a function space X. The Hessian (or
2nd derivative) of S at ¢ is the operator 9*S(¢) (or S"(¢)) such that

(6 OAI)S (Sa) rpo = / £ 7S (6)n (11.4)

for all &, n, where ¢y, is a two-parameter variation of ¢ along & and 7.
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Computations of the second derivatives of the functionals in our list of examples
are left as an exercise.

Problem 11.14 Continuing with our list of examples of functionals, show that
3. S"(¢) = HessV(¢) (matrix multiplication operator).
4. S"(¢) = —A (Laplacian).
5. S"(¢) = —md} — HessV(¢) (Schrodinger operator).

S"(¢) = —d/dt(D3L)d/dt — (d/dtd2,L) + O} L. (11.5)
7. 8"(¢) = O+ V"(¢).
8. S"(¢) = B.
9. $"(¢) = O (D’Alembertian).
1o 2L 2L 2L

The following criterion for a critical point to be a minimizer is similar to the
finite-dimensional version, and the proof is left as an exercise.

Theorem 11.15 If ¢ is a critical point of S, and 6*S(dy) > 0 (a positive definite
operator), then ¢q is a local minimizer of S.

Problem 11.16 Prove this.

Let us now pursue the question of whether or not a critical point of the classical
action functional

(which is a solution of the Euler-Lagrange equation - ie, a classical path) minimizes
the action. As we have seen, the Hessian S”(¢) is given by (11.5). We call O;L the

generalized mass.

Theorem 11.17 Suppose a(j.)?L > 0. Suppose further that 8£L 18 a bounded func-
tion. Then there is a Ty > 0, such that S"(¢) > 0 for T <Ty.
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Proof (for L = m¢? — V(#)): In this case S”(¢) = —md?/ds* —V"(¢) on L2([0,T])
with Dirichlet boundary conditions. The strong form of the uncertainty principle
(see Chapter 6) says that d?/ds? > 1/(4s?). So S"(¢) > m/4T? — ||V"||« which is
> 0 for T sufficiently small. [

Corollary 11.18 For T sufficiently small, a critical point of S (ie, a classical path)
locally minimizes the action, S.

We conclude this section with two further remarks about the variational calculus.

Remark 11.19 In the finite-dimensional setting, the second derivative is obviously
the derivative of the first derivative. The variational analogue can be written

S"(¢)n = 04045 (), n)-

Remark 11.20 (Lagrange multipliers) Informally, ¢ is a critical point of a func-
tional E(¢) under a constraint C(¢) (i.e. on the space {¢p € X | C(¢) =0}) iff ¢ is
a critical point of the functional E(p) — \C(¢) for some X (the Lagrange multiplier),
and ¢ satisfies the constraint C(¢) = 0.

11.4 Application to the spectral problem: varia-
tional characterization of eigenvalues

For a moment, we consider an abstract self-adjoint operator H on some Hilbert
space. By applying variational techniques to the “energy” functional < ¥, Hy >,
we will derive an important characterization of eigenvalues of H.

Theorem 11.21 )\ = info(H) is an eigenvalue of H iff there is a minimizer for
S() = (v, H) with the constraint ||| = 1.

Proof: 1 minimizes S with the given constraint iff ¢y is a CP of S(¢) — A||%|* (A
is a Lagrange multiplier) and ||1o|| = 1. The variational derivative of this functional
is Hiy — A, and its second variation is the operator H — A. So 9y minimizes S with
the given constraint iff Hiy = Ay, H — A > 0, and ||¢g]| = 1, i.e. iff A is an EV of
H and A =info(H). O

This result leads us to the variational principle of quantum mechanics: for any
v,

(¥, HY) > A = info(H)

and equality holds iff Hy = \.

This can be extended to higher eigenvalues:
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Theorem 11.22 (MinMax principle) The nth BV of H, if it exists, 1s given by

Ap = sup inf (¢, Hy).

dim X=n—19€X | [[¢]|=1

11.5 Conjugate points and Jacobi fields

In the remainder of this chapter, we study the classical action functional and its
critical points (classical paths) in some detail. While such a study is of obvious
importance in classical mechanics, it will also prove useful in the quasi-classical
analysis of quantum systems that we undertake in chapters 13 and 14.

Thus we consider the action functional

We have shown above that if ¢ is sufficiently small, then S"(¢) > 0, provided
(02L/0¢?) > 0. So in this case if ¢ is a critical path, then it minimizes S(¢).
On the other hand, Theorem 11.15 implies that if ¢ is a critical path such that
S"(4) has negative spectrum, then ¢ is not a minimizer. We will show later that
eigenvalues of S”(¢) decrease monotonically as t increases. So the point ¢, when
the smallest eigenvalue of S”(¢) becomes zero, separates the t’s for which ¢ is a
minimizer, from those for which ¢ has lost this property. The points at which one of
the eigenvalues of S”(¢) becomes zero play a special role in the analysis of classical
paths. They are considered in this section.

In this discussion we have used implicitly the fact that because S”(¢) is a
Schrédinger operator defined on L?([0,¢]) with Dirichlet (zero) boundary condi-
tions, it has a purely point spectrum running off to co. We denote this spectrum by
{2 (t)}° with A\, — 0o as n — oo. Note that if ¢ is a CP on [0, ], then ¢, =
is a CP on [0,7]. Thus for 7 < ¢, {\,(7)} is the spectrum of S"(¢,) = S"(¢) o
[0, 7] with zero boundary conditions..

We specialize now to the classical action functional

/ 21 - vie))

on the space X = {¢ € C([0,¢];R?) | ¢(0) = =, ¢(t) = y}, and continue to denote
by ¢, a critical point of this functional (classmal path).

T]

Theorem 11.23 \,(7) is monotonically decreasing in .
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Proof: consider \;(7), and let its normalized eigenfunction be t;. Define 1; to be
1, extended to [0,7 + €] by 0. So by the variational principle,

AT+ €) < (41, S"(@)1) = Ai(7).

Further, equality here is impossible by the “unique continuation theorem” which
states that if an eigenfunction of a Schrodinger operator is zero on an open set, it
is everywhere zero. To extend the proof to the higher eigenvalues, one can use the
MinMax principle. [

Definition 11.24 A point gl;(j'o) such that A\, (m0) = 0 for some n is called a conju-
gate point to ¢(0) = x along ¢.

So if ¢ = ¢(7p) is a conjugate point to x, then S”(¢) on [0, 79] has a 0 eigenvalue.
That is, there is some non-zero & € L*([0, 79]) with £(0) = &(79) = 0 such that

S"(4)¢ = 0. (11.6)

This is the Jacobi equation. A solution of this equation with £(0) = 0 will be called
a Jacobi vector field.

Definition 11.25 The index of S”(¢) is the number of negative eigenvalues it has
(counting multiplicity) on L*([0,t]) with zero boundary conditions.

We recall that for 7 small, S”(¢) has no zero eigenvalues on [0, 7] (Theorem 11.17).
Combining this fact with Theorem 11.23 gives the following result.

Theorem 11.26 (Morse) The index of S"(¢) is equal to the number of points
conjugate to ¢(0) along ¢, counting multiplicity (see figure 11.7).

\\ spec[S' ()]
t

index = # of conjugate points (1 1 . 7)
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Thus the picture that has emerged is as follows. For sufficiently small times,
there is a unique classical path with the smallest action. As time increases, the paths
might lose this property. This happens if there is a point in the path conjugate to
#(0) (see figure 11.8).

3

- small times
- classical path has smallest action

- conjugate point
- classical path no longer
minimizes action

conjugate point ( 11 .8)

Example 11.27 An example of a conjugate point is a turning point in a one-
dimensional potential (see figure 11.9).

turning point

a b (11.9)
The classical path ¢ starts at a, and turns back after hitting b at time 7. Now
SII(¢) — _maz _ VII(¢)

and it is easy to check that S"(¢)¢ = 0 (just differentiate Newton’s equation). Since
#(0) = ¢(1) = 0 (the velocity at a turning point is zero), b is conjugate to a. It is
clear here that ¢ ceases to be a minimal action path after hitting b.

Now we return to the Jacobi equation (11.6), and consider its fundamental solu-
tion J(s). J(s) is the d x d matrix satisfying
S"(¢)J =0
with the initial conditions
J(0) =0 and J(0) = id.

J is called the Jacobi matriz.
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Proposition 11.28 The Jacobi matrix has the following properties

1. For any h € RY, Jh is a Jacobi field. Conversely, any Jacobi field is of the
form Jh for some h € R?.

2. (1_5(7'0) is a conjugate point to (;_5(0) iff J(10) has a zero-eigenvalue, i.e. det J(1g) =
0.

Proof:

1. The first part is obvious. To prove the second part let £ be a Jacobi field, and
let h = f (0). Then f = Jh satisfies the same differential equation as & with
the same initial conditions. Hence £ = £.

2. ¢(79) is a conjugate point iff there is a Jacobi field & such that &(m) = 0.
By the previous statement, there is A # 0 such that & = Jh, which implies
J(mo)h = 0. So J(mp) has a zero eigenvalue (with the eigenvector h), and

det J(To) =0.

O
Now we give the defining geometric/dynamic interpretation of J. Consider a

family of critical paths ¢,(s) starting at #(0) with various initial velocities v € R.
Denote # = ¢(0). Then
(9(/51,(5)‘

av V=0
is the Jacobi matrix (along ¢). Indeed, ¢, satisfies the equation 3S(¢,) = 0. Dif-
ferentiating this equation with respect to v, and using that S”(¢) = 0,0,5(¢), we
find by the definition of J, that

J(s) =

_ 0 " 8¢U
= 20,560 = 5"(00) 22
Thus, 0¢,/0v|,—; satisfies the Jacobi equation. Next,
0 0 -
—6,(0) = —3(0) = 0
and 9 p
a—vqﬁv(O) 550 = id

which completes the proof.
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11.6 Action of the critical path

Suppose ¢ is a critical path for S with ¢(0) = z and ¢(t) = 3. Then the action from

z to yis So(z,y) = S(4). In what follows,

se)= [ ' L(6, d)ds.

Lemma 11.29 Define k = (0L/8¢)(¢)|—0. Then
0Sy(x,y)/0x = —k.

Proof: Again, we specialize to L = m|¢[2/2 — V(¢). Using the chain rule and
integration by parts, we find

05()/0c = | {mdod)ox — V'(3)98/0x)

- /Ot{(—m(z — V'(8))0¢/0x} + mdd/dx|!,

which, as ¢ is a critical point and (0¢/8z)(t) = 0, is just —m¢(0) = —k as claimed.
O

This lemma implies 9k/0y = —0?Sy(z,y)/0xdy. On the other hand, 0k/0y =
(0y/0k)~" = mJ~'(k,t). This gives us

625%(x,y)

= —mJ " (k,t

which establishes the following result.

8250(:5’:’/)
oxdy

Proposition 11.30 Ify is a conjugate point to x then det( ) = 0.

The following exercise illustrates this result for the example of the classical har-
monic oscillator.

Problem 11.31 Consider the harmonic oscillator, whose Lagrangian is L = %QBQ —

mT“’quz. Compute

W

m[(x2 + y?) cos(wt) — 2xy]

So(z,y) =
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and so compute
w

0%So(z,y) /020y = —

sinwt’
Note that this is infinite for ¢ = nx/w for all integers n. Thus ¢(nr/w) are conjugate

to ¢(0).

Lemma 11.32 (Hamilton-Jacobi equation) S, satisfies the Hamilton-Jacobi equa-
tion
0Sy/0t = —h(x,0S,/0x) (11.10)

where h is the classical Hamiltonian function associated with L.

Proof: Since Sy = S(¢) = fot L(o, (;_5), we have

05(8)/01 = 16, s+ [ (0L/08 - 98/0t + 0L/06 - 95 /or)ds

= L($,$)| o=t + OL/0G - 06/ 0t|°=} + /0 t(aL/aQS — d/ds(0L/9¢))0 /0t
and since ¢ is a CP of S, and 9¢/dt[°=t = —¢|,_,, this is
L($,6) — (IL/96)9| o=t
= (k¢ —L(®, )| _  -=—h(z,k).
Since k = OL/0¢|o—; = 3Sy/dx we are done. ]

Lemma 11.33 (Conservation of energy)

energy (¢) = agqb Lig= const.
Proof: We compute
d oL . 0%L ... 2L .
L1y =T2ge4 2
dt" d¢ 0¢? llTelo)

OL- OL- OL.
+%¢ - 8_¢¢ - %(b
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SO g—ggﬁ — L|j is a constant (which we will denote by E). Now

oL . oL
09 o9

hence FE is the energy of ¢. O
We want now to pass from a time-dependent to a time-independent picture

of classical motion. We perform a Legendre transform on Sy(z,y,t) to obtain
WO(xayaE) via

)’

Wo = So + Et|p.os/o1=—E-
Note that from the energy conservation law
oL .
—¢—Lj;=FE
9¢

we have ‘g
I .
Wy = —.¢\¢=/k-dac.
o 09 s
Let ¢ be such that 05/0t|;—; = —F.

Lemma 11.34 @\t:g 18 a classical path at energy E.
Proof: Let S = Sy. Then

8S t OL ¢ DL D
E—L+A (%E—F%E)dé’
_; 0LY¢, ,  OLOY
- 8p ot L+ 8¢ Ot o=t
Since ¢(s) =y + ¢(t)(s — t) + O((s — t)?), we have
0 .
U0
28 oL .

Hence

0S
5y =i = —E = energy (9) = E
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Lemma 11.35 W, satisfies the Hamilton-Jacobi equation
h(z,0Wy/0x) = E. (11.11)
Proof: Setting t = ¢ in (11.10), and using that 0S/0t|,— = —E, we find
h(z,05/0x)|=t = E.
Finally, we note that

oW, 8S, S of0S,
w ~ on =t T (g T B)letgy = gl

which completes the proof. [

Remark 11.36 If w is a critical path from x to y in time t, then w7 is a classical
path from x to y at energy E, and we denote w|i—; = wg.

Finally, consider a classical particle in R? with a potential V' (z).

Theorem 11.37 (Jacobi theorem) The classical trajectory of a particle at an
energy F is a geodesic in the Riemannian metric

<u,v>,=2(F—-V(x))iu-v

(where u-v is the inner product in R™) on the set {x € R"|V (z) < E} (the classically
allowed region).

Proof: w is a geodesic iff w obeys the Euler-Lagrange equation
iy = Thy'?
where the Christoffel symbols can be computed to be

1 )%

Tly(e) = —5 (- V)i

: 5ij-

Thus the geodesic equation becomes
, 1 _ .
W= —§(E — V)+1VV(w)||w||2.

Now if v is a classical path at energy E, then it obeys the Newton equation

my = —=VV(y).
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Energy conservation says
m, .
S +V) =E

and these two equations imply

. 1 - :
¥ =—5(E=V)I'VV)IHIP



Chapter 12

Mathematical detours: the
stationary phase method and
operator determinants

In this chapter we describe the mathematics which we will use to derive useful
formulas from the path integral. These formulas are semi-classical, or quasi-classical,
meaning they are leading-order asymptotic expressions as the “parameter” A — 0.

12.1 The stationary phase method

We would like to determine the asymptotics of oscillatory integrals of the form

/ ¢SO/
R4

as i — 0 (here ¢ is a finite dimensional variable). The basic idea is that as i — 0,
the integrand is highly oscillating and yields a small contribution except where
VS(¢) =0 (ie, critical points).

We study

1) = [ 1@ @
where f € C§° and consider two cases:

1. supp(f) contains no critical points of S. Define

_ b, 95(9)
= as %

91
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Note Lei5(¢)/h = eiS(d))/ﬁ’ SO

/feiS/h:/fLmeiS/h

— /(L*)mfeis/h — O(hm)
for any m.

2. supp(f) contains only one CP, ¢ of S. Expand S(¢) around ¢. Writing
é — ¢ = VFia we obtain

S(6)/h = S(d)/h+ % < 0, S"(@)a > +0(Via?)

= I(h) = hd/26i5($)/h/f(¢ + \/ﬁa)ei<a,S”(<Z>)a>/26iO(\/i_ia3)dna.
Now we use the formula
/ ei<a,5"(q3)oz>/2da — (27Ti)d/2[det Slr(q;)]—l/Q
Rd

. . . . . . _ "
(we can derive this expression from, say, analytic continuation of [ e ¢<®5"@>

from Re(a) > 0, though the integrand is not integrable in the usual sense).
Noting that f(é¢ + vVha) = f(¢) + O(VE), we have the stationary phase ex-
pansion (for one critical point):

I(h) = (2mih)¥?[det S"(4)]"/2 £ ()5 @D/"[1 + O(VR)). (12.1)

12.2 Operator determinants

For square matrices, the determinant function has the properties
1. A is invertible iff det A # 0
2. A=A"=det A€ R
3. det(AB) = det(A) det(B)

4. A>0=det A = ellin4)
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5. det A =TI, oy of 42

We would like to define the determinant of a Schrodinger operator.

