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1. Introduction

A number of authors have studied the limiting behavior of Teichmiiller geodesics in
relation to the Thurston compactification of Teichmiiller space, [2] 9, 14}, 16-19, 23].
This work has highlighted the delicate relationship between the vertical foliation
of the quadratic differential defining the geodesic and the limit set in the Thurston
boundary.
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2 J. Brock et al.

The ending lamination of a Weil-Petersson (WP) geodesic ray was introduced
by Brock, Masur and Minsky in [5] and in some sense serves as a rough analogue
of the vertical foliation of the quadratic differential defining a Teichmiiller geodesic
ray. Ending laminations have been used to study the behavior of WP geodesics [3]
5l [6] 27, 28] and dynamics of the WP geodesic flow on moduli spaces [6], [7, [13]. In
this paper, complementing our work in [3], we provide examples of WP geodesic
rays with nonminimal, and hence nonuniquely ergodic, ending laminations whose
limit sets in the Thurston compactification of Teichmiiller space is larger than a
single point.

Theorem 3.1. There exist Weil-Petersson geodesic rays with nonminimal,
nonuniquely ergodic ending laminations whose limit set in the Thurston compacti-
fication of Teichmiiller space is 1-dimensional.

See also Theorem B.I7] for a more precise statement. Our construction closely
follows that of Lenzhen [I7] who gave the first examples of Teichmiiller geodesics
having 1-dimensional limit sets in the Thurston compactification.

2. Preliminaries

Notation 2.1. Let K > 1, C > 0, and let X be any set. For two functions
fr9: X = [0,00), we write f <g ¢ g if £g(z) — C < f(z) < Kg(z) + C for all
z € X. Similarly, we write f <k g if +g(z) < f(z) < Kg(z) for all z € X, and
fxcgif g(x) — C < f(x) < g(z) + C for all z € X. Moreover, f <y g means
that f(z) < Kg(z) for all x € X and f Zec g means that f(z) < g(z) + C for all
z € X. We drop K, C from the notation when the constants are understood from
the context.

Teichmiiller space. Given a finite type surface S, we denote its Teichmiiller space
by Teich(S). The points in Teich(S) are isotopy classes of (finite type) Riemann
surface structures on S. When the Euler characteristic x(S) < 0, we also view
X € Teich(S) as an isotopy class of complete, finite area, hyperbolic metric on S.
In this case, given a homotopy class of closed curve @ and X € Teich(S), we write
Lo (X) for the length of the X-geodesic representative of «. If « is simple, we let
we (X)) denote the width of @ in X, defined by

we(X) = 2sinh ™! (1/sinh(£,(X)/2)). (2.1)
The term “width” is justified by the following, see e.g. [8 Sec. 4].

Lemma 2.2. (Collar Lemma) Given any X € Teich(S) and distinct homotopy
classes of disjoint simple closed curves aq, @z, let w; = wq, (X), for i =1,2. Then
Ny, j2(1) and Ny, j2(e), the w;/2-neighborhoods of the X -geodesic representative
of the «;, are pairwise disjoint, embedded annuli.
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For w = wo (X), we call N, /5(c), the standard collar, and note that the distance
inside NV, /2(a) between the boundary components is w. An important consequence
is that for any other homotopy class of curve 8, we have £3(X) > i(«, B)wa (X),
where i(q, 8) is the geometric intersection number of o and S (c.f. Theorem [Z3)).

Weil-Petersson metric. When x(5) < 0, the Weil-Petersson (WP) metric is a
negatively curved, incomplete, geodesically convex, Riemannian metric on Teich(.S).
Its completion, Teich(S), is a stratified CAT(0) space, with a stratum S(o) for each
(possibly empty isotopy class of) multicurve o, consisting of appropriately marked
Riemann surfaces pinched precisely along o. The stratum S(o) is totally geodesic
and isometric to the product of the Teichmiiller spaces of the connected components
of S\o with their WP metric. The completion of S(o) is the union of all strata
S(o’) for which o C o'; see [22]. The stratification has the so-called non-refraction
property: the interior of a geodesic segment with end points in two strata S(o1) and
S(o2) lies in the stratum S(o1 N o9); see [111 [31].

Curve complexes, markings, and projections. We refer the reader to [24] 25]
for definitions of the objects described in this subsection — our objective here is
to fix notation and terminology. In this paper we denote the curve complex of a
subsurface Y by C(Y). The set of vertices of C(Y'), denoted by Co(Y), is the set
of curves on Y (more precisely, the set of isotopy classes of essential simple closed
curves on Y). A partial marking u on S consists of a pants decomposition, base(u),
and a transversal for some curves in base(u). A marking is a partial marking such
that every curve in base(u) has a transversal. For a curve or partial marking u, we
denote the subsurface projection of u to the subsurface Y by 7y (1) (see [25] Sec.[2]),
and for two u, p’ define

dy (') 1= diame(y (my (1) Uy (1)). (2.2)

An important property of dy is that it satisfies the triangle inequality when the
associated projections are nonempty. If Y is an annulus with core curve a, we also
write C(«) for C(Y), my for my, and do (i, 1) for dy (u, p'); see again [25 Sec. 2.

There exists a constant Lg > 0, called the Bers constant, depending on S, such
that for any X € Teich(S) there is a pants decomposition such that every curve in
the pants decomposition has hyperbolic length at most Lg with respect to X; see
e.g. [8]. Such a pants decomposition is called a Bers pants decomposition for X. A
Bers curve for X is a curve « for which ¢,(X) < Lg. A Bers marking for X is a
marking p such that base(u) is a Bers pants decomposition for X and transversal
curves have minimal lengths.

Given a point X € Teich(S) and a curve «, the subsurface projection of X to
a, mo(X), is the collection of all geodesic arcs in the annular cover corresponding
to a which are orthogonal to the geodesic representative of « (all with respect to
the pull-back of the X-metric on S to the cover). Distance in « between points
of Teich(S) and curves/markings is defined as the diameter of the union of their
projections (as with the case of two curves or markings). This is often called the
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relative twisting, and for o, § € Co(S) and X € Teich(S), we write
twa (8, X) = do (0, X) := do (5, ma(X)).
If o has bounded length and p is a bounded length marking for X, then
twa (5, X) X du (5, 1), (2.3)

where the additive error depends on the bounds on the length of « and the lengths
of those curves in u (including those defining transversals of p) which intersect a,
but not on the length of . To see this, note that the bounds on all the lengths
of curves mentioned imply a lower bound on the length of a by Lemma and a
lower bound on the angle of intersection between the geodesic representatives of any
curve from g and the geodesic representative of «, and these easily imply an upper
bound d,, (p, X). Coarse Equation (23]) then follows from the triangle inequality.
The next theorem is a consequence of [20, Lemma 3.1] (see also [10, Lemmas 7.2
and 7.3]), and provides an estimate on length of a curve v with respect to X €
Teich(S) in terms of contributions from certain other curves which v intersects. To
describe it, suppose X € Teich(S) and -, d are two curves on S, and define

l5(7, X) = 1(0,7) (wy (X) + £4(X) tw, (6, X)). (2.4)
Also, for a pants decomposition P, define

i(6,P) =) _i(8,7).

