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Abstract

We provide a complete classification of when the homeomorphism group of a stable
surface, Σ, has the automatic continuity property: Any homomorphism from Homeo(Σ)
to a separable group is necessarily continuous. This result descends to a classification of
when the mapping class group of Σ has the automatic continuity property. Towards this
classification, we provide a general framework for proving automatic continuity for groups
of homeomorphisms. Applying this framework, we also show that the homeomorphism
group of any stable second countable Stone space has the automatic continuity property.
Under the presence of stability this answers two questions of Mann.

1 Introduction

Given a topological group, a natural question is: How does the algebra of the group deter-
mine the topology of the group? Surprisingly, the answer to this question can be “almost
entirely.” A topological group, G, has the automatic continuity property if every group
homomorphism from G to a separable group H is continuous. Recent examples of groups
with this property are the homeomorphism groups of the Cantor set, R [24], compact mani-
folds [22, 14], compact manifolds with a Cantor set and a finite set removed [15], and some
infinite-type surfaces [27]. There is also a classification theorem [9] for pure mapping class
groups of infinite-type surfaces (allowing for noncompact boundary components). See [23, 25]
for surveys of the question together with some historical context.

In this paper, we prove a classification theorem for the homeomorphism and mapping
class groups of a large class of infinite-type surfaces. For the collection of stable surfaces
(see Definitions 3.3 and 4.3) this gives a complete answer two questions of Mann ([1, Ques-
tion 4.8],[15, Question 2.4]). All our surfaces Σ will be connected, orientable and without
boundary.

Theorem A. Let Σ be a connected, stable, orientable surface without boundary. The
homeomorphism group and mapping class group of Σ have automatic continuity if and only
if every end of Σ is telescoping. That is, every end is one of the following:
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1. An isolated puncture,

2. of Cantor type, or

3. is not isolated in the space of ends accumulated by genus and is a successor with all
predecessors of Cantor type.

The stability assumption on Σ rules out various pathological phenomena. In particular,
stability ensures that Homeo(Σ)-orbits of ends are locally closed and hence each orbit is either
locally a Cantor set or consists of isolated points (Lemma 4.7), Σ has only finitely many
equivalence classes of maximal ends (Proposition 4.8), and allows us to prove an alternate
characterization of “telescoping” (Lemma 4.15). We make use of each of these in order to
obtain a complete classification. In Section 4.10 we offer an unstable surface for which we do
not know whether its mapping class group satisfies automatic continuity.

Here we make ample use of the language and perspective provided by [16], particularly
with respect to the partial order on the space of ends of a surface. The techniques used
to prove the positive direction are extensions of those in [24, 22, 14, 15]. In particular, the
“telescoping” condition can be thought of as requiring each end to have a neighborhood that
exhibits similar behavior to a punctured disk. This condition allows one to decompose any
neighborhood of an end into infinitely many homeomorphic “annuli” such that one can shift
the collection of annuli either towards or away from the end. We also use an Eilenberg-Mazur
swindle [3, 19] in order to deal with the issue of locally writing certain homeomorphisms as
commutators. This type of argument does not appear in the previous proofs of automatic
continuity. For the negative direction we build on tools developed in [10]. All of the discon-
tinuous maps we exhibit factor through Map(Σ) and are constructed in [10] via actions on
Gromov hyperbolic metric spaces.

Remark 1.1. We note that some of our techniques used to prove the failure of automatic
continuity do not require the surface to be stable. In particular, if Σ (not necessarily stable)
has an end that (1) has a countable Homeo(Σ)-orbit, and (2) has either a countable prede-
cessor or is isolated in the space of ends accumulated by genus, then Homeo(Σ) and Map(Σ)
will fail to have automatic continuity. This follows by directly applying the techniques of
Section 4.8. Similarly, if Σ has an end with a countable orbit that is also the accumulation
point of a sequence of pairwise incomparable ends, then Homeo(Σ) and Map(Σ) fails to have
automatic continuity.

Notably, all of the discontinuous maps that we make use of have targets that contain
isomorphic copies of Q. This is perhaps not a coincidence, and further evidence for the
following question of Conner (the question is originally stated for countable codomains, we
extend it to separable codomains).

Question 1.2 ([8, Question 5.2] and [7, Conner’s Conjecture]). IfH is a torsion-free separable
group that does not contain an isomorphic copy of Q, must every homomorphism from a
completely metrizable group to H be continuous?
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Example 1.3. Here, we construct a few surfaces for which our theorems apply that were
not covered by any previous results.

1. Consider the surface, M , with end space two Cantor sets C1 ∪ C2 so that C1 ∩ C2 is
exactly a single point. Furthermore, each end in C1 is accumulated by genus. See
Figure 1. Every end of this surface is telescoping and so Homeo(M) and Map(M) have
the automatic continuity property. The end space C1 ∩C2 is the prototypical example
of a telescoping end.

2. Let L be the Loch Ness monster surface, i.e. the surface with a infinite genus and a
single end. If N is the connect sum of L with any orientable, boundaryless surface,
then Homeo(N) and Map(N) fail to have the automatic continuity property. Here L
can also be replaced by any surface whose end space has a countable orbit under the
action of the homeomorphism group.

Figure 1: An example of a surface for which Theorem A applies in the positive direction.

The general techniques for proving automatic continuity developed below also apply to
other classes of groups. We apply them to homeomorphism groups of end spaces, i.e., second
countable Stone spaces (closed subsets of a Cantor set). Alternatively, by Stone Duality [26],
these groups can also be thought of as automorphism groups of countable Boolean algebras.

Theorem B. Let X be a second countable Stone space. If X is stable, then Homeo(X) has
automatic continuity.

This answers [15, Question 2.5] under the stability hypothesis. In particular, the stability
condition can be thought of as a type of “local homogeneity.” Here, stability is defined as
in [16] (see Definition 3.3 and Proposition 3.2). We also prove an alternate characterization
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(Proposition 3.2) of stability that allows us to view each point in X as satisfying a type of
“telescoping” condition.

By a classical result of Mazurkiewicz and Sierpiński [20], every countable Stone space is
homeomorphic to a countable ordinal of the form ωα ·n+1 where α is a countable ordinal and
n ∈ N. Notably, all countable ordinals are stable and so as a corollary we have the following.

Corollary 1.4. Let ωα ·n+1 be a compact, countable ordinal equipped with the order topology.
The group Homeo(ωα · n+ 1) has the automatic continuity property.

Concurrent with this work, Hernández-Hernández–Hrušák–Rosendal–Valdez [12] have
also obtained the previous result. In fact, when n = 1 they prove that Homeo(ωα + 1)
has ample generics, a stronger condition that implies automatic continuity. They can then
leverage this ample generics property to show that Homeo(ωα ·n+1) has automatic continuity
for arbitrary n.

Theorem A and Corollary 1.4 offer some insight as to how the cases of surfaces and end
spaces differ. We have that Homeo(ωα · n + 1) always has automatic continuity, but if Σα,n

is a surface with such an end space, then Homeo(Σα,n) fails to have automatic continuity.
Upon reflection, this is perhaps not surprising since the techniques used to prove this failure
of automatic continuity are directly coming from the topology of the surface and the mapping
class group. In particular, the hyperbolic spaces used in [10] are built out of curve graphs
using techniques from [18, 4].

The only examples known to us of Stone spaces whose homeomorphism groups have
discontinuous homomorphisms come from constructions in [23, 15]. For these examples,
one has infinitely many finite orbits or cardinality larger than one. Notably, the condition
on stability does not allow this to happen. This suggests the following question towards a
classification for general second countable Stone spaces.

Question 1.5. Does there exist a second countable Stone space X so that Homeo(X) does
not surject onto an infinite product of finite groups and Homeo(X) fails to have automatic
continuity?

Returning to our original question, “How does the algebra of the group determine the
topology of the group?,” an immediate application of the automatic continuity property is
to say that the topology on the group is essentially unique.

Corollary 1.6. Let Σ be a stable, orientable surface without boundary, all of whose ends are
telescoping. The groups Homeo(Σ) and Map(Σ) both have unique Polish group topologies.

Corollary 1.7. Let X be a stable, second countable, Stone space. The group Homeo(X) has
a unique Polish group topology.

This follows from some standard arguments in descriptive set theory, e.g. see [27, Section
2.5].
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1.1 The Five Step Program

We first provide a general outline for how to prove the automatic continuity property for
a Polish group of homeomorphisms. We will follow this general outline in Section 3 and
Section 4 for Stone spaces and surfaces, respectively. We remark that this general outline is
inspired by the arguments found in [24, 22, 14, 15]. We expect this general framework to be
applicable to other spaces and Polish groups of transformations. In particular, our arguments
should be applicable for subgroups of homeomorphisms provided they contain “enough” maps
of an appropriate type.

For all of our proofs of automatic continuity, we will actually prove that the Steinhaus
property holds and apply a result of Rosendal-Solecki [24].

Definition 1.8. A topological group G has the Steinhaus property if there exists an n ∈ N
such that, whenever W is a symmetric subset of G such that countably many translates of
W cover G, Wn contains an open neighborhood of the identity in G.

Proposition 1.9. [24, Proposition 2] If a topological group G has the Steinhaus property,
then it also has the automatic continuity property.

Throughout this section we will give vague definitions that will each be modified to fit the
subsequent sections. All of our proofs require some sort of locally telescoping condition.
This condition can be thought of as a type of strong local homogeneity of the space. In
particular, it will allow us to decompose a neighborhood, Ω, of a point into an uncountable
collection of bricks. These bricks will all be pairwise homeomorphic via homeomorphisms
supported only on Ω and the complement of each brick must again be a brick. Furthermore,
each brick must itself contain uncountably many bricks. This may give some insight into why
we require ends to be of Cantor type in Theorem A.

Example 1.10. Here we give three examples of bricks. The first is in a Stone space and the
second two are in surfaces.

1. Let X =

{
1

n

∣∣∣∣n ∈ N
}
∪{0} ⊂ R equipped with subspace topology. A brick of X is then

a countably infinite subset of points (not including 0) so that its complement is also
countably infinite. Such a subset is sometimes referred to as a moiety in the literature.
Here Homeo(X) is isomorphic to the symmetric group on N.
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2. Let Σ1 be a punctured sphere. Then a brick about the puncture, p, of Σ1 is a locally
finite collection of disjoint annuli {Ai} such that each Ai separates p from Aj for all
j < i.

3. Let M be the surface described in the Example 1.3 above and let e = C1 ∩ C2. Then
we say a big annulus is a subsurface A so that

• A is bounded by two curves, γ1 and γ2, so that γ2 is contained in the complemen-
tary component of γ1 witnessing the end e, and

• the end space of A intersects both C1 and C2 non-trivially.

We then define a brick to be a countably infinite, locally finite, disjoint union of big
annuli. See Figure 2.