Example 12.1 Let H = —A+V on [0, L] with zero boundary conditions (assume
V is bounded and continuous). Then

|(H — (27n/L)?)sin(2rnz/L)|| = ||V (z) sin(2anz/L)|| < (sup |V|)||sin(27nz/L)||

and spectral theory tells us that H has an eigenvalue in the interval [(27n/L)? —
sup |V, (2mn/L)? + sup |V|]. Thus,

o(H) = {(27n/L)* + O(1)|n € Z}.
So trying to compute the determinant directly, we get [[, oy g A = 00.
For a positive matrix, A, we can define (a(s) =tr A =37, oy of 4 X °-
Problem 12.2 Show in this case that det(A) = e=¢4()

Now for H = —A +V on [0, L]¢ with zero boundary conditions,

Cu(s) = traceH * = Z A

revof v

exists for Re(s) > 1/2 (see example 12.1 for d = 1). If (y has an analytic continua-
tion into {Re(s) > 0}, then we define

det H = ¢ <u(0)

So defined, det H has properties 1-4 above, but not property 5. It turns out that
when H = —A + V', for example, (g does have an analytic continuation to a neigh-
bourhood of 0, and this definition applies.

It is difficult, however, to compute a determinant from this definition. In what
follows, we describe some useful techniques for computation of determinants.

Using the formula
1 o0
A8 = / ts—le—t)\dt
I'(s) Jo

for each A, € o(H) leads to

1 [> o
CH(S):TS)/O t° 1;6 A dt.
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h

By the spectral mapping theorem, e is the n' eigenvalue of e *#. So

_L OO s—1 —tH
CH(S)—F(S)/O 71 tr et dt.

This formula can be useful, as it may be easier to deal with tr(e™*) = [ e (z, z)dx
than tr(H™*).

Example 12.3 We consider H = —A in a “box” B = [~L/2, L/2]® with periodic
boundary conditions. In this case

e H(x,y) ~ (27rt)*d/267|5”*y|2/2t

in B x B, and so
tr e = / e (z,z)dz ~ / (2mt)~%? = (2mt)~**vol(B).
BxB B

But calculation of det H by this method is still a problem.

The most useful calculational technique for us is as follows. Let A and B be
Schrodinger operators on L%([0, T]; R?) with Dirichlet boundary conditions. Denote
by J4 the solution to AJ, = 0 with J4(0) = 0, J4(0) = id (J a d x d matrix valued
function on [0,7]). Then one can show

Theorem 12.4
det A det J4(T)

det B det Jp(T)

(12.2)

Remark 12.5 IfA = S"(p) for a critical path ¢, then J4 is the Jacobi matriz along
0.

Problem 12.6 Let A(T) be the operator —9? + q(t) defined on L?([0,T]; R?) with
Dirichlet boundary conditions, and let J4(7) be the corresponding Jacobi matrix.
Show that the functions det A(¢) and det J(¢) have the same zeros of the same
multiplicities (t is a zero of f(t) of multiplicity n if 8%/0t* f(ty) = 0 for k =
0,...,n—1and 0"/0t" f(to) # 0).



Chapter 13

Quasi-classical analysis

An extremely useful approach to the study of quantum systems (which are typically
difficult to solve analytically) is to exploit the fact that 7 is a small constant, and to
seek asymptotic expressions for physical quantities as we let A — 0. This is called
quasi-classical (or semi-classical) analysis, and is the subject of the present chapter.

13.1 Quasi-classical asymptotics of the propaga-
tor

The path integral (10.5) has the form of the oscillatory integrals we studied in
section 12.1. It is natural, then, to apply (formally) the method of stationary phase
(with small parameter %) to the path integral, in order to derive a quasi-classical
expression for the Schrodinger propagator e~/ h(y,x). That is, we simply plug the
path integral expression (10.5) into the stationary phase expansion formula (12.1).
Denoting S(¢) = S(¢,t), the result is

e YR (y 7)) = / S@OMpDg = Z M(det S"(4)) 25D/ + O(Vh))
Pay.t écpofs
(13.1)
where My is some normalization constant. We determine Mz = M, assuming it is
independent of ¢ and V. For V' = 0, we know the kernel of the propagator explicitly:

6_iH°t/h(y, x) _ (27T,I;ht/m)—d/Qeim|;c—y|2/2ht_
So in particular, e~*0t/? (g, 1) = (2miht/m)~%2. Now the right-hand side of the
expression (13.1) for e~#o/h(z,y) is (to leading order) M (det S¥(¢pg))~/2e*%0($0)/h
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where the critical point is ¢o(s) =z + (y — x)s/t. Thus So(de) = m(y — x)?/2t and
Si(¢g) = —m0d? with Dirichlet boundary conditions.
Comparison thus gives us

M = (det(—md?))/?(2milit /m)~Y?

and therefore

et(—mo2)\ 2 .
ey, x) = Y (2mith/m)~" (%(Z))) ¢SOML+O(VR)  (13.2)
CpS ¢

as i — 0. This is precisely the quasi-classical expression we were looking for.
We now give a “semi-rigorous” derivation of this expression. We assume for
simplicity that S has only one critical point, ¢. Let {£;} be the normalized eigen-

functions of S”(¢) which form a basis of L*([0,t]) (with zero boundary conditions).

For the ntl' order finite dimensional approximation to the space of paths in the path
integral, we take the n-dimensional space of functions of the form

¢ =+ aé;.
j=1

Expanding S(¢™) around ¢ gives

where

We also have .
D¢™ = C, [ [ da;
1
(C,, some constant). Now using the fact that
(€ 5"(9)€) = D aia;(&, S" (D)) = D wjaj
i,J J

(where S"(¢)&; = p;€;) we have

/ (IS@MVA D g(n) _ iS(@)/h / ¢TI (1 4 0P h))Cod™a.
() :x—y
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Setting b = a;/+/h this becomes

m2C, et s @/h / e Xt 2 (1 4 O(B*VR))d™
which is

Co(2mih)™2(det(S" () |1, )) 2@/ (1 + O(VR))

where F,, = {>_7 a;¢;} so that det S"(¢)|r, = [[} i;- To avoid determining the
constants C,, arising in the “measure” D¢, we compare again with the free (V' = 0)
propagator. Taking a ratio gives us

ey, ) | Cu(2mih)" (det(S"()],)) M2 S
(27T—ih"‘)*d/2 _n—>oo Cn(2mh)”/2(det(—m8§|Fn))*1/2

m

which reproduces (13.2), as expected.

13.2 Quasi-classical asymptotics of the Greens func-
tion

Definition 13.1 The Greens function, G 4(x, y, z), of the operator A is (A—2z)"'(y, z),
the integral kernel of the resolvent (A — z)7'.

Now, for A self-adjoint
(A _ Z)_l — ’L/ e—iAt-i—iztdt
0

which converges if Im(z) > 0. Taking z = E + ie (F real, ¢ > 0 small), and letting
€ — 0 defines

(A—E—i0) Y(y,z) = %/ lAt/ﬁ(y’ z)e iBt/h gy
0

iHt/h

Using our quasi-classical expression (13.2) for the propagator e~ , we have in the

leading order as fi — 0 (dropping the —i0 from the notation)

(H E) Z / K 6 S(w,t) +Et)/hdt
w a CP
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where w is the critical path from z to y in time ¢, S,(z,y) = S(w), and

det(—md?)
det S"(w)

m
2mwith

Ky = ()% 2.

Now we want to use the stationary phase approximation again, but this time in the
t variable. Denote by ¢, the critical points of the phase S(w)+ Et. They satisfy the

equation
0S(w)/ot = —

Asin Chapter 11, wg = wy—y, is a classical path at energy E. Let S, (z,y;t) = S(w, t)
for a path going from z to y in time ¢. Then the stationary phase formula gives

(H—E)! ZZDW Wop/h (13.3)

w

where we use the notation DY2 = K., (2mih)Y/2(82S,,/0t2) Y/2|,_,, and W, (y,z, E) =
Su(z,y) + Et|4—s, (so W, is the Legendre transform of S,,).

Lemma 13.2

\d— 0*W/0zdy 0*W/0x0FE
_ d—1
D,, = —(2nih)* " det ( PW/yoE W IE? (13.4)
where W is W, (z,y, E).
Sketch of proof: We first establish
det(—mdZ) , m,_4 0

To do this we recall that if for an operator A we denote the d x d matrix solving
AJ =0 (the Jacobi equation) with J(0) =0 and J(0) =1 by J4 then

det(—md?)  det J_pa2(t)
det(S”(w)) B det Jsll(w) (t) '

Next we use that
82&,)
0xdy

1
—Jsnw) () =(
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and

—dJ_ 2(t) = 2 T = —(—)"
T maplt) = ()™ = =)
to arrive at (13.5).
We can then show that
0%S, .
det(@QSw/axay)( EYD ) 1|t=tw

equals the r.h.s. in equation (13.4) (see appendix for details). O
Now, differentiating the equation (11.11) (the Hamilton-Jacobi equation) with

respect to y gives

(Oh)0k)(6*W/dzdy) = 0

so the matrix (0?1W/0xdy) has a zero-eigenvalue, and so has determinant zero, and

thus

D, = (2mih)*~ ' (0°W/0x0E)(0*W /9yOE). (13.6)

Formula (13.3), together with (13.6), is our desired quasi-classical expression for the

Greens function (H — E)™!(y, z).

13.2.1 Appendix
Proposition 13.3 Att=1,,

92 S W
det(— YY) = “Ydet | 929
( 8x8y) ( ot? ) ( gy;‘;

P’W

ozrdE
2w
OE?2

Proof: We drop the subindices for simplicity of notation.

S + Et|;—, with respect to z, we obtain

a_W — a_S + 8_5@ + Eﬁ
or  Or Ot Ox ox’
which due to 0S/0t = —F gives

ow _as
or 0Oz’
Similarly,
ow oS and ow

oy oy OE ~

)

Differentiating W =
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This last equation, together with 05/0t = —E yields

W ot 25

____—1
0E2  OF (6t2) |

Furthermore,
’s W B 0*°W OF ot
oxdy  0xdy OxOE Ot dy
. 825[_ OPW O*°W n 0*W 82W]
o2 0zdy OF?  0xOFE OEdy
928 BiW 6$2W
:——det<% % ).

2 YV
ot OyoFE OE?

0

13.3 Bohr-Sommerfeld semi-classical quantization

In this section we derive a semi-classical expression for the eigenvalues (energy lev-
els) of the Schriodinger operator H = —%A + V. We use the Greens function
expansion (13.3) from the last chapter. For simplicity, we will assume d = 1.
Application of the expression (13.3) requires a study of the classical paths at
fixed energy. Consider the trajectories from x to y at energy £. We can write them

(using informal notation) as
¢n = ¢zy + na

where « is a periodic trajectory (from y to y) of minimal period, at the energy
E, while ¢, is one of the four “primitive” paths from z to y at energy E (see
figure 13.7).

V(X
/Jf/_%\ ' iy Cpg (\)1
E E W
q>2 4
1 1 1 1
X y X y
primitive paths more primitive paths

(13.7)
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All these paths are treated in the same way, so we consider only one, say the first
one. The space time picture of ¢, in this case is sketched in figure 13.8.

t

| |

,\ T T
turni nf; points L % (13.8)

For this path we compute
W¢n = W¢ +nl

where

t
I:/ L(o, &)ds + Et.
0

But « is a critical path so

%M+w®:E

and .
I:/{mdz—E}—i-Et:/p-dx
0 «

(where p = ma and dz = ads).
We now determine D,. We have p(z) = 0W/0z. The H-J equation (11.11)
implies

oW /ox = £1/2m(E — V(z))
SO
0*W/0z0FE = +m/p(z).
Using (13.6), we have

Dy=—0t
" p(@)p(y)

At a turning point zo, p(xy) = 0 and p changes sign (we think about p(z) as a

multi-valued function, or a function on the Riemann surface of 1/z, so at a turning

point /p(z) crosses to a different sheet of the Riemann surface).
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Because p changes sign at each of the two turning points of the periodic trajec-
tory, we conclude that
1/2 1/2
D)? = D/ (1),

So our semi-classical expression (13.3) for the Greens function Gg(y, x) is
oo . 1
G(,) = 3 N expliWa/ + ol [ p-do=r)

(N is a constant)
1

= iWs/h
Ne 1 — eil[, pdz/h—m)

We conclude that as i — 0, Gg(y, ) has poles (and hence H has eigenvalues) when

/p-d:r =2nh(k+1/2)

(for an integer k). This is the Bohr-Sommerfeld semi-classical quantization condition
(for d = 1). It is an expression for the quantum energy levels (the energy F appears
in the left hand side through the path « at energy E), which uses purely classical
data!

Problem 13.4 Show that for the harmonic oscillator potential, the Bohr-Sommerfeld
condition gives all of the energy levels exactly.

13.4 Quasi-classical asymptotics for the ground
state energy

Here we derive a quasi-classical expression for the ground state energy (lowest eigen-
value) of the Schrodinger operator H = —%A—l— V when V(z) — oo as |z| — oo (a
confining potential).

We first define a couple of quantities which are familiar from statistical mechan-

ics.
Definition 13.5 The partition function, Z(f), at inverse temperature 3 > 0 is
Z(B) = tre Pl

(the trace is well-defined as o(H) = {E,}§° with E,, — o0).
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Definition 13.6 The free energy, F', is

F(B) = —% n Z(5).

The free energy is a useful quantity for us here because of the following connection
with the ground state energy of the Schrodinger operator H.

Theorem 13.7 (Feynman-Kac)

lim F(B3) = Ey.

B—o0
Proof: - -

Z(ﬂ) — Z e_ﬁEn — e_ﬁEO(]_ + Ze_ﬂ(En—EO))
n=0 n=1
SO
InZ =—FE;+ In(1 + R)

where

R= Z e AEE) () as  — .
1

This does it. [

Our goal then, is to find the asymptotics for Fy by determining an asymptotic
expression for Z(3) using a path integral.

As we have seen (problem 10.7), the path integral expression for Z(f) is

Z(B/h) = / e 5@hpg (13.9)
¢ a path of period s

where S.(¢) = foﬂ{%q32+V(¢)} (note that this is not the usual action - the potential
enters with the opposite sign).

Remark 13.8 This path integral can actually be put on a rigorous mathematical
foundation.

Mimicking the procedure we used for the Schrédinger propagator (ie, the stationary
phase method), we see that the quasi-classical expansion for Z(3/h) is

Z NBi/QefSe (w)/h
minimal paths w
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(N a constant) where
_det S (wo)

Y det S”(w)

and Sy(¢) = foﬂ (m/2)¢2. A minimal path for S, is a classical path for the inverted
potential —V. We specialize to d = 1 for simplicity, and we assume V' has only one
minimum at 2. Then the minimal path is w(s) = xo (a constant path), and

S (w) = —md? + V" (zy).

Because zo minimizes V, V" (zo) > 0 and we write it as mw?. Then using the
method (12.2) of computing ratios of determinants, we easily obtain

2wp
Bo= 5 5

Also, Se(w) = BV (zo). We can now compute Z(3/h), and hence (all straightforward
computations) arrive at

F(B/h) = V(o) + hw/2 + O(1/8)

(in the leading order as i — 0). Letting 3 — oo and using the Feynman-Kac
formula, we obtain

1
EO ~ V(.Z'()) + 577/(4)

which is the desired asymptotic (as i — 0) expression for the ground state energy.
It is equal to the classical ground state energy, V' (zo), plus the ground state of the
harmonic oscillator with the frequency /V"(zo)/m. This indicates that the low
energy excitation spectrum of a particle in the potential V(x) is the low energy
spectrum of this harmonic oscillator.
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Resonances

The notion of a resonance is a key notion in quantum physics. It refers to meta-
stable states - i.e., to states which for long time intervals behave as stable states, but
eventually break up. In other words, these are states of the continuous spectrum
(i.e. scattering states), which for a long time behave as if they were bound states.
In fact, the notion of the bound state is an idealization: most of the states which
are (taken to be) bound states in certain models, turn out to be resonance states in
a more realistic approach.

We sketch briefly the mathematical theory of resonance states. To characterize
them in terms of spectral characteristics, we have to use more detailed notions than
the spectrum, such as spectral densities, or generalize the notion of the spectrum
altogether. The resulting theory, which is elegant and powerful, is not considered
here. Here we consider a particular, but central case of resonances due to tunneling,
on which we illustrate some of the mathematics and physics involved.

14.1 Tunneling and resonances

Consider a particle in a potential V' (z), of the form shown in figure 14.1. If V(z) —
—o0 as © — oo (in some directions), then such a potential is called unstable. In this

105
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case, the corresponding Schrodinger operator, H, is not bounded from below.

V(x)
"would be |
bound state tunnels under barrier

L escapeto 0o

!

potential for tunneling

(14.1)

If the barrier is very thick, then the particle spends lots of time in the well, and
behaves as if it were a bound state. However, eventually it tunnels through the
barrier (quantum tunneling) and escapes to cc. Thus the state of the particle is a
scattering one. It is intuitively reasonable that

1. energy of resonance ~ energy of bound state in well

2. resonance lifetime is determined by barrier thickness and height, and A.

Since the resonances are very close to bound states if the barrier is large, or 7 is
small, we try to mimic our treatment of the ground state (section 13.4). But right
away we run into a problem: if V(z) 4 oo as £ — oo in some directions, then

Z(B) = tr e = .
The paradigm of this problem is the divergence of the integral

Z(A)z/ e g
0

for A < 0. However, we can define this integral by an analytic continuation. Z(\)
is well-defined for Re(\) > 0. Continue it analytically into A € R~ as follows. We
move A from Re(A) > 0 into Re(A) < 0, and deform the contour of integration at
the same time, in such a way that Re(\a?) > 0 (see figure 14.2).

N7

contour deformation

(14.2)
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Of course, in this particular case we know the result:

2A 1o 20\ Cape
7T) = —i( - )

Z(A) = (

for A < 0 (which is purely imaginary!).