yeEP

Theorem 2.3. For any L > 0, there exists K > 0 so that the following holds. Let
X € Teich(S) and P is a pants decomposition of S with £,(X) < L for all v € P.
Then for any curve § € Co(S), § € P, we have

ZE(X) - Z&;(’%X) '*<K 2(67P)

yEP

Proof. For every v € P, let N(v) = N, _(x)/2(7) be the standard collar around 7,
where w.,(X) is the width as in (Z1)). By Lemma [2:2] these collars are embedded
and pairwise disjoint. Every complementary component @ of this set of standard
collars is topologically a pair of pants but does not have a geodesic boundary. The
decomposition of X into standard collars and complementary components decom-
poses ¢ into segments. Then [20, Lemma 3.1(b)] implies that for any segment u
that is associated to a standard collar N(y) we have

Cu(X) 20wy (X) 4 £,(X) tw, (5, X)

for some constant C' depending on L. (The language in [20, Lemma 3.1] is slightly
different because it also applies to segments in possibly infinite geodesics.) That is,
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for some constant K7, we have

u yeEP
But the difference between £5(X) and ) £,(X) is the sum of the lengths of seg-
ments in complementary pieces. Now, we note that [20, Lemma 3.1(a)] states that
the length of each such segment is uniformly bounded. Also, the number of such
segments is (9, P). Thus, for some Ko,

05(X) =) bu(X)| Xk, i(5, P).

Now, setting K = K7 4+ K>, the theorem follows from above two inequalities and
the triangle inequality. O

The Thurston compactification. The Thurston boundary of the Teichmiiller
space is the space of projective classes of measured laminations PML(S); see [12]. A
sequence of points { X} C Teich(S) exiting every compact set of Teich(S) converges
to [A], the projective class of a measured lamination A\ € ML(S), if there exists a
sequence of positive real numbers {ug}; so that

lim ugls(Xy) =i(0, ), (2.5)
k—o00

for every d € Co(S). We call {uy}r a scaling sequence for { Xy}, and note that ug, —
0. In fact, a finite set of curves dy,...,d, can be chosen so that for any sequence
{ X} exiting every compact subset of Teich(S), we have X}, — [)] if and only if (Z5)
holds for some scaling sequence {uy}x and the curves 6 = §;, for each i =1,...,n.
To see this, we let 61, ...,d, consist of a pants decomposition together with a pair
of transverse curves for each pants curve. Then any measured foliation/lamination
is determined by these intersection numbers (indeed, the intersection numbers with
the transverse curves suffice to determine the twisting parameters with for the
foliation, and hence the foliation; see [12, Exposé 6]). Therefore, if (Z3]) holds for
some \, some {uy}, and § = §;, for all i = 1,...,n, then all accumulation points
of {X} agree (as they are determined by these intersection numbers), and hence
{X})} converges to [A]. In particular, for any curve a, we can choose the curves
01,...,0, to all have nonzero intersection number with a.

Ending lamination. Suppose 7: [0, 00) — Teich(S) is an infinite WP geodesic ray.
A pinching curve for r is a curve «y with limy_, o £, (r(¢)) = 0. The (forward) ending
lamination of r, denoted by v = v (r), is the union of the pinching curves together
with the supports of any accumulation points in PML(S) of an infinite sequence
of distinct Bers curves for hyperbolic metrics along ([0, 00); see [5, Definition 2.7]
for more details.



J. Topol. Anal. 2020.12:1-28. Downloaded from www.worldscientific.com

by UNIVERSITY OF TORONTO on 05/01/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

6 J. Brock et al.

2.1. Bounded length WP geodesic segments

Because of the non-completeness of the Weil-Petersson metric and the non-local-
compactness of its completion, the usual compactness theorems for geodesic seg-
ments of fixed length based at a point is more subtle than in the complete case.
Wolpert carried out an initial analysis [30, Proposition 23] that captured how such
segments can limit at the completion, but further analysis in [27, Theorem 4.2]
captures a stronger non-refraction condition.

Given a curve v € C(S) we denote the positive Dehn twist about v by D.. For
a multicurve o on a surface S, we denote the subgroup of Mod(S) generated by
positive Dehn twists about the curves in o by tw(o).

Theorem 2.4. (Geodesic limit) Given T > 0, let ¢, : [0,7] — Teich(S) be
a sequence of Weil-Petersson geodesic segments parametrized by arclength with
(n(0) = X € Teich(S). Then after passing to a subsequence, we may extract a
partition of the interval [0,T] by 0 = to < t1 < -+ < tgpp1 = T, multicurves
o, l=1,....k+ 1, withoyNo1 =0 forl =1,....k and a piecewise geodesic
segment

¢ :[0,T) — Teich(S)

with {(ty) € S(oy) for 1=1,...,k+1, and {((t;, t111)) C Teich(S) forl=0,...,k,
such that the following holds:

(1) Nimyoo Go(t) = ((t) for all t € [to, t],
(2) there exist elements Tpn € tw(oy) for each I = 1,....k and n € N, so that
letting pi1.n, = Tip 0+ 0 Tin we have

Jm enn(Gu(®) = )
for all t € [t ti41].

Remark 2.5. In this theorem, ;41 may be empty (in which case we have é(tk+1) €
Teich(S)). A key feature of this theorem is that o; N ;41 = @), meaning that these
two multicurves have no common components. This is responsible for the non-
refraction behavior ensuring that ((¢;,#41)) is contained in Teich(S) as opposed
to Teich(S).

We also need the following, which is [27, Corollary 4.10]. Denote a Bers marking
at a point X € Teich(S) by u(X).

Theorem 2.6. Given €y, T positive and € € (0, €], there is an N € N with the
following property. Suppose that (: [a,b] — Teich(S) is a WP geodesic segment of
length at most T' such that sup,c(, ) la(((t)) = €0 and da(p(C(a)), n(¢(b))) > N.
Then, we have

inf L. (C() < e

t€la,b]
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3. Geodesics with Nonminimal Ending Laminations

In this section, we prove the main result of the paper (see also Theorem BT for a
more precise statement).

Theorem 3.1. There exist Weil-Petersson geodesic rtays with nonminimal,
nonuniquely ergodic ending laminations whose limit set in the Thurston compacti-
fication of Teichmiiller space is 1-dimensional.

First, let us briefly sketch our construction of such geodesic rays. The basic
idea is similar to Lenzhen’s construction for Teichmiiller geodesics in [I7]. Let S
be the closed, genus 2 surface and let &« C S be a separating simple closed curve
cutting S into two one-holed tori that we denote by Sy and S;. The stratum S(«)
is isometric to a product of Teichmiiller spaces of once-punctured tori, i.e. S(a) =
Teich(Sp) x Teich(Sy).

We carefully choose sequences of curves {y/'}; C C(Sx), h = 0,1 which form
quasi-geodesics and limit to minimal filling laminations An, h = 0,1. Using the
fact that Teich(S},) with the WP metric is quasi-isometric to C(S}), and that it has
negative curvature bounded away from 0 we construct geodesic rays 7" in Teich(.S},)
which have forward ending laminations Ap, h =0, 1.

