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Limit sets of Teichmiiller geodesics with minimal
nonuniquely ergodic vertical foliation, II

By Jeffrey Brock at Providence, Christopher Leininger at Urbana, Babak Modami at Urbana
and Kasra Rafi at Toronto

Abstract. Given a sequence of curves on a surface, we provide conditions which ensure
that (1) the sequence is an infinite quasi-geodesic in the curve complex, (2) the limit in the
Gromov boundary is represented by a nonuniquely ergodic ending lamination, and (3) the
sequence divides into a finite set of subsequences, each of which projectively converges to
one of the ergodic measures on the ending lamination. The conditions are sufficiently robust,
allowing us to construct sequences on a closed surface of genus g for which the space of
measures has the maximal dimension 3g — 3, for example.

We also study the limit sets in the Thurston boundary of Teichmiiller geodesic rays
defined by quadratic differentials whose vertical foliations are obtained from the construc-
tions mentioned above. We prove that such examples exist for which the limit is a cycle in the
1-skeleton of the simplex of projective classes of measures visiting every vertex.
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2 Brock, Leininger, Modami and Rafi, Limit sets of Teichmiiller geodesics
1. Introduction

This paper builds on the work of the second and fourth author with Anna Lenzhen, [22],
in which the authors construct a sequence of curves in the five-punctured sphere S with the
following properties (see Section 2 for definitions). First, the sequence is a quasi-geodesic ray
in the curve complex of S, and hence converges to some ending lamination v. Second, v is
nonuniquely ergodic, and the sequence naturally splits into two subsequences, each of which
converges to one of the ergodic measures on v in the space of projective measured laminations.
Third, for any choice of measure v on v and base point X in Teichmiiller space, the Teichmiiller
ray based at X and defined by the quadratic differential with vertical foliation v, accumulates
on the entire simplex of measures on v in the Thurston compactification. The construction
in [22] was actually a family of sequences depending on certain parameters.

In this paper we extract the key features of the sequences produced in the above con-
struction as a set of local properties for any sequence of curves {yx}z-, on any surface,
which we denote J; see Section 3 and Definition 3.1 as well as Section 7 for examples. Here,
“local” is more precisely m-local for some 2 < m < £(S) (where £(S) = dimc (Teich(S))),
and means that the conditions in & involve relations between curves contained subsets of the
form {yg, ..., Yk4+2m} for k > 0. We refer to the number m as the subsequence counter. Most
of the conditions in J are stated in terms of intersection numbers, though they also include
information about twisting which is recorded in an auxiliary sequence {ex }72 , C N.

Theorem 1.1. For appropriate choices of parameters in P, any sequence {yi}72
in €(S) satisfying P will be the vertices of a quasi-geodesic in €(S) and hence will limit
to an ending lamination v in 0€(S) = EL(S).

If w =yoU--Uym—i, then for any k > m, the subsequence counter, we have

J’_
dy, (L, v) < eg.

On the other hand, there is a constant R > 0 with the property that for any proper subsurface
W # yi for any k € N we have

dw(p,v) < R.

See Propositions 4.4 and 4.5 for precise statements. Here dyy is the projection coefficient
for W and d, the projection coefficient for (the annular neighborhood of) y; see Section 2.4.

Although the conditions in & only provide local information about intersection numbers,
we can deduce estimates on intersection numbers between any two curves in the sequence from
this; see Theorem 5.1. From these estimates, we are able to promote the convergence y; — v
in €(S) into precise information about convergence in LML (S). To state this, we note that the
local condition depends on the subsequence counter m. There are m subsequences {)/l-h};?io, for
h=0,...,m—1, defined by yl.h = Yim+h-

Theorem 1.2. For appropriate choices of parameters in P, and any sequence {yk},‘;":o
in €(S) satisfying P, the ending lamination v € EL(S) from Theorem 1.1 is nonuniquely
ergodic. Moreover, if m is the subsequence counter, then the dimension of the space of measures
on v is precisely m, and the m subsequences {)/l.h 2 o converge to m ergodic measures " on v,
forh =0,...,m— 1, spanning the space of measures.
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Brock, Leininger, Modami and Rafi, Limit sets of Teichmiiller geodesics 3

For precise statements, see Theorems 5.10, 6.1, and 6.5.

We note that for any nonuniquely ergodic lamination v, the space of measures is always
the cone on the simplex of measures on v, denoted A(v), which is projectively well-defined.
The vertices of A(v) are the ergodic measures, and the dimension of the space of measures is at
most £(S): This follows from the fact that the Thurston symplectic form on the 2£(S)-dimen-
sional space MZL(S) must restrict to zero on the cone on A(v) since it is bounded above
by the geometric intersection number, [35, Section 3.2], and consequently must be at most
half-dimensional (see also [28, Section 1] and the reference to [20,40]). We note that the sub-
sequence counter m can also be at most £(5), and the explicit constructions in Section 7 are
quite flexible and provide examples with this maximal dimension, as well as examples with
smaller dimensions.

As an application of these theorems, together with the main result of the first and third
author in [5] and Theorem 1.1, we have:

Corollary 1.3. Suppose that v is as in Theorem 1.1. Any Weil-Petersson geodesic ray
with forward ending lamination v is recurrent to a compact subset of the moduli space.

Here, the ending lamination of a Weil-Petersson geodesic ray is given as in [3,4]. The
corollary, which follows directly from [5, Theorem 4.1] after observing that v satisfies the con-
dition of nonannular bounded combinatorics (see Proposition 4.5), provides greater insight
into the class of Weil-Petersson ending laminations that violate Masur’s criterion. In particu-
lar, these nonuniquely ergodic laminations determine recurrent Weil—Petersson geodesic rays,
by contrast to the setting of Teichmiiller geodesics where Masur’s criterion [30] guarantees
a Teichmiiller geodesic with such a vertical foliation diverges.

For any lamination v coming from a sequence {yx}p—, satisfying &, as well as some
additional conditions (see (8.8) in Section 8 and condition J (iv) in Section 9), we analyze the
limit set of a Teichmiiller geodesic ray defined by a quadratic differential with vertical foliation
v supported on v. To describe our result about the limiting behavior of this geodesic ray, we
denote the simplex of the projective classes of measures supported on the lamination by A(v)
in the space of projective measured foliations, viewed as the Thurston boundary of Teichmiiller
space.

Theorem 1.4.  Suppose that v is the limiting lamination of a sequence {yy}77_, satisfy-
ing the conditions &P, &P (iv), and (8.8). Let

m—1
i= Y xpi”,
h=0

where xp, > 0 for h =0,...,m — 1, and let r: [0, 00) — Teich(S) be a Teichmiiller geodesic
ray with vertical measured lamination v. Then the limit set of r in the Thurston boundary is the
simple closed curve in the simplex A(v) of measures on v that is the concatenation of edges

[[130], [171]] U [[\71, 1')2]] U..-uU [[,;m—ll’ [‘-)0]]‘

When m > 3, the theorem shows that there are Teichmiiller geodesics whose limit set
does not contain any point in the interior of A(v). In addition, it answers the following question
raised by Jonathan Chaika.
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4 Brock, Leininger, Modami and Rafi, Limit sets of Teichmiiller geodesics

Question 1.5. Is the limit set of each Teichmiiller geodesic ray simply connected?

For m > 3, the theorem shows that answer to this question is no. Namely, Teichmiiller
geodesic rays with vertical measured lamination as above provide examples of geodesics with
limit set being a topological circle, and hence not simply connected.

The results of this paper (as well as those of [22]) were inspired by work of Masur in [29],
Lenzhen [23], and Gabai [14]. In [29] Masur showed that if v is a uniquely ergodic foliation,
then any Teichmiiller ray defined by a quadratic differential with vertical foliation supported
on v limits to [v] in the Thurston compactification. Lenzhen [23] gave the first examples of
Teichmiiller rays which do not converge in the Thurston compactification. Lenzhen’s rays were
defined by quadratic differentials with non-minimal vertical foliations, and in both [22] and [8],
nonconvergent rays defined by quadratic differentials with minimal vertical foliations were
constructed. The methods in these two papers are quite different, and as mentioned above, the
approach taken in this paper is more closely related to that of [22]. We also note the results of
this paper, as well as [8,22,23], are in sharp contrast to the work of Hackobyan and Saric in [17]
where it is shown that Teichmiiller rays in the universal Teichmiiller space always converge in
the corresponding Thurston compactification.

Our example of nonuniquely ergodic laminations obtained from a sequence of curves
are similar to those produced by Gabai in [14]. On the other hand, our construction provides
additional information, especially important are the estimates on intersection numbers and sub-
surface projections, that allow us to study the limiting behavior of the associated Teichmiiller
rays. For more on the history and results about the existence and constructions of nonuniquely
ergodic laminations and the study of limit sets of Teichmiiller geodesics with such vertical
laminations we refer the reader to the introduction of [22].

Acknowledgement. We would like to thank Howard Masur for illuminating conversa-
tions and communications as well as the anonymous referee for helpful suggestions. We also
would like to thank Anna Lenzhen; her collaboration in the first paper was crucial for the devel-
opment of the current paper. Finally, we would like to thank MSRI at Berkeley for hosting the
program Dynamics on moduli spaces in April 2015; where the authors had the chance to form
some of the techniques of this paper.

2. Background
We use the following notation throughout this paper.

Notation 2.1. Let K > 1and C > O and let f, g: X — R be two functions. We write
. fic gif f(x)—C <g(x) < f(x)+C forall x € X,
e f ik gif Lf(x) < g(x) < Kf(x)forallx € X,
« f =kc gif 2(f(x) = C) < g(x) < Kf(x) + C forall x € X,
. f 2K gif f(x) < Kg(x) forall x € X,
s f iC gif f(x) <g(x)+ C forall x € X,
e f<kc gif f(x) <Kg(x)+C forallx € X.
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When the constants are known from the text we drop them from the notations. Finally, we also
write f = O(g)if f < g.

Let § = S, , be an orientable surface of finite type with genus g and b holes (a hole can be
either a puncture or a boundary component). Define the complexity of S by £(S) = 3g—3+b.
The main surface we will consider will have £ > 1 and all holes will be punctures. However,
we will also be interested in subsurfaces and covers of the main surface, which can also have
& < 1. For surfaces S with £(S) > 1, we will equip it with a reference metric, which is any
complete, hyperbolic metric of finite area with geodesic boundary (if any).

2.1. Curve complexes. For any surface Y, £(Y') > 1, the curve complex of Y, denoted
by €(Y), is a flag complex whose vertices are the isotopy classes of simple closed curves on
Y that are essential, meaning non-null homotopic and nonperipheral. For £(Y) > 1, a set of
k + 1 distinct isotopy classes of curves defines a k-simplex if any pair can be represented by
disjoint curves. For £(Y) = 1 (Y is So,4 or S1,1), the definition is modified as follows: a set of
k + 1 distinct isotopy classes defines a k-simplex if the curves can be represented intersecting
twice (for Y = Sp») or once (for Y = S71,1).

The only surface Y with £(Y) < 1 of interest for us is a compact annulus with two bound-
ary components. These arise as follows. For any essential simple closed curve o on our main
surface S, let Y, denote the annular cover of S to which « lifts. The reference hyperbolic met-
ric on § lifts and provides a compactification of this cover by a compact annulus with boundary
(which is independent of the metric). The curve complex of ¢, denoted € (Yy,), or simply € («),
has vertex set being the properly embedded, essential arcs in Yy, up to isotopy fixing the bound-
ary pointwise. A set of isotopy classes of arcs spans a simplex if any pair can be realized with
disjoint interiors.

Distances between vertices in €(Y) (for any Y') will be measured in the 1-skeleton, so
the higher-dimensional simplices are mostly irrelevant. Masur and Minsky [31] proved that for
any Y, there is a § > 0 so that €(Y) is §-hyperbolic.

For surfaces Y with £(Y) > 1, we also consider the arc and curve complex AC(Y),
defined in a similar way to €(Y'). Here vertices are isotopy classes of essential simple closed
curves and essential, properly embedded arcs (isotopies need not fix the boundary pointwise),
with simplices defined again in terms of disjoint representatives. Arc and curve complexes are
quasi-isometric to curve complexes, and so are also §-hyperbolic.

Multicurves (respectively, multiarcs) are disjoint unions of pairwise nonisotopic essential
simple closed curves (respectively, simple closed curves and properly embedded arcs). Up to
isotopy a multicurve (respectively, multiarc) determines, and is determined by, a simplex in
€(S) (respectively, AC(S)). A marking p is a pants decomposition base(it), called the base
of u, together with a transversal curve B, for each o € base(u), which is a curve minimally
intersecting o and disjoint from base() — «. A partial marking p is similarly defined, but not
every curve in the pants decomposition base(t) is required to have a transversal curve.

For more details on curve complexes, arc and curve complexes, and markings, we refer
the reader to [31].

Remark 2.2. When the number £(S) is at least 1, it is equal to the number of curves
in a pants decomposition. When all the holes of S are punctures, £(S) is also the complex
dimension of Teichmiiller space of S.
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6 Brock, Leininger, Modami and Rafi, Limit sets of Teichmiiller geodesics

2.2. Laminations and foliations. A lamination will mean a geodesic lamination (with
respect to the reference metric if no other metric is specified), and a measured lamination is
a geodesic lamination v, called the support, with an invariant transverse measure v. We will
often refer to a measured lamination just by the measure v (as this determines the support v).
The space of all measured laminations will be denoted ML(S), and for any two metrics, the
resulting spaces of measured laminations are canonically identified. By taking geodesic rep-
resentatives, simple closed curves and multicurves determine geodesic laminations. Weighted
simple closed curves and multicurves determine measured laminations are dense in MEL(S),
and the geometric intersection number extends to a continuous, bi-homogeneous function

i: ME(S) x ML(S) — R.

By a measured foliation on S we will mean a singular measured foliation with prong singu-
larities of negative index (and at punctures, filling in the puncture produces a k-prong singu-
larity with £ > 1). When convenient, a measured foliation may be considered only defined
up to measure equivalence, and the space of measure equivalence classes of measured foli-
ations is denoted MF (S). The spaces MF (S) and ML(S) are canonically identified, and
we will frequently not distinguish between measured laminations and measured foliations.
A foliation or lamination is uniquely ergodic if it supports a unique (up to scaling) transverse
measure, or equivalently, if the first return map to (the double of) any transversal is uniquely
ergodic. Otherwise it is nonuniquely ergodic. We write PML(S) and PMF (S) for the quo-
tient spaces, identifying measured laminations or foliations that differ by scaling the measure.
See [7,13,25,35,39] for complete definitions, detailed discussion, and equivalence of MF (S)
and ME(S).