There is a powerful method of rotating the contour which is applicable much
beyond the simple integral we consider. It goes as follows. For # € R, we change
variables via a = e~?b. This gives

Z\) =e* / e e g, (14.3)
0

The integral here is convergent and analytic in # as long as
Re(Xe %) > 0. (14.4)

We continue it analytically in # and A, preserving this condition. In particular, for
A € R, we should have 7/4 < Im(0) < 37 /4.

Now observe that the r.h.s. of (14.3) is independent of §. Indeed, it is analytic in
6 as long as (14.4) holds, and is independent of Re(f) since the latter can be changed
without changing the integral, by changing the variable of integration (b +— e %,
§' € R). Thus we constructed an analytic continuation of Z(\) with Re(\) > 0 into
a region with Re()\) < 0. In fact, we continued this function onto the second sheet
of its Riemann surface!

Finally, we define Z(\), A < 0, by (14.3) with 6 obeying (14.4).

14.2 Free resonance energy

With some wisdom gained, we return to the problem of defining the partition func-
tion Z(3) and free energy F(f) in the case when V(z) -4 co as £ — oo in some
directions (or more precisely, sup,.r V(z) < oo for some cone I'). We begin with a
definition.

Definition 14.1 A family H(0) in a complez disc {|6| < €}, will be called a complex
deformation of H if H(0) = H, H(0) is analytic in {|0] < €}, and there is a one-
parameter unitary group U(X), X € R, such that

HO+X)=UNTH@O)UN)
for X e R.
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If V(x) has certain analytic properties, then H () can be constructed by changing
the variables in H as x — ze~% for # € R, and then continuing the result analytically
in . Let, for example, V(z) = —C23 as x — +oo. Then V(e’x) = —Ce3%z3. Take
0 = —in/3. Then V(e’z) = Cz2? is stable in the direction z — +oo. The group
U()) here is the group of dilations:

U\ : o(z) = e™/2)(ex)

for v € L*(R").
Assume that we can construct a complex deformation, H(#), of H, such that

Z(B) = tre PHO) < 0 (14.5)
for Im(#) > 0 (or more generally for |0 < e, Im(6) > 0).

Proposition 14.2 If tr e #70) < oo for § € Q C {|0] < €}, then tr e P10 s
independent of 6.

Proof: e A7 is analytic in {|0| < €} and satisfies
e PHO+S) — [7(5)"te PHO (5)
for s € R, and consequently,
tr e BHO+s) — ( o—BH(O)
Hence, tr e A7) is independent of Re(#), and so is independent of §. .
If there is a complex deformation, H(f), of H, such that (14.5) holds, we call

Z(B) = tr e P79 an adiabatic partition function for H, and F(3) = —(1/8)In Z(3)
the free resonance energy for H We interpret

E(8) = ReF(f)

as the resonance energy at the temperature 1/0,
I'(8) = —ImF(B)

as the resonance decay probability per unit time (or resonance width) at the temper-

ature 1/3, and
1
T(B) = m
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as the resonance lifetime at the temperature 1/3. The resonance eigenvalue for zero
temperature is given by

2 = E, —iT, = lim F(B).
B—00
Usually, [ImZ| << |ReZ|. Hence,
1
E = ReF =~ ~5 In(ReZ)

and

[=—ImF = %Imln(l 4iimay  LimZ

In fact, one can show that for 1 <<t << '},

~

ReZ) B ReZ’

ety = et Mpy + small

if 1y lies near E, in the spectral decomposition of H. Note that

—izpt/h —Twt/h o =iByt/h

€ =€

exhibits exponential decay at the (slow) rate I',. This is consistent with our picture
of a resonance as a meta-stable state.

14.3 Instantons

To compute Z(3) we proceed as in the ground state problem; we represent Z(3) for-
mally as a path integral, and then apply the formal quasiclassical expansion (cf (13.9)):

Z(B/h) = Z NBY/2e Se(w)/h

(as always we ignore the factor (1 + O(v/h))). Here, as before, w are critical points
of S¢(¢) of period 8, N is a normalization factor independent of w and H, and

_det Sg(wo)
Y det S"(w)
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Now w is a periodic classical path in imaginary time (or in inverted potential —V'(z)),
with period [ large (see figure 14.6).

V()
"bounce"

static

\

Mx

pathsin inverted potential

(14.6)

Two periodic solutions of arbitrarily large period are

(“s” for “static”) and
wp(8) : 0> a—0

(“b” for “bounce”). wy is called an instanton or bounce. Since w;y is a minimum of
V, V"(ws) > 0, and so
Se (ws) = _852 +Q?

where Q2 = V" (0). We computed before

L 98 s
“ 7 sinh(QB) ~ e

for 3 large. Moreover, S.(ws) = 0. We will show later (section 14.5) that

dett S"(wy)| ) 2

1/2 — —-1/2 14
Bl = —iBS, ( 3ot 5 (0) (14.7)

where

Sp = Se(ws) =/ p-dx

Wy

is the action of the “bounce”, and

det J‘A = det(A‘(null A)J_). (148)
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Collecting these results, we have (for large ()

1 h$2
EF=—-1 7))~ —
3 n(ReZ) 5

and

~

_l ImZz ~ —~1/2 |detL Sé’(wb)| e 6*511/77'
B ReZ b det S” (w,) '

So the probability of decay of the state inside the well is

I'= const e /"

where S, = S(wp) is the action of the instanton (which equals the length of the
minimal geodesic in the Agmon metric ds? = (V(z) — E),dz?). This explains the
sensitivity of the lifetimes of unstable nuclei to small variations of parameters (for
example, weight determines isotopes).

Finally, we note that
QB

det S7 (ws) ~ 62—9'

14.4 Finite temperatures (Josephson junction)

Consider quantum tunneling at finite temperatures (f < 0o). Now we have to
consider all three critical paths of period § (see figure 14.9), w1 = wWs = Zpmin,
W2 = Wp, W3 = Tmag-

V(x) w
w2

“w

w1

\

A\x

paths of period

(14.9)

Since V"(Zpmin) > 0, wy is a minimal trajectory. As we will see, wy is a saddle point
of Morse index 1. Finally, V" (z42) < 0, and so ws is also a saddle point.
For k =1, 3,
Se(wr) = V(zx)p
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and for £ = 2,3,

Se(wl) < Se(wk).

In this case, the quasi-classical expression for the decay probability is

I = (ImB,,e 5@)/" 4 ImB,, e 5@/,

BB,

Through which trajectory, ws or ws, does the tunneling take place? ws corre-
sponds to a thermally driven escape (due to thermal fluctuations), and wy corre-
sponds to a quantum tunneling escape. If § is very small (large temperature), the
transition occurs through ws, as only ws can have arbitrarily small period. On the
other hand, if 3 is very large (small temperature), wo sits close to the bottom of
the well, and one can show that Se(w2) < Se(ws). In this case, the transition occurs
through ws.

For intermediate temperatures, the tunneling depends radically on the geometry
of the barrier. There is a critical value of 3, 8, & 27/Qmar where Q2 = —V"(Zmaz),
at which a phase transition occurs; the transition is between the situations where
decay is due to tunneling, and due to thermal fluctuations (crossover). In a super-
conductor of the second type the transition is continuous: as temperature decreases
below 1/, (i.e. ( increases above (3.) the tunneling trajectory bifurcates from ws
and slips down the barrier (see figure 14.10). For # < (. tunneling takes place
through ws.

jump for

A< B¢

5 =00
type 2 superconductor (14.10)

In a superconductor of the first type (see figure 14.11), there are no closed trajectories
with period > (., so the transition is discontinuous: decay jumps from ws to a
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trajectory at the bottom of the barrier.
jump for
B <00

no trajectories
for

B< by

b =00
type 1 superconductor
(14.11)

The result above supports the following physical picture of the tunneling process.
With the Boltzmann probability e /T the particle is at an energy level E. The
probability of tunneling from an energy level E is e~5% where Sy is the action of
the minimal path at energy E. The probability of this process is e #/7=52. Thus
the total probability of tunneling is

/eE/TSE ~ Ce Bo/T—Sr,

where Ej solves the stationary point equation
O0/O0E(E/T + Sg) =1/T + 0Sg/0F = 0.

But —0Sg/OF is the period of the trajectory under the barrier at the energy level
—FE, and Sg, + Eo/T is the action of a particle (in imaginary time) at the energy
Ey corresponding to the period 1/7.

14.5 Pre-exponential factor for the bounce

The bounce solution, wy, presents some subtleties. w, breaks the translational sym-
metry of S.(¢), and hence &, is a zero-mode of S”(wy):

Sé'(wb)u)b = 0.

To establish this, simply differentiate the equation dS,(wp) = 0 with respect to s.
Thus we have two problems:

1. S!(wp) has a zero eigenvalue, so formally

[det S”(w)] /2 = const /6_<§’Sg(“”’)§>/2th = 00 (14.12)
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2. W, has one zero (see figure 14.13), and so the Sturm-Liouville theory (from
ordinary differential equations) tells us that, in fact, SY(w,) has exactly one
negative eigenvalue.

(14.13)

This gives a second reason for the integral (14.12) to diverge.

To illustrate these divergences, we change variables. Write, for ¢ near wy, ¢ =

wp + & with
= s,
0

where {&; } are the eigenfunctions of S”(w;) with eigenvalues Ay (in increasing order).
Then

Se() m Sel(ws) + Y Arai.
0
But Ay < 0 and A\; = 0, hence we have two divergent integrals:

o 2
/ ef’\jaﬂ‘/%daj = 00

o0

for j = 0,1. We already know that we can define the first integral by an analytic
continuation to be

00 —1/2
/ ef)\oa%/thao — 2_)\0 = —
oo mh

The second integral, correctly treated, is shown to contribute (see the following
section)

2 -1/2

7h

S, 8V2rh (14.14)

where Sy is the action of the “bounce”, S.(ws). Hence

/ SO _ B ~SE)/n
near wy
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where
| det™ S (wy)| ) m1/2

B1/2 — S—1/2
o b5, det S§f (wo)

(this is (14.7)) and det™ is defined in (14.8).

14.6 Contribution of the zero-mode

The virial theorem of classical mechanics gives

/a)(,2 = S(w(,) = Sb.
Define the normalized zero eigenfunction
& =Sy .

Then
(wp +1&1)(s) = wp(s) + Cle_l/Zu)b(S) ~ wy(s + 0181)_1/2).

Hence

¢~ wy(s+ 0151:1/2) + chfn
n#l

[1den = S, 2ds ]| den-

n#l

and therefore

Integrating gives (14.14).

14.7 Bohr-Sommerfeld quantization for resonances

The goal of this section is derive a semi-classical formula for the resonance eigenval-
ues of a Schrodinger operator with a tunneling potential. We proceed by analogy
with the treatment of a confining potential in section 13.3 which lead to the Bohr-
Sommerfeld quantization rule.
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As in the rest of this chapter, we consider a tunneling potential of the form
sketched in figure 14.15.

V(X)
¢y (real)
/

CPZ (complex)

Flasscaly forbidden X
resonance potential

(14.15)

The path-integral expression for the Greens function of H is, as in section 13.2,

u(E,y,x / / S@D+EO/R (14.16)
Pwyt

We seek critical points (because, as always, we wish to apply the method of sta-
tionary phase) which are closed trajectories (z = y) at the fixed energy E. The
trajectories in phase space are shown in figure 14.17.

-
Y
N

_/‘\

Y

p classically allowed

fixed energy /§< /
| ] N X

classically forbidden

/

phase portrait (1417)

At energy E, phase-space is partitioned into classically allowed, and classically for-
bidden regions (as in figure 14.17). If we complexify the phase space

RxR—CxC
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the picture becomes that shown in figure 14.18.

Re(p)

"W
I

T
N

(14.18)

Thus we consider complex paths of the form «(o) = 1(—io), and t = —ir. Let

Awr) = [ 5P v,

Then ,
S(an=ir) = [ (=57 = V() (=)o = iA(w,7)

and so

0S(«, —i1) _ Z,@A(w, 7').

aP® — ) A7
0aS = 10y and 57 57

Thus the phase factor in (14.16) is
S(a, —it) + E(—it) = i(A(¥,7) — ET).
Now, the real critical point (¢1,t) satisfies

_ aS(¢17t) _
9,5 = 0, ol -k,

so ¢, has period ¢, and m¢; = —VV(¢) (as in figure 14.17). This has a phase
Wi = S(¢1,t) — Etlasjor=—&-

The complex critical point (¢o(0) = ¥y (—io), iT) satisfies
0sS (e, —iT) = 10y A(¢p, 7) =0

and

0S(¢a, —iT) iaA(%, 7)
or N or

=iE,
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50 1y has period 7, and ma), = VV (1) (as in figure 14.17). Hence the phase is
iWa = i(A(Y2, 7) = ET)|oawor_p
We can characterize a general closed critical orbit by the list
(1,m1,1,me,1,mg,...),

meaning the real closed CP is traversed once, the complex closed CP is traversed m,
times, the real CP is followed again, then the complex CP ms times, etc. (we follow
the real CP several times in succession if some of the m; are zero). Applying the
stationary phase method, we obtain the following contribution to the path integral:

o
Z Z ei(l+n)W1/ﬁ—(m1+---+mn)W2/ﬁ

n=0 mi...mn

— eiW1/h Z(eiW1/ﬁ f: e—mW2/h)n
m=0

n>0
> 1 1
_ ein/hE :(eiwl/h )n — ¢iM/h
1 _ e—Wz/ﬁ 1 _ eiwl/ﬁ 1
n=0 1—e~W2/h

eiW1/h(1 _ e—Wz/ﬁ,)
T 1 _ eiWi/h _ o-Wa/h"

Writing the lowest resonance eigenvalue as Ey — sAE and expanding e/"V1(B)/% to
first order around Ey, and e="2(E)/? to zeroth order, gives the equation

eiwl(Eo)/ﬁ -1

for Ey (i.e. Ejy is the ground state energy, as before), and the expression

W (Eo)\ " _w
AE = 2(Eo)/h
h( 2E e

for AE. The last two equations represent the Bohr-Sommerfeld quantization for
resonances.



Chapter 15

Introduction to quantum field
theory

The goal of quantum field theory (which we will often abbreviate as QFT) is to
describe elementary particles and their interactions. Its mathematical framework
can be thought of as partial differential equations (PDEs) in infinitely many vari-
ables. QFT has deep connections with a variety of disciplines, including statistical
mechanics and condensed matter physics, probability theory (ie stochastic PDEs),
and nonlinear PDEs.

15.1 The place of QFT

All physical theories can be classified by two sets of parameters: whether they de-
scribe particles (point or localized objects) or fields (extended objects), and whether
they are classical (e.g. the results of experiments are deterministic) or quantum
(measurement results are probabilistic). With this classification in mind, we have
the following diagram displaying the place of QFT relative to classical mechanics
(CM), classical field theory (CFT), and quantum mechanics (QM) (here d is the
number of degrees of freedom):

119
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quantization
CM — QM
| |
d— oo | | d— oo
) )
CFT — QFT
quantization

The two physical CFTs are electro-magnetism (EM) (governed by Maxwell’s
equations) and gravity (governed by Einstein’s equations). When one “quantizes”
Maxwell’s equations, one obtains the theory of quantum electrodynamics (QED).
The appropriate quantization of the Einstein equations is unknown.

In addition, there are many “mock” CFTs (ie non-physical ones) which exist only
to be quantized. These include the theories given by the Klein-Gordon equation,
and the Yang-Mills equations (gauge field theory). These are both variations on the
EM theory. The former is obtained by replacing the vector structure of EM by a
complex one, and the latter is a non-commutative generalization.

15.1.1 Physical Theories

A physical theory specifies what it means for a system to be in a particular “state”
(the state space), how this state evolves in time (evolution law), and how this state
corresponds to the outcomes of physical measurements on the system (observables).
The table (5.4) displays the objects describing CM and QM.

We will introduce QFT by quantizing CF'T. We do this by analogy with the
quantization of CM (ie, the passage to QM). We will see later that this analogy
suggests we have to put CFT, which is originally given in terms of a PDE, into
Hamiltonian form. This is done in two steps: introducing the principle of minimal
action, and the Legendre transform.

15.1.2 Principle of minimal action

b

The principle of minimal action (properly, of “stationary” action) states that evo-
lution equations for physical states are Euler-Lagrange equations for a certain func-
tional called the action (see Chapter 11 for examples of functionals and Euler-
Lagrange equations).

More precisely, we define on our space of possible fields, ¢, a functional, S, such
that ¢ is a solution to the CFT equation if and only if §S(¢) = 0. In particular, we
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consider a class of examples from Chapter 11:

S(¢) = /0 [ 6.0, Vao(r.0) 6(z. )t (15.1)

for ¢ : R¢ x R, — R. Here, £ is the Lagrangian density. Specializing further, we
have the following important example of a classical field theory:

Example 15.1 [Klein-Gordon field theory] The KG Lagrangian density is

£(6,0) = 59 = 5 IVaol = ().

The corresponding Lagrangian functional,

266 = [ {5 - 19.08) - Fo)

is defined on H'(R?) x L*(R%) (at least if F(0) = VF(0) = 0). We recall from
Chapter 11 that the corresponding critical point equation is

O¢ + VF(¢) =0 (15.2)
the Klein-Gordon equation.

The set of functions ¢ on which § is defined will, in general, be a space of paths
¢:10,T] = X

in some (infinite dimensional) space X. X is called the configuration space of the
physical system, and its elements are called fields. In our case, X is always a space
of functions on some finite-dimensional manifold. In general, X could be curved,
but for simplicity we assume X is a Hilbert space. We remark that in general, the
Lagrangian functional is defined on (a subspace of) T X, the tangent bundle of X.

