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Quasi-geodesics in Out(Fn) and their shadows in sub-factors

Yulan Qing and Kasra Rafi

Abstract

We study the behaviour of quasi-geodesics in Out(Fn). Given an element φ in Out(Fn), there
are several natural paths connecting the origin to φ in Out(Fn); for example, paths given by
Stallings’ folding algorithm and paths induced by the shadow of greedy folding paths in Outer
Space. We show that none of these paths is, in general, a quasi-geodesic in Out(Fn). In fact, in
contrast with the mapping class group setting, we construct examples where any quasi-geodesic
in Out(Fn) connecting φ to the origin will have to backtrack in some free factor of Fn.

1. Introduction

Let Fn = 〈s1, s2, . . . , sn〉 denote the free group of rank n and let Out(Fn) denote the group of
outer automorphisms of Fn,

Out(Fn) := Aut(Fn)/ Inn(Fn).

This group is finitely presented [28]. For example, it can be generated by the set of right
transvections and left transvections:{

si → sisk
sj → sj for all j �= i

{
si → sksi
sj → sj for all j �= i

together with elements permuting the basis and elements sending some si to its inverse si.
For an explicit presentation see [27]. Equip Out(Fn) with the word metric associated to this
generating set. We aim to understand the geometry Out(Fn) as a metric space. Specifically,
we want to understand the quasi-geodesics in Out(Fn).

A common way to generate a path connecting a point in Out(Fn) to the identity is to use
the seminal idea of Stallings’ folding algorithm [30] which we discuss here briefly. One can
create a model for Out(Fn) by considering the space of graphs x of rank n where the oriented
edges are labelled by elements of Fn inducing an isomorphism μ : π1(x) → Fn (defined up to
conjugation and graph automorphism). We refer to μ as the marking map. For another such
marked graph x′ with marking map μ′ : π1(x′) → Fn, we say x′ is obtained from x by a fold if
there is a quotient map from x to x′,

fold : x → x′,

inducing an isomorphism fold� : π1(x) → π1(x′) so that μ = μ′ ◦ fold�.
Let R0 be a rose with labels s1, . . . , sn inducing an isomorphism

μ0 : π1(R0) → Fn,

and, for φ ∈ Out(Fn), let R = φ(R0) be the rose where the marking map

μ : π1(R) → Fn is given by μ = φμ0.
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Then, a sequence

R = xm → xm−1 · · · → x1 → x0 = R0

of folds produces a path in Out(Fn) connecting the identity to φ as follows: for 0 < i � m,
consider a quotient map xi → Ri by collapsing a spanning sub-tree, resulting in a rose Ri.
Also, let qi : xi → x0 = R0 be the composition of the folding maps. Then, we have the following
diagram of homotopy equivalences:

R0 → Ri ← xi → R0,

where the first arrow is any graph automorphism between the two roses. We associate xi to the
induced map φi : π1(R0) → π1(R0). The map φi ∈ Out(Fn) is coarsely well defined, depending
on the chosen quotient maps xi → Ri and the graph automorphism R0 → Ri. But the set of
all possible resulting maps has a uniformly bounded diameter in Out(Fn) and the distance
between φi and φi+1 in Out(Fn) is uniformly bounded. That is, we have a coarse path

φ = φm, . . . , φ0 = id

in Out(Fn) connecting φ to the identity which we refer to as a folding path in Out(Fn).
Stallings folding theorem provides an algorithm for finding a sequence of folds connecting

any marked graph x to R0 where, in each fold, edges are identified according to their labels
(see Section 2.4). That is to say, the folds given by the Stallings algorithm are directed by the
marking map. A path consisting of a sequence of marking-directed folds is called a Stallings
folding path. The ideas in Stallings’ folding algorithm have found many interesting applications
in the study of automorphisms of free groups (see, for example, [12, 14, 16, 17, 34]).

Among the complexes frequently used to study Out(Fn) (see, for example [5, 19, 20]) are
the free splitting complex and the free factor complex (see Section 2.2 for definitions). Let S(A)
denote the free splitting complex of Fn. Stallings folding paths can be thought of as paths in
S(A). Handel and Mosher showed that these paths are quasi-geodesics in S(A) [19]. Let F(A)
denote the complex of free factors of Fn. Kapovich and Rafi [20] proved that a projection from
S(A) to F(A) takes geodesics to quasi-geodesics. Also, generalization of Stallings folding paths
give rise to geodesics in CVn, for example, see [15, 29].

However, Stallings folding paths do not in general give efficient paths in Out(Fn).

Theorem A. For any K,C > 0, there exists an element φ ∈ Out(Fn) such that any Stallings
folding path connecting R = φ(R0) to R0 does not yield a (K,C)-quasi-geodesic path in
Out(Fn).

Proof. Consider the following automorphism:

φ :

⎧⎪⎨
⎪⎩
a → a

b → b

c → c (abs)t.

That is, if R0 is the rose with edge labels a, b and c, then R = φ(R0) has labels a, b, and (abs)t.
Following Stallings folding algorithm, to go from R to R0 we need to fold the third edge around
the edges labelled a and b. At each step, there is only one fold possible. The first and second
edges remain unchanged since they are also present in R0. This takes t (s + 1) steps. That is,
the associated path in Out(Fn) has a length comparable to t s.

However, one can see that there is another path connecting R to R0 that takes 2s + t steps,
namely 〈

a, b, c(abs)t
〉 −→ 〈

abs, b, c(abs)t
〉 −→ 〈abs, b, c〉 −→ 〈a, b, c〉.
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Figure 1. A path in either Out(Fn) or CVn has an associated shadow path to other
spaces via the maps described here.

Choosing s, t sufficiently large compared with the given K and C, we have shown that the path
given by marking-directed folds was not a (K,C)-quasi-geodesic. �

One can also represent an element of Out(Fn) using train-track maps (see [6]) and consider
a folding sequence according to the train-track structure. Or similarly, consider a geodesic in
Culler–Vogtmann Outer Space and take the shadow (that is, the difference of markings to R0,
see the discussion at the beginning of Section 5 and Figure 1) of it to Out(Fn). The same
example above shows that none of these paths would, in general, produce a quasi-geodesic in
Out(Fn).

On the other hand, we observe in the above example, that even along the shorter paths, it
takes at least s steps to form or to eliminate an sth power of b and t steps to eliminate a tth
power of (abs). We examine this phenomenon through the language of relative twisting number
[8].

The relative twisting number [8] of two labelled graphs x and x′ around a loop α measures
the difference between x and x′ from the point of view of α and is denoted by twα(x, x′) (see
Definition 3.1). We show that the length of any path in Out(Fn) connecting φ to the identity
is bounded below by the relative twisting number twα(R,R0), where R = φ(R0).

Again, instead of considering a path in the Cayley graph Out(Fn), we consider a folding
sequence Rm, . . . , R0. This is a sequence of labelled graphs where Ri is obtained from Ri+1 by
a fold that it is not necessary coming from Stallings’ algorithm or any train-track structure
(see Section 2.4). We also show that if the length of the loop α remains long along the path, it
takes longer to twist around α.