2.3. Gromov boundary of the curve complex. A lamination v on S is called an ending
lamination if it is minimal (every leaf is dense) and filling (every simple closed geodesic on
the surface nontrivially, transversely intersect v). Every ending lamination admits a transverse
measure, and we let EL(S) denote the space of all ending laminations. This is the quotient
space of the subspace of ME(S) consisting of measured laminations supported on ending
laminations, by the map which forgets the measures. The following theorem of Klarreich [21]
identifies the Gromov boundary of €(S) with EL(S).

Theorem 2.3 (Boundary of the curve complex). There is a homeomorphism ® from the
Gromov boundary of €(S) equipped with its standard topology to EL(S).

Let {yr )72, be a sequence of curves in €y(S) that converges to a point x in the Gromov
boundary of €(S). Regarding each yy as a projective measured lamination, any accumulation
point of the sequence {yy {72, in PML(S) is supported on d(x).

We will use this theorem throughout to identify points in 0€ (.S') with ending laminations
in 8L(S).

2.4. Subsurface coefficients. An essential subsurface Y of a surface Z with §(Y) > 1
is a closed, connected, embedded subsurface whose boundary components are either essential
curves in Z or boundary component of Z, and whose punctures are punctures of Z. All such
subsurfaces are considered up to isotopy, and we often choose representatives that are com-
ponents of complements of small neighborhoods of simple closed geodesics, which therefore
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have minimal, transverse intersection with any lamination. The only essential subsurfaces Y
of Z with £(Y) < 1 are not actually subsurfaces at all, but rather such a Y is the compactified
annular covers Y, of Z associated to a simple closed curve « in Z. We sometimes confuse an
annular neighborhood of o with the cover Y, (hence the reference to it as a subsurface) when
convenient. We will always write ¥ € Z to denote an essential subsurface, even when it is not,
strictly speaking, a subset of Z.

Let Y C Z be an essential nonannular subsurface and A a lamination (possibly a multi-
curve) and we define the subsurface projection of A to Y. Represent Y as a component of the
complement of a very small neighborhood of geodesic multicurve. If A N'Y = @, then define
7y (A) = @. Otherwise, 7y (1) is the union of all curves which are (i) simple closed curve com-
ponents of Y N A or (ii) essential components of 0N (a U 0Y'), wherea C A N Y is any arc, and
N(a U 0Y) is aregular neighborhood of the union. If Y, is an essential annular subsurface, then
my, (A), or simply 74 (A), is defined as follows. For any component of the preimage of A in the
annular cover corresponding to «, the closure is an arc in Yy, and we take the union of all such
arcs that are essential (that is, the arcs that connect the two boundary components).

For a marking p (or a partial marking), if ¥ = ¥, is an annulus with core curve
a € base(u), then wy () = 7y (Ba), Where By is the transverse curve for « in u. Otherwise,
wy () = my (base(w)). For any lamination or partial marking A and any essential subsur-
face Y, my (1) is a subset of diameter at most 2.

Let , 1/ be laminations, multiarcs, or partial markings on Z and Y C Z an essential
subsurface. The Y -subsurface coefficient of y and i’ is defined by

dy (., 1) := diamee () (ry (1) U 7y (1)).

Remark 2.4. The subsurface coefficient is sometimes alternatively defined as the (mini-
mal) distance between 7y (1) and my (u’). Since the diameter of the projection of any marking
or lamination is bounded by 2, these definitions differ by at most 4. The definition we have
chosen satisfies a triangle inequality (when the projections involved are nonempty), which is
particular useful for our purposes.

The following lemma provides an upper bound for a subsurface coefficient in terms of
intersection numbers.

Lemma 2.5 ([32, Section 2]). Given curves o, § € €(S), for any essential subsurface
Y C S we have

dy(a, B) < 2i(a, B) + 1.

When Y is an annular subsurface, the above bound holds with multiplicative factor 1.

Remark 2.6. The bound in the above lemma can be improved to < logi (e, ) for
£(Y) > 1, but the bound given is sufficient for our purposes.

The following result equivalent to [9, Corollary D] provides for a comparison between the
logarithm of intersection number and sum of subsurfaces coefficients. For a pair of markings
W, ', the intersection number i (u, (') is defined to be the sum of the intersection numbers of
the curves in p with those in .
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8 Brock, Leininger, Modami and Rafi, Limit sets of Teichmiiller geodesics

Theorem 2.7. Given A > 0 sufficiently large, there are constants so that for any two
multi-curves, multi-arcs or markings j and |’ we have

logi(u.p) = Y Adw(u. W Na+ Y logldw (. n)}a.
wcY wcy

nonannular annular

where W is so that ., i’ h W.

In this theorem, {- }4 is a cut-off function defined by {x}4 = x if x > 4, and {x}4 = 0
if x < A.

Notation 2.8. Given a lamination or a partial marking p and subsurface Y, we say that
wand Y overlap, writing u th Y if y () # @. For any marking p and any subsurface Y, we
have M Y. Given two subsurfaces Y and Z, if Y th Z and 0Z h Y, then we say that ¥ and
Z overlap, and write Y M Z.

The inequality first proved by J. Behrstock [1] relates subsurface coefficients for overlap-
ping subsurfaces.

Theorem 2.9 (Behrstock inequality). There is a constant By > 0 so that given a partial
marking or lamination |1 and subsurfaces Y and Z satisfying Y M Z we have

min{dy (0Z. 1), dz (0Y, u)} < Bo

whenever u MY and u th Z.

Remark 2.10. As shown in [26], the constant By can be taken to be 10. In fact, if one
projection is at least 10, then the other is < 4.

The following theorem is a straightforward consequence of the Bounded Geodesic Image
Theorem [32, Theorem 3.1].

Theorem 2.11 (Bounded geodesic image). Given k > 1 and ¢ > 0, there is a constant
G > 0 with the following property. Let Y & S be a subsurface. Let {yy }72, be a 1-Lipschitz
(k. c)-quasi-geodesic in €(S) so that yx \Y for all i. Then diamy ({yx}?2,) < G.

2.5. Teichmiiller theory. Throughout the paper, we assume that S is a surface and that
any holes of S are punctures. The Teichmiiller space of S, Teich(.S), is the space of equivalence
classes of marked complex structures [ f: S — X], where f is an orientation preserving home-
omorphism to a finite-type Riemann surface X, where (f:S — X) ~ (g: S — Y)if fog™!
is isotopic to a conformal map. We often abuse notation, and simply refer to X as a point in
Teichmiiller space, with the equivalence class of marking implicit. We equip Teich(S) with the
Teichmiiller metric, whose geodesics are defined in terms of quadratic differentials.

Let X be a finite-type Riemann surface and let T@L0*X be the holomorphic cotangent
bundle of X. A quadratic differential g is a nonzero, integrable, holomorphic section of the
bundle TH0*X @ T10* X In local coordinates g has the form ¢(z)dz2, where ¢(z) is
holomorphic function. Changing to a different coordinate w, g changes by the square of the
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derivative, and is thus given by ¢(z (w))(%—’f)zd w?. The integrability condition is only relevant
when X has punctures, in which case it guarantees that g has at worst simple poles at the
punctures.

In local coordinates away from zeros of g the quadratic differential g determines the
1-form /q(z)dz?. Integrating this 1-form determines a natural coordinate { = & + in. Then
the trajectories of & = 0 and dn = 0, respectively, determine the horizontal and vertical folia-
tions of ¢ on X. Integrating |d&| and |dn| determines transverse measures on vertical and
horizontal foliations, respectively. These extend to measured foliations on the entire surface S
with singularities at the zeros. Using the identification M¥F (S) = ML(S), we often refer to
the vertical and horizontal measured laminations of ¢.

Now given a quadratic differential ¢ on X, the associated Teichmiiller geodesic is deter-
mined by the family of Riemann surfaces X; defined by local coordinates ¢; = e’& + e,
where { = £ 4 i7 is a natural coordinate of g at X and ¢ € R. Every Teichmiiller geodesic ray
based at X is determined by a quadratic differential ¢ on X. See [15] for details on Teichmiiller
space and quadratic differentials.

2.6. The Thurston compactification. Given a point [f:S — X] in Teich(S) and
a curve «, the hyperbolic length of o at [f: S — X] is defined to be hyperbolic length of the
geodesic homotopic to f(«) in X. Again abusing notation and denoting the point in Teich(S)
by X, we write the hyperbolic length simply as Hypy (o). The hyperbolic length function
extends to a continuous function

Hyp(.y(-): Teich(S) x ML(S) — R.

The Thurston compactification, Teich(S) = Teich(S) U PML(S), is constructed so that
a sequence { X} C Teich(S) converges to [V] € PML(S) if and only if
o YPX, () i(v,a)
n—co Hypy, (B)  i(V,p)

for all simple closed curves «, 8 with i (v, 8) # 0. See [2, 13] for more details on the Thurston
compactification.

2.7. Some hyperbolic geometry. Here we list a few important hyperbolic geometry
estimates. For a hyperbolic metric X € Teich(S) and a simple closed curve «, in addition to
the length Hypy (o), we also have the quantity wy («), the width of o in X . This is the width of
a maximal embedded tubular neighborhood of « in the hyperbolic metric X — that is, wy () is
the maximal w so that the open w/2-neighborhood of « is an annular neighborhood of «. The
Collar Lemma (see e.g. [6, Section 4.1]) provides a lower bound on the width:

Lemma 2.12. For any simple closed curve o, we have

> 2sinh™! !
wyle) 2 2sinh (sinh(Hpr (a)/2>)‘

Consequently,

J’_
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10 Brock, Leininger, Modami and Rafi, Limit sets of Teichmiiller geodesics

The second statement comes from the first, together with an easy area argument. The
implicit additive error depends only on the topology of S.

We also let €g > 0 be the Margulis constant, which has the property that any two hyper-
bolic geodesics of length at most €y must be embedded and disjoint.

2.8. Short markings. For L > 0 sufficiently large, an L-bounded length marking at
X € Teich(S) (or L-short marking) is a marking with the property that any curve in base(u)
has hyperbolic length less than L, and so that for each o € base(u), the transversal curve to o
has smallest possible length in X. Choosing € sufficiently large (larger than the Bers constant
of the surface) the distance between any two points in Teichmiiller space can be estimated up
to additive and multiplicative error in terms of the subsurface coefficients of the short markings
at those points, together with the lengths of their base curves; see [37].

3. Sequences of curves

Over the course of the next three sections we will provide general conditions on a se-
quence of curves which guarantee that any accumulation point in PML(S) of this sequence
is a nonuniquely ergodic ending lamination. In [14, Section 9], Gabai describes a construction
of minimal filling nonuniquely ergodic geodesic laminations. The construction is topological
in nature. Our construction in this paper and that of [22] can be considered as quantifications
of Gabai’s construction where the estimates for intersection numbers are computed explicitly.
These estimates allow us to provide more detailed information about the limits in PML(S) as
well as limiting behavior of associated Teichmiiller geodesics.

In this section we state conditions a sequence of curves can satisfy, starting with an
example, and describe a useful way of mentally organizing them. The conditions are moti-
vated by the examples in [22], and so we recall that construction to provide the reader concrete
examples to keep in mind. A more robust construction that illustrates more general phenomena
is detailed in Section 7.

Throughout the rest of this paper {ey } 7, is an increasing sequence of integers satisfying

(3.D ex+1 > aey forany k > 0,

where a > 1. Consequently, for all / < k, we have g > a¥~¢;.

3.1. Motivating example. The motivating examples are sequences of curves in So,s5,
the five-punctured sphere. We view this surface as the double of a pentagon minus its ver-
tices over its boundary. This description provides an obvious order five rotational symmetry p
obtained by rotating the pentagon counter-clockwise by an angle 47r/5. Let y¢ be a curve which
is the boundary of a small neighborhood of one of the sides of the pentagon and let y = p?(yo)
(see Figure 1). Write & = D, for the positive Dehn twist about y.

Now define y; to be the image of y¢ under a composition of powers of £ and p by the
following formula:

Yk = D2pDp--- D% pD+1p(yp).

The first five curves, yo, . . ., ¥4, in the sequence are shown in Figure 1.
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T TR

Figure 1. The curves yo, ..., ys4 in Sp,4. Any five consecutive curves Yg_o, ..., Vx4 differ from
those shown here by a homeomorphism, and replacing e; by ej.

Observe that for any k£ > 3, the four consecutive curves yg_s,..., Vk+1 are just the
image of Yy, ..., y3 under the homeomorphism

Q1 = D?p--- D%~1p.

Furthermore, the next curve in the sequence, Y 45, is the image of D¢k p(y3). In particular, up
to homeomorphism, any five consecutive curves yx_», ..., Yk+2 in the sequence appear as in
Figure 1 with e; replaced by ey.

3.2. Intersection conditions. We now describe the general conditions, and verify that
the above sequence of curves satisfies them. To begin, we fix positive integers b1 < b < b,. We
will also assume that eg > E + G (and hence by (3.1) e > aX(E + G) for all k), where G is
the constant from Theorem 2.11 and E is the constant in Theorem 4.1 below. For the examples
in Sp,5 described above, we will have b = by = by = 2.

In the next definition, &, is the Dehn twist in a curve y.

Definition 3.1. Suppose that m < £(S), and assume that b, by, by, a, and {ey }ZOZO are
as above. We say that a sequence of curves {yy }72_, on S satisfies J if the following properties
hold for all k > 0:

(1) VYk,---» Vk+m—1 are pair-wise disjoint and distinct,
(1) Yk .-, Vk+2m—1 fill the surface S,

(iil) Yktm = Dyf (Vgy,,)s Where yy . is a curve such that

€ |by,by] forjefk—m,....k—1},
iy 7))\ =b  forj =k,
=0 forje{k+1,....k+m—1},

(here we ignore any situation with j < 0).

We will wish to impose some additional constraints on the constant a (specifically, we will
require it to be chosen so that (5.4) holds), and so in the notation we sometimes express
the dependence on a writing # = & (a). Of course, # depends on the choice of constants
b1 < b < by and the sequence {e}, but we will impose no further constraints on the b con-
stants, and the conditions on {ej } depend on a.