15.2 Klein-Gordon theory as a Hamiltonian sys-
tem

In this section we describe (infinite-dimensional) Hamiltonian systems, and write
the Klein-Gordon theory as a Hamiltonian system.
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15.2.1 Legendre transform

Definition 15.2 If f is a convez, differentiable function/functional, (0°f > 0) on
an inner-product space, the Legendre transform, g, of f, is defined by

g(m) = supy({u, ) — f(u)) (15.3)
= (<u7 7T> - f(u))‘u:(')f(u):w
Problem 15.3 Show that g is also convex, and that (Legendre transform)? = id.

Example 15.4 The Legendre transform maps the given functions/functionals as
follows (these are easily verified):

f0) =55 gk) = 57

2m
2. f(¥) —2f|¢\2+—>9 =5 [Inf?
3. L(z, ) =" —V(x)+— ( Leg. trans. inv ) H(z, k)= % +V(z)
L(¢, f{ ([Y1? = [Vol’) — F(¢)}d"z — ( Leg. trans. in¢)) H(g,7) =
f{ |7T|2+\V¢| )+ F(¢)}d
15.2.2 Hamiltonians

Suppose the dynamics of a system are determined by the principle of minimal action
with a Lagrangian function/functional on a configuration space X,

L:TX - R

Then a Hamiltonian function/functional for the system is the Legendre transform
(in the tangent space variable) of L

H:T"X - R

15.2.3 Poisson brackets

Let Z be a vector space, which we call the state space. For example, the classical
mechanics state space for a single particle is Z = R* x R?, and the Klein-Gordon
state space is Z = H'(R") x L*(R"). Suppose F and G are differentiable func-
tions/functionals on Z. Then a Poisson bracket of F' and G is a function(al), { F, G},
on Z, satisfying
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1. {-,-} is bilinear
2. {F,G} = —{G, F} (skew-symmetry)
3. {A{B,C}}+{B,{C,A}} + {C,{A, B}} = 0 (Jacobi identity).
Remark 15.5 The set of functionals, with the Poisson bracket, form a Lie Algebra.

Example 15.6 If Z is an inner-product space, the following construction produces
a Poisson bracket:

1. Assume there is a linear operator J on Z such that J* = —J (J is a symplectic
operator). Then
{F,G} =< 0F, JOG >

is a Poisson bracket (check this).

J= ( e ) (15.4)

is a symplectic operator, giving the Poisson bracket

(F,G} = V,F - VG — V,F - V,G.

2. (CM) If Z = R® x R3, then

3. (KG) If Z = H(R") x L?*(R™) and J is as in (15.4), the Poisson bracket is

(F.G} = / (0,F3,G — 0,F0,G). (15.5)

Definition 15.7 A Hamiltonian system is a Poisson space (a vector space Z with
a Poisson bracket) together with a Hamiltonian defined on that space.

Example 15.8 Our two main examples of Hamiltonian systems are

1. (CM) Z = R® x R® with bracket as above, and Hamiltonian
1
h(w, k) = — k> + V
(k) = o[k + V (2)
2. (KG) Z = H'(R") x L*(R™) with bracket as above and Hamiltonian

H(gm) =5 [{Inf + V67 + F()}
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15.2.4 Hamilton’s equations

Suppose Z is a Hamiltonian system, and assume Z is a function space over R". The
functional on Z which maps ® — ®(x) is called the evaluation functional (at x),
which we denote (with some abuse of notation) as ®(x).
Definition 15.9 Hamilton’s equations are

®(z) = {®(z),H} (15.6)
for all x.
Example 15.10 If the Poisson structure is given by a symplectic operator J, then

(®(z), H} = / Do® T H — / 5,706 H = JoH (z)
which leads to Hamilton’s equation
® = JOgH(®). (15.7)
We have the following basic result, whose proof if left as an exercise:

Theorem 15.11 1. A path ®; in Z solves (15.6) iff

d/dtF (@) = {F(®,), H}

for all functionals F.

2. If L(¢,%) and H(p, ) are related by a Legendre transform (in 1 <> m), then
the Euler-Lagrange equations for

T
S@6.6) = [ L6.d)a
0
are equivalent to the Hamilton equation (15.6).

Problem 15.12 Prove this theorem.
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We verify this result in the KG case. With

()

a path in H'(R") x L*(R"), equation (15.7) is

(1)1 (>37)

and we immediately recover the Klein-Gordon equation.
Problem 15.13 Show formally, that with the Poisson bracket given in (15.5),
{m(z),0(y)} =d(z —y). (15.8)

Remark 15.14 FEquation (15.8) says that the evaluation functionals, 7, and @, are
canonical coordinates. We can make (15.8) rigorous by introducing, for f € C§°,
the functionals ¢(f) : (¢, 7) =< f, 0 > and w(f) : (¢, 7) =< f,m >. The rigorous
version of (15.8) is then {mw(f),d(9)} =< f,g9 >.

15.3 Maxwell’s equations as a Hamiltonian sys-
tem

Here we write Maxwell’s equations in Hamiltonian form, as a prelude to quantizing
EM.

The Maxwell equations in a vacuum are
V-E=0 V x B=0F/ot (15.9)

V x E = —0B/ot V-B=0 (15.10)

for vector fields F : R¥*! — R3? (the electric field) and B : R3*! — R?® (the magnetic
field).

The equations (15.10) imply the existence of potentials U : R**!' — R and
A :R¥*! — R® such that

E =—-0A/0t —VU B =V x A.
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There is a redundancy in the choice of A, U. Specifically, any gauge transformation
A— A+ Vyx U U—0x/ot

for y : R3*! = R leaves Maxwell’s equations invariant. By appropriate choice of ,
we may take
U=0 V-A=0

(ie A is transverse) which is called the Coulomb gauge. From now on, we work in
this gauge. Thus, we have

E = —-0A/0t B=VxA
and using the second equation of (15.9) results in
04 =0 V-A=0. (15.11)

We recall from Chapter 11, that equation (15.11) is the Euler-Lagrange equation
for the action

1 .
S(A4) = 5//{W LV x A (15.12)
where the variation is among transverse vector fields.

Problem 15.15 Show that the Hamiltonian corresponding to (15.12) is

A(A,E) =5 [UBP+ 19 x AP}y =5 [(BP +|B7)
where F is the dual field to A, and V- F = 0.
The phase space for this Hamiltonian is
Z = Hbtrons (B3, R3) @ L20ans (R R?),

a Sobolev space of transverse vector fields.
Let T be the projection operator of vector fields onto transverse vector fields:

TF=F—(A)'V(V-F).

Problem 15.16 Check that V- (TF) = 0.
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We define the Poisson bracket on Z by

{F,G} = (0a,6F, Jroa,sG)

0 -T

Problem 15.17 Check that Maxwell’s equations are equivalent to the Hamilton
equations

where

¢ = JrOyH (9) ¢ = (A, E).
We make two final comments.

1. Note that
{Ei(z), Aj(y)} = Tij(z — y)

where T;;(z — y) is the matrix integral kernel of 7. We still refer to A and E
as canonical variables, but with constraints.

2. The first Hamilton equation
A=TOzH(A,E)=-TE =—-E

shows that the conjugate field F is, in fact, the electric field, as the notation
suggested in the first place.

15.4 Quantization of Klein-Gordon and Maxwell

equations
We are now ready to attempt to quantize the Klein-Gordon theory. We begin
with Klein-Gordon theory in Hamiltonian form, and proceed, naively at first, by

analogy with the passage from classical mechanics to quantum mechanics (which is
summarized in the table (5.4)). We take, for now,

F(g) = jmlgf

with m > 0.
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15.4.1 The quantization procedure

Under quantization, the classical phase space
Z = H'(R®) x L*(R?)

with the Poisson bracket arising from the symplectic matrix J, becomes the quantum

state space
L*(H'(R), Dg)

(i.e. L?(config. space) with respect to a “Lebesgue measure” on configuration
space) together with the commutator £[-,-] of operators on the state space. The
classical observables, real-valued functionals on the phase space, become quantum
observables - self-adjoint operators on the state space L?(H'). In particular, the

classical canonical variables
¢ (z) and 7% (z)
become the operators
¢’ (z) = mult. by ¢(z) % (x) = —1hOy(z)

on the state space L*(H*).
The classical KG dynamics are generated by the Hamiltonian functional

1
H(gm) =5 [l +Vof +mlof)
which, under quantization, becomes the Schrodinger operator
H = H(¢%,nP)

on state space.

Before proceeding to discuss the problems with this naive approach, we remark
that the state space L?(H') is a space of functionals on an infinite-dimensional space
of functions, and the quantum observables can be thought of as infinite-dimensional
pseudo-differential operators.

Right away, our approach has serious problems.

Problem 1: There is, in fact, no Lebesgue (translation invariant, sigma-finite)
measure on infinite-dimensional spaces. We are forced to resort to measures known
to exist on such spaces: Gaussian measures.
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Correction 1: We replace D¢ with duc(¢), the Gaussian measure of mean 0
and covariance operator C. The operator C acts on L*(R?).
One way to describe duc is through finite-dimensional approximations of the
function space. Suppose
"'CFnCFn+1C"'

is a sequence of finite-dimensional subspaces of H', whose limit is H'. Then
dluC|Fn (¢) = Mn(det Cn)_1/26_<¢’0771¢>/2D¢

where D¢ is the usual Lebesgue measure on a finite-dimensional space, C), is C'
restricted to F},, and M,, is a normalization constant chosen such that

| duc@)ls, =1.

n

We introduce the ezxpected value of a functional F' with respect to duc

E(F) = [ F@)dnc(s).
The terminology “mean 0” and “covariance C” corresponds to the properties

E(¢(z)) =0

and
E(6(x)¢(y)) = Clz,y)
where C(z,y) is the integral kernel of C. For the Klein-Gordon theory, we take

0= onsmty

(recall —A+m? > 0, so this makes sense). To get an idea of the origin of this choice,
note that the classical Klein-Gordon Hamiltonian is

H(gm) = 5 [{r +Vof +mlof}

= %/{WZ +d(—=A+m?)g} = %/{WQ + |(—A+m2)1/2¢‘2} (15.13)

1 1
— 5 [+ 150700,
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But we are not out of the woods yet.
Problem 2: It turns out that

pe(H' (R%)) = 0.

To see that there is a problem, we compute formally

B([ 1VoP) = [ [ 6o = 099, E@(@)6() oy

= //5(:10 —yY)V.V,C(z,y)d*zd>y.
If C = ¢(—iV,) then C(z,y) = ¢(z — y) and so

B([ IV67) = (40)(0).
For C = (—A +m?)~'/2, we have
(o) = (2m) ¥ [ (P ) Pk

= const.|r| >+ o(|z| ?) as |z| — 0.

Thus E([ |V¢[?*) = oo, indicating that uc(H'(R?)) = 0.

This argument suggests that ¢(z) must be integrated at least d — 1 = 2 times in
order to remove the singularity at z = 0. We expect, then, that E([ |[V™5¢[*) < oo
for s > (d—1)/2 =1, and

—s/mpd 0 s<(d-—1)/2
ne(H (R)):{1 5>Ed—1§§2

Here H*(R?) is the Sobolev space of order s:
H'®R)={f | 1-A)"fel?

(mote H* CH*CI?CH *CH *,s>5>0).
Vectors in the space L*(H*,duc) are functionals F'(¢) on H~* such that

/ F(6)duc(8) < oo.
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The most basic example of such a functional is as follows. Fix f € H®. Then the
map

e H H/qus £(6) = 6(f)

is a linear functional on H~* which is in L?(H %, duc). We compute formally

B( [ 1) = [ [ 1) f@B@@0) =< 1,01 > < o

More generally, let p(t1, . ..,%,) be a polynomial in ¢4, ..., ¢, and fix fi,..., f, € H".
Then the functional

F:peH = p(d(fr),. .., 8(fa))

is an element of L?(H %, duc)-

To summarize then, we have made the following correction:

Correction 2: replace L?(H'(R?), D¢) by L?(H *(R®), duc) where C = (—A+
m?)~1/2 and s > (d — 1)/2.

Unfortunately, the first correction has generated a further problem: —id, is not
symmetric on L?>(H ™% duc). In fact, we have the following integration by parts
formula

/ F(=i0,@)dpo(9) = / (S0, F)Gdpc(d) + i / FGOydpc(6)

:/(—i8¢+i6’_1¢)FGduc(¢)

where we have used
Opdpc(d) = —C 'dduc ().

To see this, think formally about the Gaussian measure as being
dpc(¢) = const e*<¢ac‘1¢>/2D¢.

Thus we have

(—i0y)* = —i0y +iC ™'

which leads us to the following correction.
Correction 1la:

—ihdy — T = —ihd + ZiC’qu.

Note now that 7* = 7, as desired.
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Problem 15.18 Derive formally the commutation relations

Hr(2), 6(1)] = (s — v) (15.14)

Hr(e), 7)) = 116(2), 0(0)] = 0.

We have improved our situations somewhat, but a serious problem still remains:
Problem 3: H(¢, ) = oc.
Specifically, we will prove the following a bit later:

Proposition 15.19
1 2 2 2 12
S [ V62 4 m6%) = o0

Note, however, that ¢ and 7 are operator-valued distributions (€ H %), and there
is no reason to expect this expression to be finite.
Correction 3: We “Wick order” H

H(¢Cl,7rd) —: H(p,m):

We will postpone the description of this procedure for a little while.
Let us now pause and summarize our corrected quantization procedure in the
table below.

KGCFT KGQFT
state space H'(R®) @ L*(R?) L?(H*(R3),duc), s > 1
canonical % (x) #(x) = mult by ¢(z)
variables 7 (x) 7(z) = —ih0s) + 2O ¢(x)

observables F(¢%, 7)) : H' x [? - R self-adjoint operators
: F(¢,m) : on L*(H*,duc)

dynamics ~ Hamiltonian H(¢%, 7¢)  Schrodinger operator H =: H(¢, ) :
Poisson brackets + (commutator)

{r(z),9M(y)} = 6(x —y) tr(z), o(y)] = b(x — y)
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Before moving on, we make a remark about mathematical rigor. Strictly speak-
ing, ¢ and 7 are operator-valued distributions. Though ¢(z), for example, is not
well-defined, ¢(f) (for a test function f € H*®) is well-defined. We think formally
of ¢(f) as [ ¢(z)f(z)dz. In particular, the correct expression for the commutation
relation (15.14) is

Hr(1),6(0)] =< 9>

Theorem 15.20 For all f € H®, ¢(f) and w(f) are self-adjoint operators on
LQ(H_Svd,uC)'

We omit the proof.

15.4.2 Creation and annihilation operators

Definition 15.21 The annihilation operator a(f), and the creation operator a*(f)
are defined by

a(f) = 36O f) + im(CV2 ) (15.15)
@'(f) = S6(C72f) — im(C' ). (15.16)

Problem 15.22 Establish the commutation relations
la(f),a*(9)l =R < f,g>

[a(f),a(g)] = [a*(f),a*(g)] = 0
for f,g € H".

We now find the expression for the Hamiltonian operator
1
H(gm) = [ +]90P + m*e?)
in terms of the creation and annihilation operators. As in (15.13), we can write

Hom) =5 {7+ G007 = 5 [{507 @ P + 56 (@ +a)f)

1
L [t s ey - oo [
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where we have used the commutation relation for a and a*, and the self-adjointness
of C. The first term is non-negative, and the second is infinite, which establishes,
formally, proposition 15.19.

We can make this argument rigorous as follows. First, we move to momentum
space via the Fourier transform: a(z) — a(k), a*(x) — a*(k). We wish to show
that [w(k)a(k)a*(k)dk = oo, where w(k) = (|k[> +m?)Y/? (the dispersion law). Let

R? = U,ez3B, (a disjoint union), a, = fBa a, and w, = mingep, w(k). Then

(G, az] = ( vol B)da,zs

so that

/w&d* > vol B E Walady,.

a€Z3

On the other hand,
Zwaaaaz = ZwaaZaa + vol B Zwa = 00.

15.4.3 Wick ordering

We now describe the process of Wick ordering or Wick quantization mentioned in
an earlier section.
Let A(¢%, m%) be a classical observable.

1. We express A(¢%, 7) in terms of o and o*, where

o= 1071/2¢cl + i01/27TCI

2
and
a* — %CI/QQSCI . Z’CI/Q,ﬂ_cl
to obtain

A(¢?, 1) = B(a, o).

2. In the expression for B, move all a*’s to the left of the a’s, to obtain an
expression of the form

B(a, a*) = n}ﬂ; / By ()™
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3. Now we quantize the observable A as follows:

Ao, ) s A, ) = Z/Bn,m(a*)nam.

This is the Wick ordered observable.
Here are some examples of Wick ordering:

Example 15.23

1.
¢ =2 [CY% (a4 a")]?:
— (Cl/2a)2 + (Cl/2a*)2 + Cl/2a*01/2a + Cl/2a01/2a*
= (CY2a)? + (CY?a*)? + 2C*2a* C*/a.
2. As before,

1
H= % : /{7T2 + Vo> + m?¢?} := 5/@*0_1&

Problem 15.24 [see [GJ]] Let c =< f,Cf >= E(é(f)?). Show
L. : ¢(f)" := 2P, (c7'/?¢(f)) where P, is the n* Hermite polynomial

2_ : e¢(f) = 6¢(f)_c/2_

15.4.4 Quantizing Maxwell’s equations

The procedure described above for the quantization of the Klein-Gordon theory
carries over to the case of Maxwell’s equations, whose Hamiltonian formulation was
given in section 15.3.