Next, we consider the geodesic 7 = (7%, #!) in Teich(S), and construct a geodesic
ray r which fellow travels 7. We estimate the length of an arbitrary curve along
r using estimates from Theorem From the conditions, we imposed on our
sequences of curves, we will see that most of the length of the curve comes from its
intersection with curves 7Y and v}, and so lengths are eventually well-approximated
by intersection numbers with linear combinations of measure o and A1 on )\ and
A1, respectively. Consequently, this geodesic ray accumulates on a 1-simplex with
vertices [A\g] and [\;] in the Thurston boundary. Analyzing a pair of particular
sequences of times, we see that the endpoints of the simplex are in the limit set,
and so by connectivity, the limit set consists of the entire 1-simplex.

3.1. Continued fraction expansions and geodesics in Teich(S1,1)

Let Ap be a minimal, irrational lamination on Sj. This lamination is the straight-
ening of a foliation of the flat square torus, and we assume for convenience that the
slope of the leaves of this foliation is greater than 1. The reciprocal of this slope is
an irrational number less than 1 which we denote by zp, and we write its continued
fraction expansion as

T = [O;egﬂe’{”,...]7 (3.1)

(the first coefficient is zero since z, < 1). We assume in all that follows that el > 4
for all 7 and for h =0, 1.
h
Next, let Z- = [0;el, el ... el |] be the ith convergent with finite continued
q;

fraction expansion as shown, obtained by truncating that of xj. Let 7 be the
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Fig. 1. A piece of the curve graph C(S},) visualized as the Farey graph.

simple closed curve on the torus whose slope is the reciprocal, ql . Note that 72 is

the curve whose reciprocal slope is 0 (that is, 'Yo is the Vertlcal curve) and we let
k| denote the horizontal curve, by convention.

The Farey graph is the graph with vertices corresponding to QU{oco} and edges
between and £ whenever |ps —rq| = 1 [29]; see Fig. [l Identifying a simple closed
curve on the (ﬂat square) torus with the reciprocal of its slope identifies the curve
graph C(Sy) with Farey graph [26], and we use these two graphs interchangeably
depending on our purposes. Our assumption that e > 4 ensures that the sequence

h
of curves {7}, (or equivalently, the sequence of convergents {Z’—'_;'L}i) is a geodesic;

see e.g. [26] Sec. B]. Our index convention leads to

+elt
V1 = Doy (v), (3-2)

with the sign determined by the parity of ¢; see Fig. 2

The curve graph C(S},) — or equivalently the Farey graph — naturally embeds
into the Weil-Petersson completion of Teich(S}) in such a way that the vertex
corresponding to the curve v is sent to the point in which v has been pinched, and
so that edges between adjacent vertices are sent to WP geodesics. Furthermore, the
pants graph and the curve graph of a once punctured torus coincide, and according
to [I, Theorem 3.2] this embedding is a quasi-isometry. The usual identification of
Teich(S},) with a subset of the compactified upper half-plane provides the standard
embedding of the Farey graph into H2, with vertex set QU {oco} € RU {0} = SL..
We further note that all maps and identifications are equivariant with respect to
the actions of Mod(Sy,) = SLa(Z) on the various graphs/spaces.
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Fig. 2. A picture of the initial segment of the geodesic in the curve graph C(Sy) (again visualized
as the Farey graph) defined by the continued fraction [0;4,4,4,...]. The edges of the geodesic
are drawn as thicker lines, and the first few vertices, 'yﬁl = 5,75‘ = %,7{‘ = i,'yg = 117, AU
are indicated. As one can see from the first few segments of the geodesic, it “pivots” on opposite
sides (c.f. [26]), reflecting the fact that the sign in front of e/ = 4 > 0 in the Dehn twisting
alternates. It follows that the segment ['ylh,’yzﬂl] is separated from the segment [y%,+}] by the

segment [y |, 7] in C(Sh).

For each i > 0, let X* € Teich(S},) denote the point at which v/ is pinched and
(X[, X""] the geodesic in Teich(S) between points X[ and X ;. These geodesic
segments are the images of the geodesics [y, ;] in C(S,) we described above,
and since the concatenation of the latter set of segments is a geodesic in C(S},), the
image is a quasi-geodesic in Teich(S},). Then since the action of Mod(S,) on v is
transitive, it is clearly transitive on the geodesics segments [X/, X! ,]. Moreover,
Mod(Sy) acts isometrically on Teich(Sy), so all geodesics [X!*, X ;] have the same
lengths, we denote the length by

D =dwp(X]', X[\ ,) > 0. (3.3)
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Note that 7 = ~¢ is the curve corresponding to the rational number 0, and for
convenience we let X", denote the midpoint of the geodesic segment between (the
image of) 7 and ", which has distance £ to X} (note that X", = /=T in the
upper half plane).

Let #" be the unit speed parameterization of the concatenation of segments
(X!, XI ], i €N, for h = 0,1. The set of (not necessarily infinite) geodesic rays
starting at X", and passing through a point on the geodesic segment [X/, X[ ]
forms a nested sequence, indexed by ¢. To see this, note that by the change of the
sign of the power of D, in (3.2), the geodesic [y}, /4] is separated from ~" 1 by the
geodesic [y |,v}] in C(Sh)' see Fig. @l This implies that the geodesic [X[, X[ ]
is separated from X", by the geodesic [X! |, X!] in Teich(S}), and hence any
geodesic starting from X", that passes through [X/, X[ ;] must also pass through
Xt XD

Now, note that #* is an infinite quasi-geodesic in Teich(S},), so the distance
between the segments [ X/, X! ;] and X", go to infinity. Then the negative curva-
ture of the WP metric on Teich(S},) [32] Corollary 7.6] implies that the maximum
of the smaller angles at X", between any two geodesics in the nested sequence of
geodesic segments tends to 0 as ¢ — oo. This guarantees the existence of a unique
ray in the intersection of all these sets. We denote the ray by #* and note that it
fellow travels #7.

Lemma 3.2. There exists a sequence {K;}2°, so that if el > K; for all i > 0, and
if {th'} is the sequence of times for which dwp (7" (th), XI') is minimized, then for
D from B3) we have

1) dwp(#"(s), #"(s SQforalls>O,
c 4
h( < 5B+ (which tends to 0 as i — o), and

e
T~
>
I
vty
+
S
A\
g
~—~

in particular, {t"'}; is increasing).
Proof. First, we will show that for all i« > 0, we can choose K; > 0 such that if
el > K;, then we have

D
2146 "

dwp (fh (t?) , th) <

To prove this, first let 6 denote the segment of #* with one endpoint on [ X! ,, X ]
and the other on [X1+17 Xl+2] (recall that 7" pass through these geodesics). Since
the piecewise geodesic segment 77 contains a segment of length 4D containing
(X ,, X! ] and [ X[, X[ ], the length of 67 is at most 4D. Given any 7 > 0, we
claim that there exists C'(n) > 0 so that if #" stays outside of the n-neighborhood
of X!, then the length of 67 is at least C(n)el. If we prove this claim, then taking
N = 54%, we can set K; > % and observe that if e > K;, then 6" (and hence

7") must enter the n;-neighborhood, as required.
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h h
Xi_o Xita

h h
Xil1 Xit1

Fig. 3. Applying an element of Mod(Sy), we can assume that Xh is the point at infinity in

the upper half-plane model of Teich(Sy), as shown. Then for L(n) > 0 small, f 1((0 L(n)]))

is approximately a horoball, since a horoball is the sublevel set of the extremal length func-
tion and since hyperbolic lengths and extremal lengths are nearly proportional for small values
(see [21]).