Theorem B. For any folding sequence Rm, . . . , R0 and any loop α, we have

m � twα(R0, Rn).

Further, if �Ri
(α) � L > 50 for every i, then

m � twα(R0, Rn)
(

log5

L

50

)
.

One might suspect that, in the above theorem, log5 L can be replaced with L. However, we
will show that the above inequality is sharp with an example (see Example 3.8).

Theorem B can be viewed in the context of an attempt to have a distance formula for the
word length of an element in Out(Fn) in analogy with the work of Masur–Minsky in the setting
of the mapping class group [26]. Let S = Sg,s be a surface of genus g with s punctures and
Mod(S) denote the mapping class group of S, that is, the group of orientation preserving
self-homeomorphisms of S up to isotopy. One can try to understand an element f ∈ Mod(S)
inductively by measuring the contribution of every subsurface to the complexity of f . This is
done explicitly as follows: a marking μ0 on a surface S is a set of simple closed curves that
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fill the surface, that is to say, every other curve on S intersects some curve in μ0. Masur and
Minsky introduced a measure of complexity dY (μ0, f(μ0)) between μ0 and f(μ0) called the
subsurface projection distance. Namely, they defined a projection map

πY : C(S) → C(Y )

from the curve graph of S to the curve graph of a sub-surface Y and defined dY (μ0, f(μ0)) to
be the distance in C(Y ) between the projection πY (μ0) and πY (f(μ0)) to C(Y ). They showed
the sum of these subsurface projections is a good estimate for the word length of f (see [26]
for more details).

To produce the upper bound for the distance formula, Masur and Minsky constructed a class
of quasi-geodesics called hierarchy paths, whose lengths is the coarse sum of all subsurface
projection distances. An important characteristic of these quasi-geodesics is that they do not
backtrack in any subsurface Y . That is, there is a quasi-geodesic,

[0,m] → Mod(S), i → fi,

in Mod(S) so that the projection to the curve graph of Y

[0,m] → C(Y ), i → πY (fi(μ0))

is a quasi-geodesic for every subsurface Y of S.
There are several analogues for the curve graph in the setting Out(Fn), most importantly,

the free splitting graph S(Fn) and the free factor graph F(Fn) both have been shown to be
Gromov hyperbolic spaces [5, 19]. For every sub-factor A of Fn, we have projection maps [5]

Out(Fn) → S(A) → F(A)

and it is known that every quasi-geodesic in S(Fn) projects to a quasi-geodesic in F(Fn) [20].
One may hope to construct quasi-geodesic in Out(Fn) where the projections the free splitting
or the free factor graph of a sub-factor is always a quasi-geodesic. However, we use Theorem B
to prove:

Theorem C (Quasi-geodesics backtrack in sub-factors). For given constants K1, C1, K2,
C2 > 0 there exists an automorphism, φ ∈ Out(Fn) such that, for any (K1, C1)–quasi-geodesic
p : [0,m] → Out(Fn) with p(0) = id and p(m) = φ, the shadow ΘA ◦ p of p in F(A) is not a
(K2, C2)-reparameterized quasi-geodesic.

That is to say, there is φ ∈ Out(Fn) and a free factor A, such that every quasi-geodesic
connecting φ to the identity backtracks in F(A). In other words, there does not exists a quasi-
geodesics between the identity and φ that projects to a quasi-geodesics in F(A). Same is true
for S(A).

Another application of Theorem B is in the understanding of relationships between Outer
Space geodesics and Out(Fn) geodesics. The Outer Space, denoted CVn, is the set of metric
graphs whose fundamental group is identified with Fn. It is a CW -complex with Out(Fn)
action and it was defined by Culler and Vogtmann to study Out(Fn) as an analogue of
Teichmüller space which has Mod(S) action [11]. One can project a path in CVn to a
path in Out(Fn), by considering the associated difference of markings maps along a path
in CVn. Bestvina and Feighn [5] showed that greedy folding paths in CVn projects to quasi-
geodesics in free factor graphs for all sub-factors. This was used to produce a weak version of a
distance formula which give a lower bound for the word length in terms of projection distance
to S(A) [3].

However, it follows from Theorem C that shadows of greedy folding paths are not quasi-
geodesics in Out(Fn).



QUASI-GEODESICS IN Out(Fn) AND THEIR SHADOWS IN SUB-FACTORS 151

Theorem D. The shadow of geodesics in CVn do not in general behave well in Out(Fn).
More specifically,

(i) for given constants K and C, there are points x, y ∈ CVn such that for every geodesic
[x, y]CVn

in CVn connecting x to y, its image in Out(Fn) is not (K,C)-quasi-geodesic;
(ii) there are points x and y in the thick part of CVn, such that they are connected by a

greedy folding path whose shadow in Out(Fn) is not a quasi-geodesic.

Our methods do not say anything about the projection of quasi-geodesics in Out(Fn) to
S(Fn) or F(Fn). It is interesting to know if a geodesic in S(Fn) can be used as a guide to
construct efficient paths in Out(Fn).

Question E. For a given φ ∈ Out(Fn), does there always exist a quasi-geodesic in Out(Fn)
connecting φ to the identity whose projection to S(Fn) is also a quasi-geodesic?

2. Background

2.1. Labelled graphs

Recall from the introduction that a labelled graph x induces an isomorphism μ : π1(x) → Fn

called a marking. Two labelled graphs x and x′ are equivalent if there is a graph automorphism
f : x → x′ such that the following diagram commutes up to free homotopy:

Let w denote an element of Fn. We refer to a conjugacy class [w] of w as a loop. For any labelled
graph x, and any loop α, there is an immersion of a circle in x representing α which (abusing
the notation) we also denote by α. We always assume this immersion to be the shortest in its
free homotopy class in terms of the number of edges. The number of edges of a loop α in the
given marked graph x is denoted �x(α), and is called the combinatorial length of α in x.

Sometimes it is more convenient to work with the universal cover of a marked graph. The
universal cover of x is an Fn-tree (A simplicial tree with free Fn action). Given such a tree
T , an element w ∈ Fn in the conjugacy class α acts hyperbolically on T , and we use axisT (w)
to denote the axis of its action. Consistent with the definition of combinatorial lengths in the
graphs, we use �T (w) to denote the number of edges in a fundamental domain of the action of
w. Note that this is independent of the choice of w ∈ α. Hence, we can also use the notation
�T (α) which is equal to �x(α).

2.2. Free factor and free splitting graphs

There are several analogues of the curve graph in the setting of Out(Fn). The two important
ones are the free factor graph F(Fn) and the free splitting graph S(Fn).

A free factor A of Fn is a subgroup such that there exists another subgroup B where

Fn = A ∗ B.
A free factor A is proper in Fn if the rank of A is strictly less than n. Then F(Fn) is a graph
whose vertices are conjugacy classes of proper free factors of Fn and edges are associated to
pairs of proper free factors where one is contained in the other. Similarly for each free factor
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A, one defines the free factor graph F(A) whose vertices are conjugacy classes of proper free
factors of A.