Figure 2: An example of a brick (in green) comprised of big annuli in a surface.

Now let G = Homeo(X) for some compact space X and W be a symmetric set in G so that
countably many translates of W cover G. First we will always apply a standard Baire category
argument (Lemma 2.3) to find an open neighborhood of the identity U ⊂ G so that W 2 is
dense in it. This U will determine some finite partition of X into Ω1⊔Ω2⊔· · ·⊔Ωm so that any
g ∈ G preserving each of the Ωi belongs to U . Next we use compactness to further partition
each Ωi into telescoping neighborhoods. This reduces the problem of proving Steinhaus to
the following claim. We let G(Ω) denote the subgroup of G consisting of homeomorphisms
supported on Ω ⊂ X.

Claim 1. Let Ω be telescoping with respect to y. There exists an N ≥ 0 so that if W ⊂ G
is symmetric, with countable many translates covering G(Ω), and W 2 dense in G(Ω), then
G(Ω) ⊂WN .
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Proving this claim will proceed through several standard steps.
Step 1: Fragmentation First we will fragment any g ∈ G(Ω) into two maps, g = g1g2

so that each gi fixes a point yi ∈ Ω and so that Ω is telescoping with respect to yi. Next
we fragment again to write such a map as a product of two maps supported on bricks. The
final outcome is that given any g ∈ G we can write g = g1g2g3g4 with each gi supported on
a brick in Ω. This reduces the problem to finding some N so that any map supported on a
brick is in WN .

Step 2: Finding Commutators Next we want to realize any map supported on a brick
as a uniformly finite product of commutators, each of which is supported on a single brick.
This step will always proceed by using a version of the Anderson Trick [2]. How exactly it
is implemented will vary depending on our situation and the exact form of the “telescoping
condition” above. This will depend on what types of shift maps exist in G. E.g., in the case
of a 0-dimensional space, we have a well-defined shift map supported on a single brick that
we can use to write any map as a single commutator. However, in the surface case we will
only have shift maps supported in each connected component of a brick. In this case we will
have to fragment again using an Eilenberg-Mazur swindle [3, 19], taking advantage of the
existence of certain infinite products of maps.

Step 3: Diagonal Argument We now use the above in order to find one specific “good”
brick B in Ω so that any g supported on B is in WN . This part of the argument will be fairly
standard throughout. In fact, the arguments in this step are taken almost directly from
[14, 15, 22, 24].

Step 4: Pigeonhole Next we run a pigeonhole argument to find elements of WN that
move any brick into our preferred brick B. This will make use of some part of the “telescoping
condition” that guarantees that we can map any brick onto any other brick. This will again
proceed in a fairly standard fashion in each case following [15].

Step 5: Wrapping Up Finally, we put all of the above pieces together to prove Claim 1.
Then applying a Baire category argument, Lemma 2.3, we upgrade this to obtain Steinhaus,
and thus automatic continuity, for G(Ω) whenever Ω is a telescoping neighborhood.

2 Background on Automatic Continuity

Definition 2.1. A topological group G has the automatic continuity property (AC) if
every homomorphism from G to a separable group is continuous.

Using an induction construction we can see that if a closed countable-index subgroup fails
to have AC, then so does the larger group. See also the introduction of [23] for a more direct
proof of this. Suppose G is a group and H < G a subgroup. Suppose also that H acts on
the left on a set X. The goal is to construct a larger set Y on which G acts, extending the
action of H on X. This will not be a literal extension, but it will be close enough.

Start with the action of G on G×X by g·(g′, x) = (gg′, x). Define the following equivalence
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relation on G×X:

(g, x) ∼ (gh, h−1x) for all h ∈ H.

Let Y be the quotient set. Note that:

• G acts on Y via g · [g′, x] = [gg′, x].

• If {gi} is a set coset representatives so that G =
⊔

i∈N giH, then

Y =
⊔
i∈N
{[gi, x]|x ∈ X}.

Moreover, we can canonically identify {[1, x]|x ∈ X} with X via the map [1, x] 7→ x
and under this identification we have {[gi, x]|x ∈ X} = giX so that Y =

⊔
i∈N giX.

Lemma 2.2. Let G be a topological group, H < G a countable index subgroup, and f : H → A
a discontinuous homomorphism to a countable discrete group. Then there is a separable
topological group B (isomorphic to Sω = Homeo(ω+ 1)) and a discontinuous homomorphism
F : G→ B.

Proof. Take X = A equipped with the discrete topology. The subgroup H acts via left
multiplication on X via f , i.e. h · x = f(h)x. Let Y ⊃ X be as above with the induced
action of G. Thus we have a homomorphism F : G→ Aut(Y ) =: B, the group of bijections
of Y . Note first that Y is countable. Indeed, Y =

⊔
i∈N giX, a countable union of countable

sets. Thus the group of bijections Aut(Y ) with the permutation topology is isomorphic to
Sω. It remains to show that F is discontinuous. It suffices to argue that the restriction
to H is discontinuous. The restricted action preserves X ⊂ Y , so it suffices to argue that
H → Aut(X) is discontinuous. The image of this homomorphism is contained in the group
of left translations of X = A, which can be identified with A. In fact, the image of this
homomorphism can be exactly identified with the image of the original f : H → A. Thus we
see that the homomorphism H → Aut(X) is discontinuous by assumption.

The starting point of all of our arguments will be the following standard application of
the Baire Category theorem.

Lemma 2.3. Let G be a Polish group. If W is a symmetric subset of G such that countably
many translates of W cover G, then the closure of W 2 contains a neighborhood of the identity
in G.

Proof. Write G =
⋃
giW . By Baire category, some giW has nonempty interior. Choose some

giw ∈ giW that belongs to this interior. Then the closure of w−1g−1
i · giW = w−1W ⊆ W 2

contains a neighborhood of the identity.
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3 End Spaces

Let X be a compact totally disconnected metrizable space (i.e., a second countable Stone
space). In this section we investigate whether the group Homeo(X) has the automatic con-
tinuity property. More generally, we fix a collection {Xα}α∈A of closed subsets of X and we
consider the group Homeo(X, {Xα}α∈A) of homeomorphisms that preserve each Xα (setwise).
We think of each α ∈ A as a color, so elements of Homeo(X, {Xα}α∈A) are color preserving
homeomorphisms of X. To simplify notation we omit the colors and talk about Homeo(X),
but coloring is understood. That is, when we say ϕ : U → V is a homeomorphism from
U ⊂ X to V ⊂ X we always assume that, for every α ∈ A,

ϕ(U ∩Xα) = V ∩Xα.

The coloring is motivated by Section 4 where we need to distinguish between planar and non-
planar ends of a surface. In the first reading, the reader may think about the case A = ∅.
The goal of this section is to prove the following theorem. The definition of stability is below
in Definition 3.3.

Theorem 3.1. Let X be a second countable Stone space. If X is stable (relative to the given
colors), then Homeo(X) has the Steinhaus property and therefore the automatic continuity
property.

By a neighborhood U in X we always mean a clopen neighborhood, that is a set that is
both open and closed. We say a family of subsets Yk ⊂ X descends to x and write Yk ↘ x,
if for every sequence xk ∈ Yk, we have xk → x.

Proposition 3.2. Let X be a second countable Stone space, x be a point in X and let U be
a neighborhood of x. Then the following are equivalent.

(i) For every neighborhood U ′ ⊂ U of x there is a homeomorphism Φ : U → U ′ fixing x.

(ii) For every neighborhood U ′ ⊂ U there is a neighborhood U ′′ ⊂ U ′ of x and a homeomor-
phism Φ : U → U ′′ fixing x.

(iii) There is a decomposition

U − {x} =
∞⊔
k=1

Yk (1)

where Yk are clopen, disjoint, Yk ↘ x and, for every k ≥ 1, the set Yk+1 contains a
homeomorphic copy of Yk. Furthermore, for every sequence of indices kn,

U − {x} ∼=
∞⊔
n=1

Ykn , (2)
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Proof. The implication (i) =⇒ (ii) is immediate. We start by proving (ii) =⇒ (iii). Let

U = U0 ⊃ U1 ⊃ U2 ⊃ . . .

be a nested sequence of clopen neighborhoods of x such that Ui ↘ x and there are homeo-
morphisms

Ψi : Ui → Ui+1, i = 0, 1, 2, · · ·

fixing x. This is possible by starting from a nested sequence that descends to x and making
them smaller to make sure they are all homeomorphic to U . We construct disjoint clopen
sets Vk, Yk and an index sequence pk inductively as follows. Set p0 = 0, p1 = 1 and set

Y1 = V1 = U0 − U1.

Assume now that the index pk > 0 and sets Vk, Yk ⊂ U − {x} are given. Let

Φk : Upk−1
→ Upk be the composition Φk := Ψ(pk−1) ◦ · · · ◦Ψ(pk−1+1) ◦Ψpk−1

.

Then Φk(Yk) is a closed subset of Upk disjoint from x. Hence, we can choose an index
pk+1 > pk large enough such that

Φk(Yk) ∩ Upk+1
= ∅.

Then define
Yk+1 = Upk − Upk+1

and Vk+1 = Yk+1 − Φk(Yk).

The sets Yk are clopen and disjoint. Since Yk+1 ⊂ Upk and Ui ↘ x, we also have Yk ↘ x.
Also,

U − {x} =
∞⊔
k=1

(Upk − Upk+1
) =

∞⊔
k=1

Yk. (3)

To see the last two assertions of (iii), note that Yk+1 is homeomorphic to Yk ⊔ Vk+1. By
induction, this implies

Yk ∼=
k⊔

j=1

Vj .

Now, let a sequence of indices kn be given and let A =
⊔∞

n=1 Ykn . Since a copy of Vj appears
in Yk for every k ≥ j, we can break this further and write

A =
∞⊔
n=1

kn⊔
j=1

Vn,j

where Vn,j is a homeomorphic copy of Vj in Ykn . Changing the order of unions, we have

A =

∞⊔
j=1

∞⊔
n=1

Vn,j .
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Similarly, using (3), we have

U − {x} =
∞⊔
k=1

Yk =
∞⊔
k=1

k⊔
j=1

Vk,j =
∞⊔
j=1

∞⊔
k=1

Vk,j ,

where Vk,j is a homeomorphic copy of Vj . We can now construct a homeomorphism from A
to U−{x} by sending Vk,j homeomorphically to Vn,j . This map is continuous since, for every
j,

Vn,j ↘ x and Vk,j ↘ x as n→∞.

This finishes the proof of (ii) =⇒ (iii).
To see (iii) =⇒ (ii), we observe that, for every U ′ ⊂ U , there is N > 0 such that, Yk ⊂ U ′

for k ≥ N . Otherwise, there is a point xk ∈ Yk − U . But xn does not limit to x which
contradicts the assumption that Yn ↘ x. Hence,

U ∼=
∞⊔

k=N

Yk ⊂ U ′.