To prove the claim, recall that distance from a point X € Teich(S)) to X is
(27T€7h)% + O(é?y_h) (see [31, Corollary 4.10]). In particular, there exists L(n) > 0 so

that the sublevel set é_l((O L(n)]) is contained in the the ball of radius n about
X! By convexity of length functions, [32] Sec. 3.3], the set é L((0, L(n)]) is convex

and hence the closest point projection of 6! to it is no longer than 8. The length of
each arc of the boundary of Eﬁy_h ((0,L(n)]) intersected with a triangle of the Farey
tessellation is some conbtant C ( ) > 0, and since the projection of 6" to the sublevel
set has to cross at least e of these arcs, its length is at least C(n)el, as required;
see Fig. [3]

We now assume (as we will for the remainder of the proof) that el > K; for all
i > 0, and observe that part (2) of the lemma holds.

By the triangle inequality, it follows that for all ¢ > 0

[t} — 7| — DI = |dwp (F" (1), 7" (t2,1)) — dwp (X[, X[ )

oD D D
S o6 T o < gs

(3.4)

A similar (simpler) argument proves |t§ — 2| < Z.

We claim that for all i > 1, ¢/ | must lie between ¢! and ¢ ,. If not, and for
example ¢, ; > max{t? ¢ ,}, then t? , —t! > 0 and ¢! | — % , > 0, and applying
inequality (34) to ¢ and i + 1, we see that

] v —D D
|t} — ol = [t — ~ D+ (D= (i — ) < 215 T it
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Hence by the triangle inequality (as above)

) D D
dwp (X', X[ o) < dwp (P (81), 7" (1) 5)) + 9716 T 978

<t |+ s b ,D D
— +2 21+6 21+8 4
On the other hand, [4, Lemma 3.2] implies that since 4/ and +/, , are not adjacent
in C(Sy,), we must have dwp (X} XHQ) > D, which is a contradiction. A similar
argument produces a contradiction if ¢, ; < min{t? " ,}, hence as we claimed
that ¢, is between ¢! and t?, ,, and thus {¢"}; is an increasing sequence.

From (B3) (and the inequality [t — 2| < £), we have

D D
t?—(;—kz’D)’: th+ Zth—t -5 —iD

IN

D ‘ D ‘D D
h h h
to—5‘+§:|fj—tj1—D| < 2—6+§:W<§~
j=1 j=1

This proves part (3).

Finally, we note that part (1) follows from (34]), parts (2) and (3), and convexity
of distance between two geodesics in a CAT(0) space. To see this, first note that
forall i >0

(¢ (802 (20)

D
< dwp ( (2 +zD> Ah(t?)) + dwp (FM(t), X[

D
< t?—(5+iD> +

Thus, for all ¢ > 0, convexity of the distance between geodesics implies

D D D D
ﬁ<§+ﬁ<z.

D D D
dwp (7 (s), 7 (s)) < - forallse [5 +iD, 5+ (i +1)D

(and for s € [0, 2]). This proves (1) for all s > 0, completing the proof. O

3.2. Sequences of times

Throughout the following, we will always assume that for each h = 0, 1, the sequence
{el'}; is chosen so that e > K; from Lemma 32 and we write 7", 7" to denote
the associated geodesics/quasi-geodesics. We keep the same parameterization for
70 and 70 as above, but adjust the parameterization of #! and 7} by precomposing
with the maps ¢ — ¢ — 5. This does not make sense for ¢ € [0, 5 D 2), so we define 71
and 7! to be constant on this interval.
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With this new parameterization, the sequences {t.} must be shifted by g, S0
that parts (1) and (2) of Lemma B2l remain valid. The conclusion in part (3) of the
lemma then becomes

D D D
) — <5+¢D)‘ <3 and |t} —(i+1)D| < 3 (3.5)

Identifying S(«) = Teich(Sp) x Teich(S7), we set
7= (7°,7): [0,00) = S(a) C Teich(S).
Notation 3.3. (Relabeling sequences) To simplify some statements and avoid
duplication in some of the arguments that follow, we make the following notational

convention. For h = 0,1 and i > 0, set
h

€2i+h = €;,

Y2i+h = %h )

toirn = tr,
Xoipn = X[

We will use the index k for these sequences, and write {ex}, {7&}, {tx}, and {Xx}.
We also let k € {0,1} denote the residue of & modulo 2, and i = i(k) for the floor
of k/2. Thus, when we need it, can write ey, = 6?7 etc. As an abuse of notation, we
say things like “F(t)) is close to X}”, though what we really mean is that #*(t;)
is close to X%. We also view 7 as a curve on both S and S\, rather than just a
curve on Sz C S\a C S. Finally, the following sequence of times will also be useful
for us
th = M
2

Proposition 3.4. For all k >0, tjr1 —ti > %. In particular, {t;}x is increasing.
Consequently, t), — ti > % and tgpr —th, > %.

Proof. For k = 2i (even), (B.3) implies

D D D D D D
e =t 0 +1D-Z)—(Z4+ip+ 2 ) =2 _Z_ 2
lhy1 — e =1t; —t; > ((z+ ) S 5 TiD+ 3 1°1

A similar computation verifies the claim for k& odd.
The last sentence follows from the first, and the fact that ¢}, is the average of ¢,
and tk+1 . O

Figure @l provides a useful illustration of the relationship between {¢}, {t,},
{7}, and {X¢}.
Lemma 3.5. There exists C > 0, so that for all k > 2, we have
by (Pt ) < C and Ly, (P(ty,)) < C.
Consequently, £, (7(t)) < C for all t € [t),_,, 1}, 1]
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70 Xo X2 X4 X6
0 2 4 6
to th ty ] to th t3 th ty t ts tL tg A ty
1 3 5 ¥7
1 X1 X3 X5 X7
D

Fig. 4. The times t}, and t) are “spaced out” by at least 5 - The former are the times when
7 = (70,#1) is closest to the points {X}}: the curve v, is very short at time .

Proof. We prove the bound on £, (7(t,_5)). The proof of the other bound is sim-
ilar.
According to part (2) of Lemma [32] for k > 2

/\7 D A7 D
dwp (P (te—2), Xk—2) < 7 and  dwp (P (t), Xi) < oTh
By convexity of distance between geodesics, it follows that there is a point Y; €
[Xk—2, X%] such that
D
2_6.

On the other hand, by Proposition [3.4] we have

dwp (7* (t,_s), Vi) <

D
tez+ o <t = (oo —th1) + (o1 = 1) + (g — ) + i

3D

Therefore, by the triangle inequality, we see that

dwp (Yi, Xi—2) > (th o — th o) — dwp (F*(t)_s), Vi) —dwp (Xx_2, 7F (tr_2))
2 _ 2 _ D D

—_ > —.
8 26 267 16
Similar computations show that

dwp (Yi, Xi) >

=T

So, Yj is further than 126 from the endpoints of [Xj_2, Xi], and so less than D

from the midpoint. In particular, the closed ball of radius 3% in Teich(Sy) aboltft
Y} is contained in the closed ball By, C Teich(S%) of radius 13—217 centered at the
midpoint My, of [Xj_2, Xk].