There are two essential differences, which we list here.

1. There is no mass, m = 0, in the EM case. That is, the dispersion law in this
case is w(k) = |k| (equivalently, the covariance operator is 3(—A)~'/2).

2. The quantized A(x) and F(x) are operator-valued transverse vector fields.
That is, our quantum state space is L?( H ~%rans)
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The Hamiltonian for the quantized EM theory is, of course, just
H:%/:\E\Q—i-\VxAP:

and the non-trivial commutation relation is
L), Ay)] = T — y)(id)

where T'(z —1y) is the integral kernel of the operator of projection onto the transverse
vector fields.

15.5 Fock space

We return now to the Klein-Gordon theory. We will revise slightly our definitions
of the annihilation and creation operators, a(z) and a*(z), which were originally
defined by (15.15-15.16), and which act on L?(H %, duc). We will now take

a(f) = 58(C ) + 1x(C)
#'(f) = 38072 f) = Ta(CVf).

Note that ] .
a=3C""9+ %01/% = 29,

Thus the only solution to the equation a2 = 0 is €2 = const. We thus set Q = 1,
and call it the vacuum.

Theorem 15.25 Any vector ¢ € L*(H%,duc) can be written as

1
o= — | Gular, ..., z0)a (z1) - a*(20) Qs - - -
ot s

n!

where ¢, € L?

sym (Rnd) (ggym,ll’2 (Rd)

For simplicity, we denote the r.h.s. by

5L [atra

Proof:
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1. We first remark that
[on@ra= [omaye
where

sSym 1 n
d) Y (331, ... ,-Tn) = E Z gb(acw(l), .. .,xw(n)) € Lgym(R d)

TESn

is the symmetrization of ¢ (here S, the group of permutations of the n vari-

ables).
2. We use the fact that vectors of the form ]} #(f;)2, n > 1, are dense in L.
Note
[[ene=@(C"f) +a (1))
1 1

Using the commutation relations, we write [[(a + a*) in the normal form
[[a+arn= 3 [Au@)dn
1 k+Ii<n
But (a*)*a'Q = 0 unless [ = 0, so
[[o)2 =3 [ Aula)e
1 k<n
Thus vectors of the form .
> ol / Pn(a”)"2
are dense in L?.

3. We have by straightforward computation

( / bn(a*)"Q, / Xom (0¥)™) = { 0 n#m (15.17)

< Pp,Xn> n=m

Problem 15.26 Show (15.17).
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Thus
(6=2 o [6u(ay 9 | 60 € 00, B} = D0l 1 (EY)
n n! n=0

is closed, contains a dense set, and hence is the whole L? space. [J

Definition 15.27 The (bosonic) Fock space is
F= @[®?ym,lL2(Rd)]'
1

We call
_ d
Fn = ®?ym,1L2(R )
the n-particle sector. By convention, Fy = C.
The previous theorem provides a unitary isomorphism

LQ(H_S7 d:u‘C') ~F

given by
bo

1 b1
— (@)
Z vn! / Pu(@) ®2
Moreover it is easily checked that on F',

a(f): pn € Fur Vn < f,dp >€ Fpy

and

a* (f): on € Fu Vi + 1f Qsym On € Frti.

Problem 15.28 Check that in this setting,
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Proposition 15.29 Consider the Hamiltonian, H = [ a*C~'a, and particle num-
ber, N = fa*a, operators. In the Fock space representation,

Ho < (D Crlon)
1

Proof: This is simply a matter of using the commutation relations. We leave the
details as an exercise.

Thus we have obtained a very simple realization of our state space L?(H~*, duc)
which is independent of ', and in which the Klein-Gordon Hamiltonian acts as
a direct sum of simple one-variable operators in a finite but increasing number of

variables: .
Hx0% ) /=Dy +m?.
1
In particular, the spectrum of H is
o(H) = {0} U{Unx1[nm,c0)}

where the zero-eigenfunction is the vacuum, €.
Physically, this theory describes non-interacting particles (bosons) of mass m.

15.6 Generalized Free Theory

Let A be a self-adjoint operator on L?(R?). We consider the Hamiltonian
1
Hy= 5 [P+ o4%)

(KG corresponds to A = v/—A + m?).
Defining creation and annihilation operators as in the KG case (eg. a(z) =

1/2A¢ + £A~') leads to
Hy, = /a* (x)Aa(z)dz.

We may now quantize as with the KG case, and construct Fock space analogously.
As with KG, the one-particle operator A determines all the properties of Hy. In
particular,

n
Hy~ @20 ) As,.
1
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Again, this describes a free (non-interacting) theory.

15.7 Interactions

The quadratic Hamiltonians studied above correspond to non-interacting or “free”
quantum field theories. The central goal of QFT is to understand how the interac-
tions modify the picture constructed for the free theories.

There are two ways of introducing interaction into a QFT. The first way is to
add to the quadratic Hamiltonian in question a functional of ¢ of degree higher
than two. Such a term represents a self-interaction of the field ¢. The second
way is to consider an interaction of several fields or an interaction of a field with a
quantum-mechanical system. An interaction of this type will be considered in the
next chapter. In this section we make a few remarks on the (very difficult) problem
of constructing self-interacting quantum field theories. A more detailed treatment
of this subject is beyond the scope of this book. It can be found in [GJ,Si].

We consider a Hamiltonian

H=Hgg+ \W

where Hg is the Klein-Gordon Hamiltonian treated in the previous section, A > 0,
and

W:/:P(qﬁ):

where P is a polynomial which is bounded from below.

The problem here is that if P has order > 3, then W (¢) is not well-defined. This
problem can be remedied via ultra-violet (UV) and infra-red (IR) cut-offs.

We replace W (¢) with

W, = Zan/ D Wy (P (15.18)

where w,, € L*(R™), w, — 1 as € — 0, and

n

¢®n(x1’ R xn) = H QS(J;J)

1

If we approximate w, ¢ by > fi ® --- ® f,, then

/ Wned™ % B(f) - H(f2)
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is well-defined as a product of commuting, self-adjoint operators. Put differently, if

we write
= /H(S(:v, —z)p(x1) - d(n),

then expression (15.18) corresponds to smoothing out the delta functions. This is
equivalent to cutting-off their Fourier transforms at large momenta: hence, a UV
cut-off.

Another way to do a UV cut-off is via a lattice approximation. In this case we
replace R” with the lattice (¢Z)", and let € — 0.

We describe here a convenient mathematical method for smoothing out a rough
function ¢. Let 6 be a C*™ function such that # > 0, [ 6 =1, and §(0) = 1. Define

0. (z) = e %0(x/e).

Now we set ¢. = 6 * ¢. Then ¢, is smooth, and ¢, — ¢ as ¢ — 0. Note that

~

be(k) = Be(k)d(k) = O(ck) (k).

So ¢, is essentially ¢ cut off at the momentum scale |k| < 1/e.

We note now that the condition w, , € L? is incompatible with the translation
invariance of H. That is, if P is the momentum operator (P = [ a*(k)ka(k)dk), then
[We, P] = 0 iff w,, . is independent of Y z;. Thus we require first that w, . € L*(X,,)
where X, = {z € R*" | Y x; =0} and then set

Wn,e,d = WneX| S xi<1/6-

This x5 4;)<1/6 constitutes an infra-red (IR) cut-off.
It turns out that removing the IR cut-off (§ — 0) is not too difficult. Removing
the UV cut-off (¢ — 0), however, is very difficult, and not always possible.

15.8 Quadratic approximation

Presently, we understand quadratic Hamiltonians rather well. The first step in in-
vestigating more general non-quadratic Hamiltonians is finding the correct quadratic
approximation. This is completely analogous to the situation in non-linear differ-
ential equations where the first step is practically always a linearization around a
solution of interest. Indeed, quadratic Hamiltonians are in one-to-one correspon-
dence with linear (Heisenberg) equations of motion.
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In the simplest situations, for example
H=Hyc+W (15.19)

where
W= /\‘2/ : P(A) :

with P(¢) = o(¢?), the quadratic approximation is obvious (here we presented
W in a conveniently rescaled form). It corresponds to the linearization around
a trivial solution ¢y = 0 in non-linear differential equations. However, there are
many important cases where finding a correct quadratic approximation constitutes
a considerable conceptual step. In these cases one deals with quantum fluctuations
around nontrivial classical solutions rather than trivial ones. These are exactly the
cases we discuss briefly in this section.

Before proceeding to this discussion, we give two simple, but rather important
examples of non-trivial classical solutions ¢3. Both examples are in dimension one,
d=1. Let

Vo) = [ {31ver+x2r00)]

where (in order to identify this with (15.19))

F(g) = ym*¢* + P(9).

For our first example, we take

F() = (@ - @)

for some @ > 0. In this case, the functional V' (¢) has a minimizer in a class of
functions ¢ : R — R with the boundary conditions

é(x) — +a/A

as r — +oo, and with appropriate smoothness conditions. This minimizer can be
found explicitly:

do(z) = %tanh(ax) (15.20)

For our second example, take

F(9) = a(cos() - 1)
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for some a > 0. In this case, V(¢) has a minimizer in a class of functions ¢ : R —
[0, 2] with the boundary conditions ¢(z) — 0 as x — —oo and ¢(z) — 27/ as
x — 00, and with appropriate smoothness conditions. Again, this minimizer can be
found explicitly:

¢o(z) = ;tanl(e‘@). (15.21)

Problem 15.30 Show that (15.20) and (15.21) are critical points of the correspond-
ing functionals V().

The boundary conditions specified above are such that
¢o(z) — null set of F(¢) as © — +o0. (15.22)

This is needed if we want the functional V(¢) to be finite. There are three more
boundary conditions satisfying (15.22) in each of the above cases. One of these
boundary conditions has the minimizer ¢y(—z) while the other two have constant
minimizers.

Problem 15.31 Prove this last statement.

The four boundary conditions split all the test functions into four topologically
inequivalent sectors: functions from one of these sectors cannot be continuously
deformed into functions from another sector. Thus we have a topological conservation
law - a classical solution starting in one of the sectors stays always in the same
sector (an evolution is a continuous deformation with time serving as a deformation
parameter). The topological sectors can be characterized by the quantity

Q = A(@(+00) — ¢(—0))

which is a topological invariant. It is called the topological charge. The solutions
¢o(z) written above have topological charges 2 and 27 respectively, while solutions
¢o(—1z) have charges —2 and —27. The solutions ¢q(z) are called topological solitons
and the solutions ¢o(—z) are topological anti-solitons.

There exist topological solitons also in higher dimensions (vortices, monopoles,
instantons, etc.), though they cannot be written explicitly. We do not describe them
here, and refer the interested reader to the books [Col,Raj].

Now we return to our main subject, the quantum theory of non-trivial classical
solutions. We consider a Hamiltonian of the form (15.19) which we write as

1

H:§/Z7T22+ZV((}5)Z. (15.23)
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We would like to understand the spectrum of H near its bottom. This means we
want to study the spectrum of H near inf V' (¢). We assume the functional V' (¢) has
a minimizer, ¢y. If @y is trivial (i.e. ¢y = 0) then since P(¢) = o(¢?), the correct
quadratic approximation to H is just Hg¢ (as discussed above). We are interested
in situations when ¢, is non-trivial, such as is the case with topological solitons
and other interesting objects. In what follows, we give a formal but systematic
treatment of this case. For simplicity, we consider the case of non translationally-
invariant functionals V(¢) (e.g. V(¢) = [{(1/2)|V¢|*> + F(¢,z)) and we will make
a few remarks about the translationally- invariant case at the end.
We represent the quantum field in the form

¢(z) = ¢o(z) +£(z)

where ¢g(x) is the classical minimizer of V' (¢) and &(x) represents quantum fluc-
tuations around the classical background ¢o(x). Our goal now is to pass from the
original quantum field ¢(x) to the new field £(z). Note that on the scale of A (a
small, dimensionless coupling constant), ¢o(z) = O(A™!) and &(z) = O(1).

The first step is to expand V' (¢#) around ¢q to the third order:

L ~—

V(8) = V(60) + 3 < & HessV(60)€ > +OOE).

We compute formally how the change of variables from ¢ to ¢ affects the Gaussian
measure:

d,“’C’(¢) — Z—1€—<¢,C*1¢>/2D¢ — Z—16—<¢0+§,071(¢O+E)>/2D§
O ).

Define
U:L*(H * duc(¢)) — L*(H *,duc(€))

by
U: F(¢) s e <0007 90>/4=<60.07 &> p (g0 4 £),

It is easily checked that U is unitary. Next, set
7rg = Uwg Ut

where as before ]
C = —idy+-C'¢.
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Consequently,

H=UHU!'= %/ (1)’ + Vo +£) :

on L*(H %, duc(€)). Hence

1

A= / : (7€) + EA2E + O(AEY)) : +V (o)

where

A?* = HessV (o) = —Ag + F"(¢o)-

Now we change the covariance

1
Cr—Ch=—.
AT
Then
duc = ®duc,
where

P = ZCAZ51€_<E,(C_1_CX1)§>/2.
We define another unitary operator
Uy : L*(H*,duc) — L*(H ™5, dpc,)

by (U, F)(€) = ®'/2F(€). Then

1
U17TCU1_1 =Tc — 5(0_1 — 0;1)5 = 7TCA =T.
Define
H"™ = U, UHU'U!
on L2(H™*,duc, ). Then
H — Hpog + / L OOAEY) : 4V (o) (15.24)

where .
Houat = 5 / L (mg + EA%E) - (15.25)



146 CHAPTER 15. INTRODUCTION TO QUANTUM FIELD THEORY

Passing now to the corresponding new creation and annihilation operators, we
have

Hyuoa = /a*(x)Aa(x)dm. (15.26)

Thus we have a new free theory with covariance —1/2A, and with the one-particle
operator A. A determines entirely the spectral properties of Hgyqq-

Let us summarize the above analysis. We began with a Hamiltonian of the
form (15.23), where the functional V' (¢) has a minimizer ¢y, acting on the space
L*(H_;,duc). We constructed a unitarily equivalent Hamiltonian (15.24) acting on
the space L?(H_,, djic, ) where the covariance is Cy = (2A)~! with A = (HessV (¢g))'/2.
Up to the additive constant V' (¢q) (the classical energy of ¢g), the new Hamiltonian
is a perturbation of the quadratic Hamiltonian (15.25) or (15.26) by a term which
is of higher order - O(£?) - in the new quantum field £. Consequently, one expects
that the low-energy spectrum of the original (and new) Hamiltonian is determined
by the spectrum of this quadratic Hamiltonian (15.19) or (15.23), which, in turn, is
determined by the spectrum of A, the square root of the Hessian of V(¢) at ¢.

Now we discuss briefly the translation-invariant case. First, let us back up and
ask ourselves what the minimizer ¢, is from a physical point of view. As a critical
point of the potential functional V' (@), it is a stationary solution of the classical
equations of motion for the classical Hamiltonian functional

H(gm) = [ 57 + V()
Thus ¢( solves the “Newton equation”
é=—0V(¢), (15.27)
which is nothing else but the familiar non-linear wave equation
O¢ + P'(¢) =0

with O = §? — A, the D’Alambert operator (this is the classical dynamics corre-
sponding to the quantum dynamics given by the Schrédinger equation 0y /0t =
Ht). This equation is invariant with respect to the relativistic group of motions
- the Poincaré group. In particular, because of translational invariance, for any
y € RY, ¢o(z — y) is also a stationary solution of the equation of motion (15.27).
Thus we have a d-dimensional manifold

M, = {Ty¢o | h € R*}
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where T}, is the “shift operator” mapping ¢(z) to ¢(x — h), each point of which is a
stationary solution of (15.27).

Now we expand the field ¢(x) “around” the manifold M,. In other words, we
decompose any field ¢(z) as

¢(z) = go(x — y) +&(z — )
where ¢o(x — y) is the projection of ¢(z) onto the manifold M., and &(x — y) is the
projection of ¢(x) in the orthogonal direction; i.e. &, L T, M, where we have used
the notation &,(z) = £(z — y), ¢y(x) = ¢(z — y), etc. Note that the tangent space,
Ty, M, is spanned by the functions d¢o(x — y)/0x;, j = 1,...,d. Consequently, the
above orthogonality condition becomes

/ §(2)Veo(z)dz = 0. (15.28)

Observe that the functions d¢y/0x; are zero-modes (eigenfunctions with eigen-
value zero) of the Hessian operator HessV (¢g). Indeed, the functions ¢,(z) =
¢o(z + h) are all critical points of the functional V:

oV(gn) =0 VheRL
Differentiating this equation with respect to h; at h = 0, we find
Hess(V(¢0))0po/0x; =0

which establishes our assertion. The condition (15.28) states that the fluctuations
are orthogonal to the zero-modes of HessV (¢g), and therefore lie entirely in the
positive spectral subspace of HessV (¢y).

Thus we pass from the field ¢(z) to the pair (y,&(z)) where y € R? and &(x)
satisfies (15.28). That is, y = y(¢) satisfies the equation

/{(b(gE +y) — do(2)}Veo(z)dz =0

and
£(z) = d(z +y(8)) — ¢o().

Conversely, the field ¢(x) is reconstructed from y and &(x) according to the equation

¢(x) = do(x —y) + &(z —y).