Here we verify that the sequence of curves on Sp s described above satisfies these condi-
tions with m = 2. Note that the conditions are all “local”, meaning that they involve a consec-
utive sequence of at most 2m + 1 curves — for our example, that is a sequence of at most five

Brought to you by | ULB Bonn
Authenticated
Download Date | 2/19/20 9:14 AM



12 Brock, Leininger, Modami and Rafi, Limit sets of Teichmiiller geodesics

consecutive curves. As noted above, any five consecutive curves yx_s, ..., Yk+2 differ from
those in Figure 1 by applying the homeomorphism &5 _; = Dp--- D%~-1p, and changing
e to ey. From this, it is straight forward to verify that this sequence satisfies these conditions.

Since m = 2, condition (i) says that two consecutive curves are disjoint, while condi-
tion (ii) says that four consecutive curves fill Sp 5. Note that (i) is clearly true for yp, y1 and
(ii) for yo, . .., y3. Since any two or four consecutive curves differ from these by a homeomor-
phism, conditions (i) and (ii) hold for all k.

Finally, note that y4 = !Of;’z p(y3), and so setting y; = p(y3) and observing that y = y»,
(iii) clearly holds for k = 2 by inspection of Figure 1. The case for general k& follows from
this figure as well, after applying @ _;. Specifically, yx 4, is obtained from p(y3) by applying
@y 1 Dy5 , or equivalently, setting v, = Pr_1(0(y3)),

Vit1 = P DpE DL (Pr—1 (p(13))) = Dt () Vhya) = Dyl (Ve in)-

Since Yk—2, Vk—1» Vks Vk+1> Viqp Vk+2 are the images of yo, y1, 2, 3, v4. va, respectively,
under ®;_, condition (iii) follows for general k by inspection of Figure 1.

Returning to the general case, we elaborate a bit on the properties in J. First we make
a simple observation.

Lemma 3.2. Forevery j,k >0with j e{k—m+1,...,k}, we have

i (Vk4m-Yj) € [b1,b2],

moreover i (Vi+m, Vk) = b.

Proof.  Since Yg4m = i)f,’f (y]’chm) and Dy, (y;) = y; (because i(y;, yx) = 0), it fol-
lows that

[ (Vierms Vi) = 1D, Vierm)s Dy K (V) = iV y o Vi) € b1, D2]

proving the first statement. For the special case j = k, i()/,’c +m» Vk) = b, and the second state-
ment follows. ]

3.3. Visualizing the conditions of . The conditions imposed in # involve intervals
of length m and 2m, as well as mod m congruence conditions. It is useful to view the tail of
the sequence starting at any curve y; (for example, when i = 0 this is the entire sequence), in
the following form:

(3.2) Yi —— Vi+1 Vi+m—1 >

<—> Vi+em — Vi+m+1 Yi+2m—1 >
<—> Yid4o2m — Vi+2m+1 — -

From the first condition of J#, all curves in any row are pairwise disjoint. Lemma 3.2 tells
us that y; intersects the curve directly below it b times and it intersects everything in the row
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directly below it between b; and b, times. The second condition in & tells us that any two
consecutive rows fill S. The third condition (part of which is used in the proof of Lemma 3.2),
can be thought of as saying that going straight down two rows from y; to y; 2., gives a curve
that “almost” differs by the power of the Dehn twist D™ To understand this interpretation,

Yi+m
note that y/ om and yi4om differ precisely by this power of a twist, while on the other hand,
each of yl.’ tom and y; have intersection number at most b, with the filling set y;, ..., Yi+2m—1

(which we view as saying that y; and yi’ Lo, are “similar’).

4. Curve complex quasi-geodesics

The purpose of this section is to provide general conditions (Theorem 4.1) on a sequence
of subsurfaces in terms of subsurface coefficients of consecutive elements which guarantee
that their boundaries define a quasi-geodesic in the curve complex of the surface. Appealing
to Theorem 2.3, we deduce that such sequences determine an ending lamination. We end by
proving that a sequence of curves satisfying & are core curves of annuli satisfying the condi-
tions of Theorem 4.1, and hence are vertices of a quasi-geodesic in €(S) defining an ending
lamination v € L(S).

Variations of this result appeared in [26], [11], [34], [22], and [5] for example. Here our
conditions only involve the intersection pattern and projection coefficients of fixed number of
consecutive subsurfaces along the sequence. In this sense these are local conditions.

Theorem 4.1 (Local to global). Given a surface S and 2 < m < £(S), there are con-
stants E > C > 0 with the following properties. Let {Yy}72 , be a sequence of subsurfaces
of S. Suppose that for each integer k > 0,

(1) the multi-curves Y, . ..,0Yg+m—1 are pairwise disjoint,
() Y N Yjforall j €k +m,....k +2m—1},
(3) dy, (0Y;,0Y;’) > E forany j € {k+m, ..., k+2m—1}, j' e {k—2m+1,... . k—m}.
Then for every j, j', k with j > k +m and j' <k —m we have
4.1) Yi N Y and Yy Y
and

4.2) dyk (an, an/) > dYk () aYk+m) —C.

Furthermore, suppose that for some n > 1 and all k > 0,
(4) the multi-curves 0Yy, ...,0Y g 2n—1 fill S.

Then for any two indices k, j > 0 with |k — j| > 2n we have

k—j m
4.3) ds@Y;,0v) = (M),
4n 2n
In the hypotheses (as well as the conclusions) of this theorem, we ignore any condition
in which there is a negative index.
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14 Brock, Leininger, Modami and Rafi, Limit sets of Teichmiiller geodesics

Proof. Set the constants
C=2By+4+G and E=C+ Byo+G+4.

Here By is the constant from Theorem 2.9 (Behrstock inequality) and G is the constant from
Theorem 2.11 (Bounded geodesic image theorem) for a geodesic (i.e. k = 1, ¢ = 0). We prove
(4.1) and (4.2) simultaneously by a double induction on (j — k,k — j').

For the base of induction, suppose thatm <k — j' <2m —landm < j —k <2m — 1.
Statement (4.1) follows from (2). To prove (4.2) note that by (1) 0Yy ., ...,0Y; are pairwise
disjoint and have non-empty projections to Y. Consequently, the distance in Yz between any
two of these boundaries is at most 2, and so

diamy, ({0Y;}]_; ) < 2.
Similarly, diamy, ({0Y; 1}5‘;;’5) < 2. By the triangle inequality we have
dy, (0Y}.0Y}) = dy, (k. 0¥jcm) — dy, ;. )t m) — dy, V. Y;)
= dYk (OYk—m.» aYk+m) —4=> dYk (aYk—m’ aYk+m) -C,

which is the bound (4.2).

Suppose that (4.1) and (4.2) hold forallm <k — j’ <2m —1landm < j —k < N, for
some N >2m — 1. We suppose j —k = N + 1 and we must prove both (4.1) and (4.2) for
(J—k.k=j".

From the base of induction we already have Yz M Y;,. To complete the proof of (4.1), we
prove Yz h Y;.Sincem = (k+m)—k <2m—landm < j—(k+m)=N+1-—m <N,
from the inductive hypothesis we have

Yk M Yk+m and Yj M Yk+m

and
dYk+m(aYk’an) = dYk+m(aYk’aYk+2m) -C>zE-C=4

Consequently, i (0Yk, 0Y;) # 0 and Y M Y; as required.
We now turn to the proof of (4.2). Since Y} th ¥; and Yy th ¥j/, by (2) we may write the
following triangle inequality:

(4.4) dy, (0Y}r,0Y;) = dy, (0Yk—m, Y +m) —dy, (0Yk—m,0Yj’) —dy, (Y}, 0¥k 4 m).
Sincem < j —(k +m) =N 4+ 1 —m < N, from the inductive hypothesis we have
dYk+m (aYk,an) > dYk+m (aYk, aYk+2m) —C > F — C > Bo.

By Theorem 2.9, dy, (0Yk4m.Y;) < Bo. On the other hand, as in the proof of the base case of
induction, since m < k — j' < 2m — 1 we have

dy, (0j—m. 9Y}") < 2.
Combining these two inequalities with (4.4), we obtain

dYk (an” aYJ) > dYk (OYk—m- aYk+m) —Bp—2
= dYk (OYk—m+ Y gym) — C.

This completes the first half of the double induction.
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We now know that statements (4.1) and (4.2) hold for all j, j', k withm < k—j’ <2m—1
and all j —k > m. We assume that they hold for m < k — j’ < N and j — k > m for some
N > 2m — 1, and prove that they hold for k — j = N + 1. The proof of (4.1) is completely
analogous to the proof in the first part of the induction, and we omit it. The proof of (4.2) is
also similar, but requires one additional step so we give the proof.

We may again write the triangle inequality (4.4). Since m < (k—m)—j’' = N+1-m < N,
by the inductive hypothesis we have

dy,_,,(0Yy,0Y;r) > E — C > By,
and so Theorem 2.9 again implies dy, (0Yx—_n,,0Y}/) < Bo.If j —k < 2m — 1, then as above
dy, (0Yk4+m,0Y;) < 2. Otherwise, by induction we have

dy,,(0Yr,0Y;) > E—C > By

and Theorem 2.9 once again implies dy, (0Y)4,,0Y;) < Bo. Combining these inequalities
with (4.4), we have

dy, (0Y}1.0Y;}) = dy, (k. 0¥jm) — Bo — max{2, Bo}
> dYk (aYk_m, aYk+m) —C.
This completes the proof of (4.2), and hence the double induction is finished.
Now further assuming (4), we prove (4.3). Note that we must have n > m. Without loss
of generality we assume that j < k, so that k — j > 2n > 2m. For the rest of the proof, for

any s,r € Z,s <r,wewrite [s,r] ={t € Z |s <t <r}.
Suppose that § is any multi-curve. Let J(8) = {s € [/, k] | i(§,0Y) # 0}.

Claim 4.2. Suppose that s',r" € [j, k] \ 4(8). Then |r’ —s'| < 4n — 2.
Observe that by the claim, [/, k] \ J(8) contains fewer than 41 integers.

Proof.  Without loss of generality, we assume that s” < r’, and suppose for a contradic-
tion that ' — s’ > 4n — 1. By (4), 0Ysy/4+n,...,0Yy 43,1 fills S, and so there exists ¢ with
s'+n<t<s" +3n—1andzt € J(5).

Now observe that s +m <s'+n <tandt <s'+3n—1<r"—n <r’—m; by the
first part of the theorem we know that

dy,(0Ys,0Y,) > E —C > 4.
On the other hand, since i(8,0Yy) = 0 = i(§,0Y;~), and since ¢ € J(5) implies wy, (§) # ¥,
the triangle inequality implies
dy,(0Ys,0Y,) < dy,(0Ys,8) + dy,(8,0Y,) <242 =4,

a contradiction. O

Let n be a geodesic in €(S) connecting 0Y; to 0Yy. Forany [ € {j +m, ...,k —m}, by
(4.2) we have that
dy,(0Y;,0Yy) > E—C > G.

Thus Theorem 2.11 guarantees that there is a curve §; € 5 disjoint from Y;. Choose one
such §; € n for each [ € [j + m,k — m]. By the previous claim there are at most 4n integers
l" € [j +m,k —m] such that i(8;,0Y;/) = 0, and hence [ > §; is at most 4n-to-1.
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16 Brock, Leininger, Modami and Rafi, Limit sets of Teichmiiller geodesics

- k—j—2m+1 _ k—j m
Therefore, 1 contains at least in > =& — 5, curves. It follows that

k—j m
ds(0Y;,0Y;) > —— — | — + 1
s(0; Kz 4n (211+ )

proving (4.3). This completes the proof of the theorem. O

Theorem 4.3.  Let {Y}2 ) be an infinite sequence of subsurfaces satisfying conditions
(1)—(4) in Theorem 4.1. Then there exists a unique v € EL(S) so that any accumulation point
of {0Yk )7 in PML(S) is supported on v.

Proof. By Theorem 4.1, inequality (4.3), the sequence {0Yy }72, is (multi-curve) quasi-
geodesic in €(S). Furthermore, €(S) is §-hyperbolic. Thus the sequence converges to a point
in the Gromov boundary of €(S). Theorem 2.3 completes the proof. O

We complete this section by showing that J is sufficient to imply the hypotheses of Theo-
rem 4.1. Given a curve « and an annular subsurface Yg with core curve f, we note that o th Y
if and only if i («, B) # 0. Consequently, to remind the reader of the relation to Theorem 4.1,
we write o M B to mean i (a, B) # 0.

Proposition 4.4. All curves in a sequence {yx}7—, satisfying P (a) with a > 2 and
eo > E are the core curves of annuli satisfying conditions (1)—(4) of Theorem 4.1 with n = m.
Consequently, {yx}z—, is a 1-Lipschitz, (4m, %)-quasi-geod@sic in €(S) and there exists
v € EL(S) so that any accumulation point of {yg}7—, in PML(S) is supported on v.

Proof. Condition (i) of & is the same as condition (1) of Theorem 4.1, while (ii) is just
condition (4) with n = m. Condition (2) follows from Lemma 3.2. Finally, to see that con-
dition (3) is satisfied, we note that dy, (Vk—m, Yk+m) = €k > akE > 2E > E for all k > m.
Furthermore, for k —2m + 1 < j <k —m, y; M y; by Lemma 3.2, and similarly y; M yx,
fork +m < j’ <k +2m — 1.For j and j' in these intervals, we obtain i (y;, Yx—p,) = 0 and
i(Vj’, Vk+m) = 0. Therefore, by the triangle inequality, we have dy, (v;,v;’) > akE -2 > E,
as required by (3). O

4.1. Subsurface coefficient bounds. We will need estimates on all subsurface coeffi-
cients for a sequence satisfying &. This follows from what we have done so far, together with
similar arguments.

Proposition 4.5.  Given a sequence {yy}77_, satisfying P(a) with a > 2 and ey > E,
then there exists an R > 0 with the following properties:

(1) Ifi, j.k satisfy j <i —mandi +m <k, theny; Ny, yi My, and

- -
(4.5) dy; (vj.vk) <R ei and dy,(yj,v) <R e;.

(2) If W < S is a proper subsurface, W # y; for any i, then for any j,k with y; h W and
Ve W,
4.6) dw()/j, Vi) < R and dw()/j, V) < R.
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Let ju be a marking on S. Then there is a constant R(i1) so that:

* For any k sufficiently large and i < k — m we have

+ +
4.7) dy; (1, yk) <Ry € and  dy; (0, V) XR(u) €i-
* For any proper subsurface W # y; for any i we have
(4.8) dw (. vk) < R(n) and dw(p,v) < R(p).