We claim that By, C Teich(Sj) (that is, By contains no completion points), and
hence By is compact. To prove the claim, it suffices to show that the closest point

to My, in Teich(Sg)\ Teich(Sy) is one of the endpoints Xj_o or Xj. For this, let
X e TeiCh(S,;)\(TeiCh(S,;) @] {X}C,%Xk})
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be any completion point. According to [4, Lemma 3.2], we have that D =
dwp (Xk—2,X%) < dwp(Xg,X). Since triangles in Teich(S;) are nondegenerate
(meaning that edges meet only in a vertex), M} is not contained in the geodesic
segment [X}, X|. Thus, the (strict) triangle inequality implies

2dwp (M, Xi) = D < dwp(Xk, X) < dwp(Xk, My) + dwp (M, X).

Therefore, dwp (M, Xi) < dwp (Mg, X).

We now see that the closed ball of radius 3% about Y} is contained in the
Mod(Sf)-orbit of a single compact set in Teich(S7), namely the closed ball of radius
15D about the midpoint of a single Farey edge. Therefore, the length of 4, (the curve
plnched at X}) is uniformly bounded in the ——ne{ghborhood of Y}, independent of
k (and independent of the sequence {ey}). Since #* (¢} _,) lies in this neighborhood,
Ly, (7 (t},_5)) is uniformly bounded, as required.

The proof of the bound on ¢, (7 (th41)) is entirely analogous, using the geodesic
segment [Xj, Xgyo] in place of [Xj;_2, Xi]. The very last statement follows from
convexity of length-functions along WP geodesics [32] Sec. 3.3]. O

Corollary 3.6. Forallk>2 and j=k—1,k,k+ 1,k + 2, we have
y, (7(ty,) < C.

Proof. According to Lemmal[35] the curve 7; has length at most C on the interval
[ti_2,t+1]. The corollary thus follows from the fact that

k+2

{t} = ﬂ a5 thia]-

j=k—1

3.3. Intersection number estimates

We will require the following estimate for the intersection number of a curve § and
the curves 4 in terms of the numbers el, i > 0.

Lemma 3.7. Given ¢ € Co(S) with i(d,«) # 0, there exists k = k(5) > 1 so that
for h =0,1 and all i sufficiently large we have

1
—ei_y <i(0,7") < KIn(i),
K
for In(i) =3, ngJ where J runs over all subsets of {0,...,i—1} exactly once.

Proof. Suppose that 6 N Sy, h = 0,1, consists of n;, geometric arcs with end
points on a = 95}, (geometric arcs are proper arcs on the surface and homotopic
geometric arcs are not identified). Let [0; e}, €5, . .. ,e? 1,-- -] be a continued fraction

expansion as in Sec. Bl and recall that the curve 7/ has slope reciprocal to B ; the

ith convergent of the continued fraction expansion. Let 7, be a geometric arc in
§ N Sy, with the largest intersection number with 4 and let ‘;Z be the reciprocal
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of the slope of 73,. Then, since v C Sy, we have that i(7,,7?) = |ang? — bppl|: to
see this, observe that orienting v and 7, these represent the (relative) homology
classes (an,bs) and (p?,ql), respectively, in Hy(Sy,dSh;Z) = Z2, and i(7h,v})
is the absolute value of the algebraic intersection number, which is the geometric
intersection number on a punctured torus.

The standard recursive formula for convergents of continued fraction expansions
gives us ¢ = el ¢! | + ¢l , (see e.g. [I5, Theorem 1]; recall our index convention
in Sec. Bl), we also have that q(’} =1and ¢} = 68. Then we can easily verify by

induction on 7 that
h h
a=Y Tl (3.6)
JC{0,....i—1} j€J

where each subset J appears at most once in the sum. Now, since lim;_, = Th
[

where the irrational number x; is the reciprocal of the slope of A, we have
h
p.

ap — (—2) bn,
4q;

lang) — brpl'| < 2|an — znbplg) < 2|an — zpbalIn (D).

It It
. |ahqiL - bhp” .
hm Y = hm

. , = |ap, — xzpbyl.
1—> 00 q’L 71— 00

Thus, for ¢ sufficiently large

Then since 75, is a geometric arc with the largest intersection number with v/ and
since there are nj geometric arcs in § N .Sy, we have

1(57 ’77{1) < 2nh|ah - xhbh|1h(i)- (37)
Furthermore, by ([3.6), ¢ > H;;lo el > el . From this inequality and the above
limit, we deduce that the inequality
1 1
lang) — bup)| > §|ah — apbn|ql > §|ah — zpbylef_y (3.8)

holds for all ¢ sufficiently large.
Now from inequalities (87) and (8], we see that the inequalities of the lemma
hold for k = max{2ny|an — znbsl, mfm :h=0,1}. O
For any k € N, appealing to the Notation 3.3 let I(k) = I} (i) where k = 2i + k.
The conclusion of Lemma 37 then becomes

%eH < i(6,7) < KI(k). (3.9)

For the remainder of the paper, we assume that the sequence {ej}, satisfies the
additional growth condition

I(k I(k+1
lim 1) _ 0, and lim e+l (3.10)
k—oo €g k—o00 €k
k—2

This is possible since I(k) depends only on {e;};_j.
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With this convention, we have the following corollary of Lemma 37

Corollary 3.8. For any curve 6 € Co(S) with i(d, o) # 0, we have

lim i(0, Vi) —0, and lm i(0, Vhs1)

k—oo  €g k—o0 €k

=0.

3.4. Geodesics in Teich(S) and bounded length curves
We begin by recalling [27, Corollary 3.5] and the inequality inside its proof, which

we will use in some of the estimates in this section.

Lemma 3.9. Given ¢ > 0 let l,a € [0,c] with | > a. Suppose that for a curve
B € Co(S) and points X, X' € Teich(S) we have l3(X) <l—a and lg(X') > 1, then

a

where the constant of the O-notation depends only on c.

dwp(X,X") >

Lemma 3.10. The(e is an €, > 0 and a C' > 0 so that for all points Y in the
e1-neighborhood of #* () and all j =k — 1,k,k + 1,k + 2, we have

0, (V)< C.