The transformation of the momentum field, 7(z), can be found using a standard
Lagrangian formalism. Then the transformations of both ¢(z) and 7 (z) yield a
canonical transformation.

The analysis presented above for the non translation-invariant case can be ex-
tended to the translation-invariant one. We don’t pursue this here.
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15.8.1 Discussion

1. Quantization: Physically, we can re-interpret what we have done above as
quantization of the classical solution ¢y(z) in the first case, or the manifold of
solutions @y(z — y) in the second. Indeed, we can arrive at the results above
by first doing the canonical transformation

d(x) = E(z) = ¢(x) — do(z) and  7(z) = 7(z) (15.29)
and then performing canonical quantization.

In the translation invariant case, we have to quantize in the presence of a
symmetry group. Have we encountered such a problem before? In fact we
have, in quantizing the Maxwell equations. There we had to deal with gauge
symmetries. As a result, we quantize the electromagnetic field in the direction
transverse to the orbits of the gauge group. Passing to the field £ in (15.29)
can be considered as quantization in the direction transverse to the group of
translations.

2. Relativistic invariance. Classical equation (15.27) is invariant with respect
to the relativistic group of motions - the Lorentz group. Therefore any station-
ary solution, ¢g, of this equation can be “boosted” by a Lorentz transformation
into a traveling wave:

T — vt — g

) (15.30)

¢'u($a t) = ¢0(

Problem 15.32 Check by direct calculation that the function ¢, satisfies (15.27)
provided ¢q is a critical point of V().

Thus in the translationally invariant case, a single stationary solution leads to
an entire 2d-dimensional manifold of solutions. These solutions are traveling
waves, or solitons (in physics terminology). They are parameterized by their
initial positions, o and their velocities, v. They can be represented as lines
on the manifold M,.

3. Momentum conservation. The physical quantity which is conserved due to
translation invariance is the field momentum. In the classical case, the latter
is given by

P(p,m) = /7T(.Z')V¢(:L‘)d$.
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The quantum field momentum, P, is obtained by quantizing P(¢,7) in the
standard way.

Problem 15.33 Show that in the translation-invariant case, P(¢,7), and its
quantum counterpart, P, are conserved - i.e.

(P(6,7), Hém)} =0  and %[P,H]zo.

Suppose d = 1. For the soliton (15.30), the energy E;, = H(¢,, ), and the
momentum Py, = P(¢,, 7,), satisfy the relativistic relation

Esoq = Pfol—i-MQ

sol

(15.31)

where M, = H(¢y, ) is the mass of the soliton (i.e. its rest energy).

Problem 15.34 (a) Derive the virial relation

/ (Vo|* = A2 / F(Aéy) (15.32)

for the soliton. To derive this, consider the family ¢5(x) = ¢o(sx). Since
¢o is a critical point of the functional V(¢), we have

d

%V(qﬁs)'s:l = 0.

The latter implies (15.32).
(b) Use the virial relation to prove the relativistic formula (15.31).

The quantum momentum P leads to the soliton center momentum ¢ conjugate
to the soliton center coordinate.
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Chapter 16

Quantum electrodynamics of
non-relativistic particles: the
theory of radiation

In this chapter we describe the theory of the phenomenon of emission and absorption
of electromagnetic radiation by systems of non-relativistic particles such as atoms
and molecules. Attempts to create such a theory at the end of the last century and
the beginning of this one led to the birth of quantum physics, and were a driving
force in the development of quantum field theory. The upshot of these attempts is
the theory of quantization of matter and radiation described in the previous chap-
ters. Only by assuming the matter and the radiation to be quantum, can one give
a consistent description of the phenomenon in question. Thus, our starting point
should be a Schrédinger operator describing quantum particles interacting between
themselves, and with quantum radiation. In mathematical terms, the question we
address is how the bound state structure of the particle system is modified by the
interaction with radiation. One expects that the ground state of the particle sys-
tem survives, while the excited states turn into resonances. The real parts of the
resonances - the resonance energies - produce the Lamb shift, first experimentally
measured by Lamb and Retherford (Lamb was awarded the Nobel prize for this dis-
covery). The imaginary parts of the resonances - the decay probabilities - are given
by the Fermi Golden Rule (see, eg, [HuS]). This picture was established rigorously
in [BFS1]-[BFS4], whose results we describe here.
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16.1 The Hamiltonian

Recall from Section 15.4.4 that the quantized electromagnetic field is described by
two canonical fields: the quantized vector potential (quantized connection) A’(z)
and quantized electric field E(z) acting on the Fock space H; = F. They satisfy
the standard commutation relations

i[E(z), A'(y)] =Clz —y) - 1,

etc., where C'(z —y) is the integral kernel of the projection operator from the vector-
fields on R? to the divergence-free (transverse) vector fields. The quantum Hamil-
tonian governing the evolution is given by

Hj = %/ : B(z)* + (curlA(gc))2 . d°x,

which is just a quantization of the classical Hamiltonian functional. In terms of the
creation and annihilation operators these objects are written as follows

Al(z) = / (¢*=a(k) + h.c.)g (k) &k,

where ¢'(k) = cv/h(2r) 3 (2w’(k))_1/2, W'(k) = c|k|, and h.c. stands for the “hermi-
tian conjugate”, and

H} = / ' ( )a(k)d*k.
A system of quantum matter (atom, molecule, etc. with fixed nuclei) is defined
by the Schrodinger operator

N

1
Hpart = Z %pf + € Veoul(z, R)

=1

acting on Hpary (= L*(R3Y)) (or a subspace of this of a definite symmetry type).

Here N is the number of electrons involved, and m, z; and p; = —ihiV,, are the
mass, coordinate and momentum, respectively, of the j-th electron. Furthermore,
e is the absolute value of the electron charge, x = (z1,...,2n), R = (R1, ..., Ru),

and Vou (2, R) is the total Coulomb potential for N electrons and M nuclei located

at the positions z1,...,zy, and at Ry, ..., Ry, respectively, divided by —e.
Radiation interacts with matter via the minimal coupling mechanism (see sec-

tion 8.7). An equivalent way to arrive at it (which is couched in purely mathematical
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terms) is to remember that A’(x) is the quantum connection, so we replace the usual
derivatives by the covariant ones:

(&

Thus to obtain the full, interacting Hamiltonian we replace the particle momenta,
Pj, in Hyapy by the covariant momenta par;j = p; — ¢A'(x;) and add to the result
the field Hamiltonian H} responsible for dynamics of A’'(z). However, the operator
we obtain in this way is ill-defined: it has an empty domain of definition. The
problem is that A’(z) is too rough an operator-function. To remedy it we institute
an ultraviolet cut-off. Namely we replace A'(z) in (16.1) by an operator A, (z):

Al(z) = Ay (z) = x * A'(x)

where x is a smoothed-out J-function. In fact, the specific shape of x is not impor-
tant for us. All we need at the beginning will be encoded in an estimate below.

As a result we arrive at the standard Hamiltonian of non-relativistic matter
interacting with radiation

1
H(e) = Z —m(peA,j)2 + ¢’Veoul(z, R) + Hy

acting on Hpare ® Hy, where pea; = p; — eA(x;), pj = —iV,;, and

Hy = / w(k)a* (k)a(k)d,

with w(k) = |k|. One can show that H(e) is well defined under some mild restrictions
on .
Now we pass to dimensionless variables as follows
h2

e? me?
r— —=T, k —

eme,
me?2 he B2 7

2

— 3.

i.e., the electron coordinates are measured in units of the Bohr radius ryonr = s

Then the Hamiltonian H(e) is mapped into the Hamiltonian mh—fH (¢), where

N
1
H(e) =) opia;+V(z)+ Hy,
j=1
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3/2

where & = (_) K1/2 A(z) = K—1/2Ax<g—ix) with x (k) replaced by X(hc h22 )1

and V(z) = Coul( , h‘;z E). Thus the energy is measured in the units of 2 h—2 =
2

mcz(g—i) = 2 Rydberg Note that a = ;—i is the fine-structure constant. Its
physical value is ~ however in this work it is considered as a small, dimensionless
parameter.

The Hamiltonian H (¢) is, of course, equivalent to our original Hamiltonian H (e).
Understanding the spectral composition of H(¢) is the object of this chapter.

To simplify notation we only consider the case N = 1:

1

H(e) = EpﬁA +V(z) + Hy , (16.2)

137’

where 2 € R® and p.4 = p — eA(z) with p = —iV,. Now Hpay = 2p? + V(2).
The operator A(z) has the same form as A'(z):

Alz) = / (®7a(k) + h.c.)g(k)d*k

but with the new coupling function g(k) = x(k)g'(k). We assume that g is real and

satisfies )
|g|
(16.3)

Thus H(g) depends also on the ( couphng) function (or form factor) g(k).
At this point we forget about the origin of the potential V' (x), but rather assume
it to be a general real function satisfying standard assumptions, say

min (V(z),0) € L*+ L® and max (V(z),0) € L}, (16.4)

(see [RSII]). Certainly, the Coulomb potential satisfies this assumption. One can
show that under conditions (16.3-16.4), the operator H (¢) is essentially self-adjoint
on the domain D(H (0)),

16.2 Perturbation set-up

We would like first to examine a system consisting of matter and radiation not
coupled to each other. Such a system is described by the Hamiltonian

H(O) = Hpart & 1f + ]-part oY Hf ) (165)
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which is obtained by setting the parameter ¢ in (16.2), to zero: € = 0. Using the
separation of variables, we obtain

o (H(0)) = o(Hpaw) + o(Hy)
UP(H(O)) = Up(Hpart) + Up(Hf)
Ocont (H(O)) =0, UoyUo3
where
01 = 0p(Hpart) + Ocont (Hy)
09 = Ocont (Hpart) + 0p(Hy)
03 = Ocont (Hpart) + Tcont (H)-
Recall the spectral structure of the Schrodinger operator Hp,:. Typically, we have

0 (Hpart) = {negative EV’s E;} U { continuum [0, c0)} (16.6)

Here j = 0,1,... and we assume Ey < E; < .... The eigenfunction, ¢, corre-

sponding to Ej is called the ground state, while the eigenfunctions 7,/1;-’&" for E; with
j > 1, are called the excited states. The generalized functions of the continuous
spectrum are identified with the scattering states.

E, E,... O
XXX

b A b
bound states scattering states (16.7)

Spectrum of Hp,rt

For the field, ocons (Hf) = [0,00) and 0,(Hs) = {0}. The eigenvalue 0 corresponds
to the vacuum vector: H;Q2 = 0. Thus we have

o(H(0)) = {EV's E;} U{continuum branch [E;,00)} (16.8)
§=0
where E,, = 0. The obtained spectrum is pictured below.

branches of the continuous spectrum

IR

V1

bound states (16.9)

m x—
M >
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Spectrum of H(0)

The eigenfunctions of H(0) corresponding to the eigenvalues E; are
PR Q. (16.10)

The generalized eigenfunctions corresponding to the branch [E}, co) of its continuous
spectrum are

Pt @ [ [ o (k)02 (16.11)
i=1
for various n > 1 and ky,...,k,. (The corresponding spectral points are E;(k) =
E; 4+ >  w(k;).) The solutions of the time-dependent Schrédinger equation
0
ia—f = H(0)y (16.12)

with the initial conditions (16.10) and (16.11) are given by
e_iEjt(¢;)art ® Q)

and .
e~ i (k) (Q/g’art ® H a*(k:)S2)
i=1

respectively. The first of these states describes the particle system in the state w;’m
with no photons around, while the second one corresponds to the system in the
state Qﬁ;’art and n photons with the momenta ki, ..., k,. Both states are stationary
in time. In the absence of coupling between matter and radiation the system of
matter and radiation placed in one of these states remains in the same state forever.
Radiation is neither absorbed nor emitted by this system.

This picture is expected to change as the interaction between the matter and ra-
diation is switched on. Understanding how this picture changes is the main problem
of the mathematical theory of radiation.

16.3 Results

The rigorous answer to the question posed above is given in the theorem below.
This theorem refers to the notion of resonance described in [BFS1]-[BFS2] (see



16.3. RESULTS 157

also section 14.2) and, for various statements, uses subsets of the following set of
conditions we now formulate. We begin with the condition on the coupling function
g = g(k), besides condition (16.3) which is assumed throughout the chapter without
further mention:

(A) go(k) = e730/2g(e~%), as an L*(w~'d*k)-function of k, and V(e’z), as a
multiplication operator from D(A,) to Hpar, have analytic continuations in 6 from
R into a complex neighbourhood of 8 = 0.

Finally, we formulate a condition we use in the proof of one of the results

(B) 3R, a > 0 s.t. V(z) > a|z|? for |z| > R.

Theorem 16.1 Let Condition (A) hold, and let ¢ # 0 be sufficiently small. Then
(i) H(g) has a unique ground state. This state descends from Y5 ® Q, and is
exponentially localized in the particle coordinates. (ii) H(e) has no other bound
states. In particular, the excited states of Hpay (i.e. wfart ®Q, j > 1) are unstable.
Let, in addition, Condition (B) hold. Then (iii) the excited states of Hpar turn into
resonances of H(g), € # 0 (see Fig.16.13).

Statement (ii) assumes Condition (A), and statement (iii) assumes Conditions (A)
and (B).

(16.13)

Bifurcation of eigenvalues of H(0) (the second Riemann sheet)

A complete proof of statements (i)-(iii) can be found in [BFS2]-[BFS4]. We will
describe the proof of (i) in Chapter 17. The proofs of (ii) and (iii) are similar.

This theorem gives mathematical content to formal calculations performed in
physics with the help of perturbation theory. The purpose of this theorem, as well as
of the calculations mentioned, is to explain theoretically the following fundamental
physical phenomena: a system of matter, say an atom or a molecule, in its lowest
energy state is stable and well localized in space, while the same system placed in the
vacuum in the excited state, e.g. in w;art ® €1, 7 > 1, emits radiation and descends
to its lowest energy state. The mathematical manifestation of the first statement
is that H(e) has a ground state, which is well localized in the particle coordinates,
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— statement (i) of the theorem — while statement (ii), rendered in mathematical
terms, says that the system in question has no stable states in a neighbourhood of
the excited states of the particle system. Moreover, statement (iii) says that the
excited states, wfart ® Q, j > 1, of the particles in the vacuum lead to metastable
states, i.e., solutions of the time-dependent Schrédinger equation (16.12) which are
localized for long intervals of time, but eventually disintegrate. A metastable state
is another term for a resonance. These metastable states are responsible for the
phenomena of emission and absorption of radiation and their life-times tell us how
long in average we have to wait until a particle system emits (or absorbs) radiation.

A proof of Theorem 16.1 is outlined in Chapter 17, where the basic technique
- the renormalization group - is introduced. We will close out the present chapter
with a brief discussion of this approach.

For simplicity, consider just the ground state. Our goal is to understand the low
energy spectrum of H () for € sufficiently small. Namely, we address the questions:

e Does H(e) have a ground state?
e What is the structure of the spectrum of H(e) near its infimum?

Look first at the spectrum of H(e = 0), i.e., when the interaction is turned off:

region of
ier?terest

A

\ Eo/ E... (16.14)

Region of interest w.r.t. specH (0)

part

This picture suggests that only the ground state ;" of Hpay and the low energy
states of H; are essential. The key idea here is to project out the inessential parts
of the spectrum without distorting the essential ones. But how to do this? Let us
try the first idea that comes to mind:

H — P,HP, (16.15)

where P, is the spectral projection for H(0) associated with the interval [Ey, Ey+ p).
We can write it out as
P, = P} ® Ey ,(Hy) . (16.16)
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Here PP™" is the orthogonal projection onto 5™ and E ,(H;) is the spectral

projection for H; for the interval [0, p|. The latter “cuts-off” the energy states of
H; with energy above p.
The operator P,H (¢)P, acts on states of the form

P ® ¢, ¢ € RanEy ,(Hy) .

This is exactly what we want. However, the low energy spectrum of P,H(¢)P, is
different from that of H(e). So we have lost the spectral information we are after.
In Section 17.1 we learn how to project the operators to smaller subspaces without
losing the spectral information of interest. But there is a trade-off involved as usual.
While the map (16.15) on operators H is linear, the new map we introduce is not.
This new map is called the decimation map (or Feshbach map).

In Section 17.3, the decimation map is applied to our (shifted) Hamiltonian
H(e) — 21 to obtain a new family of operators, Hy(e, 2), which act only on the
low-energy part of the field space H; (and not on the particle component of the
state space). Furthermore, for z near the particle ground-state energy, Eq, Ho(z, 2)
has the same spectrum near 0 as H(¢) does near Fy. This process is referred to as
elimination of the particle and high photon energy degrees of freedom. To study the
spectrum of H (g) near Ey, then, it suffices to study the spectrum of Hy(e, z) around
0, for z near Ej.

In order to analyze the spectrum of Hy(e, z), we change our viewpoint, and think
of the operators Hy (¢, z) as single elements of a whole space of operators (a Banach
space, in fact - see Section 17.6). On this space, we define the renormalization map

Ry,=5,0D,

where D, is another application of the decimation map, and S, is a simple rescaling
map (see Sections 17.7 and 17.8). D, maps operators which act on states with
photon energies < 1 to operators which act on states with photon energies < p. The
rescaling S, restores the operators to ones that act on states with photon energies
< 1 again. By design, the renormalization map R, is isospectral in the sense that
near 0, K and R,(K) have the same spectrum. The effect of R, when we apply it
to Hy(e, z), is to focus in on a neighbourhood of the spectrum of Hy(e, z) near 0.
The smaller p is, the smaller this neighbourhood is.