A free splitting over Fn is a minimal, simplicial (but possibly not free) action of the group
Fn on a simplicial tree T with trivial edge stabilizer. Then S(Fn) is a graph whose vertices are
free splittings of Fn up to an equivariant isometry and two splittings are connected by an edge
if one can be obtained from the other by a collapse map (see [19] for more details). As above,
for any free factor A, S(A) denotes the free splitting graph of A.

There is a projection map

π : S(Fn) → F(Fn)

defined as follows. Let α be a primitive loop, that is, α = [w] and 〈w〉 is a free factor. Then, for
any free splitting T , the translation length of α in T , �T (α), can be defined as before but may
be zero. We define π(T ) = α where α is the primitive loop with shortest translation length.
Similarly, there is a projection map S(A) → F(A) which we also denote by π. These maps are
coarsely well defined (see [5]) and further we have

Theorem 2.1 [20]. The projection under π of a quasi-geodesic in S(A) is a reparameterized
quasi-geodesic in F(A).

Remark 2.2. The above theorem implies that, given a path p in Out(Fn), if its projection
to the free factor graph is not a quasi-geodesic, then its projection to the free splitting graph
was also not a quasi-geodesic.

Let x be a labelled graph and T be the universal cover. For a proper free factor A let T |A
be the minimal A–invariant subtree of T . Note that T |A ∈ S(A). Also recall that the Outer
Space (see [11] and the discussion in Section 5) denoted CVn, is the set of volume 1 metric
graphs whose fundamental group is identified with Fn. Letting T0 be the universal cover R0,
the labelled rose fixed in the introduction, we define a shadow map as follows:

ΘS
A : Out(Fn) → S(A) φ → φ(T0)|A.

That is, we change the action on T0 according to φ and take the minimal A-invariant subtree.
Composing with π : S(A) → F(A) we can define a shadow map to F(A):

ΘF
A : Out(Fn) → F(A) φ → π

(
ΘS

A(φ)
)
.

The map ΘF
A is used more often and hence we shorten the notation to ΘA. In fact, the shadow

to F(A) makes sense for all marked graphs. That is, we can define a map:

Θ∗
A : CVn → F(A) Θ∗

A(x) := π(T |A),

where T is the universal cover of x. Note that since the image of Θ∗
A does not depend on the

metric of the graph in question, it makes sense to write Θ∗
A(x) even when x is a marked graph

with no metric.
We recall the lemma in [5] on the upper bound for the distance in the free factor graph. It

states that if a loop α ∈ A is short in x then the shadow of x in F(A) is near α.

Lemma 2.3 [5, Lemma 3.3]. Let A be a proper free factor and α be a primitive element in
A. Let x be a marked graph so that �x(α) � L. Then

dF(A)(Θ∗
A(x), α) � 6L + 13.
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2.3. Intersection core

To define the relative twisting, we first need to introduce the Guirardel Core associated to
a pair of Fn-trees. We give a characterization of the 2-skeleton of the Guirardel Core that is
different from (but equivalent to) the one given in [18]. Given an Fn-tree T , let 0 be a fixed
vertex of T that we call the base point. We refer to the vertex w(0) of T , w ∈ Fn, simply by
wT and we refer to an edge by a pair of words (w,ws)T where s is the label of the oriented
edge. We say the edge (w,ws)T is an s-edge. We say an s-edge (w,ws)T is preceded by a t-edge
(u, ut)T if w = ut.

There is a one-to-one correspondence between the set of infinite geodesic rays originating
from 0 and the set of infinite freely reduced words in Fn. Hence, the Gromov boundary of the
group ∂Fn, that is, the equivalence class of quasi-geodesics rays in a Cayley graph Fn, can be
identified with the set of all geodesic rays starting from 0 which in turn can be identified with
the Gromov boundary ∂T of T . An (oriented) edge e = (w,ws)T in T defines a decomposition
of ∂Fn into two sets in the following way: a vertex vT in T is in front of e if the geodesic
connecting vT and (ws)T does not contain the edge e; likewise a vertex vT is behind e if the
geodesic connecting vT and wT does not contain e. Let ∂+(e) be the set of all the geodesic
rays originating from 0 that eventually lie in front of e and ∂−(e) be set of all geodesic rays
originating from 0 that eventually lie behind e.

Note that the sets ∂±(e) are independent of the choice of 0. Also,

∂+(e) ∪ ∂−(e) = ∂Fn and ∂+(e) ∩ ∂−(e) = ∅.
That is, e induces a partition of ∂Fn.

Definition 2.4. Consider an edge e1 in T1 and an edge e2 in T2. We say e1 and e2 are
boundary equivalent if they induce the same partition of ∂Fn. We say e1 × e2 is an intersection
square if all of the following four intersections, as subsets of ∂Fn, are nonempty:

∂+(e1) ∩ ∂+(e2) �= ∅ ∂+(e1) ∩ ∂−(e2) �= ∅
∂−(e1) ∩ ∂+(e2) �= ∅ ∂−(e1) ∩ ∂−(e2) �= ∅.

It follows from definition that a pair of boundary equivalent edges never form an intersection
square.

Example 2.5. Consider the pair of trees T1 and T2 that are covers of roses R1 and R2 with
edge labels 〈a, a2b〉 and 〈a, b〉, respectively. Let 01 be the base point in T1 and 02 be the base
points in T2 (Figure 2).

Figure 2 (colour online). The edges e1 in T1 and e2 in T2 form an intersection square.

We check that the edge e1 = (id, a)T1 and e2 = (a, a2)T2 form an intersection square by
producing the beginning of the infinite reduced words that lie in each of the intersections:

∂+(e1) ∩ ∂+(e2) : a2b−1 . . . ∂+(e1) ∩ ∂−(e2) : a(a2b)−1aa · · · = ab−1 . . .

∂−(e1) ∩ ∂+(e2) : a2b . . . ∂−(e1) ∩ ∂−(e2) : b−1 . . .
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Intuitively, this is because the edge (id, a2b)T1 in T1 that is behind e1 maps to an edge path
that passes e2, but e1 maps to an edge that is behind e2. Therefore, e1 and e2 are tangled to
each other.

Let Core(T1, T2) be the sub-complex of T1 × T2 that is the union of all intersection squares:

Core(T1, T2) =
{
e1 × e2

∣∣ ei ∈ Ti, e1 × e2 is an intersection square
}
.

We define the intersection core, or simply the core of T1, T2, to be

Core(T1, T2) = Core(T1, T2)/Fn.

It follows from [9, Lemma 3.4] that the above definition is the same as the definition given
by Guirardel.

It is clear from the definition that the core is symmetric: Core(T1, T2) is isomorphic to
Core(T2, T1). For an edge e2 ∈ T2, the e2–slice of the intersection core is the subtree in T1 that
is a collection of edges that form intersection squares with e2:

Ce2(T1) =
{
e ∈ T1

∣∣∣ e× e2 is a square in Core(T1, T2)
}
.

Guirardel showed [18] that the e2-slice is always convex and finite. That is, if two edges
e, e′ ∈ T/Fn are in a given slice, then all the edges on the geodesic path in T1/Fn connecting
e and e′ are also in the slice.