Proof. We begin with the proofs of (4.5) and (4.6). First note that since any accu-
mulation point of {y;} in PML(S) is supported on v, any Hausdorff accumulation point of
{yx} contains v. Thus, for any fixed, proper subsurface W < § and all sufficiently large & we
have 7w (v) C 7w (yk ). Furthermore, since v is an ending lamination, sty (v) # @, and hence
dw (Yr,v) < 1, for k sufficiently large. Therefore, for each of (4.5) and (4.6), the statement on
the left implies the one on the right after increasing the constant by at most 1. Thus it suffices
to prove the two statements on the left.

We begin with (4.5). From the conditions in &, we have dy, (Vi—m, Yi+m) = €;. By
Theorem 4.1 (which is applicable according to Proposition 4.4), {yl}f;l. +m is a 1-Lipschitz
(4m, 3/2)-quasi-geodesic such that every curve has nonempty projection to y;. Therefore, by
Theorem 2.11 and the triangle inequality we have

\dy; Viem, Vi) — dy; YViems Vi+m)| < dy; Vitm, vk) < G.

Note that G depends only on m. Similar reasoning implies

|y, (Vs vi) = dy; YViems Vi) < dy, (¥, Vi-m) < G.
Combining these, we have
|dy,' (yj YE) — dy,' (Vi—ms Vi+m)| = |d)/i ()/j» Yk) — dyi (Vi—m- Yk)

+ dVi Vim-Yk) — dy,- Yi—m, Yi+m)|
<2G.

It follows that dy, (y;. yi) %26 ei. For R > 2G, (4.5) holds.

We now move on to the inequalities in (4.6), and without loss of generality assume
that j < k. If kK < j + 2m — 1, then the conditions in & together with Lemma 3.2 imply
i(yj,vk) < ba,soby Lemma 2.5, dw (y;, vx) < 2b2 + 1.

Next, suppose that k = j + 2m. Let )/,/c be the element guaranteed by &, so that

Yk = Dy (yp).
There are two cases to consider depending on whether y, (f W or y; h W.If y, ¢ W, then
since yg = Dyk=" (v;) h W, we must have yx_,,, h W. Now observe that
j<k—-m=j+m<j+2m—1 and k—-m<k <k—m+2m-—1.

It follows from the previous paragraph that

dw (Vi Vk—m) <2ba+1 and dw (Vk—m,Vk) < 2bs + 1,

hence
dw (vj, Vi) < 4by + 2.
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18 Brock, Leininger, Modami and Rafi, Limit sets of Teichmiiller geodesics

Now suppose that y; th W.If yx_,, th W, then just as in the first case we have

Suppose then that yi_,, # W.If W is not an annulus, then 7w (yx) = nw (y,/c) since Dy, _,,
is supported outside W. Therefore

dw (vj.vk) = dw(yj.vp) <2by + 1

since i (Y}, y,’c) < by. If W is an annulus, because W # yx_,, and Yx—_,, i W, it easily follows
that

dw (vj.ve) <dw(yj.vi) +dw . vie) < Qb2 +1) + 1

(see e.g. [12]). Therefore, we have shown that if k < j + 2m, we have
4.9) dw (yj.yvk) < 4ba + 2.

Now we suppose that k > j + 2m. Setting 6 = 0W, as in the proof of Theorem 4.1
we let J(8) = {s € [j, k] | i (8, ys) # 0}. Similarly, we let (W) = {s € [j, k] | ys N W}, and
observe that J(8) C J(W).

Note that j,k € J(W), and we let s < r be such that [}, s], [r, k] € J(W) are maximal
subintervals of (W) containing j and k, respectively (if (W) = [/, k], we can arbitrarily
choose j < s <k and r = s + 1 for the argument below). By our choice of r and s, it fol-
lowsthats + 1,7 — 1 € (W), and so Claim 4.2 implies r — 1 — (s + 1) < 4m — 2 and hence
r—s <4m.

Note that since any 2m consecutive curves fill S, either r — s < 2m, or else there exists
s',r’ e J(W) such that s < s’ <r’'<rand r —r',r’' —s',s’ —s < 2m. For example, con-
sider the extremal case that r —s = 4m. Then

s" =maxJ(W)N[s,s +2m] and 7' =mind(W)N[s +2m, 7]

have the desired properties. Indeed, s’ — s, r — r’ are clearly less than 2m. If r’ — s’ > 2m, then
since any 2m consecutive curves fill S, there must be some 5" < u < r" in J (W), contradicting
the choice of either s” or /. The general case is similar.

By the triangle inequality and (4.9) we have

(4.10) dw (ys,vr) < dw (vs.vs)) +dw (s, V) +dw (yrr, vr) < 1203 + 6.

Since {y; }fzj and {Vl}5€=r are 1-Lipschitz (4m,3/2)-quasi-geodesics with y; M W for all
[ €[j,s] U |[r, k], we can apply Theorem 2.11, and so the triangle inequality and (4.10) give us

dw (vi,vi) < dw(yj.vs) +dw Vs, yr) +dw(yr.vk) < 2G + 12b3 + 6.

So the inequality on the left of (4.6) holds for any R > 2G + 12b, + 6. This completes the
proof of the first four estimates.
Given a marking u, note that the intersection number of any curve in p and any of the

curves in the set of filling curves Yy, ..., Y2m—1 is bounded. Then the estimates in (4.7) follow
from the ones in (4.5) and Lemma 2.5 respectively. Similarly the estimates in (4.6) follow from
the ones in (4.8). ]
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5. Measures supported on laminations

In this section we begin by proving intersection number estimates for a sequence of
curves satisfying &. Using these estimates, we decompose the sequence into m subsequences
and prove that these converge in PML(S). In the next section, we will show that these m lim-
its are precisely the vertices of the simplex of measures on the single topological lamination v
from Proposition 4.4.

5.1. Intersection number estimates. Here we estimate the intersection numbers of
curves in the sequence of curves {yx}72, satisfying J°. The estimates will be in terms of the
constant b and sequence {e; } fixed above. Specifically, given i,k € N with k > i, define

(5.1) Al k) = [T e

i+m<j<k and
j=k mod m

When the set of indices of the product is the empty set, we define the product to be 1. It is
useful to observe that for k > i + 2m,

A(i k) = bej_, A(i, k — m).

It is also useful to arrange the indices as in (3.2) in the following form:

i i+ 1 i+m—1
(5.2) i+m i+m+1 i +2m—1
i +2m i +2m+1

Then A(i, k) is 1 exactly when k is in the first or second row. If k is below these rows, then the
product defining A(i, k) is over all indices j directly above k, up to and including the entry in
the second row.

We now state the main estimate on intersection numbers.

Theorem 5.1.  Suppose that {yy }3°_, is a sequence on a surface S satisfying P (a). For
a is sufficiently large, there is a constant k = k(a) > 1, so that for each i,k withk > i +m
we have

(5.3) i(viovie) =« AG.K).

Recall that for i <k <i +m, i(y;,yr) = 0. Combining this with the theorem gives
estimates on all intersection numbers 7 (y;, Yk ), up to a uniform multiplicative error.

Throughout all that follows, we will assume that a sequence of curves {y }7, satisfies
P = P(a)fora > 1.

Outline of the proof. The proof is rather complicated involving multiple induction
arguments, so we sketch the approach before diving into the details. The upper bound on
i(yi,yr) is proved first, and is valid for any @ > 1. We start by recursively defining a func-
tion K(i, k) for all nonnegative integers i < k. By induction, we will prove that

i(vi.ve) = K@i, k)A(, k).
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20 Brock, Leininger, Modami and Rafi, Limit sets of Teichmiiller geodesics

By a second induction, we will bound K (i, k) < K1 = K;(a), with the bound K (a) a decreas-
ing function of a. Next, we will recursively define a function K'(i,k) = K’(i, k, a). By another
induction, we prove that

i(yi.vi) = K'(i.k)A(i k).
For a sufficiently large, we prove K'(i,k,a) > K, = K»(a) > 0. Setting k = max{Kj, KLZ}
will prove the theorem.

Upper bound. Recall from & (Definition 3.1) that for any k > 2m, the set of curves
{)/l} 1= k 2 I the surface, and the curve )/]’( intersects each of these at most b, times. Conse-
quently, all complementary components of S \ (Vx_2, U -+ U yr_1) are either disks or once-
punctured disks containing at most 2mb, pairwise disjoint arcs of y,’c. In examples we may
have many fewer than 2m b, such arcs, and it is useful to keep track of this constant on its own.
Consequently, we set

B < 2mb2

to be the maximum number of arcs in any complementary component (over all configurations
in minimal position).

We are now ready for a recursive definition which will be used in the bounds on intersec-
tion numbers (it is useful again to picture the indices as in (5.2)):

0 fori <k <i+m,
K@, k)= 1b> fori +m <k <i +2m,
K@i, k—m)+2BY 4, j((l’]?)K(z ) fori+2m <k.

Lemma 5.2. Foralli <k, we have i(y;,yi) < K(i,k)A(i, k).
The proof takes advantage of the following well-known estimate on the intersection of
two curves after applying a power of a Dehn twist on one proved in [13, Exposé 4, Appendix A],

see also [19, Section 4, Lemma 4.2].

Proposition 5.3 (Intersection number after Dehn twist). Let 8, 8, and B be curves
in €(S). Then for any integer e

i (D53, 8") — leli(B.8)i(B. &) <i(8.8).

As above, Dg is a Dehn twist in 8. This proposition has the following general application
to intersection numbers of curves with the curves in our sequence.

Proposition 5.4. For any curve § and any k > 2m, we have

k—1
i (8, k) = bek—mi (8. Vi—m)| 2B Y (8. 7).
I=k—2m
Proof.  Since y = Dy~ (y},). Proposition 5.3 implies

i(8, vk) — bek—mi (8, Yk—m)| < i (8, ;).
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Assume all curves intersect minimally transversely and that there are no triple points of inter-
section. From the definition of B, all complementary components of S \ (Vx_2m U+ U Yk_1)
contain at most B pairwise disjoint arcs of y]’c. Therefore, between any two consecutive inter-
section points of § with y_5,, U --- U yr_1, there are at most 2 B intersections points with )/,’c
(any two arcs in a disk component can intersect at most once, and in a once-punctured disk
component can intersect in at most two points). Therefore,
k—1
iG.yp) <2B > i(8. 7).
I=k—2m
Combining this with the above inequality proves the proposition. |

Proof of Lemma 5.2.  Fix i. The proof is by induction on k. Fori <k <i + m,
i(yi,vk) =0, K(i,k)=0, A(i,k)=1,

so the lemma follows. Similarly, fori +m <k <i 4+ 2m, i(y;, yx) < bz, K(i,k) = by, and

A(i, k) = 1, so again the lemma follows. Now suppose that k > i + 2m, and assuming that

i(yi,y)) < K@i,1)A(i,I)foralli <1l <k, we must provei(y;, vx) < K(i,k)A(, k).
Applying Proposition 5.4 to the case § = y;, we have

k—1
i (Vi Vie) = Dek—mi (Vi Viem)] 2B D> i(vi. ).
I=k—2m
Therefore, we have
k—1
(Vi Vi) < bek—mi (Vi Ve—m) + 2B Y i(vi.v1).
I=k—2m

Applying the inductive hypothesis and the definitions of 4 and K to this inequality, we obtain

k—1
(Vi Vk) < beh—mi (Vi Vk—m) +2B > i(vi.y)
I=k—2m
k—1
< bej_mK(i.k —m)A(i.k —m)+2B Y K(i.)AG.I)
l=k—2m
Uaa D
= A(i.k)K(i.k —m) + A(i.k)2B Y 100 K(,l)
I=k—2
k—1
A
— AG, )| K@ik —m) + 2B @D i
A(i k)
l=k—2m
= A(i, k)K(i k),
as required. |

Next we prove that K(i, k) is uniformly bounded, and in particular:

Proposition 5.5. There exists K1 = Ki(a) > 0so that foralli <k, K(i,k) < Ky and
in particular, i (yi, yi) < K1 A(i, k). As a function of a, K1(a) is decreasing.
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22 Brock, Leininger, Modami and Rafi, Limit sets of Teichmiiller geodesics

For the proof of this proposition, we will need the following bound.

Lemma 5.6. Foralli <1 < k, we have

AGD _ 1| E
Al k) ~ '

k—i
Proof. If k <i + 2m, then A(i,l), A(i,k) = 1 and al_LWJ > 1, so the inequality
follows.
Now assume that k > i + 2m. By definition, we have

1_[ be;

. i+m<j’<l and
A1) _j'=lmodm

i+m<j<k and
j=k mod m

(where A(i,l)is 1 if [ <i + 2m). Observe that the denominator has

B Il Ul 08 O I Sl IR
ol B bl el

terms in the product, indexed by j € {k —m,k —2m, ...,k — rm}, while the numerator has

s = max{O, LZJ — 1} >0
m

terms, indexed by j' € {{ —m,l —2m, ..., — sm} (possibly the empty set). Since [ < k, we
have s < r. Moreover, we have k — pm > [ — pm, and thus ex_,,, > ae;_p,, by (3.1), for all
p =1,...,s. Since (3.1) also implies e¢; > a for all j > 1, combining these bounds with the

equation above gives

. N r S r —i
D _[pe ] L Tt [T et = =l

p=1 Ckmpm ooy Chmpm py piih

as required. O
As an application, of Lemma 5.6, we prove

Lemma 5.7. Foralli <k we have

—i+1
K@k <b ] (1+4mBa1_|-]r;1 J).
i+m<j<k

As above, the empty product is declared to be 1.

Proof. The proof is by induction on k. Since K(i,k) < by fori <k <i + 2m, the
lemma clearly holds for all such k. Now assume that k > i + 2m, and assume that the lemma
holds for all integers less than k and at least i. Let /g be such that k —2m < lp < k — 1 and

K@, lp) = max{K(i,l) | k—2m <[] <k —1}.
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From this, the definition of K (i, k), and from Lemma 5.6 we have

K(i.k) = K(i,k —m) + 2B kf A(i’l)K(i,l)
I=k—2m A(i’ k)
k-1 k—i
5K(i,10)<1+23 > al—LTJ)
l=k—2m

- K(i,lo)(l + 4mBa1_L%J>.