It remains to show (ii) =⇒ (i). Let U ′ ⊂ U be given. Let U = U1 ⊃ U2 ⊃ . . . and
Ψi : Ui → Ui+1 be as before (which exist after assuming (ii)). We construct disjoint clopen
sets Wk and an index sequence qk as follows. Set q1 = 1 and set W1 = U − U ′. Assuming
qk > 0 and Wk ⊂ U − {x} are given, let

Φ′
k : Uqk−1

→ Uqk be the composition Φ′
k := Ψ(qk−1) ◦ · · · ◦Ψ(qk−1+1) ◦Ψqk−1

and choose an index qk+1 > qk large enough such that

Φ′
k(Wk) ∩ Uqk+1

= ∅.

Then define Wk+1 = Φk(Wk). The sets Wk are all homeomorphic, disjoint and descend to
x. We can now build a homeomorphism from U → U ′ by sending Wk to Wk+1 and fixing
everything else. This map is continuous since Wk ↘ x. This finishes the proof.

Definition 3.3. [16, Definition 4.14] A neighborhood U of a point x ∈ X is stable if it
satisfies the three equivalent conditions in Proposition 3.2. We say that a point in X is
stable if it has a stable neighborhood. We say the space X is stable if every point of X is
stable.

Property (iii) of stability will play the role of a type of “telescoping” property for second
countable Stone spaces.

Before proceeding with the proof of Theorem 3.1 we give some examples.

Example 3.4. Here are two examples of stable Stone spaces.
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(1) The Cantor set is stable and thus its homeomorphism group has AC. Our theorem thus
recovers the result of [24].

(2) Every countable compact Stone space is stable and hence has automatic continuity. This
follows from the classification theorem that realizes compact Stone spaces as countable
ordinals [20].

Remark 3.5. Adding a coloring to the space may change whether the space is stable. For
example, let X = C × D where C is the Cantor set and D = {0} ∪ { 1n | n ∈ Zn≥1}. Then
this space is stable and hence Homeo(X) has the automatic continuity property. However, if
we now color each C ×{d} with its own color for d ∈ D, the space is no longer stable and we
do not know whether the color-preserving homeomorphism group has automatic continuity.
This is an end space analog of the surface example given in Section 4.10.

Unless otherwise stated, throughout the following we assume that X is a second countable
Stone space, x ∈ X, and Ω ⊂ X is a stable neighborhood of x.

We have a decomposition

Ω \ {x} =

∞⊔
k=1

Yk (4)

as given by Proposition 3.2.
Denote

Y [n] :=
n⊔

i=1

Yi, and more generally Y [n,m] =
m⊔
i=n

Yi.

Proposition 3.6. For every 1 ≤ n < m and every embedding ϕ : Y [n]→ Y [m] onto a clopen
subset, there is some p > m and a homeomorphism h : Y [p] → Y [p] that agrees with ϕ on
Y [n].

The proof is based on the following lemma.

Lemma 3.7. Let A,B be topological spaces and let ϕ : A → A ⊔ B be an embedding onto a
clopen subset of A⊔B. Then there is a self-homeomorphism ϕ̃ of A⊔B ⊔A that restricts on
(the first) A to ϕ.

Proof. Since ϕ(A) is clopen in A ⊔B, we have A ⊔B ∼= ϕ(A) ⊔ C. We define

ϕ̃ : A ⊔B ⊔A→ ϕ(A) ⊔ C ⊔A

to be ϕ on A and a homeomorphism from B ⊔A to C ⊔A.

Proof of Proposition 3.6. Take A = Y [n], B = Y [n + 1,m]. Then Y [m + 1, 2m] contains a
clopen copy of A ⊔ B. Now apply the lemma and extend the resulting homeomorphism by
the identity to all of Y [2m].
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In this setting, we say that a brick, B, is an infinite union of the Yk so that the complement
in X \ {x} is also an infinite union of Yj . A subbrick, C ⊂ B, of a brick B is a brick
C such that B \ C is also a brick. Note that the furthermore statement of property (iii)
from Proposition 3.2 implies that all bricks are homeomorphic. We will need the following
proposition on the existence of shift maps on bricks.

Lemma 3.8. If Ω is a stable neighborhood with respect to x, the Yj are as in (4) and B ⊂ Ω
is a brick, then there is a homeomorphism σ : Ω→ Ω fixing x such that the collection of σi(B)
are pairwise disjoint bricks for i ∈ Z. Furthermore, the σ–orbit of every point in Ω − {x}
accumulates to x.

Proof. Using a bijection between N and Z2, write

Ω ∖ {x} =
⊔
κ∈Z2

Yκ so that B =
⊔

κ∈Z×{0}

Yκ.

Note that, for every m ∈ Z,
⊔

κ∈Z×{m} Yκ is a brick. Since all bricks are homeomorphic, there
exists a homeomorphism σ : Ω→ Ω so that σ sends⊔

κ∈Z×{m}

Yκ homeomorphically to
⊔

κ∈Z×{m+1}

Yκ

for all m ∈ Z.

We now start the five step program with the assumption that Ω is a stable neighborhood
of the point x ∈ Ω.

Standing Assumptions. We first set up some notation and standing assumptions. Unless
explicitly stated, these will hold until the end of Section 3.

(1) Denote by G(Ω) the subgroup of G = Homeo(X) consisting of homeomorphisms sup-
ported on Ω; thus G(Ω) can be naturally identified with Homeo(Ω).

(2) Fix the decomposition Ω \ {x} =
⊔∞

k=1 Yk from (4).

(3) Assume that W < G is a symmetric set so that countably many translates cover G and
W 2 is dense in G(Ω) (i.e. W 2 ⊃ G(Ω)).

(4) For any brick, B, we write G(B) for the closed subgroup of homeomorphisms of Ω or
X supported on B ∪ {x}.
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3.1 Step 1: Fragmentation

We first fragment an element of G(Ω) into two maps that have fixed points in the orbit of x.

Lemma 3.9. Any h ∈ G(Ω) can be written as h = h1h2 so that each hi belongs to G(Ω) and
fixes some point in the orbit G(Ω) · x.

Proof. Suppose h(x) ̸= x and assume h−1(x) ∈ Yk for some k. By Lemma 3.8, the orbit of x
accumulates on x. Hence, there exists j ̸= k so that Yj intersects G(Ω) ·x. Note that h(Yj) is
disjoint from a neighborhood of x, so it is contained as a clopen subset of some finite union
Yk1 ∪ · · · ∪ Ykr . Using Proposition 3.6 we can find a homeomorphism h1 of X supported on
only finitely many Ys and agreeing with h on Yj (to apply Proposition 3.6 first extend h|Yj

to
⊔

i≤j Yi by sending
⊔

i<j Yi arbitrarily to a clopen set disjoint from h(Yj)). Thus h = h1h2

where h1 fixes x and h2 = h−1
1 h is identity on Yj and so fixes a point in G · x.

Note that Ω is a stable neighborhood with respect to any point in the G(Ω)-orbit of
x. Thus the previous lemma allows us to reduce our problem to only considering maps in
Homeo(Ω, x). Next we fragment again, this time into bricks.

Lemma 3.10. Any f ∈ Homeo(Ω, x) can be written as f = gh so that both g, h ∈ Homeo(Ω, x)
are supported on the closure of a brick.

Proof. Choose indices nk and mk, where mk ∈ [nk−1 + 1, nk − 1] inductively as follows. Let
n0 = 0 and m1 = 1. Then assuming n1, . . . , nk−1 and m1, . . . ,mk are given , choose nk > mk

large enough so that

f±1(Ymk
) ⊂

nk−1⊔
i=nk−1+1

Yi

and then choose mk+1 large enough such that

f±1(Ymk+1
) ∩

(
nk⊔
i=1

Yi

)
= ∅.

Define

Am =

∞⊔
k=1

Ymk
and An =

∞⊔
k=1

Ynk

Let A′
m and A′

n be complementary bricks to Am and An respectively. Note that f(Am)
is disjoint from An. Therefore, there is a homeomorphism g : X → X with support in A′

n

such that f |Am = g|Am . In particular, h = g−1f preserves the brick Am. But g preserves the
brick An and f = gh. This finishes the proof.

Thus, combining these two lemmas we see that any map h ∈ G(Ω) can be fragmented as
h = h1h2h3h4 where each hi is in G(Ω) and it is supported on a brick (although not necessarily
centered around the same point). Our new goal is to show that any map supported on a
brick satisfies a Steinhaus condition.
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3.2 Step 2: Finding Commutators

Lemma 3.11. Let A be a brick around x and B a subbrick of A. For every h ∈ G(B), there
exists some u, v ∈ G(A) so that h = [u, v].

Proof. We apply Lemma 3.8 to find a homeomorphism v ∈ Homeo(Ω, x) supported on A so
that vi(B) are pairwise disjoint for i ∈ Z. Note that we can apply this lemma since any brick
is itself homeomorphic to Ω \ {x}. Now let u be the map that is exactly a copy of h on each
vi(B) for i ≥ 0, i.e. u =

∏∞
i=0 vhv

−1. Then we have h = [u, v] as desired.

3.3 Step 3: Diagonalization

Next we will find a “good” subbrick. Namely, any map supported on this subbrick will be in
W 8. First we see that we can find a subbrick on which we can approximate maps. A similar
step is carried out in [24, 22, 14, 15].

Lemma 3.12. Let A be a brick and A1,A2, · · · pairwise disjoint subbricks. Then

(i) there is some i ≥ 1 such that any homeomorphism of Ai extends to a homeomorphism
of X supported on A that belongs to giW , and

(ii) moreover, every homeomorphism of Ai extends to a homeomorphism of X supported
on A that belongs to W 2.

Proof. We prove (i) by contradiction. Suppose for every i there is a homeomorphism hi of Ai

that does not extend to a homeomorphism of X supported on A that belongs to giW . Define
h to be a homeomorphism of ∪iAi that agrees with hi on Ai. Extend h by the identity on
X ∖A. Then h ∈ giW for some i, contradicting the choice of hi. For (ii), let h̃ ∈ G(A) be a
homeomorphism in giW extending the given homeomorphism h of Ai, and let f̃ ∈ giW∩G(A)
extend the identity on Ai. Then f̃−1h̃ ∈W 2 extends h.

Next we upgrade this approximation.

Lemma 3.13. Let A be a brick. Then there exists a subbrick Z of A so that G(Z) ⊂W 8.

Proof. Apply Lemma 3.12 to A and label the resulting subbrick B. Repeat this process to
B and label the subbrick C. Let Z be any subbrick of C. Now apply Lemma 3.11 to Z as a
subbrick of C. Therefore, for h ∈ G(Z), there exists some u, v ∈ G(C) so that h = [u, v].