2.4. Stallings folding path

We describe Stallings folding path here as needed in this paper; for full generality, see [30]. Let
x be a labelled directed graph. Then the edges of x can be subdivided into edgelets where each
edgelet is labelled with an element in the fixed basis {s1, . . . , sn} of Fn and the concatenation
of edgelets into an edge yields the original labelling of the edge. A marking-directed fold from
x to x′ is a map from x to x′ that identifies two edgelets e1, e2 for which both of the following
are satisfied:

(i) e1 and e2 share the same origin vertex;
(ii) e1 and e2 shares the same label

The resulting quotient map from x to x′ is a homotopy equivalence respecting the markings.
We recall Stallings’ folding theorem per the context of this paper [30].

Theorem 2.6Stallings’ folding theorem [30]. For any labelled graph x, there exists a finite
sequence of marking-directed folds x = xm → · · · → x1 → x0 = R0 connecting x to R0.

For the labelled rose R in Theorem A, there is a unique Stallings folding path connecting
R to R0 because at every step, there are only two edgelets with the same label and the same
original vertex.

2.5. Folding for roses

Here, describe a folding map and its association to partitions of ∂Fn which is similar to marking-
directed fold but one does not need to match the labels of the edges identified. For simplicity,
we restrict our attention to cases where the labelled graph is a rose which is sufficient for all
our examples.
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Definition 2.7. Consider a labelled rose R and choose two edges of R labelled s and t. Let
R′ be a labelled rose whose edge labels are the same as R except the edge label t has changed
to st. We say R′ is obtained from R by a fold, and write

R′ = fold(R, t, s) or simply R′ = fold(R).

We also write T ′ = fold(T, t, s) for the equivariant map in the universal covers.

Figure 3. An edge labeled t is mapped to two edges labeled s and st.

Remark 2.8. In this paper, a fold can occur between any two edges. In contrast, marking-
directed folds [30] follow the labelling of the graphs.

Given Fn–trees T , T ′, and a fixed base points 0 ∈ T and 0′ ∈ T ′, there is a natural morphism
f : T → T ′ constructed as follows. Send 0 to 0′ and, for w ∈ Fn, send the vertex wT in T to the
vertex wT ′ in T ′. Also, send an edge (w,ws)T to the unique embedded edge path connecting
wT ′ to (ws)T ′ in T ′. The morphism f also induces an Fn–equivariant homeomorphism

f∞ : ∂T → ∂T ′.

Let T and T ′ be the universal covers of R and R′ respectively. A fold from R to R′ induces
a morphism from T to T ′ where an edge of the form (w,wt)T is mapped to the edge path

[(w,ws)T ′ , (ws,ws(st))T ′ ]

and every other edge is mapped to a single edge. Similarly, the edge (w,ws)T ′ ∈ T ′ has two
pre-images, (w,ws)T and a half of (w,wt)T . All other edges have exactly one pre-images. We
now describe how partitions given by edges in T differ from that of edges in T ′.

Proposition 2.9. Let R′ = fold(R, t, s) and f : T → T ′ be the above morphism. Then

(i) if an edge e in T is not an s-edge or a t-edge then f(e) ∈ T ′ is boundary equivalent to
e;

(ii) if e = (w,wt)T is a t-edge, then e′ = (ws,ws(st))T ′ , which is contained in f(e), is
boundary equivalent to e;

(iii) if e2 is an s-edge and e1 is the t-edge starting at the same vertex as e2 then e′ = f(e2)
partitions ∂Fn in the following way:

∂−(e′) = ∂−(e2)\∂+(e1) and ∂+(e′) = ∂+(e2) ∪ ∂+(e1);

(iv) for adjacent edges e1 = (u, us)T , e2 = (us,w)T and e′ ⊂ f(e2), we have

∂−(e1) ⊂ ∂−(e′).

Proof. Let 0 and 0′ be the base points in T and T ′; F (0) = 0′. Note that changing a base
point 0 to a point w in T moves both the partition given by e in T and given by e′ in T ′ by
the action of w. Hence, it is sufficient to prove the statement for any desired base point.

Consider an edge e′ ∈ T ′ that has only one pre-image under the morphism f : T → T ′. That
is, e is the only edge where e′ ⊆ f(e). Then, e and e′ are boundary equivalent. To see this,
assume 0 = wT . A ray r starting from 0 crosses e if an only if f(r) crosses e′. Hence, a ray is
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eventually in front of e if and only if it is eventually in front of e′ which, by definition, means
e and e′ are boundary equivalent. This finished the proof of the first two parts.

Let e1 = (u, ut)T and e2 = (u, us)T . We choose 0 = u. Then e1 and e2 are the only two edges
that are mapped over f(e1). But a ray r in T starting from 0 crosses at most one of e1 or e2.
In fact, f(r) crosses either edge if and only if it is eventually in front of f(e1). That is,

∂+f(e) = ∂+(e) ∪ ∂+(ê).

The other equality in part (iii) holds because ∂−f(e1) is the complement of ∂+f(e1).
In part (iv), we have e1 = (u, us)T . Since R′ = fold(R, t, s), the only ray r in ∂−(e1) where

f(r) crosses f(e1) is a ray starting with (u, ut)T . If such is the case, then f(r) starts with
[(u, us)T ′ , (us, us(st))T ′ ]. But e′ is different from (us, us(st))T ′ (which has only one pre-image).
Hence, f(r) does not cross e′ and lands in ∂+(e′). Therefore,

∂−(e1) ⊂ ∂−(e′). �

3. Twisting estimate

Let |G| denote the number of edges in the given graph G. We now define relative twisting
number, which is an analogue of the Masur–Minsky twisting number [26]. Recall that, for a
given pair of trees T and T0, a slice Ce0(T ) over an edge e0 ∈ T0 is the subtree of T consisting
of edges that form intersection squares with e0.

Definition 3.1. Given a loop α and two Fn–trees T, T0, the relative twisting number of
Fn–trees T, T0 around α is

twistα(T, T0) = max
e0∈T0, w∈α

| axisT (w) ∩ Ce0(T )|
�T (α)

.

If T and T0 are universal covers of R and R0, we define twistα(R,R0) = twistα(T, T0).

Example 3.2. We illustrate the intuition behind this definition by an example. Consider
the rose R with labels 〈a, b, c (ab)4〉 and let T be the universal cover of R with base point 0
and let T0 be the universal cover of R0 with labels 〈a, b, c〉 and base point 00 as usual. Let
α = [ab] and w = ab. Then, �T (α) = 2. Consider the edges ea = (id, a)T0 . Then Cea is the tree
depicted next. The solid edges form a slice but the dashed edges are not in the core. One can
see this by direct computation or from [9, Lemma 3.7] which states that Cea is the interior
of the convex hull of the pre-image of ea. Intuitively, this is caused by the fact that the edge
(c, (ab)4)T in T (which is the doted edge on the right) is in front of all the solid edges in T
but maps to an edge path that crosses ea which is behind the image of the solid edges in T0.
The edge e = (id, a)T (the dotted edge in the left) does not form an intersection square with
ea because ∂−e ∩ ∂+ea = ∅ (Figure 4).

Figure 4 (colour online). The slice Cea over ea ∈ T0 is a path of length 7.