Proof. Let C be the constant from Corollary so that £, (f’;(tﬁc)) < C for
j=k—1,....k+2. Let a> 0,0’ =a+C and ¢ = C' +a+ 1. Then

O<a<C' <ec and £,,(7F(t,)<C=C"—a,

foreach j =k — 1,k, k+ 1,k + 2. Define
a

207 4 0(C)

€1 =

to be as in Lemma where the constant of the O-notation only depends on c.
Now, if £,,(Y) > C’ for a point Y in the €;-neighborhood of #*(t}) and a curve ~;
with j = k—1,k, k41, k+2, then applying Lemma B3 we have dwp (Y, 7*(t})) > €1
which contradicts the fact that Y is in the e;-neighborhood of #%(¢} ). Therefore,
0, (Y) < for j =k —1,k k+ 1,k +2, proving the lemma. O

Decreasing €; if necessary, we may further assume that for any point X €
Teich(S) in the 2¢;-neighborhood of S(«) and any curve v essentially intersecting
a, we have that £,(X) is uniformly bounded below. This follows from Lemma
and the fact that the distance to S(a) is (270, )2 +O(£2) (see [31, Corollary 4.10]).
In particular, any point in Teich(S) in the 2¢;-neighborhood may only lie on a
stratum corresponding to a (possibly empty) multicurve having zero intersection
number with a.
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Now, let Z € Teich(S) be a point in the e;-neighborhood of #(0). Let then
[Z,7(t},)] be the geodesic segment connecting Z to 7(t},). By Corollary[3.6] the curves
Yk, Ye+1 have bounded lengths at 7(¢)) and the sequence of curves {’yf}“ k=0,1,
is a quasi-geodesic in C(S}) that converges to a point in the Gromov boundary of
C(S5)- Moreover, S\« is the union of Sy and S7. Then as in [27, Lemma 8.1] we can
show that after possibly passing to a subsequence [Z,7(t},)] converges uniformly on
compact subsets to an infinite ray

r:[0,00) — Teich(S).

Also, note that the construction of r and the CAT(0) property of the WP metric
imply the rays r and 7, €;-fellow travel.
The following are straightforward consequences of the results of this section.

Corollary 3.11. Forallk >2 and j =k —1,k,k+ 1,k + 2, we have
Ly, (r(ty)) <,
where C' > 0 is the constant from Lemma [B.10.
Proof. As noted above, the two geodesics rays r and 7, e1-fellow travel, and hence
dwp (7(t},), r(t),)) < €1. Thus, by Lemma 310, for j = k—1,k,k+ 1,k + 2, we have
by, (r(t) < C7,

as desired. O

This, in turn, implies the following corollary.
Corollary 3.12. For allk > 2, t € [t},t; ], and j =k, k+ 1,k + 2,
0, (r(t) < C
where C' > 0 is the constant from Lemma BI0
Proof. By Corollary B.TIl we have £, (r(t},_,)) < C" and £, (r(t},,)) < C'". By
convexity of length-functions [32, Sec. 3.3], for all ¢ € [t} _,,} ], we have
Ly (r(t) < €.
Since [}, tj 1] C [th_os thyr] N [Eh_1s thyo] N [th, thys], the result follows. O

Proposition 3.13. The length of « is bounded by ¢, (Z) along r. Furthermore, the
ending lamination of r is the lamination Ag U A1 or Ag Ua U ;.

Proof. First note that by convexity of ¢, [32, Sec. 3.3], and the fact that
Lo (7(t})) = 0, it follows that £, is bounded by ¢n(Z) on [Z,#(t})]. Since r is a
limit of a subsequence of the geodesics [Z, #(t},)], the first claim of the proposition
holds.
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By Corollary Bl the curves 7k, vx+1 have bounded length at r(t;,) for all k,
hence by the definition of ending lamination, A\g and \; are contained in the end-
ing lamination of r. Note that the only measurable lamination properly containing
Ao U A1 is Ag Ua U A, and so vT(r) must be one of these two laminations (and it
is the latter one if and only if £,(r(t)) — 0 as t — oo, i.e. if a is a pinching curve).

O

We now turn to estimates for twists about bounded length curves at r(¢}.).

Lemma 3.14. For any 6 € Co(S) with i(0, ) # 0, there exists ¢ = ¢(d) > 0 such
that for all t € [t} 1} ], we have
twa, (6,7(2)) <. ex,

and

+
twa,,, (6, 7(8),)) < 1

for all but finitely many k (namely, whenever i(yg,d) # 0 and i(yg+1,0) # 0,
respectively).

Proof. By Corollary B2, we may choose a bounded length marking u at r(t)
so that 7 is in the base and 742 projects to the transversal to «;. Recall that
k € {0,1} is the residue of k¥ modulo 2. Avoiding finitely many k, i(J,yx) # 0, and
we may apply the triangle inequality. Doing so we have

|d’7k (67 7k+2) - d’)’k (71},7k+2)| < d’vk (57 715)' (3'11)

Since p|s, is a uniformly bounded length marking at r(¢), we have uniform errors
(independent of k) in the following coarse equations. First, by (23]), we have

63 (6, 7(8)) = o (8, 1) = iy (6, 142)- (3.12)
Since Y12 = DE (yp_2), it follows from [25, Eq. (2.6)]) that

dw (%—2, 7k+2) % €k.

Furthermore, because {7z,9;}i are the vertices of a geodesic in C(S), by [25,
Theorem 3.1], we have

oy (Vs Vt2) = oy (T2, Yht2) = €k (3.13)

Moreover, since we are allowing our error ¢ = ¢(d) to depend on §, we can combine
the coarse equations [BI2)) and (BI3) with inequality (BI1]) and deduce

tw., (0, 7(t)) = e

This proves the first coarse equation of the lemma.
To prove the second coarse equation, we note that by Corollary B.I11l we may
choose our bounded length marking p at r(t)) so that 441 is a base curve and
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Vk—1 projects to a transversal for yxy1. Thus, similar to Eq. (812), we see that
(Z3) implies tw,, ., (8,7(t})) = dy,.1 (6,7k—1). Furthermore, similar to (3.11), for &
sufficiently large we have

|d’Yk-+1 (57 Pykfl) - d%+1 (Pymv 7k71)| < d’wc+1 (67 Vﬁ%

Since vz77 and y,—1 precede yx+1 in the C(Sz77)-geodesic, appealing to [25, The-
orem 3.1] again we have

+
de-%—l (Vﬁv ’kal) =1L

Combining these facts just as in the previous paragraph and increasing ¢ = ¢(9) if
necessary, we have

+
two,,, (6, 7(t},)) = 1,

which completes the proof of the lemma. O

3.5. Estimates for the separating curve

We will eventually impose additional growth conditions on our sequence {ey} to
control the length and twisting about the separating curve o. The next two lemmas
are used to determine those conditions.

Lemma 3.15. There erists a function fi : [0,00) — R, so that for any geodesic
ray v constructed as above (from sequences {e};, h = 0,1, beginning at Z) we have
Lo (r(T)) > f1(T) for all T € [0,00). Moreover, there exists such a function fi
which is continuous.

Proof. The proof is by contradiction. If there is no such function f; (not necessarily
continuous), then there would be a sequence of geodesics {r, } starting at Z, coming
from sequences {e?(n)};, as above, and some T > 0 so that £,(r,(T)) — 0 as
n — oo. Now, the idea of the proof is as follows. Appealing to convexity of ¢,
on r,, we can deduce that £, (r,(t)) — 0 as n — oo for all ¢ > T. In particular,
choosing any T" > T, we can apply Theorem 24 to 7| 7). We will see that the
curve « is (eventually) present in all the multicurves from the theorem, producing a
contradiction to the non-refraction behavior ensured by the Theorem 241 We now
proceed to the details.