The support of u is contained in C and so we can apply Lemma 3.12 to find a ū such that
ū ∈W 2, ū is supported on B, and ū|C = u. Similarly, the support of v is contained in C ⊂ B.
Lemma 3.12 implies that there exists v̄ such that v̄ ∈W 2, v̄ is supported on A, and v̄|B = v.
In particular v̄ is the identity in B − C.

Since ū is the identity in X−B and v̄ is the identity in B−C, we have [ū, v̄] is the identity
in X − C. Thus we have [ū, v̄] = [u, v] = h and hence h ∈W 8.
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3.4 Step 4: Pigeonhole

In the previous step we found a “good” subbrick. Next we will see that we can conjugate
any map supported on any given brick by maps in W in order to have support on this good
brick (up to a finite amount of error). This will allow us to prove that any map supported
on a brick is in W 24.

Lemma 3.14. Every h ∈ Homeo(Ω, x) supported on a brick is in W 24.

Proof. Suppose h is supported on a brick A =
⊔

iAi. Let Z be as in Lemma 3.13 applied to
the complementary brick to A, so that Z and A are disjoint. Write Z = ⊔∞i=1Zi, where each
Zi is itself a brick. Fix uncountably many infinite subsets Λα ⊂ N that pairwise intersect
in finite sets, and set Zα = ⊔i∈ΛαZi. Fix a homeomorphism fα : X → X that fixes x and
interchanges Zα and its complement in X ∖ {x}. By the pigeon-hole principle, there exist
α ̸= β so that fα, fβ ∈ giW for some i, and in particular f−1

β fα ∈ W 2. We claim that

F := (f−1
β fα)h(f−1

β fα)−1 is supported on Z plus a finite number of the Ai.

To prove the claim, first note that the support of F is contained in ∪∞i=1f
−1
β fα(Ai).

Recall that A is disjoint from Z and hence from Zα, so fα(Ai) is contained in Zα for all i.
Furthermore, if i is sufficiently large then fα(Ai) will be disjoint from Zβ since Zα ∩ Zβ is
disjoint from a neighborhood of x. It follows that for all sufficiently large i, f−1

β fα(Ai) ⊂
Zβ ⊂ Z, which proves the claim.

Thus we can write F = F1F2 where F1 is supported on finitely many of the Yk,
⊔n

k=1 Yk,
and F2 ∈ G(Z). By Lemma 3.13 we have that F2 ∈W 8. It only remains to check that F1 is
in W 12. By the property (iii) of Proposition 3.2, there is a homeomorphism g ∈ G(Ω) that
maps

⊔n
i=1 Yi into Z. Since W 2 is dense in G(Ω), we take g̃ ∈ W 2 with this same property

(this g̃ may not fix x and may not belong to G(Ω)). Thus we have that gF1g
−1 ∈ G(Z) ⊂W 8

and therefore F1 ∈W 12.
Therefore, we have F = (f−1

β fα)h(f−1
β fα)−1 ∈W 20 and so h ∈W 24.

3.5 Step 5: Wrapping Up

We will first verify a version of the Steinhaus condition for stable neighborhoods.

Theorem 3.15. Let X be a second countable Stone space, Ω a stable neighborhood of x ∈ X,
and G = Homeo(X). Suppose W is a symmetric set in G such that:

• G is covered by countably many sets giW , gi ∈ G, and

• W 2 is dense in G(Ω).

Then G(Ω) ⊆W 96.

Proof. Let h ∈ G. We first apply Lemma 3.9 and Lemma 3.10 in order to write h = h1h2h3h4
where each hi ∈ G(Ω) fixes a point xi ∈ G(Ω) · x so that Ω is telescoping with respect to xi
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and the support of hi is contained in a brick around xi. Next we apply Lemma 3.14 to see
that each hi is contained in W 24. We conclude that h ∈W 96.

Finally, we can upgrade this to the case that X is stable. We first need a short lemma on
stable spaces.

Lemma 3.16. Suppose X is stable. Then X can be written as a finite disjoint union of
spaces each of which is a stable neighborhood of one of its points.

Proof. Using compactness, cover X by finitely many clopen sets T1, · · · , TN so that each Ti
is a stable neighborhood of a point xi ∈ Ti, with all xi distinct from each other. The sets
Ti may not be disjoint. We perform the following operation to make them disjoint. Suppose
T1 ∩ T2 ̸= ∅. If x1 ̸∈ T2, then replace T1 with T1 ∖ T2; this space is also stable with respect
to x1, as stability passes to sub-neighborhoods. Similarly, if x2 ̸∈ T1 we can replace T2 by
T2∖T1. Now suppose x1, x2 are both in T1∩T2. Write T1∩T2 = A1⊔A2 where Ai are clopen
and xi ∈ Ai. Then replace T1 with T1 ∖ A2 and T2 with T2 ∖ A1. Again both are stable
neighborhoods of the same points. Thus in all cases we replaced T1, T2 with two disjoint
stable neighborhoods of the same points and with the same union as T1 and T2. Continuing
in this way produces the desired partition.

We will need a slight extension of Lemmas 3.12, 3.13, 3.14 and Theorem 3.15.
Suppose we have a finite collection of distinct points xi ∈ X, i = 1, · · · , N and pairwise

disjoint clopen subsets Ωi, i = 1, · · · , N so that Ωi is a stable neighborhood of xi for all i.
We will abbreviate this by Ω⃗ and x⃗ ∈ Ω⃗. A multibrick B⃗ is a collection of bricks Bi in each
Ωi centered at xi. The group Homeo(Ω⃗) is the group of homeomorphisms of ⊔Ωi preserving
each Ωi, and Homeo(Ω⃗, x⃗) is the subgroup that in addition preserves each xi.

Proposition 3.17. Lemmas 3.12, 3.13, 3.14 and Theorem 3.15 hold when G(Ω), Homeo(Ω, x)
and bricks are replaced with Homeo(Ω⃗), Homeo(Ω⃗, x⃗) and multibricks.

Proof. Proofs remain valid, mutatis mutandis.

We are finally ready to prove the main theorem of this section.

Proof of Theorem 3.1. We verify the Steinhaus property. Let W be a symmetric set in G =
Homeo(X) so that G is the union of countably many translates of W . By Lemma 2.3, there
is an open neighborhood U of the identity in G so that W 2 is dense in it. There is a finite
clopen partition A1 ⊔ · · · ⊔ Am of X so that any g ∈ G that preserves each Ai belongs to U .
Now applying Lemma 3.16 to each Ai produces a finer clopen partition Ω1 ⊔ · · · ⊔ ΩN of X
where each partition element is a stable neighborhood. This finer partition determines an
open set U ′ ⊂ U . Every g ∈ U ′ thus restricts on each subset in the partition to a map on a
stable neighborhood. We can apply the Proposition 3.17 version of Theorem 3.15 to see that
g ∈W 96.
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4 Surfaces

The goal of this section is to prove the classification theorem for stable surfaces as stated in
the introduction (recalled here).

Theorem A. Let Σ be a stable, orientable surface without boundary. The homeomorphism
group and mapping class group of Σ have automatic continuity if and only if every end of Σ
is telescoping. That is, every end is one of the following:

1. An isolated puncture,

2. of Cantor type, or

3. is not isolated in the space of ends accumulated by genus and is a successor with all
predecessors of Cantor type.

4.1 Background

We recall some terminology and structural lemmas on end spaces of surfaces introduced in
[16]. For a surface Σ we denote by E(Σ) the space of ends of Σ. This space is defined as

E(Σ) = lim←−
K

π0(Σ \K),

where the inverse limit is taken over all connected, compact subsurfaces of Σ. We denote by

Eg(Σ) ⊂ E(Σ)

the subset of E(Σ) consisting on non-planar ends. The end space is equipped with the inverse
limit topology. This makes it into a second countable Stone space and Eg(Σ) into a closed
subset. When the underlying surface is fixed we will often shorten the pair (E(Σ), Eg(Σ)) to
just E(Σ).

Every homeomorphism of Σ induces a homeomorphism of E(Σ) that preserves Eg(Σ).
Hence, when we talk about a homeomorphisms between subsets of x, we always assume that
our maps preserve the set Eg(Σ). That is, we think points in Eg(Σ) as being colored following
the convention of Section 3. Furthermore, this pair (E(Σ), Eg(Σ)) effectively classifies infinite-
type surfaces.

Theorem 4.1. [13, 21] Let Σ be an orientable surface with finitely many boundary compo-
nents. Then Σ is determined up to homeomorphism by the triple (g, b, (E(Σ), Eg(Σ))) where
g ∈ Z≥0 ∪ {∞} is the genus of Σ, b ∈ Z≥0 is the number of boundary components of Σ, and
the pair (E(Σ), Eg(Σ)) is considered up to homeomorphism. Furthermore, the quotient map
Homeo(Σ)→ Homeo(E(Σ), Eg(Σ)) is a continuous surjection.
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Given a clopen subset U ⊆ (E(Σ), Eg(Σ)) we will let ΣU denote a connected subsurface
of Σ, closed in Σ, with either infinite or zero genus so that ∂ΣU is a single simple closed curve
and the space of ends of ΣU , E(ΣU ), is U . Given a neighborhood U of an end x ∈ E, we will
say that ΣU is a neighborhood of x in the surface Σ. Furthermore, if we have a pair U ⊂ V
we will assume that ΣU and ΣV are chosen so that ΣU ⊂ ΣV . Note that ΣU has infinite
genus if and only if U ∩ Eg(Σ) ̸= ∅.

Lemma 4.2. Given subsurfaces ΣU and ΣV , we have ΣU is homeomorphic to ΣV if an only
if U is homeomorphic to V .

Proof. A homeomorphism between ΣU and ΣV induces a homeomorphism between their end
spaces that preserves the sets of planar and non-planar ends. Hence, if ΣU if homeomorphic
to ΣV then U is homeomorphic to V .

In the other direction, as in Section 3, any homeomorphism ϕ : U → V is assumed to
send the set U ∩ Eg(Σ) to V ∩ Eg(Σ). In particular, ΣU has infinite genus (or genus zero)
if and only if ΣV does. Since they both have one boundary component, same genus and
homeomorphic end spaces, they are homeomorphic by the classification of surfaces.

Definition 4.3. [16, Definition 4.14] We say a surface Σ is stable if E(Σ) is stable as in
Definition 3.3. If U is a stable neighborhood of x in E(Σ), then ΣU is a stable neighborhood
of x in Σ.

Definition 4.4. [16, Definition 4.1] Let ⪯ be the preorder on E(Σ) defined by y ⪯ x if
for every neighborhood U of x, there exists a neighborhood V of y and a homeomorphism
f ∈ Homeo(S) so that f(V ) ⊂ U . Write x ∼ y if y ⪯ x and x ⪯ y. Recall that, by [17,
Theorem 1.2], if x ∼ y then there is a homeomorphism ϕ : Σ→ Σ such that ϕ(x) = y. Denote
by E(x) the equivalence class of x.