The renormalization map, which obeys a semi-group law (R,, o Ry, = Rpip.),
thus gives rise to an isospectral semi-flow on our Banach space of operators. We will
see that under this flow, Hy(e, z) tends toward the operator wH; (for some w € C)
as p — 0. In fact, CHy is a line of fixed points of the flow (R,(wH;) = wHy). By
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studying the behaviour of the flow near this line of fixed points, we can relate the
spectrum of Hy(e, z) near 0 (and hence of H(e) near Ey) to that of Hy, which we
know well. This is the basic idea behind the proof of Theorem 16.1. This program,
which is described somewhat vaguely here, will be studied in detail in Chapter 17.



Chapter 17

Renormalization group

In this chapter we describe the operator version of the powerful method of renor-
malization group due to [BFS1]-[BFS4]. We demonstrate how this method works by
applying it to the problem of radiation (see Chapter 16). In particular, we continue
our study of the Hamiltonian H(¢) (introduced in the previous chapter) which de-
scribes quantum particles coupled to a quantized EM field. We prove Theorem 16.1
(i) stating the existence of the ground state of the operator H(e) for sufficiently
small |¢|. The problems of instability of the excited states and existence of the
resonances - statements (ii) and (iii) of Theorem 16.1 - can be treated in the same
way.

17.1 Decimation map

In this section we realize the first step in our analysis of the Hamiltonian H(g). Our
goal is to pass from the family H(¢e) — z - 1 to a family Hy(e, z) of operators acting
effectively on the space Ran xm,<, C F and which has spectrum of the same nature
at 0. The family Hy(e, z) will turn out to be more accessible to spectral analysis.
Passing from H(¢) —z-1 to Hy(e, z) will be referred to as elimination of the particle
and high photon energy (actually, the photon energy > p) degrees of freedom.

In this section we study maps between sets of operators which are isospectral in
the sense specified below.

Let P and P be bounded operators on a separable Banach space X, satisfying
P + P = 1. Denote by Cp the set of all closed operators, H, on X whose domains
have dense (in Ran P) intersections with Ran P and which satisfy

|Rp| < oo, (17.1)

161
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|PHRp|| < oo and ||[RpHP|| < o0. (17.2)
Here Hp = PHP | RanP, etc. and Rp = PHIQIP. We define the map

Dp : Cp — (Closed operators on Ran P)
by
Dp(H) = P(H — HRpH)P lnanp - (17.3)

We call Dp the decimation map.
The following operators play an important role in our analysis:

Q=Q(H)=P-RpsHP (17.4)
and
Q" =Q"(H)=P - PHRp (17.5)

We have Q% (H) = Q(H*)*, but we do not use this property.
The operators P, @), and Q*, have the following properties

NullQ N NullH’ = {0} and NullP N NullH = {0} (17.6)

and
HQ=PH and Q¥H=H'P, (17.7)

where H' = Dp(H). These relations are proved below.
The main result of this section is the following

Theorem 17.1 Assume (17.1)-(17.2) hold, i.e. H is in the domain of the map Dp.
Then the operators H and Dp(H) are isospectral at 0, in the sense that

(a)0 e o(H) <> 0€ 0(Dp(H))

and
(b)H = 0 > Dp(H)$ = 0

where Y and ¢ are related by ¢ = Py and ¢ = Q¢.
Proof: We begin with a general statement:

Proposition 17.2 Assume conditions (17.1) and (17.2) are satisfied. Then (17.6)-
(17.7) imply that 0 € o(H) = 0 € o(H') (the crucial part for us of property (a)).
Moreover, we have always that NullP N NullH = {0}.
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Proof. Let 0 € p(H'). Then we can solve the equation H'P = Q¥ H for P to
obtain
P=H'Q%*H. (17.8)

The equation P+ P = 1 and the definition Hs = PHP implies
P=PH,'PHP-P=PH, (PH - PHP) . (17.9)
Substituting expression (17.8) for P into the r.h.s., we find
P=PH;'(P- PHPH™'Q*)H .
Adding this to Eqn (17.8) multiplied from the left by P yields
1= |PH;'P - PH;'PHPH'Q* + PH''Q*| H

Since by our conditions PH;PH P is bounded, the expression in the square brackets
represents a bounded operator. Hence H has a bounded inverse. So 0 € p(H).
The second statement follows from the relation

1=QP+RpH , (17.10)

which, in turn, is implied by Eqn (17.9) and the relation P + P = 1. O
Next we prove relations (17.6)-(17.7). The second relation in (17.6) is shown in
Proposition 17.2, while the first one follows from the inequality ||Qu|* = ||Pul||* +
IRHPul)* > || Pul]*.
Now we prove relations (17.7). Using the definition of Q(H), we transform

HQ=HP - HPH;'PHP (17.11)

= PHP+ PHP — PHPH;'PHP
—PHPH;'PHP
= PHP — PHPH;'PHP = P - Dp(H).

Next, we have B B
Q*H = PH - PHPH;'PH

=PHP+ PHP — PHPH;'PHP — PHPH;'HP
=PHP - PHPH;'PHP = Dp(H)P.
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Statement (b) of Theorem 17.1 follows from relations (17.6)-(17.7). A part of state-

ment (a) was shown in Proposition 17.2. We now prove the remaining part of state-

ment (a). Proposition 17.2 implies that 0 € p(H) if 0 € p(H'), where H' = Dp(H).

Now let, conversely, 0 € p(H) and show that 0 € p(H'). To simplify notation we

do it only in the case when P is a projection. Then this statement follows from the
relation

H™'=pPH'P (17.12)

which we set out to prove now. We have by the definition
H'PH'P=PHPH ' - PHPH;IPHPH”P

— P— PHPH™'P — PHPH,;'PH(1— P)H'P=P .

Similarly one shows that PH™'PH' = P. Hence H' has the bounded inverse
PH-P.

Thus we have shown that 0 € p(H) <> 0 € p(Dp(H)), which is equivalent to
0€o(H)« 0e€o(Dp(H)). O

The decimation (or Feshbach) map, Dp(H ), maps operators on X into operators
on Ran P in such a way that H —z-1 and Dp(H — z - 1) are isospectral at 0 on the
set p(Hp).

Proposition 17.3 (semigroup property) Dp, o Dp, = Dp, p, provided P, and Py are
commuting projections.

Proof. Assume for simplicity that H and Dp, (H) are invertible. Then the state-
ment follows by applying Eqn (17.12) twice. O

17.2 Relative Bounds

Before proceeding with the first application of the decimation map constructed
above, we prove a key relative bound on the quantized vector potential A(x) used
in this application. In this section || - || stands for the norm in the Fock space F.

Theorem 17.4 We have

2\ 1/2 1/2
[A(z)PllF <2 (/ %) | H || - + (/ |g|2> 19|+ - (17.13)
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A proof of this theorem follows readily from Lemma 17.5 below.
Discussion. The estimate above depends crucially on the ultraviolet cut-off we
instituted in A(z). To get a feeling about this estimate it is useful to write A(z) as

A(z) = x * A'(z)
where, recall, A’ (z) is the original quantized vector potential, given by the same
equation as before

A (z) = /(eik'wa(k) + h.c.)g' (k)d’k

with ¢'(k) = (2m)3(2w(k))~"/2, and x(k) = g(k)g'(k)™", the ultraviolet cut-off.
Then
X+ A ()] < =) (= )1/214' |

~([5) " (Jrmar)”

Of course, because of the Wick ordering in the definition of Hy, ([ |curld’ [2)/2 is

not bounded by H}/ ?. So the argument above does not lead to a rigorous proof, but
it gives us an idea about what is going on here.

Lemma 17.5 (relative bounds on a*)

2
lotryl < [ Lopon (17.14)

and

jo(pyuiy < [ e+ [ 1seiie. (17.13

Proof. (Drop the subscript F.) By the Schwarz inequality

(el < [ 151l

(1) (o)

/ wllawll? = (b, Hy),

Since

the first inequality follows.
The second inequality follows from the first and the relation

la(F) wII* = (¥, a(f)a(f)"¥) = ||a(f)¢||2+/|f\2||¢||2-D
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17.3 Elimination of particle and high photon en-
ergy degrees of freedom

This is the first application of the decimation map. Our task is to map (particles
+ fields) into fields. We consider only the ground state. Excited states are treated
similarly once H () is suitably prepared.

Since we are looking at a vicinity of the ground state energy of H(g), the degrees
of freedom connected to the excited particle states and to high photon energies
should not be relevant. So we eliminate them isospectrally using the decimation
map.

Recall xp,<, = E(_sp)(Hy) denotes the spectral projection for the operator H;
onto energies < p (and similarly for xp,>,, etc.). Let P, = PP @ XH;<p> Where,
recall,

PPt — Pypst = projection onto the ground state Vo of Hyart.-

We want to apply the map Dp, to the operators H(e)—z-1 for z in a neighbourhood
of the ground state energy Fj.

Recall that the decimation map Dp is defined on operators H, s.t. D(H)NRanP
is dense in D(H), provided 0 € p(Hp) and

|PHRp|| < oo and ||[RpHP| < o0,

where Rp = P(Hp)"'P. In what follows Ey and E; are the ground state energy
and the first excited state of Hyar, and AE = E; — E.
Theorem 17.1 and Proposition 17.13 of the Appendix (Section 17.11) imply

Theorem 17.6 Let || < AE. Then Dp, is defined on operators of the form
H(e) —w- 1, where w € {z | Rez < Ey + sAE}, and is isospectral.

Since we are interested in the part {z | Rez < Fy + %AE} of the spectrum, we
can study Dp,(H () — z) instead of H ().

Observe that if the projection Py*" has rank 1, then the operator Dp, (H (c) — z)
is of the form

Dp,(H(e) — 2) = P ® Xu;<pHo(e, 2)Xm,<p 5

where the operator Hy(e, z), defined by this relation, acts on Ranxm,<,. Thus we
passed from the operator H(e) acting on H,ary ® F to the operator Hy(e, z) acting
on the much smaller space Ranxu,<,, which is isospectral to H (¢) — z -1 in the set

1
{z|Rez < E0+§AE}
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in the sense of Theorem 17.1. We eliminated, in an isospectral way, the degrees
of freedom corresponding to the particles and to the photon energies > p, i.e. we
projected out the part Ran (1 — PP™™) of the particle space Huy and the part
Ran xm,>, of the Fock space F. p is called the photon energy scale.

Though the operator Hy(e, z) looks rather complicated we will show in the next
section that the complicated part of it gives a very small contribution, so it is of the
form

Hy(e,z) = AgE + Hy + small terms

where AgF is a computable energy shift of the order O(g?).
If we ignore the small terms, then

spec H(¢) in (—o0, Eg + A¢E) = spec Hf + Ey + AgE.
Now note that Hy + Ey+ AgE has the eigenvalue Ey + AgE, with the eigenfunction

Q, and the continuum [Ey + A¢E, o0) with the generalized eigenfunctions 95" ®
Ila*(k;)$2. Hence @p,(H (g) — 2)§2 gives an approximate eigenfunction of H(g) with
an approximate eigenvalue Fy + AgE and similarly for the continuum. In fact,
we will find energies E™ = FEy + O(¢?) and numbers w™ = 1 + O(g?) s.t. for
p=0() < 1and any n > 1 H(e) is isospectral to E™ + w™ H; + O(p") in the
disk D(E™ p"). This is called infrared asymptotic freedom.

17.4 Generalized Wick Representation

Though the operator Hy(e, z) looks much more complicated than H(¢), in fact the
complicated terms can be easily estimated and shown to give a relatively small
contribution. These estimates are based on a presentation of the operator Hy(z, 2)
in the generalized Wick (or normal) form.

The operator Hy(e, z) we are interested in has no Wick representation. However,
it can be expressed in a closely related form which serves the same purpose as
the Wick one, but covers a much wider class of operators. We call this form, the
generalized Wick representation. To describe this representation we introduction
first some abbreviations:

(@) =]]a*(k;) and d"k =d*k;...d%, ,
j=1

where a* stands either for a* or for a and is the same throughout the product. The
short-hand

a*) h,s(Hf)a® or sometimes a*) h,sa’ 17.16
!
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stands for the operator

T r+8
/ [ k) bns(Hy b Beris) [ alk)d ™k
j=1 i=r+1

Here h,s(i1,k), k = (ki ...k,4s), are measurable functions on [0, 1] x C3("+*)  uni-
formly Lipschitz in p, called the coupling functions. Their behaviour in £ will be
specified later.

We say that an operator H on Ran xp,<, is in the generalized Wick form if it
can be written as

Operators of the form (17.16) will be called (rs)-monomials. So far these definitions
are purely formal since we do not describe a class of coupling functions A, for which
the corresponding operators are, say, densely defined or bounded. This will be done
later. For now we mention only that though H; can be expressed in the standard

Wick form
H; = /wa*a ,

the corresponding coupling function, w(k)d(k; —k2), is more singular than we allow.
But even if this coupling function was smooth, to find the Wick form of operators
like Xf7,<p, of which h,, are composed in our case, is not an easy matter.

In what follows we manipulate the operators a*(k), a(k) and Hy as if they were
independent. We use only the commutation relations between these operators:

la(k), Hf] = w(k)a(k) , etc.

The point here is that though we do not take expectations of operators in the
vacuum state or, what is equivalent, do not sandwich operators by projections onto
the vacuum, we do sandwich them by projections, xu,<,, onto the low lying spec-
trum states of the free Hamiltonian, H;. As a result we show that terms containing
at least one creation or annihilation operator give a relatively small contribution
and the contribution is smaller, the greater the number of creation and annihilation
operators these terms contain.

17.5 Hamiltonian H(e, 2)

Our goal now is to show that the operator Hy(e, z), defined by the relation

HO(E7 Z) = < (I))art Y ‘DS)) (H(g) —Z- 1) gart>Hpart (17'17)
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for z € 2, can be represented in the generalized Wick form

Ho(e,2) = 3 / (a*)"ho s (Hj)a® (17.18)

r,5>0

and to estimate its coupling functions hg,s(p, k). Our results are summed up in the
following

Theorem 17.7 Assume Condition (A) holds. Let ¢ < § = min(AE, p) (p is the
scale parameter entering the definition of Ho(e,z)). The operator Hy(e,z) has a
generalized Wick representation, Eqn (17.18), with coupling functions, ho s, analytic
in z € Q) and satisfying the estimates

|h0,7‘5(/%@| + |(9uh0,7«5(u,@|
r+8
< const H(const e 67 - w(ky) V) (17.19)
j=1
where the product is absent in the case r = s =0, and

10,h0,00(p) — 1] < comst - £7/67 . (17.20)

The proof of this theorem is simple but lengthy. We omit it.

17.6 Banach space of operators

Instead of looking at the single Hamiltonian, Hy(e, 2), we now consider an entire
space of Hamiltonians of which Hy(g, 2) is just one point (or complex curve depend-
ing on the parameter z). Our aim is to establish an isospectral flow on this space
which takes Hg(e, z) to a simple operator.

From now on we use the shorthand x<, = Xxn,<, and x>, = xu,>, for our
smoothed out characteristic functions.

Consider a positive function J on R?® satisfying

J2
/J2+/—<oo.
w
w<l1 w<l1

Define the Banach space, By, of formal expressions of the form H = Y  H,,, where
r4+s>0

H, = / (@) by (H ).
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As before, the r.h.s. here is a shorthand for the expression

T T+s
/ [Te Cp)hes(Hy by Eeis) T alk)d k.
j=1 j=r+1
The coupling functions, h,s(u, k), are assumed to satisfy the estimates
1
|hrslls = Z |hrsllm < o0, (17.21)
n=0
where
| rs|| 1 = sup[J 0|97, |] < oo . (17.22)
u.k
Here we used the notation .
T =T 7(k)) - (17.23)
j=1
We set [|Hysl|sn = [|hrsllan, [[Hrslls = [|Brs]|s and
1H || = max || Hyl - (17.24)

We identify expressions H with operators x<i1H x<1 (via an obvious one-to-one cor-

respondence). The latter are bounded operators on F as follows from

Proposition 17.8 (a key bound)

1/2
h’l"S 2
Ix<iHrsx<ill < / rJrLi‘st]€
5 wik;)<1 Tll w(k;j)
S )\(J, 1)7'+5||Hrs||.],0 ; (1725)

where

A1) = (/w51 Jg)m.

Thus x<1Hx<1 = Xx<1HrsX<1 converges in norm, provided

J2
/ Y
w<1 W



17.7. RESCALING 171

Proof. We have by an operator norm inequality

Ix<r Hyax<il| < / / 1" x| Ansllllax< ] - (17.26)

A technical estimate (which can be found in [BFS1], cf also the n = 1 case with 17.14)
implies that the following estimate holds

1/2

h2
/ Bla"xe ] < / Ly
1w

> w;<1

where w; = w(k;), which completes the proof of the first part of (17.25). The proof
of the second inequality in (17.25) follows from the relations ||A|| < ||hys]|s - JET+)

and
J2\ &
[ ()" <avr. -
w

n
2 wi<l
1

In what follows we think about H as an operator restricted to the subspace
Ranx<i. Moreover, we take J to be of the form J = §-w™ where £ > 0 and v < %
The cases important for us are v = 1, if Condition (B) is not assumed, and v = —
otherwise.

B; is our basic Banach space of operators. For v < % it is sufficient for our
purposes. Forv = % it is not. To treat the latter case we introduce, in an appropriate

place, a more refined Banach space.