The whole slice lies on axisT (ab), therefore

| axisT (ab) ∩ Cea(T )|
�T (α)

=
7
2

= 3.5.
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Meanwhile, if we consider eb = (id, b)T , the slice over eb is the set of solid edges in Figure 5.

Figure 5 (colour online). The slice Ceb over eb ∈ T0 is a path of length 6.

Since this slice also lies on axisT (ab), we have

| axisT (ab) ∩ Ceb(T )|
�T (α)

=
6
2

= 3.

This means, if one starts from b, one observes less twisting. Lastly, the edge ec = (id, c)T has
only one pre-image in T . This implies that Cec = ∅ (again, see [9, Lemma 3.7]). Thus the
estimate for the twist depends heavily on the choice of e0. In our example,

twistα(T, T0) = max {3.5, 3, 0} = 3.5 and twα(T, T0) = [3.5] = 3.

Remark 3.3. The twisting number defined above is a rational number. The integer part of
twistα(T, T0), which we denote by twα(T, T0), is equal to the Clay–Pettet definition of relative
twisting number which considers hyperplanes τ, τ0 in the core that are dual to specific edges
and counts how many α–translates of τ intersects τ0 (see [8] for details). Similar to the above
example, one can see that in the example of Theorem A,

twb(R0, φ(R0)) = s− 1 and twabs(R0, φ(R0)) = t− 1.

We now show that the relative twisting number changes slowly along loops with large lengths.
For a real number r > 0, let [r] be the integer part of r and {r} be the fractional part of r.

Theorem 3.4. Let R′ be obtained from R by a single fold:

R′ = fold(R, t, s).

Then, for any loop α,

twα(R′, R0) � twα(R,R0) − 1, (1)

where R0 is as defined before. Furthermore,

twistα(R′, R0) �
[
twistα(R,R0) − 2

�R(α)

]
+

{
twistα(R,R0) − 2

�R(α)

}
4

. (2)

We need to prepare for the proof by establishing a few lemmas. Note that R can also be
obtained from R′ by a single fold:

R′ = fold(R, t, s), R = fold(R′, st, s).

For the rest of this section, we assume T and T ′ are universal covers of R and R′ respectively
and that

f : T → T ′ and g : T ′ → T

are the morphism associated to these folds. For an embedded edge path P = [e1 · · · ek] in T ,
let f(P ) denote the image of P under the morphism f and let f(P )w denote the embedded
edge path that is the intersection of f(P ) and axisT ′(w). We call e1 and ek the end edges of P .
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Lemma 3.5. For any loop α, we have

�T (α) � �T ′(α)
2

.

Also, if P = [e1 · · · ek] is an edge path on the axisT (w), for some w ∈ Fn, so that both f(e1)
and f(ek) contain an edge on axisT ′(w), then

∣∣f(P )w
∣∣ � |P |

2
.

Proof. Recall that f maps an edge (u, ut)T to the edge path

[(u, us)T ′ , (us, us(st))T ′ ]

and maps every other edge to one edge. Therefore, for any embedded edge path P in T ,∣∣f(P )
∣∣ � 2|P |. (3)

If P is an edge path that realizes �T (α), then |f(P )| � �T ′(α), thus

�T (α) = |P | �
∣∣f(P )

∣∣
2

� �T ′(α)
2

.

Now assume P = [e1 · · · ek] is an edge path on the axisT (w) and both f(e1) and f(ek) contain
an edge on axisT ′(w). Applying, equation (3) to the morphism g and the edge path f(P )w, we
have

|g(f(P )w)| � 2|f(P )w|. (4)

We need to show P ⊆ g(f(P )w). In fact, it suffices to show that any end vertex of P is contained
in g(f(P )w).

Let uT be the first vertex in e1 (the argument for the last vertex of ek is similar). If uT ′ ∈
axisT ′(w), then uT ′ ∈ f(P )w, which means uT ∈ g(f(P )w). Otherwise, uT ′ /∈ axisT ′(w). By
assumption, f(e1) contains an edge on axisT ′(w). It follows that e1 is mapped to two edges
[e′, e′′] under f , which means e1 is necessarily a t-edge (or a t−1-edge, in which the remainder of
the proof changes accordingly). Furthermore, the edge e′ has two pre-images. This is because,
uT ′ /∈ axisT ′(w) and the edge preceding e1 along the axisT (w) must be mapped over e′ as well.
But the edges in T ′ with label st have only one pre-image. Hence,

e1 = (u, ut)T , e′ = (u, us)T ′ , and e′′ = (us, ut)T ′ .

We then have

(us)T ′ , (ut)T ′ ∈ axisT ′(w) =⇒ (us)T , (ut)T ∈ g(f(P )w).

But T is a tree and the vertex uT necessarily lies on the path connecting (us)T and (ut)T .
Thus (us)T , (ut)T ∈ g(f(P )w) implies uT ∈ g(f(P )w).

We have shown that the end vertices of P are both in g(f(P )w), which implies P ⊆ g(f(P )w).
The lemma follows from equation (4). �

Let α ∈ Fn be a loop. Let e0 ∈ T0 and w ∈ α be so that the edge path

P := [e1e2 . . . ek] = axisT (w) ∩ Ce0(T )

is the one realizing the maximum in the definition of twistα(T, T0), although we remark that
maximality is not needed for the following result.

Lemma 3.6. Let P be the path above and assume |P | � 2. Then f([e1e2]) contains an edge
in Ce0(T

′) ∩ axisT ′(w). The same holds for f([ek−1ek]). Furthermore, if �T (α) = 1, then either
f(e1) or f(ek) contains an edge in Ce0(T

′) ∩ axisT ′(w).
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Proof. The edge path f(P ) contains f(P )w. Furthermore, an edge in f(P ) is on f(P )w if
and only if it has a unique pre-image in axisT (w).

If, for i = 1 or 2, ei = (u, v) and uv is not s, s, t or t, then f(ei) is a single edge, has one
pre-image and it is boundary equivalent to ei. Hence, it lies on Ce0(T

′) ∩ axisT ′(w).
If ei = (u, ut), by the definition of fold(T, t, s), ei is mapped to the edge path

[(u, us)(us, us(st))].

Since the edge (us, us(st)) has only one pre-image, it lies on f(P )w and by Proposition 2.9,
it is boundary equivalent to ei and thus (us, us(st)) ∈ Ce0(T

′). Similar argument works when
ei = (ut, u). Also, this shows that if α = t or t, then either f(e1) or f(ek) contains an edge in
Ce0(T

′) ∩ axisT ′(w).
There are two remaining cases. Assume e1 = (u, us) and e2 = (us, us2). Then the t-edge

starting at us, (us, ust), does not lie on axisT (w). Hence, f(e2) has one pre-image in axisT (w)
and thus is on axisT ′(w). Also, by part (iii) of Proposition 2.9,

∂+(e2) ⊂ ∂+(f(e2))

and by part (iv) of Proposition 2.9,

∂−(e1) ⊂ ∂−(f(e2)).