Recall that we have chosen Z € Teich(S) and €; > 0 from Lemma (and
the paragraph following its proof) so that the distance to any stratum S(o) is at
least €; whenever o has nonzero intersection number with «. By Proposition B.13]
lo(rn(t)) < £o(Z) for all n and t > 0, so since limy,_,o0 o (rn(T)) = 0, convexity
of ¢, implies £ (ry(t)) < lo(rn(T)) for all n sufficiently large and all ¢ > T'. In
particular, lim,,_, o €o (7 (t)) = 0 for all t > T, while £, (r,(0)) = ¢o(Z) > 0.

Now fix any 77 > T and apply Theorem [Z4lto the sequence of geodesic segments
Tnljo, 7). Let the partition 0 = to < t; < -+ < tpy1 = T’, the piecewise geodesic
path (: [0, T"] — Teich(S), the multicurves {o;}¥*}!, the multitwists {7;,}5_,, and
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the mapping classes {¢;,}F_, obtained by composing the multitwists be from the
theorem.

For each 1 <[ < k and n > 1, 7;, is the composition of powers of Dehn
twists about curves in o, but since r, has distance at least €; from all completion
strata except strata of multicurves having zero intersection number with «, o;
consists of possibly the curve « and a number of curves disjoint from «. Therefore,
Vin(a) = a, and Lo (@1 n(rn(t))) = Lo(rn(t)) for all t € [t;,t;41] and all I. According
to Theorem 24} we have ((t) € Teich(S) for all t € [T,T"] except possibly the
points {t;}}54 N [T, T']. Therefore, £, ((t)) > 0 for all these values of t. Applying
part (2) of the theorem to any such value of ¢, we have

lim o (ra(6)) = T La(ra(ra(®))) = fa(C(H) > 0.

n—oo

This contradicts the fact that limy, oo € (rn(t)) = 0 for ¢t € [T, T’]. Therefore,
L (r(T)) is bounded below by a positive number, depending on T, but independent
of the ray r. Thus, we have a function f;, not necessarily continuous, so that
Lo(r(T)) > f1(T) for all T > 0. Since £, (r(t)) is decreasing, it is easy to construct
a continuous function f; which also has this property. O

Lemma 3.16. There exists a function fz : [0,00) — RT such that for any geodesic
ray r as above do(r(0),7(t)) < fa(t) for all t € [0,00). Moreover, there exists such
a function fo which is continuous.

Proof. Suppose that such a function does not exist (not necessarily continu-
ous). Then there is a sequence of geodesic rays r, constructed as above and a
T > 0, so that lim,_ e do(1,(0), 75 (T)) = oo. Then, since r,(0) = Z for all
n > 1, we have that sup,fo(r,(t)) > inj(Z) > 0. Then, by Theorem 26 we
have that inf,cpo 71 €a(r(t)) — 0 as n — oo. But this contradicts the fact that
infycio,7) La(rn(t)) > infiepo ) f1(t) > 0 for all n > 1 by Lemma B.T6l Existence of
f2 now follows from this contradiction. Restricting the argument to a subinterval
[0,7'] C [0,T], we see that we can replace fo by an increasing function, and then
by a continuous function, retaining the required property. O

With these two lemmas in place, we now impose our final growth conditions on
{ex}r. Let fi1, fo be the functions from Lemmas .15 and BI6] and for k € N let

FlJf = min{fl(s) | S € [tk,tk+2]}, (314)
F27k» = HlaX{fQ(S) | S € [tk,tk+2]}. (315)
As our last growth requirement for {ey}x, we assume that ej grows fast enough

that

. Ipp—2log Pk
11m _—

k—o00 €L

= 0. (3.16)
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3.6. Limit sets

For the remainder of the paper, we let {e/'}2°, be a sequence such that e} > K, for
h =0,1and all i € N, where K is from Lemma[32l Let {ex}r, {V&}x, {tk e, {th}x,
{ X%}k be as in Notation B3] and assume that {ey}, satisfies (310) and (3I4). The
following immediately implies Theorem [3.11

Theorem 3.17. The limit set of v in the Thurston compactification of Teich(S) is
the 1-simplex [[Ao], [M]] of projective classes of measures supported on Ao U A .

For curves §,7v € Cy(S) and any time s € [0,00), as in (24, let

l5(7,8) = Ls(7,7(5)) = (6, 7)(wy (r(s)) + £5(r(s)) twy (3,7(s))).  (3.17)

Now, suppose that {si} is a sequence such that s, € [t},t} ]. Pass to a
subsequence {si}rex so that r(sy) — [P] in the Thurston compactification (to
avoid cluttering the notation with additional subscripts, we have chosen to index a
subsequence using a subset K C N). Let {ux}rex be a scaling sequence, so that

lim ugls(r(sk)) =i(6, ),
k—oo

for all curves 4.

By Corollary [312 and Proposition 313l the curves v, Y41, @ form a uniformly
bounded length pants decomposition on r(sy). Consequently, by Theorem 2.3 we
obtain the following expansion for the length of the curve § € Co(S) at r(sk),

Ls(r(sk)) = Ls(Vi, s1) + Ls(Yea1, sk) + Ls(a, sk)
+O((0,vk)) + O@G(d, vr+1)) + O(i(0, @), (3.18)

where the constant of the O notation depends only on the uniform upper bounds
for the lengths of v, yx+1, and a.

The next proposition shows that only two of the terms in ([BI8) are actually
relevant.

Proposition 3.18. With notation as above, and 6 € Co(S) with i(d,a) # 0, we
have

i(6,0) = lim wupls(r(sg)) = lim ugp(ls(vk, Sk) + Lo (Vir1, Sk))-
k—o0 k—oc0
For this, we will need the following lemma.

Lemma 3.19. With notation as above,

o ((51)) + Ly (1)) W, (8,7(51)) = €y (r(s0)) ey

where the constant in the coarse equation depends on 6, but not on k.
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Proof. By Corollary B.12]
Cy(r(sk)) <C7 and Ly, (r(se)) < C".

Then since i(Vk, Ye+2) = 1, £, (r(sk)) is also uniformly bounded below, for other-
wise, by Lemma [Z2] ¢, ., (r(sk)) would be unbounded. So we have £, (r(sx)) < 1
and hence again by Lemma 22 we have w,, (r(si)) = 1. Moreover, by Lemma [3.14]

we have tw., (6,7(sk)) < ex, and so the lemma follows. |

Proof of Proposition [3.18 First, observe that by Corollary 3.8 (and since « is
a fixed curve and e, — o0), we have

. S ({7 :
lim ——— =0, lim 10 yet1) =0, and lim
k—o0 €L k—o0 €L k—oo  €f

=0.  (3.19)

As in the proof of Lemma BI9 ¢,, (r(sx)) = 1, and so 4, (r(sk))ex — oo and
i(d,v¢) — oo. From Lemma and (3I7), we have ls(vk, sk) = ex. Moreover,
urls(r(sy)) — i(6,7) > 0, then by BIR), ug < % Combining this with (3I9) and
appealing to (BI8)) again, we see that

i(6,7) = Jim upls(r(sk)) = Jim k(s (ks sk) + €5 (Veg1, k) + s (o, sk))-

By similar reasoning, to eliminate the last term (and thus prove the proposition),
it suffices to prove

14
lim bolar s)
k—o0 €L

To do this, first note that by Lemma B8, £o(r(sx)) > fi(sk) > Fi k, and so by
Lemma we have

Wa (r(sp)) = —2log(la (r(s))) < —2log(F k).
By Lemma [3.16] we also have

twa (8, 7(sx)) X da(r(0),7(s1,)) < fa(s) < Fo,

=0. (3.20)

where the additive constant depends on §. Therefore, since F1 -+< 1, and since
Lo (r(sk)) is uniformly bounded by Proposition B.I3] we have

Cs(a, 1) =< i(6, @) (—2log(F1i) + Far),

with additive error that again depends on ¢. By our growth condition [BI8]), since
i(6, ) does not depend on k, there is a constant ¢ > 0 so that

i — /
i folesk) < lim i(6, a)(=2log(F1k) + Fox) + ¢
k— o0 ek k— 00 ek

=0.