Definition 4.5. We say y ≺ x is y ⪯ x and y ̸∼ x. If y ̸⪯ x and x ̸⪯ y we say x and y are
incomparable. An end, x, is a successor if there exists finitely many incomparable ends
y1, . . . , yn, with n ̸= 0, so that each yi ≺ x and if z ≺ x, then z ⪯ yi for some i. Each yi is a
predecessor of x.

Abusing notation, we denote the partial order on the set of equivalence classes induced
by ⪯ again by ⪯.

Proposition 4.6. [16, Proposition 4.7] The partial order ⪯ has maximal elements. Further-
more, for any maximal element x, E(x) is either a finite set of points or a Cantor set.

We say that an end y is of Cantor type if there exists some neighborhood U of y such
that E(y) ∩ U is homeomorphic to a Cantor set. Note that E(y) may not be a Cantor set if
y is not maximal. For example, it is possible that only a finite number of points in E(y) are
non-planar. However:
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Lemma 4.7. If Σ is stable, then, for every end y of Σ, the set E(y) is locally closed. In
particular, an end y is of Cantor type if and only if E(y) is uncountable.

Proof. Let V be a stable neighborhood of y. For every z ∈ V , E(z) intersects every stable
neighborhood of y, and hence, z ⪯ y. This implies that either z ∼ y and z ∈ E(y) or y ̸⪯ z
and z ̸∈ E(y). That is

E(y) ∩ V = E(y) ∩ V

and hence E(y) ∩ V is closed.
To see the second assertion, it is immediate from the definition that if y is of Cantor type,

then E(y) is uncountable. In the other direction, since E(y) is uncountable and E(Σ) is com-
pact, there exists at least one point in E(y) that is an accumulation point of E(y). Moreover,
because all stable neighborhoods of points in E(y) are homeomorphic to one another, every
point in E(y) ∩ V is an accumulation point of E(y). This implies that E(y) ∩ V is a perfect
set. Given that E(Σ) is totally disconnected, E(y)∩V forms a Cantor set, which means that
y is of Cantor type.

Note that, for a maximal end x, saying x is of Cantor type is the same as saying E(x)
is a Cantor set. This is because, for every point y ∈ E(x), we have x ⪯ y and, since x is
maximal, x ⪯ y.

Proposition 4.8. If Σ is a stable surface, then Σ has only finitely many maximal equivalence
classes of ends.

This proposition will follow from the following. The version we have written here is not
exactly the same as was written in [16], but follows directly from their statements.

Lemma 4.9. [16, Proposition 4.8 & Remark 4.15] If U is a stable neighborhood of x, then
U has only a single maximal equivalence class of ends. Furthermore, x is a maximal end of
U and is either the unique maximal end of U or is of Cantor type.

Proof of Proposition 4.8. Let Σ be a stable surface. Using compactness of the end space of
Σ we can cover E(Σ) by a finite collection of stable neighborhoods U1, . . . , Un. Now, by the
previous lemma, each Ui has only a single type of maximal end. Furthermore, each maximal
end in E(Σ) must appear as a maximal end of some Ui. Therefore we see that n is an upper
bound on the number of maximal equivalence classes of ends.

Next, we recall the following.

Lemma 4.10. [16, Lemma 4.18] Let x, y ∈ E(Σ), and assume x has a stable neighborhood
Vx and that x is an accumulation point of E(y). Then for any sufficiently small clopen
neighborhood Uy of y, Uy ∪ Vx is homeomorphic to Vx.

We restate this lemma slightly.
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Corollary 4.11. Let Σ be a stable surface and V ⊂ E(Σ) be a clopen set such that, for every
y ∈ (E \ V ), E(y) has an accumulation point in V . Then V is homeomorphic to E(Σ).

Proof. For every y ∈ E \ V , let x ∈ V be an accumulation point of E(y). Let Vx ⊂ V and
Uy ⊂ E \ V be as in Lemma 4.10. Then

V ∪ Uy = (V \ Vx) ∪ (Vx ∪ Uy) ≃ (V \ Vx) ∪ Vx ≃ V.

Since E \ V is compact, it can be covered with finitely many such sets Uy1 , . . . , Uyk . Making
these sets smaller, we can assume they are disjoint. Then, from the above argument, we have

E = (V ⊔ Uy1) ⊔ Uy2 ⊔ · · · ⊔ Uyk ≃ (V ⊔ Uy2) ⊔ Uy3 ⊔ · · · ⊔ Uyk ≃ · · · ≃ (V ⊔ Uyk) ≃ V

This finishes the proof.

4.2 Telescoping and Big Annuli

From now on, we will always be working under the assumption that Σ is a stable surface.

Definition 4.12. We say that an end x of Σ is telescoping if it is one of the following:

(i) An isolated puncture,

(ii) of Cantor type, or

(iii) is not isolated in Eg(Σ) and is a successor with all predecessors of Cantor type.

Definition 4.13. For an end x of Σ, an annulus around x is a subsurface A ⊂ Σ with
∂A = α1 ⊔ α2 such that each αi is a single simple closed curve, α1 is the boundary of ΣU1

and α2 is the boundary of ΣU2 where U2 ⊂ U1 are nested stable neighborhoods of x.
Let U be a stable neighborhood of x, let A be an annulus in the interior of ΣU around x,

and let A′ be the component of ΣU −A that does not contain x. We say A is a big annulus
for the neighborhood U of x if both A and A′ contain all types of ends in U other than
possibly x itself. If x is an isolated puncture, then ΣU is a punctured disk and every annulus
in ΣU around x is a big annulus.

Now we check some basic properties of stable neighborhoods and big annuli relative to a
telescoping end, as well as prove an alternate characterization of telescoping.

Lemma 4.14. Let x be a telescoping end of Σ and let U be a stable neighborhood of x. Then
any two big annuli in ΣU around x are homeomorphic via a homeomorphism of ΣU that fixes
x.
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Proof. Let A and B be two big annuli in ΣU . Let A′ be the component of ΣU −A that does
not contain x and A′′ be the component that does contain x. Let B′ and B′′ be similarly
defined.

Let V ⊂ U be a small neighborhood of x that is disjoint from E(A) and E(B). The
end space E(A′) is a subset of the end space of E(U − V ). Every y ∈ E(U − V ) is either a
predecessor of x or accumulates to a predecessor of x. Either way, E(y) has an accumulation
point in E(A′). Corollary 4.11 implies that E(A′) is homeomorphic to E(U −V ). Also, since
x is an stable end, ΣV is homeomorphic to A∪A′′. Therefore, there is a homeomorphism ϕA of
ΣU fixing x that sends A∪A′′ to ΣV and A′ to ΣU−ΣV . Similarly, there is a homeomorphism
ϕB of ΣU fixing x that sends B ∪B′′ to ΣV and B′ to ΣU −ΣV . Then ϕ−1

B ϕA sends A′ to B′.
Hence, we can assume A′ = B′. Now applying the same argument, we can find a homeo-

morphism ψA of A ∪ A′′ fixing x that sends A′′ to ΣV and a homeomorphism ψB of B ∪ B′′

fixing x that sends B′′ to ΣV . Then ϕ−1
B ϕA sends A to B and we are done.

Lemma 4.15. Let x be an end and U be a stable neighborhood of x. Then x is a telescoping
end of Σ if and only if there is exists a subdivision

ΣU =
∞⋃
i=0

Yi

of ΣU into annuli Yi around x so that

(i) Yi ∩ Yj = ∅ if |i− j| > 1,

(ii) Yi and Yi+1 intersect only along one of their boundary components, and

(iii) for 0 ≤ i ≤ j, we have ∪jk=iYk is homeomorphic to Y0.

In particular, each E(Yi) contains all types of ends in U other than possibly x itself, and for
i ≥ 1, Yi is a big annulus.

Proof. Assume x is a telescoping end and let U be a stable neighborhood of x. Let

U = U0 ⊃ U1 ⊃ U2 ⊃ . . .

be a family of nested subsets of U that descends to x, Uk ↘ x. We immediately note that
if x is an isolated puncture, then we can take the collection {Yi} to be nested annuli that
descend to x. From now on we assume that x is not an isolated puncture. First we show
that, for k1 large enough, U −Uk1 contains all types of ends in U other than possibly x itself.

There are two cases to consider. If x is of Cantor type then, for every end y ∈ U , E(y)∩U
accumulates to x and hence its accumulates to every point in E(x)∩U . So, we only need to
take k1 large enough so that (U − Uk1) ∩E(x) is not empty and this ensures that (U − Uk1)
contains all types of ends. If x is not of Cantor type then it has finitely many predecessors
y1, ..., yn and they are all of Cantor type. Then for every end z ∈ U , E(z) accumulates to
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some yi and hence to all points in E(yi)∩U . Hence, if k1 large enough so that (U−Uk)∩E(yi)
is not empty for i = 1, . . . , n then (U − Uk) contains all ends except possibly x itself.

We proceed in this way and choose indices k1, k2, . . . such that Uki − Uki+1
contains all

types of ends in U other than possibly x itself. Let ΣU be a stable neighborhood of x in Σ
and denote the boundary of ΣU by α0. Choose a sequence of curves αi in ΣU that exit the
end x such that the component of ΣU −αi that contains x has the ends space Uki . Let Yi be
the annulus bounded by αi and αi+1. Then ΣU =

⋃∞
i=0 Yi and the first two assumptions of

the lemma hold by construction.
To see that the final assumption holds, it is sufficient to show that Y0∪Y1 is homeomorphic

to both Y0 and Y1. If ΣU has infinite genus, then x is a non-planar end. Since x is not isolated
in EG, some ends in some Yi (and hence every Yi) have to be non-planar. Therefore, every Yi
has infinite genus. Otherwise, ΣU has genus zero and hence every Yi has genus zero. Hence,
Y0 ∪ Y1, Y0 and Y1 have the same genus. Also, they all have two boundary components.
We only need to check that their end spaces are homeomorphic. But this follows from
Corollary 4.11 applied to E(Y0) ⊂ E(Y0 ∪ Y1) or to E(Y1) ⊂ E(Y0 ∪ Y1). This finishes the
proof of the one direction.

To see the other direction, let ΣU be a stable neighborhood of x in Σ and let ΣU =
⋃∞

i=0 Yi
be a decomposition of ΣU into annuli as described in the statement. We show tha x is a
telescoping end by checking the conditions of Definition 4.12.

If x is the only non-planar end in ΣU , then there is an annulus Yk that has a finite non-
zero genus. The Y0 also has finite non-zero genus and hence Y0 cannot be homeomorphic to
Y0 ∪ · · · ∪ Yk which contradicts assumption (iii). Therefore, either x is a planar end, or it is
not isolated in EG(Σ).