Since [y < k, the proposed bound on K (i, [p) holds by the inductive assumption. Next, observe
that the proposed upper bound is an increasing function of k. Indeed, the required bound for
K (i, k) is obtained from the one for K(i, k — 1) by multiplying by a number greater than or
equal to 1. By this monotonicity, the above bound implies

K(i.k) <K (. 1o) (1 + amBa L5 )

E(bz I1 (1+4mBa1_L%J))(1+4mBa1_LkT_iJ>

i+m<j<k—1

= by l_[ (1+4mBa1_Lj_r;+l )

i+m<j<k

This completes the proof. o

Proof of Proposition 5.5. The upper bound on K(i, k) in Lemma 5.7 is itself bounded
above by the infinite product

0o . oo
Ki(a) = by ]_[ (1+4mBa1_|-j ;LIJ) = by l_[(1+4mBa_|-l+71J),
j=i+tm =0

where we have substituted / = j —i — m. We will be done if we prove that this product is
convergent, for all @ > 1, since the product then clearly defines a decreasing function of a.

The infinite product converges if and only if the infinite series obtained by taking loga-
rithms does. Since log(1 + x) < x, we have

log(b2 l°_°[(1 + 4mBa_Ll+71J)) = log(hs) + ilog(l + 4mBa_Ll+TlJ)
1=0 I=0

oo
1
<log(by) + 4mB Za_l-%lj

=0
The last expression is essentially a geometric series, and hence converges for all a > 1, com-
pleting the proof. |

Lower bound. Let b; be the constant in & (Definition 3.1). We assume a > 1 is suffi-
ciently large so that

o0
(5.4) C = 8mBK; Za_j < b
j=1
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(which is possible since K1 = Kj(a) is decreasing by Proposition 5.5). For all k > i + m,
define the function K'(i, k) by the following recursive formula for all k > i + m:

. C fori +m <k <i+2m,
K'(i,k) = e k—1 AG,D) . .
K'(i,k—m) =2B Y ik om qimy K@ 1) fori+2m <k.

Lemma 5.8. Forallk > i + m, we have i(y;,yx) > K'(i,k)A(i, k).

Proof. Fix an integer i > 0. The proof is by induction on k. For the base case, we
leti +m <k <i+2m.Then A(i,k) = 1and K'(i,k) = C < by, whilei(y;,yx) > by, and
hence i (y;, ) > K'(i,k)A(i, k). We assume therefore that k > i 4+ 2m and that the lemma
istrue foralli +m <[ < k.

Applying Proposition 5.4 to the curve § = y;, together with Lemma 5.2 and the inductive
hypothesis we have

k—1
(Vi Vi) = ekembi (Vi Ve—m) —2B Y i(vi.y1)
I=k—2m
k—1
> ex—mbK'(i.k —m)AGi.k —m)—2B Y K(i.))A(.])
I=k—2m

— AG. k)| K'(i,k —m) —2B ki AGD g
’ ’ I=k—2m A(i’k) ’

= AG,k)K' (. k),

as required. O
Lemma 5.9. Set K, = C/2 > 0. Then wheneverk > i +m, K'(i,k) > K».

Proof. Ifi+m <k <i+2m,then K'(i,k) = C > C/2 = K, > 0. Suppose now that
k >i42m,andletk = p+sm, where s and p are positive integers withi +m < p <i+2m
and p = k mod m. Note that

el e R e R

By Lemma 5.6, it follows that for all / < k, we have 2((;,?) < a~*. Then from the definition

of K’ and Proposition 5.5 we have

R — K = AGD
(i.k)=K'(i,k—m)—2B ) A(i,k)K(z,l)
I=k—2m
k—1
> K'(i,k—m)—2B Y  a*K
I=k—2m

> K'(i,k —m) —2B2m)a K,
= K'(i,k —m)—4mBKa™".
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Iterating this inequality s times implies

N
K'(i.k) = K'(i.p) —4mBK, Y a7
g=1

Sincei +m < p <i+2m, K'(i, p) = C = 8mBK; Z;‘;l a~/ and hence

o0 N o0
. LC
" (i —-J _ —-q —-J — —
K'(i,k) = 4mBK, <2jE:1a qg_la ) > 4mBK1jE:1a =5 = K>.

This completes the proof. |

Proof of Theorem 5.1.  Fora > 1 satisfying (5.4), we have proved that for all k > i +m,
Ky A(i k) < i(yi.ye) < K1A(i k).

Since K1, K» > 0, setting x = max{Kj, %2} finishes the proof. |

Convention. From this point forward, we will assume that = & (a) alwayshasa > 1
sufficiently large so that (5.4) is satisfied, and consequently the intersection numbers of curves
in any sequence {yi 7., satisfies (5.3) in Theorem 5.1. For concreteness, we note that from
equation (5.4), a > 16 > 2 (though in fact, it is much larger).

5.2. Convergence in MZL(S). Consider again a sequence of curves {yx}2, which
satisfies the conditions of Theorem 5.1. Let v € §L(S) be the lamination from Proposition 4.4.
In this subsection we will prove this sequence naturally splits into m convergent subsequences
in PML(S).

Foreachh =0,...,m—1andi € N let

i—1
(5.5) cf = A©.im+h) = [ | bejmin
J=1
where A is defined in (5.1).
Foreachh = 0,1,...,m — 1, define the subsequence )/l-h of the sequence {yx }7—, by
(5.6) v = Vimin-

The main result of this section is the following theorem.

Theorem 5.10.  Suppose that {y }7°_, satisfies . Then for each h = 0,1,...,m — 1,
there exists a transverse measure ¥ on v so that

h
lim = = "
i—o00 o

in ME(S), where yl-h and cl-h are as above.
We will need the following generalization of Theorem 5.1.
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Lemma 5.11. For any curve §, there exists k(8) > 0 and N(8) > 0 so that for all
k= N(),
. *
(8. vk) =) A0, k).

Remark 5.12. Note that in Theorem 5.1, we estimate i (y;, ) with a uniform multi-
plicative constant « that works for any two curves y; and y, but the comparison is with A(i, k)
rather than A(0, k). On the other hand, the ratio of A(0, k) and A(i, k) is bounded by a con-
stant depending on i, and not k, so the lemma for § = y; is an immediate consequence of
that theorem.

Proof.  First we note that by Theorem 5.1, we have

. * .
i(Vi, Vi) =« A k).

From the definition of A4, and the fact that {e; }]9';0 is an increasing sequence, it follows that for

eachi =0,...,2m — 1, and all k > i, we have the bound
A0,k) 5
<—= <) .
= A(i, k) =0 €2meé3m
Setting kg = kb2esmesm, foreachi = 0,...,2m — 1, we have
. *
(5.7) i(Vi. V) =xo A(0,Kk).
Next, let d = 2mkg. Note that since yy, ..., yam—1 fills S, the set of measured lamina-
tions
_ 2m—1 .
A= {x > iy A =g 1} C MEL(S)
Jj=0

is compact. From (5.7) we have

1
C A.
{A(Oak)}kZSm

Let v € §£(S) be the lamination from Proposition 4.4. Since v is an ending lamina-
tion, the set of measures v € A supported on v is a compact subset. By the continuity of the
intersection number i, there exists ¢(§) > 0 so that i (8, V) =<.(s) 1 for all such v.

Let K(§) C ME(S) be a compact neighborhood which contains the set of measures v
which are supported on v and are in A. By the continuity of the intersection number i again,
we can take K (8) sufficiently small so that there exists «(§) > 0 such that

i(8,2) X 1 forall A € K(5).

Since every accumulation point of {%}z"zm is a measure v € A supported on v, it follows
that there exists N(§) so that

Yk
e K(§
A(0,k) ©
for all k > N(§). Consequently, for all k > N(8), we have i (8, yx) ;K((g) A(0, k), which com-
pletes the proof. m)
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Using the estimates from Lemma 5.11, we prove the next lemma. Theorem 5.10 will then
follow easily.

h
Lemma 5.13. For any curve § and any h = 0, ...,m — 1, the sequence {i (3, %)}?io
converges. !
Proof. By Proposition 5.4 we have

im+h—1

113, Vim+n) — €i—1)m+rbi (8, Yi—1ym+n)| < 2B Z i(8,y1).
I=(—-2)m+h

Dividing both sides by ¢ = A(0,im + h) = be;i—1ym+nA(0, (i — 1)m + h), and letting k (8)
i (i—-1)m+

be the constant from Lemma 5.11, it follows that for all 2z = 0,...,m — 1, and i sufficiently
large
) . 7B im+h—1
‘i(&, Vzm;—h)_l.(& Y ;l)m+h)‘ < ( > i)
¢ Ci1 0.im +h) I=(—2)m+h
2B im+h—1
< — 8)A(0,1
_A(O,im+h)< 2 k®A0.D
I={—2)m+h
im+h—1
A(0,1
= Y gy
I=(—-2)m+h O.im + )

Lemma 5.6 implies that the expressions in the final sum admit the following bounds:

] h— .
_AQD |y
A, im + h) —

Since )/l-h = Yim+h, Wwe have

yh yh .
i(8, —lh) —i(8, lh—l)' < 4mBk(8)a'™".
¢ Ci

Consequently, for all 7 > j sufficiently large, applying this inequality and the triangle inequal-
ity we have

h

h
A Vi . Vj)
ils, =) —ils, =
G IRICH

J

i
< 4mBk(6) Z a7l
I=j+1

By taking i and j sufficiently large, the (partial) sum of the geometric series on the right can be
made arbitrarily small. In particular, {i (3, yih / cl.h)} is a Cauchy sequence, hence converges. ©

Proof of Theorem 5.10. Fix h € {0, ..., m—1}. Note that since the intersection numbers
{i (6, )/l.h / cl.h)}?io converge for all simple closed curves &, it follows that {yl-h / cih 7o converges
to some lamination 7" in the space of measured laminations ML(S) (since ML(S) is a closed
subset of RE(S)), By Proposition 4.4, ol is supported on v. |
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6. Ergodic measures

We continue to assume throughout the rest of this section that {yx }72, satisfies & and
that {yl.h / cf’ Jieo for h =0,...,m — 1 are the subsequences defined in the previous section
limiting to " supported on v by Theorem 5.10 for each & = 0, ..., m — 1. We say that 7" and
" are not absolutely continuous if neither is absolutely continuous with respect to the other
one. Note that this is weaker than requiring that the measures be mutually singular.

Recall from the introduction that the space of measures supported on v is the cone on
the simplex of measure A(v). We denote (choices of) the ergodic measures representing the
vertices by i°, ..., 14!, where 0 < d < £(S) is the dimension of the space of measure on v.
The ergodic measures are mutually singular since the generic points are disjoint. It follows
that if we write v# and v*" as nonnegative linear combinations of 2%, ..., i%~!, then 7" and
5" are not absolutely continuous if and only if there exists i/, ji’/ " so that i/ has positive
coefficient for 7" and zero coefficient for v#’, while i’ " has positive coefficient for " and
zero coefficient for v”.

The aim of this section is to show that d = m, and in particular, v is nonuniquely ergodic.
In fact, we will prove that up to scaling and reindexing we have al = ok,

Using the estimates on the intersection numbers from Theorem 5.1, we first show that the
measures 9" forh = 0,...,m — 1, are pairwise not absolutely continuous.

Theorem 6.1. Leth,h' €{0,...,m — 1} and h # h’. Then

/) i)
lim ——>= =00 and lim —7—— =00
i~ i(yP, 51 i~ iyl o)

In particular, the measures V" and " are not absolutely continuous with respect to each other.

The last statement is a consequence of the two limits, for if 5" and " were positive
linear combinations of the same set of ergodic measures, then these ratios would have to be
bounded.

Proof. For h # I’, we will calculate that
. . _— * . . . -_— /
6.1) i v )i (! ") < 1 and - Tim (v i (! 9) = 0.

Dividing the first equation by the second and taking limit (and doing the same with the roles
of h and i’ reversed) gives the desired limiting behavior.

To treat the two estimates in (6.1) simultaneously, we suppose for the time being that
h,h' €{0,...,m — 1}, but we do not assume /& # h’. From Theorem 5.10 together with (5.5)

and (5.6) we have
h

—h .V . Vikm+h
= lim £ = lim —2m+th
T c,’c' koo A0, km + h)

Combining this with (5.1), (5.6), and the estimate in Theorem 5.1, we see that for any 7 we
may take k sufficiently large so that
Ykm+h'
A0, km + h’))
* A(h, (i + Dm + h)A(im + h, km + h')
- A, km + h') ‘

. . —_— 4 * . .
(6.2) i P DI Y = i Vet ymen)i Gimas
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We will simplify the expression on the right, but the precise formula depends on whether
h' > hor h' < h. From the definition (5.1), the right-hand side of (6.2) can be written as

i k—1 i
Hr=l berm-{—h Hr=j0 berm+h’ _ le=1 berm—i—h

k- -1 :
]_[rz% berm+n io=1 bermtn
where jo =i + 1if A’ > hand jo =i + 2 if i’ < h. Therefore, from (6.2) we can write
] €rm
* Hl —Jrh, h/ 2 ha

r=1 e pmip

i e h /
l_[ L’ h! < h.

r=1 e, 1ymtn

i(Vg’Vﬁ-H)i(%h,‘_)h ) <

bem+h/

Now observe that when 4’ = h, this becomes

. . - *
l(yél’ yl'h-i-l)l (yihv Vh) = 1»
proving the first of the two required equations. So, suppose & # h’. Then each of the i terms in

the product is bounded above by a~! since the index for the denominator is greater than that
of the numerator, and e; > ae;_; for all [ > 1. Thus we have
i

co b h cooh =R Y —
l()’o,)/i+1)l()/i )y <a™t,
where when /' < h, we have absorbed the constant be,, into the multiplicative error since
m + h' < 2m. Letting i tend to infinity, we arrive at the second of our required estimates, and
have thus completed the proof. O
We immediately obtain the following:

Corollary 6.2. The lamination v is nonuniquely ergodic.

In fact, Theorem 6.1 implies the main desired result of this section in a special case. To
prove this, we first prove a lemma which will be useful in the general case as well.