Since e1, e2 ∈ Ce0(T ), each of ∂+(e2) and ∂−(e1) intersects each of ∂+(e0) and ∂−(e0).
Therefore, each of ∂+(f(e2)) and ∂−(f(e2)) intersects each of ∂+(e0) and ∂−(e0). That is,
f(e2) ∈ Ce0(T

′).
The remaining case when e1 = (us2, us) and e2 = (us, u) is identical, except in this case,

f(e1) is in Ce0(T
′) ∩ axisT ′(w). These two cases also show that if α = s or s, then both f(e1)

and f(ek) contains an edge in Ce0(T
′) ∩ axisT ′(w). �

Proof of Theorem 3.4. Recall α ∈ Fn is a loop and the edge path

P := [e1e2 . . . ek] = axisT (w) ∩ Ce0(T )

is the edge path that realizes the maximum in the definition of twistα(T, T0). By Lemma 3.6,
either f(e1) or f(e2) contains an edge that is in Ce0(T

′) ∩ axisT ′(w). Call the associated edge in
T (either e1 or e2), efirst. Likewise, one of f(ek−1) or f(ek) has this property. Call the associated
edge in T (either ek−1 or ek) elast. The combinatorial length of the edge path [efirst · · · elast] is
at least

k − 2 = twistα(T, T0) �T (α) − 2.

Hence, if we define

p :=
[
twistα(T, T0) − 2

�R(α)

]
, (5)

then (k − 2) � p · �R(α) = p · �T (α). Therefore, [efirst · · · elast] contains at least p copies of
the fundamental domain of the action of w on axisT (w) and, in particular, wp(efirst) (the
translation of efirst by the action of wp) lies on [efirst · · · elast]. Let Premain be the edge path
[wp(efirst) · · · elast]. Since efirst contains an edge in axisT ′(w), so does wp(efirst). That is, f(P )w
consists of p fundamental domains of the action of w on axisT ′(w) and the segment f(Premain)w.
Thus

twistα(T ′, T0) �
p�T ′(α) + |f(Premain)w|T ′

�T ′(α)
= p +

|f(Premain)w|T ′

�T ′(α)
. (6)

Also, by Lemma 3.5

�T ′(α) � 2�T (α) and |f(Premain)w|T ′ � |Premain|T
2

.
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Also, since

|Premain|T � |P |T − p �T (α) � (k − 2) − p �T (α),

we have
|Premain|T
�T (α)

� k

�T (α)
− 2

�T (α)
− p.

Let L := �T (α), we then have

|Premain|T
�T (α)

� k

�T (α)
− 2

�T (α)
− p

� twistα(T, T0) − 2
L

− p =
{

twistα(T, T0) − 2
L

}
,

where the last equality follows from the definition of p. Hence

|f(Premain)w|T ′

�T ′(α)
� |Premain|T /2

2�T (α)
�

{
twistα(T, T0) − 2

L

}
4

. (7)

Equation (2) follows from equations (5)–(7).
For L � 2, equation (2) implies equation (1). If L = 1, from the second assertion of

Lemma 3.6, we have that either e1 = efirst or ek = elast. Hence, f(P )w contains at least (k − 1)
fundamental domains of action of w and twα(T ′, T0) � k − 1. But twα(T, T0) = k. Therefore,
equation (1) still holds. �

Theorem 3.7. For any folding sequence Tm, . . . , T0 and any loop α, we have

m � twα(Tm, T0).

Further, if �Ti
(α) � L > 50 for every i, then

m > twα(Tm, T0)
(

log5

L

50

)
.

Proof. The first assertion of the theorem follows directly from the first assertion of
Theorem 3.4. We prove the second assertion.

For a real number 10
L < r, we have

r − 2
L

>
4r
5

and
r − 2

L

4
>

r

5
. (8)

For any 0 � N < twα(Tm, T0), consider the first time i = i(N) when twα(Ti, T0) = N . Since
the index decreases as we fold towards T0, i is the maximal of all the times twα(Tj , T0) = N .
Now apply Theorem 3.4 with T = Ti+1 and T ′ = Ti. Since i is the first time twα(Ti, T0) = N ,
we have

[twist(Ti, T0)] = N and [twist(Ti+1, T0)] = N + 1.

That is to say, [twist(Ti+1, T0) − 2
L ] � N as 2

L < 1. By equation (2),

twist(Ti, T0) �
[
twist(Ti+1, T0) − 2

L

]
+

{
twist(Ti+1, T0) − 2

L

}
4

therefore

N + {twist(Ti, T0)} � N +

{
twist(Ti+1, T0) − 2

L

}
4
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and hence

{twist(Ti, T0)} �
{
twist(Ti+1, T0) − 2

L

}
4

.

Again since this is the first time that twα(Ti, T0) = N , we have

twist(Ti+1, T0) � N � 0.

That is to say twist(Ti+1, T0) � 1. From equation (2), we also have

twistα(Ti, T0) �
[
twistα(Ti+1, T0) − 2

L

]
.

Combined with the fact that twα(Ti, T0) < twα(Ti+1, T0), we have that

{twistα(Ti+1, T0)} <
2
L
. (9)

Therefore,

{twist(Ti, T0)} �
{
twist(Ti+1, T0) − 2

L

}
4

=

{
twist(Ti+1, T0) + 1 − 2

L

}
4

=

{{twist(Ti+1, T0)} + 1 − 2
L

}
4

�
{
1 − 2

L

}
4

=
1 − 2

L

4
� 1

5
.

Let (i− k − 2) be first time when twα(Ti−k−1, T0) = N − 1. Then the step immediately
before that we again have

{twist(Ti−k−1, T0)} � 2
L
.

Which means for the step before that we have{
twist(Ti−k, T0) − 2

L

}
4

� {twist(Ti−k−1, T0)} � 2
L
.

Which means {twist(Ti−k, T0)} � 10
L . That is, in k-steps, the fractional twist has been

reduced from above 1
5 to below 10

L . Thus, from Proposition 3.4 and equation (8), we have
1
5

5k
<

10
L
,

which can be rewritten as

k > log5

L

50
.

Since this is true for every 0 � N < twα(T0, Tm), we have

twα(Tm, T0) <
m

log5
L
50

=⇒ m > twα(Tm, T0)
(

log5

L

50

)
,

which is as desired. �

3.1. The lower bound is sharp

At first glance, one might think, that the factor log5
L
50 in Theorem 3.4 could be replaced with

a linear function of L. However, we show that the above estimate is sharp up to a uniform
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multiplicative error. We now construct, for an arbitrarily large L a folding path R = Rm, . . . , R0

so that

• the length of α at each Ri is at least L;
• m is comparable with logL twα(R,R0).

Example 3.8. Let R be a rose of rank 5 with edge labels〈
(bc)ma, d b, φk(d)c, d, e

〉
,

where φ : 〈d, e〉 → 〈d, e〉 is a fully irreducible automorphism of the free factor 〈d, e〉 with
exponential growth and

λ(φ) = λ(φ−1).