If x is an isolated puncture or is of Cantor type, then we are done by definition. Otherwise,
we need to show that x is a successor and the predecessors are of Cantor type. By Lemma 4.8,
E(Y0) has finitely many different maximal types, say y1, . . . , yn. Then every z ∈ U , E(z) ∩
E(Y0) is non-empty and hence E(z) accumulates to some yi. This, by Definition 4.5, implies
that x is a successor.

The assumption (iii) in particular implies that E(Y0) is homeomorphic to E(Yk) for every
k and in particular E(yi) ∩ E(Yk) is a non-zero for every k. If f E(yi) ∩ E(Y0) is finite,
then E(y0) ∩ (Y0 ∪ Y1) is larger than E(y0) ∩ Y0 and hence Y0 cannot be homeomorphic to
Y0 ∪ Y1 which contradicts assumption (iii). If E(yi) ∩ E(Y0) is infinite then E(yi) has an
accumulation point in E(Y0). But yi is maximal in E(Y0) hence the accumulation point has
to be in E(yi). Therefore every point in E(yi) ∩ E(Y0) is an accumulation point of E(yi)
and E(yi) is uncountable. Lemma 4.7 implies that yi is of Cantor type. This holds for every
i = 1, . . . , n, therefore x is a telescoping end.

We have now also seen that the definition of telescoping, Definition 4.12, fits into the same
framework as Proposition 3.2 and Definition 3.3 from the end space case. Here a brick is a
subsurface B of ΣU which is a disjoint union of big annuli so that all complementary compo-
nents contain all types of ends in U except possibly x. For example, fixing a decomposition
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ΣU = ∪i=0Yi as in Lemma 4.15, the union ∪Yni is a brick for any infinite and co-infinite
subset {ni} ⊂ {1, 2, · · · } (it is important not to include Y0 since Y0 is not a big annulus).
From Lemma 4.14 we see that for any two bricks there is a homeomorphism of ΣU taking
one to the other. In particular, any brick can be enlarged by inserting big annuli into the
complementary components, including the complementary component that contains ∂ΣU ,
and therefore we could choose a homeomorphism between two bricks to fix a neighborhood
of ∂ΣU that contains a big annulus.

Standing Assumptions. As in the end space case we now set up some notation and standing
assumptions. Unless explicitly stated, these will hold until the end of Section 4.7.

(1) If A is an annulus or a finite type subsurface of Σ we will use G(A) to denote the
subgroup of G = Homeo(Σ) consisting of maps supported on the interior of A. If U is a
stable neighborhood of a telescoping end x, then G(ΣU ) is the set of homeomorphisms
supported on some ΣU ′ so that U ∖ U ′ contains all types of ends in U except possibly
x.

(2) Fix a telescoping end x and ΣU =
⋃∞

i=0 Yi a subdivision as in Lemma 4.15.

(3) Assume that W ⊂ G is a symmetric set so that G is covered by countably many sets
giW with gi ∈ G and W 2 is dense in G(ΣU ) (i.e. W 2 ⊃ G(ΣU )).

(4) For any brick, B, we write G(B) for the closed subgroup of homeomorphisms of ΣU or
Σ supported on B.

4.3 Step 1: Fragmentation

Lemma 4.16. Any h ∈ G(ΣU ) can be written as h = h1h2 so that each hi belongs to G(ΣU )
and fixes some point in G(ΣU ) · x.

Proof. Since h ∈ G(ΣU ), by definition there is a smaller stable neighborhood ΣU ′ so that h is
supported in ΣU ′ and U∖U ′ contains all types of ends as U except possibly x. We can modify
the subdivision Yi so that ΣU ′ = ∪∞i=1Yi (e.g. choose a homeomorphism ΣU → ΣU ′ fixing x
and let the new Yi be the image of the (old) Yi−1 and set Y0 = U \ U ′). Suppose h(x) ̸= x
and assume h−1(x) ∈ Yi for some i > 0. Choose some j ̸= i, j > 0 and note that h(Yj) is
disjoint from a neighborhood of x, so it is contained in some finite union Yk1∪· · ·∪Ykr . Using
the classification of surfaces we can find a homeomorphism h1 ∈ G(ΣU ) supported on only
finitely many of the annuli including Y0 and agreeing with h on Yj . Thus h = h1h2 where h1
fixes x and h2 = h−1

1 h is identity on Y0 and Yj . Finally we note that since Yi and Yj are both
big annuli, they are homeomorphic, and so Yj contains an end in G(ΣU ) · x and h2 fixes this
end.

Again, note that if U is a stable neighborhood of an end x, then U is also a stable
neighborhood of g ·x for all g ∈ G(ΣU ). Keeping this in mind, the statements that follow will
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apply when one replaces the telescoping end x with an end of the form g · x for g ∈ G(ΣU ).
We will slightly abuse notation and not keep track of this distinction.

Lemma 4.17. Any h ∈ G(ΣU ) that fixes x can be written as h = h1h2 so that each hi is
supported on a brick.

Proof. Given h, choose two sequences (ni) and (mi) so that 1 = n1 < m1 < n2 < m2 < · · · ,
h(Y1 ∪ Y2 ∪ · · · ∪ Yni) is disjoint from Ymi and h(Yni+1) is disjoint from Ymi . Then define h1
to agree with h on each Yni and to be the identity on Ymi for all i. This can be done by the
classification of surfaces. Then h1 and h2 = h−1

1 h are both supported on bricks of ΣU .

Just as in the end space case, these two lemmas allow us to write any h ∈ G(ΣU ) as
h = h1h2h3h4 with each hi ∈ G(ΣU ) supported on a brick limiting to a fixed point in the
orbit of x.

4.4 Step 2: Finding Commutators

For surfaces this step will be drastically different than in the end space case. For end spaces,
since we were dealing with totally disconnected spaces, we could use maps that shift an entire
brick and restrict to the identity elsewhere. Now the topology of the surface obstructs using
such a shift. Instead, we will fragment our map again using an Eilenberg-Mazur swindle
[3, 19] into two maps, still supported on bricks, that are themselves commutators.

Definition 4.18. Let A be a big annulus in ΣU . We say that f ∈ G(A) has alternating
support if supp(f) = A1 ⊔ A2, with each Ai a big annulus and with all 3 complementary
components of A1⊔A2 in A big annuli, and so that there exists h ∈ G(A) so that h(A1) = A2

and f |A2 = h(f |A1)−1h−1. If A is a brick, then we say that f ∈ G(A) has alternating
support if f |A has alternating support for each annulus component A ∈ A.

Lemma 4.19. If f ∈ G(A) has alternating support, then f can be written as a single com-
mutator of maps in G(A). Similarly, if f ∈ G(A), for A a brick, has alternating support,
then f can be written as a single commutator of maps in G(A).

Proof. Let h be as in the definition of alternating support. Let f1 denote the homeomorphism
that agrees with f on A1 and is the identity outside of A1. Then we can write

f = f1h(f1)
−1h−1 = [f1, h].

If A is a brick then we can simply apply this to each annulus of A and collect terms since
the annuli are all pairwise disjoint

Lemma 4.20. (Eilenberg-Mazur Swindle) Let f ∈ G(A) for A be a brick of ΣU . There exist
two bricks, A1 and A2 in ΣU , and hi ∈ G(Ai) so that hi has alternating support for i = 1, 2
and f = h1h2.
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Proof. The brickA is the disjoint union of big annuliAj ordered linearly, with Aj+1 separating
Aj from x. Denote by fj = f |Aj the restriction of f to Aj . So we can encode f as (f1, f2, · · · ).
We will economize on the notation and write this as

1 2 3 4 · · ·

Now consider the map defined by

11121212312312341234 · · ·

where each of the numbers represents a homeomorphism supported on a big annulus, and
we always assume that between any two consecutive such big annuli there is a big annulus
(which can then be subdivided into any finite number of big annuli). E.g., each occurence of
1 denotes the homeomorphism that does exactly f−1

1 on a single big annulus that is separated
by big annuli from the supports of each other map. Thus we are inserting two big annuli
(with separation) between A1 and A2 and we put on them copies of f−1

1 and f1 respectively,
inserting 4 big annuli between A2 and A3 etc. Call this map h1 and let h2 = h1f

−1. Thus h2
is obtained from the above sequence by restricting to the blue numbers. Each block of blue
numbers between two red numbers defines a map on a single big annulus with alternating
supports:

1
︷︸︸︷
11 2

︷︸︸︷
1212 3

︷ ︸︸ ︷
123123 4

︷ ︸︸ ︷
12341234 · · ·

Therefore h2 has alternating supports.
But so does h1:

11︸︷︷︸ 1212︸︷︷︸ 123123︸ ︷︷ ︸ 12341234︸ ︷︷ ︸ · · ·
Here we get alternating supports corresponding to the groups of numbers indicated after
adding a big annulus on each side of the group (and using the definition of a brick that
guarantees that there is a big annulus to the left of the first group).

The culmination of this step is to combine these two lemmas in order to write a map
supported on a brick as a product of two commutators, each of which are also supported on
the brick.

Lemma 4.21. Any h ∈ G(ΣU ) supported on a brick can be written as h = h1h2 so that each
hi ∈ G(ΣU ) is supported on a brick Ai in ΣU and can be written as a single commutator in
G(Ai).

4.5 Step 3: Diagonalization

Again, we next want to find a “good” brick. The first lemma is identical to the end space
case.

Lemma 4.22. Let A be a brick and A1,A2, · · · pairwise disjoint subbricks. Then
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(i) there is some i ≥ 1 such that any homeomorphism of Ai extends to a homeomorphism
of Σ supported on A that belongs to giW , and

(ii) moreover, every homeomorphism of Ai extends to a homeomorphism of Σ supported on
A that belongs to W 2.

Proof. This is exactly the same proof as the proof of Lemma 3.12.

Next we upgrade this approximation. Notably, here we will only be doing it for maps
with alternating support.

Lemma 4.23. Let A be a brick. Then there exists a subbrick Z of A so that any homeo-
morphism with alternating support on Z is in W 8.

Proof. Apply the previous lemma to A (and an arbitrary pairwise disjoint collection of sub-
bricks) and label the resulting subbrick B. Repeat this process to B and label the subbrick
Z. Let f ∈ G(Z) have alternating support. Then by Lemma 4.19, f = [u, v] for u, v ∈ G(Z).
The support of u is contained in Z and so we can apply the previous lemma to find a ū such
that ū ∈ W 2, ū is supported on B, and ū|Z = u. Similarly, the support of v is contained in
B and so we can find a v̄ such that v̄ ∈W 2, v̄ is supported on A, and v̄|B = v. Thus we have
h = [ū, v̄] ∈W 8.

4.6 Step 4: Pigeonhole

Next we see that, except for a finite error, we can push any brick into a specific subbrick.

Lemma 4.24. For any brick A and subbrick B there exists a1, a2 ∈ W 2 so that for all but
finitely many annuli A in A, either a1A ∈ B or a2A ∈ B.