Lemma 6.3. Ifm > d, then m = d, the measures v°, ..., V"™~ are distinct and ergo-
dic, and these can be taken as the vertices of A(v).
Proof. Recall that 2, ..., 1¢~! are ergodic measures spanning the (d-dimensional)

space of measures on v. For each 0 < h < m, write

d—1
=Y i
Jj=0

where c;’ > 0 for all j, h. Then for each i, i, and /’, we have

d—1
i oMy =" il ).
=0
Next, fix & and let j € {0,...,m — 1} be such that c]}.lh # 0 and so that there exists
a subsequence of yl-h, sothatif 0 < j <m —1and c]}.’ # 0, then

(6.3) iy =il ).
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Now suppose that for some i’ # h, cjhh/ # 0. On the subsequence of {yl.h} above where
(6.3) holds, Theorem 6.1 implies
h:c,h 57 h:c,h 57
0o = lim ELC7NViJH)<<nnmupzéfLSZLiﬁl
i=00 3 Mi(yl ) T oo CMiyl in)
h .. h - h
cyoi(yn, J c”
=1imsupZLM< I < oo.

isoo M i(yh, uin) T T c]hh/

This contradiction shows that cjhh/ = 0 for all &’ # h. Since cj}.’h # 0, it follows that i — jj,

defines an injective function {0,...,m — 1} — {0,...,d — 1}. Since m > d, this function is
a bijection, m = d, and v = c]}.’h f/n. Since fi°, ..., i4 =1 are distinct ergodic measures span-
ning the simplex of measures on v, the lemma follows. m]

Corollary 6.4. Ifm = £(S), then the measures v°, ... V™! are distinct and ergodic

and can be taken as the vertices of A(v).

Proof. Since the dimension of the space of ergodic measures d is at most &(.S), it fol-
lows that m > d, and hence Lemma 6.3 implies the result. O

6.1. The general case. In [24] Lenzhen and Masur prove that for any nonuniquely er-
godic lamination v the ergodic measures are “reflected” in the geometric limit of a Teichmiiller
geodesic whose vertical foliation is topologically equivalent to v. We will use this to prove the
following generalization of Corollary 6.4 we need.

Theorem 6.5. Suppose that {y;}72 , satisfies P and that {y,i’ Yowo h=0,....m—1,
is the partition into m subsequences with limy _ o y]i’ =", all supported on v. Then the

measures V°, ..., V™1 are distinct and ergodic and can be taken as the vertices of A(v).

Let 19, ..., [Ld ~1 be the ergodic measures on v and set
d—1 m—1 m—1
- - j - h
p=>Y @' and 7=y => 1
=0 j=0 h=0

Here we are viewing the curves in the sum on the right as measured laminations with trans-
verse counting measure on each curve. We choose a normalization for the measures ji/ so
that i (y, 1) = 1. According to [16], there is a unique complex structure on S from a marked
Riemann surface S — X and unit area holomorphic quadratic differential g on X with at most
simple poles at the punctures, so that the vertical foliation |d x| is & and the horizontal foliation
|dy| is y. Area in the g-metric is computed by integrating d ji|dy|. We will also be interested
in the measure obtained by integrating d fi|dy| for each j = 0,...,d — 1, which we denote
by Area;. Of course, Area = > j Area;.
Next let g denote the Teichmiiller geodesic defined by g. We will write

g) =[fi: X — X(1)].

where X(¢) is the terminal Riemann surface, or

g(1) =[fi:(X.q) = (X(1).q))],
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where ¢(t) is the terminal quadratic differential. Note that since v is a nonuniquely ergodic
lamination by Masur’s criterion [30] the geodesic g is divergent in the moduli space. The ver-
tical and horizontal measure of a curve y is denoted vy (;)(y) and hg ;) (y), which are precisely
the intersection numbers with the horizontal and vertical foliations of ¢ (¢), respectively. These
are given by

vy (¥) = el |dyl) = e7hi(y,y) and e (y) = €'i(y,|dx|) = €'i(y. fi).

From this it follows that the natural area measure from ¢(¢) is the push forward of the area
measure from ¢g. Likewise, this area naturally decomposes as the push forward of the measures
Area;, for j =0,...,d — 1. Consequently, we will often confuse a subset of X and its image
in X(¢) and will simply write Area and Area; in either X or X ().

Given € > ¢’ > 0, an (€/, €)-thick subsurface of (X(t),q(t)) is a compact surface Y and
a continuous map ¥ — X(¢), injective on the interior of ¥ with the following properties.

(1) The boundary of Y is sent to a union of ¢(¢)-geodesics, each with extremal length less
than ¢’ in X (¢).

(2) If Y is not an annulus, then every nonperipheral curve in Y has ¢(¢)-length at least € and
Y has no peripheral Euclidean cylinders.

(3) If Y is an annulus, then it is a maximal Euclidean cylinder.

Remark 6.6. We will be interested in the case that €’ < €. In this case, 0Y has a large
collar neighborhood in Y, which does not contain a Euclidean cylinder (i.e. a large modulus
expanding annulus; see [36]). Consequently, 0Y will have short hyperbolic and extremal length.

As an abuse of notation, we will write ¥ C X, although Y is only embedded on its
interior. An (¢/, €)-decomposition of (X(t),q(t)) is a union of (¢’, €)-thick subsurfaces

Yi(@@),....Y,(t) C X(¢)

with pairwise disjoint interiors. We note that X (¢) need not be the union of these subsurfaces.
For example, suppose that (X (¢), ¢(¢)) is obtained from two flat tori by cutting both open along
a very short segment, and gluing them together along the exposed boundary component. If the
area of one torus is very close to 1 and the other very close to 0, then an (¢’, €)-decomposition
would consist of the larger slit torus, Y (), while X(¢) — Y (¢) would be the (interior of the)
smaller slit torus.

The key results from [24] we will need are summarized in the following theorem.

Theorem 6.7 (Lenzhen—Masur). With the assumptions on the Teichmiiller geodesic g
above, there exist constants € > 0 and B > 0 with the following properties. Given any sequence
of times ty — 0o, there exist a subsequence (still denoted {t}), a sequence of subsurfaces
Yo(tg),.... Yg_1(tx) in X(t), and a sequence € — 0, so that for all k > 1:

(1) Yo(tg),....Yq_1(tr) is an (¢x, €)-thick decomposition,

(2) Area; (on(tk)) > B forall0 < j <d — 1 and for any component on(tk) C Yj(tk),
(3) Area;(Y;(tx)) < erforallO <1i,j <d —1withi # j,

(4) Area(X(1x) — (Yo(tg) U - U Yq_1(tg)) < k.
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The bulk of this theorem comes from [24, Proposition 1]. More precisely, in [24, proof
of Proposition 1], the authors produce a sequence of subsurface {Y (f;)} whose components
give an (e, €)-thick decomposition so that each component has area uniformly bounded away
from zero, so that the areas of the complements tend to zero. For each ergodic measure ji/
the authors then find subsurfaces Y;(#x) so that Area; (Y;(tx)) — 0 as k — oo if i # j (see
[24, inequality (16)] and its proof). This proves (1), (3), and (4). Since Area = ) j Area;,
condition (2) follows as well.

To apply this construction, we will need the following lemma. First, for a curve y and
t > 0,letcyl,(y) C X(¢) denote the (possibly degenerate) maximal Euclidean cylinder foliated
by ¢(t)-geodesic representatives of y. We note that cyl,(y) = f;(cyly(y)).

Lemma 6.8. Given any sequence t — 0o, let Yo(tx), ..., Yq_1(tx) C X(tx) denote
the (e, €)-thick decomposition from Theorem 6.7 (obtained after passing to a subsequence).
Then for all k sufficiently large, each Y (t) contains a curve from the sequence {y;} as a non-
peripheral curve, or else contains a component which is a cylinder with core curve in the
sequence {y;}.

We postpone the proof of this lemma temporarily and use it to easily prove the main
result of this section.

Proof of Theorem 6.5. Let t; — oo be any sequence and let Yo(ft),..., Yg_1(tx) be
the (eg, €)-thick decomposition obtained from Theorem 6.7 after passing to a subsequence. Let
k be large enough so that the conclusion of Lemma 6.8 holds. For each j € {0,...,d — 1} let
¥1, be one of the curves in our sequence so that y;; is either a nonperipheral curve in Y (#¢),
or else Yj(#) contains a cylinder component with core curve y;;. Since Yo(fk), ..., Yq—1(tk)
have disjoint interiors, it follows that y;,...,y;, , are pairwise disjoint, pairwise noniso-
topic curves. By Theorem 5.1, for example, the difference in indices of disjoint curves in our
sequence is at most 2, and consequently {y;,. ..., ¥, , } consists of at most m curves. That is,
m > d.ByLemma6.3,d = m,and v°, ..., 0™ ! are ergodic measures spanning the space of
all measures on v, proving the theorem. O

6.2. Areas and extremal lengths. The proof of Lemma 6.8 basically follows from the
results of [36], together with the estimates on intersection numbers described at the beginning
of this section and subsurface coefficient bounds in Section 4.1. Let

g(t) = [fi:(X.q) = (X(1).q(1)))]

be the Teichmiiller geodesic described above with vertical foliation &1 = Y fi;, the sum of the
ergodic measures on v, and horizontal foliation |dy| = ¥.

Suppose that Y — X(#) is a map of a connected surface into X (¢) which is an embedding
on the interior, sends the boundary to ¢ (¢)-geodesics, and has no peripheral Euclidean cylinders
unless Y isitself a Euclidean cylinder (in which case we assume it is maximal). As in the case of
thick subsurfaces, we write Y C X(¢), though we are not assuming that Y is thick. Suppose that
Y C X(¢) is a subsurface so that the leaves of the vertical and horizontal foliations intersect
Y in arcs. This is the case for ¥ = cyl,(yx) for all k sufficiently large, as well as any Y
for which Exty;)(0Y) is small when ¢ is large, and these will be the main cases of interest
for us.
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As in [36], the surface Y decomposes into a union of horizontal strips
Y=H(Y)U---UH.(Y)

and vertical strips

Y =Vi(Y)U---U Vo (Y).

Each horizontal strip H;(Y) is the image of map fl.H :[0,1] x [0, 1] — Y which is injective
on the interior, sends [0, 1] x {s} to an arc of a horizontal leaf with endpoints on 0Y . Fur-
thermore, the images of the interiors of le s frH are required to be pairwise disjoint. Let
H _ fiH ([0, 1] x {%}) be a “core arc” of the strip. Vertical strips are defined similarly (and
satisfy the analogous properties for the vertical foliation) as are the core arcs £, . . ., ﬁl/,.

Remark 6.9. This is a slight variation on the strip decompositions in [36].

The width of a horizontal strip H;(Y), denoted w(H;(Y)), is the vertical variation of
any (or equivalently, every) arc H;({s} x [0, 1]). The width of a vertical strip, w(V;(Y)), is
similarly defined in terms of the horizontal variation. An elementary, but important property of
these strips is the following.

Proposition 6.10. Let Y C X(t) be as above. If
Y=HY)U---UH(Y)=V(Y)U---UVp(Y)

is a decomposition into maximal horizontal and vertical strips, then

r/

gy @Y) =2 w(Hi(Y)) and hen@Y) =2 w(Vi(Y)).
i=1 i=1

The area of Y can be estimated from this by the inequalities

(6.4) D wH Y )wV;(Y))EE L) —2)
ij
< Area(Y) < Y w(H; (Y )w(V;(Y) G £)) +2).
i,

To see this, we note that the area of Y is the sum of the areas of the horizontal (or vertical)
strips. Every time V;(Y') crosses H;(Y), it does so in a rectangle, which contains a unique
point of intersection (ZH N EV except, near the ends of H;(Y), where we might not see an
entire rectangle (and consequently we may or may not see a point of KH N KV) We may also
have an intersection point in EH N EV that does not come in a complete rectangle (but only
part of a rectangle). Adding and subtractmg 2 to the intersection number accounts for the ends
of H;(Y'), and summing gives the bounds.

If Y is nonannular, then note that

D i ) +2 <i(ry (7). 7y ().

To see this, we note that the horizontal foliation (for example) is y and 7y (y) is basically
obtained from the arcs £ lH by surgering with arcs from the boundary (see also [36, Lemma 3.8]).
Combining this inequality with the upper bound in (6.4) and Proposition 6.10, we obtain

(6.5) Area(Y) < hy)(0Y )vg(r) (Y )i(my (7), my (v)).
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Now suppose that Y = cyl,(y) is a maximal Euclidean cylinder with core curve y. Then
there is a decomposition into strips with just one horizontal strip H(Y) and one vertical strip
V(Y) and core arcs £ and £, respectively. In this case, the intersection number i (£, £V) is
just dy (¥, v) up to an additive constant (of at most 4 — again, see [36, Lemma 3.8]). Therefore,
the bounds in (6.4) together with Proposition 6.10 implies

4 Area(cyly(y)) _ 4 Area(cyly(y)) ; d,(7.v)
hayWMvginy(v) iy P)i(y. ) e

(6.6)
In particular, if dy (y, v) is large, then

Area(eyly(y)) = g (1) vg(ey(¥)dy (7.v) = i (y. P)i (v. W)y (7. v).

The balance time of y along the Teichmiiller geodesic g is the unique ¢ € R so that

Vg(r) (V) = hg@) ().

Consider Y = cyl,(,)(y) at the balance time of y, together with the horizontal and vertical
strips H(Y) and V(Y'), respectively. In this situation, the rectangles of intersections between
H(Y) and V(Y) are actually squares. We can estimate the modulus of Y, which is the ratio of
the length to the circumference using these squares. Specifically, we note that the circumference
of Y is precisely the length of the diagonal of a square, while the length of Y is approximately
half the number of squares, times the length of a diagonal. Since the number of squares is
[eH eV £ dy(y,v), we see that the modulus is 2dy, (¥, v), up to a uniform additive error.
When d (y, v) is sufficiently large, the reciprocal of this modulus provides an upper bound for
the extremal length

1
dy(?")).

We note that this estimate was under the assumption that cyl,(y) was a nondegenerate annulus.
In fact, if d), (y, v) is sufficiently large (e.g. at least 5), then cyl(y) is indeed nondegenerate.

*
EXtt(y) ()/) <

Proof of Lemma 6.8. Suppose that ¢, — oo is a sequence of times, Y (f;) C X (#) is
a sequence of subsurfaces with ¢(¢)-geodesic boundary, embedded on the interior and hav-
ing no peripheral Euclidean cylinders, unless Y is itself a Euclidean cylinder in which case
we assume it is a maximal Euclidean cylinder. We further assume that Exty(;, )(dY (7)) — 0.
We pass to a subsequence, also denoted {#; }, and assume that either Y (¢;) is nonannular and
no nonperipheral curve lies in the sequence {y;}, or that Y (#;) is a cylinder whose core is not
a curve from our sequence {y; }. To prove the lemma, it suffices to prove that Area(Y (;)) — 0,
for this implies that such subsurfaces Y (#;) cannot be a component of any Y (#) from Theo-
rem 6.7.