Let L be the word length of φ�k/2�(d) (and also the length of φ−�k/2�(d)) in 〈d, e〉 which can
be chosen to be arbitrarily large by choosing k large enough. Let α = [bc]. Let R0 be a rose
with labels

〈a, d b, φk(d)c, d, e〉.
The shortest way to express α in R is

bc = (d) · (db) · φ−k(d) · (φk(d)c),

where the terms in parentheses are labels of edges in R and is a word of length roughly L2 in
〈d, e〉. We have

�R(α) � L2 > L.

Similar to Example 3.2, we have

twα(R,R0) = m− 1.

We now start twisting around the loop [bc], however in a somewhat un-natural way that always
keeps the length of α larger than L, using the following steps.

(1) Twist the ((bc)ma)–loop around the first half of α, that is to say, cancel b (which is half
of α) from (bc)ma. To do this we first fold the ((bc)ma)–loop around the (d)–loop, and then
fold the resulting loop around (db)–loop. Thus this step uses two folds:

(db) · d · (bc)ma = c(bc)m−1a.

(2) Fold 〈d, e〉 to 〈φk(d), φk(e)〉; this takes

k ‖φ‖〈d,e〉 � logL

many steps. Note that the immersed loop

bc = (d) · (db) · φ−k(d) · (φk(d)c),

contains both d and φ−k(d). At any point along this folding path, say after φi has been applied
i times, we have

max
(∣∣d∣∣〈

φi(d),φi(e)
〉, ∣∣φ−k(d)

∣∣〈
φi(d),φi(e)

〉) � |φ�k/2�(d)| = L,

where |·|〈φi(d),φi(e)〉 denotes the word length of an element in the group 〈d, e〉 in terms of φi(d)
and φi(e). Thus the combinatorial lengths of α remains at least L for each i.

(3) Twist around the second half of α, that is, cancel c from c(bc)m−1a in two folds:

(φk(d)c) · φk(d) · c(bc)m−1a = (bc)m−1a.
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(4) Fold 〈φk(d), φk(e)〉 to 〈d, e〉. Again, the number of steps is comparable to logL and the
length of α remains larger than L.

We now repeat steps 1–4, m-times. Every time the relative twisting around α is reduced by
1. The path has a length of order m logL as desired.

4. Quasi-geodesics in Out(Fn)

In this section we use Theorem B to prove Theorem C. Consider a path p : [0,m] → X from
an interval [0,m] ⊂ R to a metric space X and, for i ∈ [0,m], let pi = p(i). Recall that p is a
(K,C)-quasi-geodesic if for any i, j ∈ [0,m], we have

|i− j| − C

K
� dX (pi, pj) � K |i− j| + C.

It follows that, any three points in the image of a quasi-geodesic satisfy a coarse-reverse-triangle
inequality. Namely, for any i, j, k ∈ [0,m], i � j � k, we have

dX (pi, pj) + dX (pj , pk) � K2dX (pi, pk) + (K + 2)C. (10)

We say p is a reparametrized (K,C)-quasi-geodesic if there is a reparametrization ρ : [0,m] →
[0,m] so that p ◦ ρ is a (K,C)-quasi-geodesic. Since the image of p and p ◦ ρ are the same,
if p is a reparametrized quasi-geodesic, any three points in its image still satisfy the coarse-
reverse-triangle inequality given in equation (10). Often, it is convenient to consider maps from
intervals [0,m]Z in Z to a metric space X . Then we say p : [0,m]Z → X is a reparametrized
quasi-geodesic if it is a restriction of a reparamterized quasi-geodesic from [0,m] → X .

We can now restate Theorem C explicitly as follows:

Theorem 4.1 (Quasi-geodesics backtrack in sub-factors). For given constants K1, C1, K2,
C2 > 0 there exists an automorphism, φ ∈ Out(Fn) such that, for any (K1, C1)–quasi-geodesic
p : [0,m] → Out(Fn) with p(0) = id and p(m) = φ, the shadow ΘA ◦ p of p in F(A) is not a
(K2, C2)-reparameterized quasi-geodesic.

Proof. Let 〈a, b, c〉 be a generating set for F3, and let R0 be a rose with labels {a, b, c}. Let
ψ ∈ Out(F3) be an automorphism defined as:⎧⎨

⎩
a −→ aba
b −→ ab
c −→ c

Given the generating set introduced in the introduction, ‖ψ‖ = ‖ψ−1‖ = 2 where ‖·‖
represents the word length. Let A = 〈a, b〉 < F3 be a rank 2 free factor. The automorphism ψ
fixes A. We denote the restriction of ψ to A by ψA. Then, ψA is an irreducible automorphism
and acts loxodromicly on the free-factor graph F(A) of A. Hence, there exists a constant cψ > 0
so that, for an integer q > 0

dA(R0, ψ
q(R0)) � cψq. (11)

Let α be the loop represented by the word ψq(a) and, for a large integer t > 0, let φ ∈ Out(F3)
be the automorphism that twists the element c around α t–times, namely:⎧⎨

⎩
a −→ a
b −→ b
c −→ c(ψq(a))t



164 YULAN QING AND KASRA RAFI

We first find an upper-bound for the ‖φ‖ by constructing a path connecting identity to φ.
First apply ψq so α is represented by one edge in the rose ψq(R0), then twist c around α
t–times, and then apply ψ−q. We have

‖φ‖ � q(‖ψ‖ + ‖ψ−1‖) + t = 4q + t.

Now consider the (K1, C1)–quasi-geodesic p : [0,m] → Out(F3) connecting the identity to φ.
We have

m � K1‖φ‖ + C1 � 4K1 q + K1 t + C1. (12)

If the shadow of p to A is a (K2, C2)–reparatmetrized quasi-geodesic, then the coarse-reverse-
triangle inequality (equation (10)) holds. That is, for any index i and Ri = p(i)(R0), we have

dA(R0, Ri) + dA(Ri, φ(R0)) � (K2)2dA(R0, φ(R0)) + (K2 + 2)C2.

But φ fixes a and b and thus R0 and φ(R0) have the same projection to A. Hence,

2dA(R0, Ri) � (K2 + 2)C2.

Now, using equation (11), we get

dA(Ri, ψ
q(R0)) � dA(R0, ψ

q(R0)) − dA(R0, Ri) � cψq − (K2 + 2)C2.

By Lemma 2.3, this implies

�Ri
(α) � cψ q − (K2 + 2)C2 − 13

6
=: L. (13)

Now, Theorem 3.7 implies that

t = twα(R0, Rm) � m

log5
L
50

and using equation (12) we get

t � 4K1 q + K1 t + C1

log5
L
50

.

If we choose q large enough so that

log5

L

50
> 2K1

and then choose t large enough so that

t

2
>

4K1 q + C1

log5
L
50

,

we get

t � 4K1 q + C1

log5
L
50

+
K1 t

log5
L
50

<
t

2
+

t

2
= t

which is a contradiction. The contradiction proves that the shadow of p to F(A) is not a
reparametrized (K2, C2)-quasi-geodesic. �

5. Outer Space

Outer Space CVn is metric space with Out(Fn) action defined as an analogue of the Teichmüller
space; see [11] for more details. Here, we introduce CVn briefly and prove Theorem D.