Proof. Write B =
⊔∞

i=1Bi, with each Bi a big annulus. Let Λα, α ∈ R be an uncontable
collection of infinite subsets of N ∖ {1} so that if α ̸= β, then Λα ∩ Λβ is finite. Write
Bα for the subbrick of B consisting of annuli indexed by Λα. Then for every α choose a
homeomorphism fα ∈ G(ΣU ) with the following property. Say Λα = {n1, n2, n3, · · · } with
1 < n1 < n2 < n3 < · · · . Then fα sends Bni homeomorphically onto the big annulus
cobounded by Bni and Bni+1 and this component onto Bni+1 . Note that these maps exist by
Lemma 4.14.

Since the collection {Λα}α∈R is uncountable there exist some pair α ̸= β so that fα and fβ
are in the same left translate of W . See Figure 3 for a schematic of the arrangement of these
annuli and the maps fα and fβ. Thus we have that f−1

α fβ and f−1
β fα are both in W 2. Set

a1 = f−1
β fα and a2 = f−1

α fβ. Let A0 = Bα ∩ Bβ, note that this set is finite, let A1 = A \ Bα
and A2 = A \ Bβ. Note that A = A0 ∪ A1 ∪ A2. Now given any annulus A in A that is
not in the finite exceptional set A0 we have that either A ∈ A1 or A ∈ A2. If A ∈ A1, then
a1A ∈ Bβ ⊂ B and if A ∈ A2, then a2A ∈ Bα ⊂ B.
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Bα ∩ Bβ

fα

fβ

Bα

Bβ

Figure 3: A schematic of the pigeonhole argument. The annuli in purple represent the finitely
many annuli in Bα ∩ Bβ. The red and blue annuli are the annuli of Bα and Bβ, respectively.

Finally we can put all of these pieces together to see that any map supported on a brick
is in W 72.

Lemma 4.25. Every h ∈ G(ΣU ) supported on a brick is in W 72.

Proof. First apply Lemma 4.20 to h to find h1, h2 ∈ G(ΣU ) with support on bricks A1 and
A2, respectively. Abusing notation, we replace h with one of the hi and will show that such
a map is in W 36.

Apply Lemma 4.23 to A to find Z so that any map in G(Z) with alternating support is
in W 8. Next apply Lemma 4.24 to Z as a subbrick of A to obtain maps a1, a2 ∈W 2. Write
A = F ⊔X ⊔Y where F is the finite collection of annuli for which Lemma 4.24 fails, X is the
set of annuli for which a1A ∈ Z for all A ∈ X, and Y is the complement of these two sets.
We can write h = hFhXhY for the restrictions of h to each of these sets. Note that a1hXa

−1
1

and a2hY a
−1
2 are two maps with alternating support in Z and therefore hX , hY ∈W 12.

It remains to deal with hF . Let g ∈ G(ΣU ) be a map that sends the set F of annuli into
Z. By assumption, W 2 is dense in G(ΣU ′) and so we may approximate g by g′ ∈W 2 (which
may not belong to G(ΣU ) or even be identity outside of ΣU ). Thus we see that g′hF g

′−1 is
again a map with alternating support in Z and hence hF ∈W 12. We conclude that h ∈W 36

and thus our original map is contained in W 72.

4.7 Step 5: Wrapping Up

We again first verify a version of the Steinhaus condition for a stable neighborhood of a
telescoping end.

Theorem 4.26. Let ΣU be a stable neighborhood of a telescoping end x. Suppose W is a
symmetric set in G = Homeo(Σ) such that
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• Homeo(Σ) is covered by countably many sets giW with gi ∈ Homeo(Σ), and

• W 2 is dense in G(ΣU ).

Then G(ΣU ) ⊂W 288.

Proof. Let h ∈ G(ΣU ). We first apply Lemma 4.16 and Lemma 4.17 in order to write
h = h1h2h3h4 where each hi ∈ G(ΣU ) fixes an end xi ∈ G(ΣU ) · x so that ΣU is stable
with respect to xi and the support of hi is contained in a brick around xi. Next we apply
Lemma 4.25 to see that each hi is contained in W 72. We conclude that h ∈W 288.

Remark 4.27. Let D ⊂ Σ be a closed disk. By considering a fixed point near the boundary
as a marked point we can also obtain a version of the previous theorem for G(D). That is,
under the same assumptions, we have that G(D) ⊂W 288.

As in the end space case, we technically need a slight extension of all of the results in
Sections 4.4 to 4.6 and the above theorem. See Proposition 3.17 and the discussion imme-
diately preceding it. In other words, we can run the previous proofs simultaneosly on any
finite collection of pairwise disjoint stable neighborhoods of telescoping ends.

Proposition 4.28. Suppose {Ui} is a finite collection of pairwise disjoint stable neighbor-
hoods of telescoping ends xi, and suppose ΣUi is a pairwise disjoint collection of corresponding
subsurfaces. Let W ⊂ Homeo(Σ) be a symmetric set, so that countably many translates cover
Homeo(Σ), and so that W 2 is dense in each G(ΣUi). Then any homeomorphism h of Σ which
is identity outside of ∪iΣUi with restrictions to each ΣUi belonging to G(ΣUi) is in W 288.

We are finally ready to prove one implication in Theorem A.

Theorem 4.29. Let Σ be a stable surface. If every end of Σ is telescoping, then AC holds
for Homeo(Σ).

Proof. We will verify the Steinhaus property. Let W be a symmetric subset of Homeo(Σ) so
that countably many translates cover the whole group. We will show that W 4896 contains
a neighborhood of the identity. We can apply Lemma 2.3 to see that there exists some
neighborhood of the identity U ⊂ Homeo(Σ) so that W 2 is dense in U . The plan is to cover
the end space by surfaces of the form ΣU , represent given h ∈ Homeo(Σ) close to the identity
as a composition of maps supported on ΣU ’s (or compact subsurfaces), and apply Proposition
4.28. The difficulty is that homeomorphisms in ΣU require an extra big annulus contained in
ΣU on which the map is identity, and the realizations of these big annuli have to be pairwise
disjoint, for otherwise we cannot work simultaneously on all of them.

Step 1. Here we construct a collection of pairwise disjoint ΣUi that cover the end space.
We temporarily work in the Fruedenthal compactification of Σ, which we denote by Σ̂. Note
that Homeo(Σ) = Homeo(Σ̂, E(Σ), Eg(Σ)), the group of homeomorphisms that fix the ends
of Σ, setwise. Fix a metric on Σ̂. There will be ϵ > 0 so that if a homeomorphism moves
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points < ϵ it belongs to U . Using Lemma 3.16 we can cover E(Σ) by a finite collection Ui of
pairwise disjoint clopen sets so that each Ui is a stable neighborhood of one of its points xi.
Further, we can construct pairwise disjoint subsurfaces ΣUi with one boundary component γi
with end space Ui. We can also choose these sets and subsurfaces so that they have diameter
< ϵ. We now decompose the given homeomorphism h, assumed close to the identity, into 3
homeomorphism, h = h1h2h3, so that each is close to the identity (i.e. for every neighborhood
V of the identity, there is a neighborhood V ′ so that if h ∈ V ′ then h1, h2, h3 ∈ V). The simple
closed curves γi are moved only slightly by h, so we can choose h3 to be supported on pairwise
disjoint annular neighborhoods of γi and so that hh−1

3 fixes each γi pointwise. Then hh−1
3 is

the composition h1h2, where h1 is a homeomorphism of the compact surface bounded by the
γi and it is close to the identity, and h2 is supported on the union of ΣUi . We can then use
the Edwards-Kirby fragmentation [11] and Remark 4.27 (performed simultaneously) to see
that both h1, h3 ∈ W 864 (here we need 864 = 3× 288 because the fragmentation produces 3
families of pairwise disjoint disks). See also [14, 22] We are thus reduced to working with h2
and we rename it to h.

Step 2. Write ΣUi = ∪∞j=0Y
i
j as in Lemma 4.15 and let the boundary of the first annulus

Y i
0 be γi ⊔ δi. Exactly as in Step 1 we can write h = h1h2h3 where h3 is supported in a

neighborhood of the δi’s, h1 is supported on the annuli Y i
0 and h2 is supported on the stable

neighborhoods ∪∞j=1Y
i
j . In particular, h3 ∈ W 864 as before. Note that h2|ΣUi belongs to

G(ΣUi) since we arranged that it is identity on the first annulus Y i
0 . Thus h2 ∈ W 288 by

Proposition 4.28. It remains to deal with h1, which we rename as h.
Step 3. We now assume h is supported on ∪Y i

0 . First repeat Step 1 for each annulus
Y i
0 and write h = h1h2h3 with h1, h3 ∈ W 864 and with h2 supported on a finite collection

of pairwise disjoint stable neighborhoods ΣV i
j
⊂ Y i

0 , and in fact we may assume that h2 is

identity in a neighborhood of each boundary ∂ΣV i
j
, which we call γij . Again rename h = h2.

Choose pairwise disjoint Zi
j ⊂ Ui near xi (and so away from the ends of Y i

0 ) homeomorphic

to V i
j . Let ΣZi

j
be the corresponding surfaces and arrange that they are pairwise disjoint,

disjoint from all the annuli in the support of h, and ΣZi
j
⊂ (ΣUi \ Y i

0 ). Choose pairwise

disjoint arcs αi
j connecting γij with ∂ΣZi

j
, intersecting the two curves only at the endpoints,

and disjoint from all other such curves. Also, ensure that αi
j ⊂ ΣUi . Use αi

j to boundary

connect sum the surface ΣV i
j

cut off by γij with ΣZi
j
. See Figure 4 for a schematic picture

of this arrangement. The new surface is also a stable neighborhood of the same end as
ΣV i

j
, but we now added “luft”, i.e. an annulus where h is identity, and now we can apply

Proposition 4.28 to conclude that h ∈ W 288. Putting everything together we get the power
17× 288 = 4896.
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Y i
0

ΣV i
1

ΣV i
2

ΣZi
1

ΣZi
2

ΣUi \ Y i
0

αi
1

αi
2

Figure 4: An example of how to disjointly extend stable neighborhoods in Step 3.

4.8 Failure of Automatic Continuity

In this section we provide tools in order to generate discontinuous homomorphisms. All of
our discontinuous homomorphisms will factor through the mapping class group Map(Σ) =
Homeo(Σ)/Homeo0(Σ) and appear as an application of the following theorem. We note that
this theorem provides a general tool for building discontinuous homomorphisms for closed
subgroups of Map(Σ). It is not stated explicitly in this form in [10], but follows from the
arguments in sections 7,8, and 10. First we need to recall the definition of a nondisplaceable
subsurface and a nondisplaceable sequence.