This proves ([8:20), and hence the proposition. |
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Continue to let {sy}rex be a sequence with sz € [t}, 1) ;] as above, and suppose
that 7(sy) — [7] as k — oo in the Thurston compactification and that {uz}s is a
scaling sequence. We set

(s) = e, (1(sk)) + Ly (7(58)) 0o (5, 7(58))
and
Y(sk) = wayy (1(8k)) + Loy (r(8)) twayy (Vg T(81))-
Lemma 3.20. For any § € Co(S) with i(0, o)) # 0, we have

. x(sk)i(0, k) + y(sk)i(0, Vet 1)
1im

=1.
k—o0 f,yk ((57 Sk) + ‘€’Yk-+1 ((5, Sk)

For sj, = t)., we have

N (ALCRT

=1.
k—oo é’m (57 t:’g) =+ é’)’k+1 (57 t:’g)

Proof. As in the proof of Lemma [3.14]

two, (57 T(Sk)) ; two, (7/57 T(Sk))

and

Wy (8, 7(5%)) X tWoy (v 7 (58))

where the implicit constant in these coarse equations depends on 4.
According to Corollary BI2, 4., (r(sx)) < C’. From the preceding coarse equa-
tions and Lemma .19, we have

2(sk) = w0, (7(51)) + Lo (r(s8)) b, (8,7(s1)) = by (r(s2))ex. (3.21)
Since e, — oo as k — oo, the following is immediate:

oy FERIO ) z(sk) _
e GOk 5) R ) F o (s i o)) B

Similar to (321I)), we have

é’)’k+1 (57 Sk)

o) %)

y(Sk) ; Wryj 41 (T(Sk)) + €7k+1(r(3k)) tw7k+1(5vr(8k)) =

By (39) and the growth condition [BI0]), we have

i(6
lim 1( 77k+1)
k—o0 (&

=0.

After passing to a subsequence, there are two cases to consider:

Case 1. There exists R > 0 so that y(sx) < R for all k.
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In this case, appealing to (3.19) and 3.23]), we have

y(sk)i(577k+1) — lim ‘€’Yk+1(673k)

0= lim ,
k—o00 &3 k—o00 €k
and thus
. . z(sk)i(0,7k (sk)i(4, )
()i, ) + ()i ) T 4 MR
lim = lim T G ¢ )
k—o0 Cy, (6,5K) + ‘€'ch+1 (6, sk) k—o0 1 \0Sk) | keta B0k

€k €k

i 0G|
koo Ly, (6, 5k)
Case 2. limy_, o y(sk) = 00.
Here, we can argue as for z(sg), appealing to (3:23)) to deduce that

lim y(5x)i(6, Yry1)

=1.
k—o0 5%_*_1 ((5, Sk)

Combined with ([B:22)), we have

lim x(s1)i(d, vk) + y(sk)i(d, Ye+1)

=1.
k— oo 5%(5781.3) +€%+1(67 Sk)

These two cases prove the first claim of the lemma. For the second claim, when
sk = t},, we note that by Corollary B11] we have

é'}’k—l (T‘(t;c)), €7k+1 (T‘(t;c)) S Cl?
and so by Lemma (as in the proof of Lemma [3.19) we have
Wy () <1 and £y, (r(t) < 1

so since tw,,, (6,7(t})) < 1 by Lemma B4 it follows that y(t},) is uniformly
bounded, and thus as in Case 1, we deduce

N
fn (i)

=1
k=00 Ly, (6,1)) + £y, (0,17,)

completing the proof. O
We are now ready for the following Proof of Theorem 3171

Proof of Theorem [B.17l First, we show that [A\o] and [\;] are in the limit set
A of r. Consider the sequence of times {t,,} and pass to a subsequence so that
r(th,) — [7] in the Thurston compactification and let {ux} be a scaling sequence
for r(t5,). Let § be any curve with i(d,7) # 0 and i(d, o) # 0. By the second part
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of Lemma [3:20, together with Proposition B.I8] we have

7 N\:
1= lim xEtQk)l(67 72]?) )
k—roo e’sz (57 t2k) + é’)’2k+1 (57 t2k)

_ lim (i, )i(6, Y2r)
k—oo ug (é’)’Qk (57 tlzk) + é’)’2k+1 (67 ték))

_ limpo i(0, up(thy )vor)

i(d,7)
Therefore, limg_ oo i(0, urx(thy)v2r) = 1(6,7). We apply this to a set of curves
01,...,0n sufficient for determining a measured lamination (see Sec. ), and so

deduce that limy_,oc urz(thy,)vor = .

On the other hand, [y2x] — [Ao], hence [#7] = [Ao], and so [Ao] is in A. A similar
argument using the sequence {t}, ,,} shows that [A;] € A.

Now, suppose that {sj} is an arbitrary sequence so that r(s;) — [7] and let
{ur}r be a scaling sequence. Adjusting indices and passing to a subsequence we
can assume that s, € [t},t} ] for all £ € K (some subset L C N). Passing to a
further subsequence, if necessary, we may assume that IC is either a subsequence
of even integers or odd integers. Arguing as above, appealing to the first part of
Lemma 3201 and Proposition B.I8 we have

e @(sk)i0, k) + y (k)0 Y1)
1= lim
k—o00 fryk (578k) +‘€’Yk-+1 ((5, Sk)

_ 1 upz(sk)i(0, k) + ury(sk)i(0, Ye+1)
= lim
k—o00 uk(fw (57Sk) +‘€’Yk-+1 ((5, Sk))

_ limpg—y 00 1(0, ug (z(sg)ve + y(Sk)VE+1))
i(6,)

So, limg_yeo ug(z(sk) vk + y(sk)ye+1) = i(d, 7), and as above

v = lim up(x(sp)ye +y(skp)Ve+1) = Um wpz(sk)ye + Um ury(sk) Vet
k—o00 k—o00 k—o00

Now, if K is a subset of even integers, then since the projective classes of the
curves with even indices converge to [Ag], the first limit on the right-hand side
above is a multiple of g, and since the projective classes of the curves with odd
indices converge to [\1], the second limit above is a multiple of A;, and hence
[7] € [[Mo],[M]]. When K is a subset of odd integers we have a similar conclusion.
This implies that A is contained in [[Ag], [A1]]. Since A contains the endpoints and
is connected, it is the entire 1-simplex, as was desired. O
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