We assume a graph is always simple and all vertices have degree 3 or more. A marked metric
graph (x, f) is a metric graph x together with homotopy equivalence f : R0 → x. The space



QUASI-GEODESICS IN Out(Fn) AND THEIR SHADOWS IN SUB-FACTORS 165

of all marked metric graphs whose edge lengths sum up to one is called the Outer Space [11]
and is denoted by CVn. The group Out(Fn) acts on CVn by pre-composing the marking: for
an element φ ∈ Out(Fn), φ(x, f) = (x, f ◦ φ).

Note that we can still think of x as a labelled graph. Recall that �x(α) denotes the
combinatorial length of α in x. Let |e|x denote the metric length of an edge e in x and |α|x the
metric length of α in x, which is the metric length of the immersed loop of the representative
of α that realizes its combinatorial length in x.

For a fixed ε > 0 define the thick part of CVn to be the set of x ∈ CVn such that

|α|x � ε for every nontrivial conjugacy class α.

A map h : (x, fx) → (y, fy) is a difference of markings map if h ◦ fx � fy (homotopy). We
will only consider Lipschitz maps and we denote by Lh the Lipschitz constant of h. In many
ways it is natural to consider the (asymmetric) Lipschitz metric on CVn:

d(x, y) := inf
h

logLh,

where the infimum is taken over all differences of markings maps. We refer the reader to [2,
15] for review for some metric properties of d(·, ·). In particular, there always exists a non-
unique difference of markings map that realizes the infimum. Since a difference of markings
map is homotopic rel vertices to a map that is linear on edges, we also use h to denote the
representative that realizes the infimum and is linear on edges and refer to such a map as
an optimal map from x to y. For this section we always assume h is an optimal difference of
markings map. Since h is linear on edges, we define

λ(e) =
|h(e)|y
|e|x

to be the stretch factor of an edge e and

λ(α) =
|α|y
|α|x

to be the stretch factor of a shortest immersed loop that represents α. Define the tension
subgraph, xφ, or stretch(x, y), to be the subgraph of x consisting of maximally stretched edges.

Now we restate and prove part (i) of Theorem D:

Theorem 5.1 (Shadow of a geodesic in CVn is not a quasi-geodesic in Out(Fn)). For given
constants K and C, there are points x, y ∈ CVn such that for every geodesic [x, y]CVn in CVn

connecting x to y, its image in Out(Fn) is not (K,C)-quasi-geodesic.

Proof. Consider the same example in rank 3 as in Theorem 4.1 where φ is defined as⎧⎨
⎩
a −→ a
b −→ b
c −→ c(ψq(a))t.

Let w = c (ψq(a))t ∈ F3 and let M be the length of w in the basis 〈a, b, c〉. Let x ∈ CVn be
a rose where the edges are labelled a, b and w and

�x(a) = �x(b) =
1

M + 2
and �x(w) =

M

M + 2

and let y ∈ CVn be a rose where the edges are labelled a, b and c and have length 1
3 each. Note

that the length ratio of a, b and w from x to y are identical,

�y(w)
�x(w)

=
M/3

M/(M + 2)
=

M + 2
3

=
1/3

1/(M + 2)
=

�y(a)
�x(a)

=
�y(b)
�x(b)

.
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In particular, we have

dCVn(x,y) = log
M + 2

3
.

In fact, it follows from [29] that there is a unique geodesic [x, y]CVn
in CVn connecting x to y

and it folds along the unique illegal turn. Namely, it folds the edge labelled w around the free
factor A and if p : [0,m] → Out(Fn) is the shadow of [x, y]CVn in Out(Fn), then the projection
of p to A = 〈a, b〉 backtracks. Hence, as was seen in the proof of Theorem 4.1, for any K and
C, we can choose q and t large enough so that p is not a (K,C)-quasi-geodesics. �

We can also modify the example in Theorem 4.1 to prove part (ii) of Theorem D. For brevity,
we do not define greedy folding paths here. They are used in [5] in an essential way to prove
the hyperbolicity of of the free-factor graph. What we need is that if stretch(x, y) = x then
there is a greedy folding path connecting x to y.

Theorem 5.2. There are points x and y in the thick part of CVn, such that they are
connected by a greedy folding path whose shadow in Out(Fn) is not a quasi-geodesic.

Proof. Let 〈a, b, c〉 be a generating set for F3, let R0 be a rose with labels {a, b, c}. Let ψ
and ψA be as before. Let y ∈ CVn be the rose R0 with edge labels a, b and c and edge lengths
1
3 .

Let g be the axis of ψA in F(A), the free factor graph associated to A. Also let
α1, α2, . . . , αk ∈ A be primitive loops in A that, considered as vertices in F(A), are distance
D or further from g for a large constant D. † For positive integers n1, n2, . . . , nk, let φ be the
following automorphism: ⎧⎨

⎩
a −→ ψn(a)
b −→ ψn(b)
c −→ c αn1

1 · · ·αnk

k .

We observe that |ψn(a)|y and |ψn(b)|y, as a function n, grow at a fixed exponential rate that
is less than 3. Therefore for any given loops αi and powers ni, there is a power n so that

max (|ψn(a)|y, |ψn(b)|y) � |c αn1
1 · · ·αnk

k |y � 3 min (|ψn(a)|y, |ψn(b)|y). (14)

Let x be a rose with edge labels, ψn(a), ψn(b) and c αn1
1 · · ·αnk

k (note that these form a basis
for F3) and edge lengths

|ψn(a)|y
T

,
|ψn(b)|y

T
and

|c αn1
1 · · ·αnk

k |y
T

,

where

T = |ψn(a)|y + |ψn(b)|y + |c αn1
1 · · ·αnk

k |y.
Then stretch(x, y) = x and equation (14) implies that every edge length in x is larger than 1

7
(x is 1

7–thick part of CVn).
Let φi be the shortest automorphism such that φi(αi) = a and let ri = ‖φi‖. It follows from

construction that

‖φ‖ � 3n +
k∑

i=1

(2ri + ni). (15)

†As we shall see, it is enough to have one such loop, however choosing many loops showcases how different
the shadow of a quasi-geodesic in Out(Fn) to F(A) could be from being a quasi-geodesic.
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Let �i be the length of αi in the 〈a, b〉 basis and let λ be the stretch factor of φ. To make
equation (14) hold, we need

λn ∼ 1 +
k∑

i=1

ni�i.

Letting nmax = maxi ni we have, for constants c1 and c2 depending on k, ri and �i, that

n � c1 log nmax, and ‖φ‖ � (k + 1)nmax + c2.

Now let p : [0,m] → Out(Fn) be the shadow of [x, y]gf to Out(Fn). Bestvina–Feighn[5]
showed that the projection of [x, y]gf to F(A) is a quasi-geodesic. Hence the projection of
p[0,m] to F(A) stays near g and thus remains far from every αi. And, again by [5, Lemma
3.3], this implies that the combinatorial length of αi at any point along [x, y]gf is large, say
larger than some constant L depending linearly on D. By Theorem 3.4,

m � max
i

ni logL.

But, since p is a quasi-geodesic, m ≺ ‖φ‖. For large enough L, the above inequality contradicts
equation (15). This implies p cannot be a quasi-geodesic. �
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