N

17.7 Rescaling

We want to map our operators into operators on a fixed, p-independent space. To
this end we rescale them as follows. Define a unitary group, U(6), by

U [[a ()2 =]]a" Ut (17.27)
where Uy is the rescaling transformation acting on L?(R?), given by

(Usf) (k) = e 32 f(e %), (17.28)
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In particular, U(8)Q2 = Q. Moreover, we have the following relations
U(0)a™ (k)U(0) ™ = /207 (k) (17.29)
UO)HU(0) " =e "Hy. (17.30)
The last equation implies
U(=1In(p)) : Ranxm,<, — Ran xm, <. (17.31)
Now we define the rescaling transformation on operators as
S,(H)=eU@B)HU®) ™, 6=—Inp. (17.32)

Note S,(Hs) = Hy. By (17.31), if an operator H acts on Ran x<,, then S,(H) acts
on Ran x<i, a p-independent space.

Observe that we can define S, directly as S, = %S (p), where the one-parameter
group S(p) is defined by the properties

1. S(p)(A- B) = S(p)(4) - S(p)(B),
2. S(p)a®(f) = a*(Upf), 0 = —Inp.

Scaling dimension. If we rescale H,; = [(a*)"h,sa®, we obtain

S,(H,,) = / (@) hPa, (17.33)
where
RO (Hy, k) = p*/ 209 b, (pHy, pk) (17.34)

We take J = {w™. If H,s € By, then h,, behaves for small |k;|’s as H;“Liw( i)Y
S0
Sp(H ) ~ p(3/2—u)(r+s)—1HTs )

The important term here is r +s —1. If r + s > 2, then ||S,(H,)|l; — 0 as
p— 0 for v < 1!
The physics terminology (for v = %) is as follows:

r+s =1 < marginal terms

r+s>2 < irrelevant terms.
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We record also the action of the group S, on the Banach space B, (remember that
J = &w™). The following equation follows from Eqns (17.33)-(17.34):

1Sp(Hrs)lls = p® 2 H Ly = p7 | Hesll oo - (17.35)

Applying these equalities to operators of the form H = > H,;and H; = >, H,,
r+s>0 r4+s>1
we find

1So(H)lls = o~ | Hl| =52

IS, (HO)lls < [Hill -y, < P27 Ly forv <o (17.36)

N =

17.8 Renormalization map

Let D, := Dp,, where P, = Xg,<), and Dp is the decimation map which is defined
in (17.3). We define the renormalization map by

R,=S,0D,. (17.37)

It is shown in [BFS4] that R, is defined on a small neighbourhood in B; of the
set C- Hy. Given that, we discuss briefly properties of R,. The statements of the
theorem below are either obvious or follow from results above.

Theorem 17.9 The renormalization map R, has the following properties:

1. R, is isospectral in the sense that p- R,(H) and H are isospectral at 0,

2. R, is a semigroup: Rp, 0 Ry, = Rp,p and Ry = 1, provided Xx<p,Xa<p =
XA<p2s

3. Ry(wHp+21) = wH; + %zl Vw, z € C. In particular, CHy is a complex line
of fized points of R,: R,(wHy) = wHy Yw € C, and C- 1 is (a part of) the
unstable manifold.

Denote Mg, = C- H;. We want to understand the dynamics of R, as p — 0 in
a vicinity of the fixed point manifold Mg,. We will use the following definitions for
local stable and unstable manifolds:

M, ={H € U|R,(H) = My, as p— 0}

and
M, ={H € U|R,(H) = My, as p— oo}, (17.38)
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where U is an appropriate neighbourhood of My, in B;. Statement 3 above shows
that the subspace C- Hf + C- 1 is a part of the local unstable manifold M,,.

We will show later that the local stable manifold, M, has complex co-dimension
1. More precisely we show that for every operator H in U there is a function
E:{H € U|(H)q =0} — R, such that

M,={H e U|(H)q = E(H")} (17.39)

where we have used the notation HY = H — (H)q -1 (so that (HT)q = 0), i.e. M,
is the graph of E.

c-1
L 94,=C-H+C-1

A

M= C-H /u'“ =

S (17.40)

The set U is such that Theorem 17.7, proven above, implies that for ¢ sufficiently
small

HO(¢,2) = S,,(Ho(e,2)) €U . (17.41)
Recall that the operator py - H®(e, 2) is isospectral to H(¢) — z -1 in the set

1
Q={ze€CRez< Ey+ EAE} . (17.42)
Moreover, p - R,(H© (¢, 2)) is isospectral to py - H® (g, 2) in the set 2, defined by
1
0, ={z € QR,(H (e, 2)))a| < 3Pt

We will show that this set contains an interval of size $p||H:||; and is contained in
an interval of size 2p||H,||;, both centered at some E,. As a result H(g) —z-1is
isospectral to pR,(H©® (g,2)) in Q,. On the other hand, for p small, R,(H©(¢)) is
close to a fixed point:

R,(HO(€)) ~ w, - Hy
for the same w, € C. Thus in ,, H(e) has the same spectral characteristics as the
operator E, +w, - Hy. This is the core idea of our analysis.
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17.9 Linearized flow

Consider the linearized maps, OR,(w- Hy), for R, at the fixed points w-Hy, w € C.
A straightforward computation gives

OR,(w - Hp)E = 5,(€) .

Thus OR,(w - Hy) is independent of w € C and can be identified with the rescaling
map S,.

Since the linearized operator A = OR,(w - Hy) is independent of w- H; € C- Hy,
then so are its unstable, central and stable subspaces, V,, V. and V,, which we
identify now.

The subspaces V,, V, and V; are defined by the conditions that they span the
entire space By, that they overlap only at {0} and that they verify

ATVl <1, JIATM VAl <1

and
Ar‘/c:cha

where A = OR,(wHy) = S,.
Consider a generalized Wick monomial H,, with a coupling function h,s which

is homogeneous of degree — « in each variable k; and homogeneous of degree (3 in p.
Then, due to (17.34) and (17.36), we have that

S,,(Hrs) — p(3/2—a)(r+s)+ﬁ—1Hm ’

i.e. H,, is an eigenvector of S, with the eigenvalue p®/2-)+9)+6-1 For H, € B,
with J = £w™ the worst case scenario is « = v and =0 for r+s > 1. In the case
r = s = 0, the coupling function hg is independent of the k;’s and can be written
as

hoo(p) = E 4+ w - pn+ hi(p) (17.43)

with E' = hg(0), w = h{y(0) and hy(u) = heo(p) — hoo(0) — hgo(0)p. The first term
on the r.h.s is of the type (o = 0,3 = 0), the second, of the type (o = 0,5 = 1),
while the third is of the type (o =0, 3 = 2). Thus the spectrum of OR,(w - Hy) on
B; is the union of the sets

{,071} : {pmfl}’ m>1 and {p(3/2*0‘)”*1|Rea < y} ,n>1, (1744)
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with the spectral subspaces

C-1,C-Hf, m>1 and{ ) Hy|H,€B;} ,n>1. (17.45)

r+s=n

(Here we ignored the fact that for H,; € B, the coupling functions A, are, in general,
not homogeneous in . However, it is easy to account for this discrepancy.)
Decomposition (17.43) suggests that we should introduce the subspace

T ={T =T(H{)|T(-): [0,1] —» Cis C* with T(0) = T'(0) =0} . (17.46)

The result above leads to an identification of stable, central and unstable sub-
spaces, Vs, V; and V,,, of the linearized renormalization group map at My,.

These subspaces V, V. and V,, depend on the parameter v entering the definition
of the Banach space By, J = é&w™. We consider several ranges of this parameter.
v< i

V,=C-1,V,=C-H; (17.47)
and
Vi={Y_ H.H.,eB;}+T (17.48)
r+s>1
y=1L
‘@ ::(:'15 v;::(:'l1f4—{ 2{: [Lw‘fﬁw EABJ}
r+s=1
and
‘G = { j{: }H}SLELW € li]} +'7r
r+s>2
% <v<l.
V@ =C- 1'+‘{ j{: }¥}A}q}s€zli]}:
r4+s=1
V,=C-H,
and

‘G = { j{: }q}SLELW S li]} +‘7r

r+s>2

and so forth. When proceeding to ¥ > 1 one has to remember that the original
operator H(g) is not bounded below if g behaves as w™ with v > 1, as |k| — 0.
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The decompositions into stable, central and unstable subspaces mentioned above
can be modified if one notices that the subspace 7 is invariant under the full non-
linear flow, R,, as well as the linearized one, OR,(wHj):

Ry(T) = 0R,(w - Hy)T = 5,(T) =1,

P

where T, = T,(H;) with T,(n) = p 'T(pp). Thus we could have added T to the
central subspace V. (cf. [BFS2]). We do not do this here.

We are interested in the cases v < % (more precisely v = —32) and v = 1. We
arrive at the first case, if Condition (B) (the confinement condition) is satisfied, by
performing a Pauli-Fierz transform (see [BFS2,BFS4]). In the absence of Condition
(B) we stick with the original standard Hamiltonian (16.2) which leads via Theo-
rem 17.7 to the second case, v = % Note that in both cases V,, = C- 1 and is,
in fact, the unstable manifold, M, for the entire flow. Now we comment on the
peculiarities of the cases v < % and v = %

In the case v < %, the central subspace, V, = C- Hy, is also the central manifold,
M., for R,. It consists of fixed points of R, and is denoted also by M,. Moreover,
the stable affine subspaces Vi(wH;) = w - Hy + V; for fixed points w - Hy, w € C,

foliate the subspace V. (see Fig. 17.49).

- Vu

\V
pr / s

w-Hy b N/ E—
\%K Vs(wH )
(17.49)

Stable, central and unstable subspaces

These circumstances allow for a complete analysis of the flow R, near the fixed point
manifold M, (see Section 17.10).
Note also that in the case v < %

IAull = 1A 1T =7 and (Al =927 < 1AM

where A, = A [V, and A, = A [ V,. We have used here that 1 > % —vforv > —%.
The case v = % is more subtle. The main problem here is that the central

manifold is larger than the manifold of fixed points. Our task in the remainder of
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this section is to isolate the smallest possible central subspace — the central subspace
for v = % considered above is too large, a big piece of it could, in fact, be taken into
the stable subspace. To do this we have to use a more refined Banach space instead
of B;. We do not pursue this case any further here, but refer the interested reader
to [BFS4].

17.10 Central-stable manifold for RG and spectra
of Hamiltonians

In this section we give a construction of the stable manifold M in the cases v < %
and v = % We use an abstract central-stable manifold theorem whose proof can be
found in [BFS4].

We begin with the case v < 3. Let U, = {H € By||H — w- Hf||; < |w]| - &, for
some w # 0}. It follows from technical estimates which can be found in [BFS4] (see

also [BFS2]), that R, maps U, into B;, provided ¢ < %, {1 ‘]72 < 11—6 and 4¢ < p.

We define Ul = {H € U.|(H)q = 0}, the truncated disc. Our first result is

Theorem 17.10 Let v < % There is a function f: U — C s.t. My = graph f is
invariant under R, and

VHEMS Elw-HfEpr:RZ(H)%w-Hf

as n — oo in the topology of By and therefore in the norm topology. Here graph f
is identified with the set {H" + f(H')|H" € UL}

We reinterpret Theorem 17.10, which looks like a stable manifold theorem, but
could also be called central-stable one. Indeed, M; is a stable manifold, Ms(M,),
for the invariant manifold

M, =C-Hy . (17.50)

However, M, is a manifold of fixed points which can be identified with the central
manifold (which is equal to the central subspace) for each of its fixed points: M, =
M(w-Hy) =V, Yw-Hf € Mg, The tangent space of M, at any w- H; € My, is

Vet V=V . (17.51)

Consequently, M, is also the central-stable manifold, M (w - Hy), for any fixed
point w - Hy € My,. Furthermore, UT is nothing but U. N V., and C can be
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identified with the unstable subspace V,, = C - 1, so that
[rUNVie =V, (17.52)

for any fixed point w - Hy € Mpg,. Recall that the identification of the unstable,
central and stable subspaces is based on the formula

OR,(w-Hy) =S, , (17.53)

where S, is the rescaling map, valid for any w - Hy € My,

To prove Theorem 17.10 we apply an abstract stable manifold theorem. To this
end we should ascertain that R, is Frechét differentiable at least 1+ ¢ times. In fact
we have

Theorem 17.11 The map R, is analytic on U,.

Proof: Let P = Xu,<,. By the definition of R,, and equation (17.36), it suffices
to show that R(H) = H;P(PHP)"'PH;, where P = 1 — P, is analytic as a map
from U to the Banach space B,,-1/2;. Let H € U, and assume |[0H|| < &, where
6H = H — Hy, i.e. we take r = 1 here. We rewrite R(H) as

D 1/2 ~1prrl/2
R=H/’P1+K|'PH;?

w
<1

1/2
where K = H;1/2((5H)13H;1/2. Since A(J,1) = ( i J—2> < 1, equation (17.25)

implies that
K| < 4ll6H]||, -

Thus for [|[0H||; < 1, [1+ K]~" can be expanded in a Neumann series. Now Propo-
sition 15.1 of [BFS4] implies that

V2K agarng < 2p(2p7 2 H )"

Thus the series H Z (—K)"H; 1/2 converges in the Banach space B,,-1/25. Since

K =H;'*PSHPH, 2 the dlaim follows. O
Now we rephrase in our notation an abstract result proven in [BFS4].

Theorem 17.12 Let v < % For any w- Hy € My, with w > 6 > 0 there a map
fs Vs = Vo = Vo4V, s.t. the manifold Ms(wH) = graphf; is invariant under
R, and
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(1) VH e My(w-Hf) = R,(H) >w-Hf asp—0

(ii) the manifold M, = U M(w - Hf) has all the properties stated in
w-HpeMgp,|w|>d
Theorem 17.10.

Clearly, Theorem 17.10 follows from Theorem 17.12.

17.11 Appendix
Proposition 17.13 Let AE = min(E; — Ey, p). Assume |e| < AE and let
Q={z€CRez < Ep + %AE} (17.54)
Then (i) 2 C p(Hp(€)) and (i) for z € Q,
| P, H () Py(Hp, () = 2) M| < Clel [AE . (17.55)
Proof. In order to simplify the exposition somewhat in a couple of places below,
we use also the condition [ |g(k)|?d*k < co. However, using more careful estimates

this condition can be avoided.
Since div A(z) = 0, we obtain by expanding (p — 6A(:c))2:

H(e)=H(0)+¢-I(¢),
where I(¢) is the interaction energy
I(e)=—p-A(x) + %&4(9&)2.
Write for P = P, and I = I(e)
Hp(e) = Hp(0) + elp, where

HP(O) - Hpartpé)art ® ]-f + ]-part; ® HfXHpr .

Then
(Hp(e) — z) = (Hp(0) — 2)*[1 + eK](Hp(0) — 2)'?, (17.56)

K = (Hp(0) = 2) 2L (Hp(0) = 2) 2
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Using the definition of I, we find
1K < [lp(Hp(0) — 2)~?|[[| A(z) P(Hp(0) — 2) /2|
+g|l(Hp(0) — 2)PA(x)||[|A(z) P(Hp(0) — 2) 72| -

The relative bound on A(z) proven above implies that

o\ 1/2
4@ PHp(0) 27 <2 ([ 120) (o) - 2P

#( [ o) a0 - P (17.57)

Now assume for the moment that spec Hp,, is discrete. Then

1/2 12 5 ar 1/2 ~1/2
H{*(Hp(0) — )2 P = PP @ H//*(H; — (2 — E)))

j>1
+P @ H2(Hy — (2 — Eo)) "Xayop »

where P]Pm is the orthogonal projection onto the state q/zpart Hence for Rez < E,
Ey+ pand ¥ = {(E, s)| either E' € o(Hpart)\{Eo} and s > 0 or E € o(Hp,y) and
s > p} we have

1/2

V2007 (0 _ \—1/2 P s
|H,"(Hp(0) — ) /“P|| < S T ) <1. (17.58)

In fact, this estimate holds for a general H,,. We accept this without a proof.
Similarly,

I(Hp(0) — 2)~2P|| < sup|s — (z — E)|7? < (AB)V2. (17.59)

These estimates, together with (17.57) imply that

AP0 -2 ) <2 ( [ '9‘2) ([ |2) J(AB)2 . (17.60)

Since 0(Hp(0)) = [E, 00), where, E = min(Ey, Eg+ p), we have that ||p(Hp(0) —
2)~?|| < Cdist(z, [E, 00))~"/2. Thus |K|| < C|z—E|~" for Rez < E; and therefore

IK|| < C(AE)™, (17.61)



182 CHAPTER 17. RENORMALIZATION GROUP

if z € Q. Pick now |¢|] < CAE/2. Then ||eK| < 1/2 and therefore the r.h.s. of
(17.56) is invertible. Hence

{z|Rez < Ey+1/2AE} C p(Hp(e)),

provided || < AE.
Moreover, since PH(e)(Hp(e) — 2)™t = ePI(Hp(e) — 2)™", we estimate

IPH(e)(Hp(e) — 2)7 PIl < (el P~ pll + 62—2||PA(96)||)

x||A(z)(Hp(e) —2)~' P -
Now Eqns (17.56), (17.59) and (17.60) imply then
IA(z)(Hp(e) = 2)7' Pl < Clz = EI7".
Next since p is bounded relative to Hp,rt we have that
I1P-pll<C.
Finally, bound (17.13) implies that
IPA()| < Clp 2 +1) .

Collecting, the last four estimates and using that Rez < Ey + AFE, we arrive at
(17.55). O
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