Definition 4.30. Let K ⊂ Σ be a connected subsurface and G < Map(Σ) a subgroup. We
say that K is G-nondisplaceable if K and g(K) have an essential intersection for all g ∈ G.
A G-nondisplaceable sequence is a sequence {Ki}∞i=1 so that

(i) each Ki is homeomorphic to a fixed finite-type surface K of sufficient complexity to
carry a pseudo-Anosov homeomorphism,

(ii) Ki ∩Kj = ∅ for all i ̸= j,

(iii) the collection {Ki} eventually has trivial intersection with every finite-type subsurface
of S, and

(iv) each Ki is G-nondisplaceable.

Theorem 4.31. [10, Sections 7,8, and 10] If G is a closed subgroup of Map(Σ) and has a G-
nondisplaceable sequence {Ki}∞i=1 such that G contains Map(Ki) for all i, then G fails to have
automatic continuity. In particular, there exists a discontinuous homomorphism G→ Q.
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Proof. Let K = {Ki}∞i=1 be a G-nondisplaceable sequence so that each Ki is homeomorphic to
a fixed finite-type surface K. Let f ∈ Map(K) be a pseudo-Anosov mapping class and write
fi ∈ G for the map defined to be f on Ki and the identity elsewhere. Then, for A = (ai)

∞
i=1

any unbounded sequence of natural numbers we form the mapping class

fK,A :=

∞∏
i=1

faii ∈ G.

Now we apply [10, Theorem 7.1] to see that fK,A cannot be written as a product of commu-
tators in G. We remark that [10, Theorem 7.1] is stated specifically in the case that G is the
closure of compactly supported mapping classes. However, the steps of the proof only require
one to have a G-nondisplaceable sequence. In particular, the proof relies on constructing a
sequence of Bestvina-Bromberg-Fujiwara projection complexes [4] and the projection axioms
are verified in [10, Lemma 3.8] for any collection of pairwise overlapping finite-type subsur-
faces in an infinite-type surface. The proof then proceeds by using actions on these projection
complexes to define quasimorphisms that coarsely count the exponents ai. Once again, this
step only relies on the fact that we began with a pseudo-Anosov defined on a finite-type
subsurface by appealing to [6, Proposition 11] and [5, Proposition 2.9] (see also [10, Lemmas
7.4-7.6]).

Next we run the exact same argument as in [10, Section 8] to see that any such element
fK,A, with A = (i!)∞i=1, generates a copy of Q in H1(G;Z). By factoring through the abelian-
ization, we obtain a homomorphism G → Q. Finally we note that any finite sub-product of
fK,A is trivial in H1(G;Z) (see [10, Section 8.1.2] for technicalities in the low genus case) and

hence this map must necessarily be discontinuous. In fact, one can use this to generate 22
ℵ0

many discontinuous homomorphisms (see [10, Section 10]).

4.9 Proof of Theorem A

We need one final lemma that gives an alternate topological characterization of telescoping.

Lemma 4.32. Let Σ be a stable surface. If an end x ∈ E(Σ) is not telescoping, then either

(i) x is isolated in Eg(Σ),

(ii) x has a predecessor y with E(y) countable, or

(iii) there exists a family of nested stable neighborhoods {Un} descending to x such that each
annulus Un \ Un+1 contains an end zn with E(zn) ∩ (U0 ∖ Un) = ∅.

Proof. Let x ∈ E(Σ) be an end that is neither telescoping nor isolated in Eg(Σ). In particular,
x is not isolated in Eg(Σ) and E(x) is a discrete set (by Lemma 4.7). Let U be a stable
neighborhood of x and Uk ↘ x a family of nested subsets of U that descends to x. For each
k, let Mk denote the set of equivalence classes in E(Σ) that both intersect Uk \Uk+1 and are
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maximal in Uk \Uk+1. Note that each of Uk \Uk+1 is a stable surface and so Mk is finite for
each k. We now have two cases to consider.

Case 1: Suppose
⋃∞

k=0Mk is finite. In other words, there exists some k0 such that every
equivalence class of end in U \ {x} intersects U0 \Uk0 . This implies that x has finitely many
predecessors and hence is a successor. Therefore, since we assumed that x is not telescoping,
one of these predecessors, y, must not be of Cantor type. Thus by Lemma 4.7 we have that
E(y) is countable.

Case 2: Suppose
⋃∞

k=0Mk is infinite. Thus, since each Mk is finite, we must have that
the annuli Uk \ Uk+1 are seeing new equivalence classes of ends as k → ∞. Therefore, after
passing to a subsequence of the Uk, we can find a family {Un} satisfying (iii)

We are now ready to prove our main classification theorem for surfaces.

Proof of Theorem A. The positive direction is exactly the statement of Theorem 4.29. Now
we assume that Σ has an end x ∈ E(Σ) that is not telescoping. Our discontinuous map will
factor through the mapping class group, Map(Σ).

Since E(x) is not of Cantor type, E(x) is countable by Lemma 4.7 and x is isolated in
E(x). Thus we can find a simple separating curve γ so that γ separates x from all other ends
in E(x). Let Σγ be the subsurface containing x with boundary γ. We may assume, without
loss of generality, that E(Σγ) is a stable neighborhood of x. Note that the stabilizer, Stab(γ),
is a closed countable index subgroup of Map(Σ). Thus by Lemma 2.2 it suffices to build a
discontinuous homomorphism from Stab(γ) to a countable discrete group. Our new goal is to
find a Stab(γ)-nondisplaceable sequence in order to apply Theorem 4.31. The proof breaks
down into the three cases from Lemma 4.32

Case (i): Suppose that x ∈ Eg(Σ) is isolated. We claim that any simple curve α in Σγ that
separated x from γ is Stab(γ)-nondisplaceable. Indeed, α cuts Σγ into two components, one
with finite genus and one with infinite genus. If f ∈ Stab(γ) mapped α completely into either
component, it would change the genus of the finite genus piece. As f fixes γ, this cannot
happen. Thus we conclude that f(α) ∩ α ̸= ∅. Finally, to build a Stab(γ)-nondisplaceable
sequence we can take sufficiently spaced out sequence of such curves {αi} that converge to x
and for each αi take a genus two subsurface Ki that contains it and is disjoint from all other
such subsurfaces.

Case (ii): Suppose that x has a countable predecessor, y. Write E′(y) = E(y) ∩ Σγ and
note that E′(y) is still countably infinite. Now this case follows exactly as in case 1 except
points in E′(y) play the role of genus.

Case (iii): Let {Un} be a family of nested stable neighborhoods descending to x such that
each annulus Un \ Un+1 contains an end zn with E(zn) ∩ (U0 ∖ Un) = ∅. We may assume,
without loss of generality, that U0 = E(Σγ). We will build a non-displaceable pair of pants
for each fixed n. Let Pn be the pair of pants made up of the curves ∂ΣUn , ∂ΣUn+1 , and a
separating curve, βn that cuts off all ends of Un \ Un+1. See Figure 5. We claim that these
Pn are Stab(γ)-nondisplaceable. If f ∈ Stab(γ), then f(Pn) cannot land in the component
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Figure 5: Building a nondisplaceable pair of pants, Pn, in case (iii).

cut off by ∂ΣUn since E(Σγ) \ Un contains no points of E(zn). Similarly, if f(Pn) landed in
the component cut off by ∂ΣUn+1 , then f(E(Σγ) \Un) would intersect E(zn). Finally, f(Pn)
cannot land in the component cut off by βn since Pn must separate γ and x. As above we
can expand these pairs of pants to subsurfaces of sufficiently high complexity and pass to a
disjoint subsequence to obtain a Stab(γ)-nondisplaceable sequence.

We can now apply Theorem 4.31 to the Stab(γ)-nondisplaceable sequences in each of
these cases in order to see that Stab(γ) fails to have automatic continuity. Finally, we use
Lemma 2.2 to conclude that Map(Σ) and hence Homeo(Σ) fails to have automatic continuity.

4.10 Unknown Example

In this final section we construct an unstable surface Σ where our techniques fail to decide
automatic continuity. The end space of Σ will contain countably many incomparable Cantor
sets of ends that themselves converge onto a Cantor set. Building these Cantor sets while
avoiding ends that violate Theorem A (or the examples of Remark 1.1) will take some care.

We construct the end space of Σ inductively. For colored second countable Stone spaces
U1, · · · , Uk, let C(U1, . . . , Uk) be the Cantor set with a copy of Ui added into every “missing
interval” of the Cantor set. Similarly, let Cg(U1, . . . , Uk) be the same except that points in
the Cantor set are non-planar. When k = 0 we use the notation C(∅) and Cg(∅). Let p be
an isolated point. We define out level one cantor sets at follows:

L0,1 = Cg(∅), L1,1 = C(∅), L2,1 = Cg(p), and L3,1 = C(p).
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To reiterate, L0,1 is a non-planar Cantor set, L1,1 is a planar Cantor set, L2,1 is a Cantor set
with each point accumulated by a sequence of punctures and L3,1 is a non-planar Cantor set
where each point accumulated by a sequence of punctures. Note that the maximal ends in
these space are not comparable. Also, every point in these spaces satisfies the assumptions
of Theorem A.

Now we can use all non-empty subsets of {L1,1, L2,1, L3,1} to make level two sets. Thus
we obtain four level two sets,

L0,2 = C(L1,1, L2,1), L1,2 = C(L2,1, L3,1), L2,2 = C(L1,1, L3,1),

and
L3,2 = C(L1,1, L2,1, L3,1).

Note that L0,1 is incomparable to all level two sets. Then we reserve L0,2 and again use
non-empty subsets of {L1,2, L2,2, L3,2} to construct level three sets. We recursively continue
this process to construct sets at all levels. That is, for all n ≥ 1,

L0,n+1 = C(L1,n, L2,n), L1,n+1 = C(L2,n, L3,n), L2,n+1 = C(L1,n, L3,n),

and
L3,n+1 = C(L1,n, L2,n, L3,n).

Each time we reserve L0,n so the maximal points in L0,n are not comparable to any point in
Li,m for m ≥ n. Thus we obtain the countable collection, L0,1, L0,2, L0,3, . . ., of incomparable
Cantor sets.

Finally, for each n ∈ N, we let Λn be the surface with end space L0,n and a single boundary
component and infinite genus where the ends labeled non-planar are accumulated by genus.
We then construct Σ by beginning with the surface obtained by thickening a rooted binary
tree, removing a disk from each pair of pants, and, along the missing disks at level n, gluing
a copy of Λn. Each end of Σ is either an isolated puncture or of Cantor type. Furthermore, Σ
has countably many maximal types of ends, corresponding to each of the levels L0,n, and one
additional maximal Cantor type of end, L∞, which is accumulated by the L0,n as n→∞. The
ends of L∞ are non-telescoping and so we cannot run our argument for automatic continuity.
However, we are also not able to find a nondisplaceable sequence of subsurfaces in order to
apply Theorem 4.31 to build a discontinuous map. As such, it is still open whether Homeo(Σ)
or Map(Σ) has automatic continuity.
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