Decompose the sequence into an annular subsequence and nonannular subsequence, and
we consider each case separately. For the nonannular subsurfaces, we bound the area of Y (¢z)
using inequality (6.5). Specifically, we note that since no y; is homotopic to a nonperipheral
curve in Y (t), Proposition 4.5 provides a uniform bound for dy (7, v) for all subsurfaces
W C Y(tx). By Theorem 2.7, follows that i (7wy (y), wy (v)) is uniformly bounded. Since the
extremal length of 0Y (¢) is tending to zero, so is the ¢ (#;)-length, and so also the horizontal
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and vertical variations:
lim vq(tk)(aY(l‘k)) =0 and lim hq(tk)(aY(l‘k)) = 0.
k—o00 k—o0

Combining this with (6.5) proves Area(Y (t;)) — 0, as required.

The annular case is similar: Again by Proposition 4.5 since the core curve oy of Y (#)
is not any curve from the sequence {y;}, we have that dy, (y, V) is uniformly bounded, while
the horizontal and vertical variations of ¢y tend to zero (since the extremal length, and hence
q(tr)-length, tends to 0). Appealing to (6.6) proves that Area(Y(f;)) — 0 as k — oo in this
case, too. m]

7. Constructions

In this section we provide examples of sequences of curves satisfying &, and hence to
which the results of Sections 3—6 apply.

7.1. Basic setup. Consider a surface S and m pairwise disjoint, nonisotopic curves
Y0, ---,VYm—1- Foreach k,let 'y = (yo U--- U Ym—1) — ¥k, and let Xj be the component of
S cut along ['; containing yy. For each k we assume the following:

(1) 0Xj contains both yg 4 and yx_; (with indices taken modulo m),

(2) we have chosen f: S — S afixed homeomorphism which is the identity on S \ X}, and
pseudo-Anosov on Xy,

(3) the composition of f and the Dehn twist £y, , denoted Dy, fi, has translation distance
at least 16 on the arc and curve graph AC (X} ) for any r € Z,

(4) there is some b > 0 so that i (yx, fr (yx)) = b, independent of k.

For0 <k,h <m — 1, let g(k, h) be the interval from k to i, mod m. This means that if
k < h,then g(k,h) ={k,k + 1,...,h}is the interval in Z from k to h, while if & < k, then

dk,h) =tk k+1,....m—1,0,.... k.

If Kk = h, then g(k,h) = {k} = {h}.
Forany 0 < k,h <m —1, set

Xen= U X
led (k,h)

If k = h, note that Xy , = Xx = Xj. In general, Xy j; is the component of S cut along
Uk.n = Yh4+1 U -+ U yr_1 containing all the curves yg, ..., y,. That there is such a compo-
nent follows inductively from the fact that y;4.; € 09X}, with indices taken mod m.

We also define

Fien = Jie© fkkr1 0020 fo,
where we are composing f; over [ € §(k, h). Because f; is supported on X, it follows that
forall0 <k,h <m—1,

Vi Vi Fien(Yn) C Xp

In fact, the first and last curves in this sequence fill Xy j,.
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Lemma 7.1. For each 0 < k,h <m — 1, {yk, Fi p(yn)} fills X p. In particular, we
have i(yy, Fx n(yn)) # Oforalll € g(k,h).

Remark 7.2. Inthe case k = h + 1 (mod m), we note that X5 , = S and the lemma
states that

Whats Fnernn) = s e S fr(vn)}

fills S. We also observe that for all j € f(k,h), Xy ; C Xi p. It follows that v, Yk 41.--..Va
and Fy x (Vi) ..., Fi n(yy) are contained in X j,.

In the following proof, we write 7y 4 (§) for the arc-projection to AC (X p) of a curve §.
This is just the isotopy class of arcs/curves of § intersected with Xy 5. Likewise, di 5 (8,8’) is
the distance between 7, ¢ (8) and 7, 1 () in AC (X 5,). We similarly define 73 and dj for
the case k = h.

Proof. The last statement follows from the first assertion since, for all / € (k, h),
i(y1,vk) = 0, and so assuming {yx, Fi 5 (yn)} fills, we must have i (y;, Fx »(yn)) # 0.

The conditions on the curves and homeomorphisms are symmetric under cyclic permu-
tation of the indices, so it suffices to prove the lemma for 4 = m — 1 and 0 < k < h (which
is slightly simpler notationally). We write j = h — k and must prove that {y;_ ;. Fj—; n(vs)}
fills Xp,_; . We prove this by induction on ;.

The base case is j = 0, in which case we are reduced to proving that {yy, fn(vs)}
fills X},. This follows from the fact that f; has translation distance at least 16 on AC (X}),
and hence dj (4. fi (7)) = 16.

Suppose that for some 0 < j < h, {yp41—j. Fpy1—jn(yn)} fill Xpy1—; . and we must
prove that {y,_;, Fp—; p(yn)} fills Xp_j p.

Note that since y,_ ;41 C 0Xp—j, and i (Yp—j 1, Fp1—;,n(yn)) # O (because they fill
Xh+41—j,n), it follows that F,_; 5 (yp) has nontrivial projection to Xj_ ;. On the other hand,
because yp_; is disjoint from Xj1_; (it is in fact a boundary component), it follows that
[(Vh—j» Fpy1—jn(yn)) = 0, hence dp_ i (yp—j, Fpy1—j) = 1. Since fj,_; translates by at
least 16 on AC (Xj_;), it follows that

dn—j Fn—jn(vn)s Yh—j) = dp—j (fn—j (Fnt1-j0 (V1)) Yh—j)
> dp—j (fn—j (Fnp1—j 0 (Y)s Fnp1—jn(vn))
—dp—j(Fp1-j,0(Vn) s Yh—j)
>16—1=15.

Now suppose that {y_;, Fp—; p(ys)} does not fill Xj_; 5. Let § be an essential curve in
Xp—j,p which is disjoint from both y;,_; and Fj,_; 5 (yp). Observe that § cannot intersect the
subsurface Xj_; essentially, for otherwise

dpn—j(Vh—j» Fn—jn(yn)) < dp—j(yp—j.0) +dp—; (8, Fp—j p(yn)) <2

a contradiction.

Therefore, § is contained in Xp,_; , — Xp—; C Xp 41— p. We first claim that § must be
an essential curve in X q_; ;. If not, then it is contained in the boundary. However, any
boundary component of X1, which is essential in X,_; 5 is contained (and essential)
in Xp_ ;. This is a contradiction.
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Now since § is essential in X} _; 5, by the hypothesis of the induction we have

0#i(S, Ypy1—j) +i(0, Fppr—jn(yn) = i(8, vpy1—;) + (8, Fpejn(vn)).

The last equality follows from the fact that F,_; ; differs from Fj,q_; p only in Xj_ ;, which
is disjoint from §. Finally, we note that y;1_; € 0X}_;, and hence i (d, yp4+1—;) = 0. Con-
sequently,

(8, Fp—jn(yn)) # 0
contradicting our choice of §. Therefore, {y;—;, Fy—; n(yp)} fills Xp,_; . This completes the
induction, and hence the proof of the lemma. |

Lemma 7.3. Forall0 <k <m-—1,

[(Vie» Fe k=1 Jx (k) = ik i Je+1 - Je—1/x (V) # 0.

Proof.  We recall from the previous proof that {yx 1, Fx+1,k(yk)} not only fills S, but
satisfies

die+1(Vie+1> Fev1,6 (Vi) = 15,
Since yx41 € 0Xg and yx € 0Xg4 1 and Xi and Xy overlap, it follows from Theorem 2.9
(see also Remark 2.10) that
dic (Vi Fre+1,6(v)) < 4.

Since f} translates at least 16 on AC (X} ), we have

di Vies Ji Fre+1.6 (Vi) = die(Fie1,6 Vi) s fie Fre+1.6 (V) — die (Vs Fre+1.6 (Vi)
>16—4 > 12.

Since fi Fr+1k = Fi k-1 fk» the lemma follows. i

7.2. General construction. Let {ex}?2 , be a sequence of integers satisfying inequality
(3.1) for a > 2 sufficiently large as so as to satisfy (5.4) and hence (5.3) in Theorem 5.1 (see
the convention at the end of Section 5.1).

Fork > 0, letk € {0, ...,m — 1} be the residue mod m, and for k > m define

Dy = @;}I\_f_m and ¢ = i)kflz
The sequence of curves {yx}72, is defined as follows:
(1) The first m curves are Yo, ..., Ym—1, as above.

(2) For k > m, set
Yk = PmPm+1 "‘¢k(V}§)-

Remark 7.4. We could have avoided having the first m curves as special cases and
alternatively defined a sequence {8y }x>o by dx = ¢o - Px(yj) for all k > 0. This sequence
differs from ours by applying the homeomorphism ¢g - - - ¢p,—1. This is a useful observation
when it comes to describing consecutive elements in the sequence, but our choice allows us to
keep yo, ..., Ym—1 as the first m curves.

Proposition 7.5.  With the conditions above, the sequence {yy 7, satisfies P for some
0 < by < b < by (where b is the constant assumed from the start).
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To simplify the proof, we begin with the following lemma.

Lemma 7.6. For any 2m consecutive curves Yi—m, - - - » Yk+m—1, there is a homeomor-
phism Hy, : S — S taking these curves to the curves

Voo Yegm—1 e - e Segm—1 Vrgm=1)

(in the same order). Furthermore, the homeomorphism can be chosen to take Yy 4, to

Doy S Segm=t St )-

Proof. We prove the lemma assuming k > 2m to avoid special cases (the general case
can be easily derived from Remark 7.4, for example). We define

Hi = (m - k-1 Dk Dit1++* Dierm—1)" "

Let h,h" €{0,...,m — 1} and note that since i (y, yp') = 0, Dy, ,(yn) = yp. Further-
more, if 4 # h’, from the fact that f}, is supported on X}, and yy is disjoint from X}, we easily
deduce Dy,, and f; commute, and ¢y, (Vx) = yp.

From these facts we observe that fork —m < j < k — 1, we have

H ' (v) = ¢m - k-1 D Dicy1 o Drym—1(r7)
=¢m- Pr—1(v7)
=¢m--di(y;) = v,
while for k < j <k + m — 1, we have
H ' (fe [500) = b+ 1D -+~ Dicqem—1 S+ F57()
= ¢m- b1 Dx fip - Dj [7Dj+1 -+ Degm—-1(v;5)
=¢m- ¢ Djs1 Diym—1(r;)
=¢m-- i (v;) = ;-

This completes the proof of the first statement.
Next, since D1 = Dy, we have

(7.1 i Jezm=aPe+m Vi) = Jio o Segm=a Lk +m S (Vi)
= JiDk+m gy Tegm=1 /e V)
= fk@k+mf,;_1f;; Sz S )
= 7Dy [ e FermeSe )

= D7k, ) Ji Term=i e )

k
Applying H;~ ! to the left-hand side gives Yy, proving the last statement. O

Proof of Proposition7.5. Let Yx—_p, ..., Yk+m—1 b€ any 2m consecutive curves in our
sequence, and let H: S — S be the homeomorphism from Lemma 7.6 putting these curves
into the standard form described by that lemma. Since Hy sends the first m to Yo Yerm—1
it follows that these curves are pairwise disjoint. Moreover, the set of all 2m curves fills S by
Lemma 7.1 and Remark 7.2 (in fact, the first and last alone fill ). Therefore, the sequence
satisfies conditions (i) and (ii) of #.
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Brock, Leininger, Modami and Rafi, Limit sets of Teichmiiller geodesics 39

To prove that condition (iii) is also satisfied, we need to define )/,’c 4m SO that

Vi+m = DyF (Vi g m)s

and verify the intersection conditions. We fix k > 2m and define

Viewm = ®m - bmak—1 fz (V)

(the case of general k > m is handled by special cases or by appealing to Remark 7.4). Note that

by definition, Yk 1 = @m *** Pmtk—1Pm+k (Vi) and applying Hy to yx and yg 4, Lemma 7.6
gives us

Hi(yi) = f(vp) and  Hi(Vk4m) = @;g(yl;)(f;g St i)
Then, as in the proof of Lemma 7.6 (compare (7.1)), we have

HiVieym) = Jio* Tem=1SeV)-
Therefore,
Hy (Vitm) = D 0y Hi Vg in)) = Hi(Dyk (Vg 1))

50 Vitm = Dyt Viym)-

To prove the intersection number conditions on i (j/,/c e y;j) from property (iii) of &, it
suffices to prove them for the Hy-images. Thus, for j € {k + 1,...,k + m — 1} we note that
by Lemma 7.6, Hy (y;) = fi--- f]f()/]r), and hence

[V Vieam) = 1 500 fe feam=Je )
=i e Seommt i)
=i(y;.vp) =0.

The second-to-last equality is obtained by applying (f557 " frzm=1 f,;)_1 to both entries,
and observing that this fixes y i (cf. the proof of Lemma 7.6).
On the other hand, for j = k, the same basic computation shows

i (Vi Viewm) = 1 frvp) = b

by assumption (4).
Finally, similar calculations show that for j € {k—m, ..., k—1},by Lemmas 7.1 and 7.3,
we have

iV Viewm) = 107 f o g [i ) # 0.

There are only finitely many possible choices of j and k, so the values are uniformly bounded
between two constants b; < b,. Without loss of generality, we may assume b; < b < b,. This
completes the proof. |

While any sequence of curves as above satisfies the conditions in sections in & from
Definition 3.1, we will need one more condition when analyzing the limits of Teichmiiller
geodesics. It turns out that any construction as above also satisfies this property. We record this
property here for later use.
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Lemma 7.7. Suppose that the sequence {y}7, is constructed as above. If y, yp are
any two curves withm < h —k < 2m — 1, then yy and yy, fill a subsurface whose boundary
consists entirely of curves in the sequence. Furthermore, for any k < j < h, y; is either con-
tained in this subsurface, or is disjoint from it. If h — k > 2m — 1, then vy and yy, fill S.

Proof. First assume m < h — k < 2m — 1. Applying the homeomorphism Hj:S — S
from Lemma 7.6, yy and yj, are sentto yz and fz -+ f5(v;) = F i (vj), respectively. This fills
the surface X i which has boundary contained in yp U --- U y,,—1. By Lemma 7.1 it follows
that Hk_l(X,EJ;) is filled by {y%, vy} and has boundary in Hy (yo) U ---U Hi(Ym—1). All the
components of this multicurve are in our sequence, as required for the first statement.

Foreachk < j <h—mandk +m < j < h, we hace j € §(k, h), and as pointed out
in Remark 7.2, y 7 and F k. j(V f) are contained in X R Consequently, for these values of j,
Y € Hp(X i i)- On the other hand, if k < j < h, and j does not fall into one of the above two
cases,thenh —m + 1 < j <k +m — 1, whichimplies0 < j —k,h — j < m — 1 and hence
i(yj,vk) =1i(yj,vn) =0, and hence y; is disjoint from Hy (XIEJE)' This completes the proof
of the second statement.

When h — k =2m — 1, we have Xei = S, and hence {yg, F,;J;(yﬁ)} fills S. Conse-
quently, {yx, y,} also fills S.

Now we must prove that for # —k > 2m — 1, that y; and y, fill S. The proof is by
induction, but we need a little more information in the induction. For simplicity, we assume
that k > m + 1 to avoid special cases.

To describe the additional conditions, for k </, let ®; = ¢y, - - - Py, so that dDIZim_l
sends the curves yy, ..., ¥ (in order) to the curves

Yoo Viem=1 Ph+m Viegm)s -+ Phetm - dn(¥jy)-
With this notation, we now wish to prove by double induction (on k and & — k) that for all
m+1<k<hwithh —k >2m — 1 we have
Vi, v fills S and de,,  (xp) (Ves va) = 12
The base caseis h —k = 2m —1 and any k > m + 1. We have already pointed out that {yx, y5}
fills S. We note that applying CIDIZ_}_m takes Yk 41,-..,Vn to
Yerr - Ve Pktm+1 Vegmma)s - - - Phtm - Pre+2m—1Vigam=1)-

For the first and last curves {yﬁ, Pktm+1" Pk+2m—1 (ym)} we see that these fill

Xk+1,k+2m—1 = Xk+1,k—1

which has y;; as a boundary component. Since 7 (Pk+m—+1** Pk+2m—1(Vigz,—7)) is disjoint
from yg, it follows that applying ¢y 4, to this last curve ¢g 141 Pr+2m—1 (ym we
have

di Vi Pk4mPhet+m+1 -+ Phet2m—1 Vo) = 14 > 12.
But notice that cp];lrm_l (Yk+2m—1) = Pk+m ** Pk+2m—1(Vg2,,—7) While on the other hand
q’;_}_m_l()/k) = . hence
Aoy ym1(Xp) Vis Yetam—1) = 12,

as required for the base case.
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For the induction step, the proof is quite similar. We assume that the statement holds for
allk > m+1andall2m—1 < h—k < N,and proveitforh—k = N+1.Sinceh—(k+1) = N
andk + 1> m + 2 > m + 1, by the inductive assumption it follows that {yx 1, y5} fills S and
that
Aoyt (Xip) Vk+1.VR) = 12

-1

am> W have

Therefore, applying ®

D Vet Phetm+1 - dn(v)) = 12.

The homeomorphism @,:im sends Yk, ..., Yn to the sequence

Detm VO Virt - Vg Pham 1 (VgD - - Berm1 - Sn(vj)-

Since y; C axm and y;17 C 0Xj;, Theorem 2.9 (see also Remark 2.10) ensures that we
have

A Vie> Pke+m+1-dn(vp) < 4.
Applying ¢ 1., (Which translates by at least 16 on €(X})) to the second curve, we get

di (Vs Pk+mPhk+m+1-+ Pn(yjy) = 12.

In particular, we have
d‘bk-i-m—l(X,;)(Vka Yn) = 12.

This proves part of the requirement on y, Y.

We must also show that {yg, y,} fills the surface S. We will show that the ®g ,,,_1-image
s Prctm - dn(yj)} fills S, which will suffice. To see this, take any essential curve § and
suppose it is disjoint from both y; and ¢g 4, - - ¢p(y;). Then note that § must have empty
projection to X, for otherwise the triangle inequality implies that the distance from 7z (yf) to
7 (Pktm - Pn(yj;)) is at most 4, a contradiction to the fact that

di (Vi Pe+m+1- - 0n(Vp) = dog i (xp) Ve vi) = 12.

Since {yg77 Pk tm+1 - Pn(yy)) fills S, & must intersect one of these curves. However, Yer1
is contained in the boundary of X}, and hence § is disjoint from this. Consequently, § must
intersect @ 441" Pn(yj). Since @i,y is supported on X which is disjoint from §, we
have

0% i ktmr1 Pn(Vi) = i Bt (). Prtmt1 - Pr(Vj))
=1i(8, Prtm - Pn(v))-

This contradicts our initial assumption on &, hence no such § exists and {y}, $x4m =~ on(vj)}
fills S as required. This completes the proof. |

7.3. Specific examples. Here we provide two specific families of examples of the gen-
eral construction, but it is quite flexible and easy to build many more examples. We need to
describe yo, ..., Ym—1, together with the rest of the data from the beginning of Section 7.1.
For this, we will first ensure that all of our subsurfaces X} have the property that yx 4+, € 0Xy
(indices mod m). This is the first of the four conditions required. For the other three conditions,
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it will be enough to choose the sequence so that for any 0 < k, h < m — 1, there is a homeo-
morphism of pairs (X, Yx) = (X}, yx). For then, we can choose fy: S — S any homeomor-
phism which is the identity on S \ X}, pseudo-Anosov on AC (X} ) with translation distance
at least 15, and then use the homeomorphisms (Xo, Yo) = (Xg, yx) to conjugate fo to homeo-
morphisms fr: S — S.

7.3.1. Maximal-dimensional simplices. For the first family of examples, we can
choose a pants decomposition on Sg o a closed genus g > 3 surface as shown in Figure 2.
Each X} is homeomorphic to a 4-holed sphere, and y; C X is an essential curve. Any two
(X, vx) and (Xp, yp) are clearly homeomorphic pairs. In this case m = 3g — 3, and the lim-
iting lamination v from Proposition 4.4 defines a simplex of measures with maximal possible
dimension in PML(S) by Theorem 6.5. One can also construct examples in genus 2 by taking
Y0, Y1, Y2 to be a pants decomposition of non-separating curves.

o

v

Figure 2. The pairwise disjoint curves yo, ..., Ym—1 for the first family of examples in the case of
genus 5 (and hence m = 12).

7.3.2. Non-maximal examples. For our second family, we choose m = g — 1, and
take a sequence )y, ..., Ym—1 as shown in Figure 3. Here each X} is homeomorphic to a sur-
face of genus 2 with two boundary components and yy is a curve that cuts Xy into two genus 1
surfaces with two boundary components.

8. Teichmiiller geodesics and active intervals

In [36-38] the fourth author has developed techniques to control the length-functions and
twist parameters along Teichmiiller geodesics in terms of subsurface coefficients. In [22] this

Brought to you by | ULB Bonn
Authenticated
Download Date | 2/19/20 9:14 AM



Brock, Leininger, Modami and Rafi, Limit sets of Teichmiiller geodesics 43

Figure 3. The pairwise disjoint curves yg, ..., Ym—1 for the second family in the case of genus 5
(and hence m = 4).

control was used to study the limit sets of Teichmiiller geodesics in the Thurston compactifi-
cation of Teichmiiller space. Here we also appeal to this control. Most of the estimates in this
section are similar to the ones in [22, Section 6].

For the remainder of this section and the next we assume that {yy } 22, is a sequence of
curves satisfying the condition & from Definition 3.1 with ¢ > 1 large enough to satisfy (5.4)
and consequently so that (5.3) in Theorem 5.1 holds, and the sequence of powers {ex}7—
satisfy the growth condition (3.1) for thisa. Forh = 0,...,m — 1, let yih = Yim+h- as usual.

Let v be the nonuniquely ergodic lamination determined by the sequence (see Theo-
rem 4.3 and Corollary 6.2). Furthermore let v, for h = 0,...,m — 1, be the ergodic measures
from Theorems 5.10 and 6.5, so that )/l.h — " in PME(S), for each h. Let

m—1
b= xub",
h=0

for any xj, > O foreachh =0,...,m — 1.

Let X € Teich(S) and u be a short marking at X . By [18], there is a unique Teichmiiller
geodesic ray starting at X with vertical foliation v, and we let 7 be the horizontal foliation
(with support ). Denote the Teichmiiller geodesic ray by r : [0, o0) — Teich(S). Forat € R,
we sometimes denote r(¢) = X; and denote the quadratic differential at X; by g;. We write
ve(a), hy(a), £ (o) for the g-vertical variation, g;-horizontal variation, and ¢;-length of «,
respectively. In particular,

ve () = exp(=1)i(a, 1),
he(a) = exp(t)i(a,v),
C(@) = v, (@) + e (a).
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44 Brock, Leininger, Modami and Rafi, Limit sets of Teichmiiller geodesics

We write Hyp, (¢) = Hypy, (@), the X;-hyperbolic length of & and w;(«) = wy, (@) for
the X;-width, and recall from (2.1) that

1
t

We also recall that €p > 0 is the Margulis constant, and that any two hyperbolic geodesics of
length at most €9 must be embedded and disjoint.

For any curve « let cyl, («) be the maximal flat cylinder foliated by all geodesic repre-
sentatives of « in the g, metric, as in Section 6.1, and let mod(cyl,(«)) denote its modulus.
Fix M > 0 sufficiently large so that for any curve o with mod(cyl;(«)) > M, for some ¢ € R,
then Hyp, (@) < €o. For any k € N, let J,,, also denoted J, be the active interval of yi

Ji = {t € [0, 00) | mod(cyl; (yx)) = M.

Write Jx = [ay, ax] and denote the midpoint of J; by aj (the balance time of yj along
the geodesic, i.e. the unique ¢ when vs(yr) = hs(yy)). Foreachh € {0,...,m — 1} andi > 0,
we also write J; 45 = Jl-h, alh = dim+h- c_lf‘ = Qjyp» and c_lf‘ = dj;,+h, to denote the data
associated to yl.h = Yim+h-

Proposition 8.1 (Active intervals of curves in the sequence). With the assumptions and
notation as above, we have the following:

(i) For k sufficiently large, Ji # @. Moreover, J N J; = @ whenever i (Y. y;) # 0.

(i) For 0 < f < k sufficiently large with k — f > m, Jr occurs before Ji. Consequently,
some tail of each subsequence { Jl-h 72 o appears in order.

(iii) For k sufficiently large and a multiplicative constant depending only on v and X,

1 x 1

3
Hyp,, (vk) X —F—— <X —.
K d)/k (/’L’ V) ek

(iv) For an additive constant depending only on v, X, and M, we have
- -
| k| < logdy, (1, v) =< log(ek).
The following will be convenient for the proof of Proposition 8.1.

Lemma 8.2. With notation and assumptions above, there exists ko > 0 sufficiently large
so thatif Y C S is a subsurface such that for some k > kg, ds(yi,0Y) < 2, then

4
dY(/'L’ U) =G+1 dY(U, U),

where G is the constant from Theorem 2.11 (for a geodesic).

Proof. Let g be a geodesic in €(S) from (any curve in) x limiting to 7 if 1 is an ending
lamination, or from p to any curve o with i(«, 77) = 0 otherwise. Since n and v fill S, and
Ve — v € 0€(S), the distance from y; to g tends to infinity with k. For ¥ and y; as in the
statement of the lemma, dg(9Y, y;) < 2, and hence for k sufficiently large, 0Y has distance
at least 4 from g. Consequently, Y intersects every curve on g, and Theorem 2.11 guarantees
that diamy (g) < G. Thus for all § € g, dy (B, 1) < G. Since g limits to 1 (or one of it is
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curves is disjoint from 7), it follows that dy (1, u) < G + 1, and so the lemma follows from
the triangle inequality in €(Y). ]

Proof of Proposition 8.1.  From [36], if dy, (1, v) is sufficiently large, then at the balance
time ag, cyl,, (&) has modulus at least M. For all k sufficiently large, (4.7) and Lemma 8.2
imply

dy, (n,v) z dy, (1, v) z .-

By construction, e, — oo as k — oo, and hence J; # @ for all sufficiently large k. Further-
more, for all ¥ € Ji, we have Hyp, (yx) < €o. Since two curves with length bounded by € are
disjoint, part (i) follows.

By (4.5) in Proposition 4.5 we have forall 0 < f <k <[ withl —k,k — f > m that

J’_
dl’k(yf’ Y1) X ek.

Let N > 0be such that for all k > N, e > By, where By is the constant from Proposition 2.9.
Thus forall N < f <k <[ withl —k,k — f > m we have

dy, (Yk.v1) < Bo.
Since Y — v € 0€(S), the triangle inequality in € (yy ) implies that

+
d)/f (J/k’ V) =0

forall N < f f k with k — f > m. Let No > N be sufficiently large so that if f > Ny,
then dy, (n,v) < es. Thus, for k — f > m, f > Ny, at the balance time ¢ = ay of yr, the
q:-geodesic representative of yy is more vertical than horizontal, and hence ay < ay. By
part (i), the intervals J¢ and Ji are disjoint, so part (ii) holds. (See also the discussion in
[36, Proposition 5.6].)

For part (iv), observe that by [36], the modulus of cyl, (yx ) satisfies

dy; (1, v)
cosh?(t —ay)
For k is sufficiently large, Lemma 8.2 implies dy, (1, v) £ dy, (1, v) z er.. At the endpoint ay
of Ji, mod(cyl;, (vx)) = M. Since |Ji| = 2(ax — ax), we have
X €k
~cosh?(L i)
Taking logarithms we obtain log(eg) — | Jx| z log(M), proving part (iv).
We proceed to the proof of part (iii). Following Rafi in [36, Section 6], we introduce the

following constants associated to a curve o € €(S) and an essential subsurface Y C § with
o C 0Y (when Y is an annulus, recall that « C 0Y means that « is the core curve of V).

8.1) mod(eyl, (y¢)) =

e If Y is a nonannular subsurface, an arc 8 in Y is a common K -quasi-parallel of wy ()
and wy (v) for a and Y if B transversely intersects « and

max{i (B, y (). i(B. 7y (v))} < K.

Here 7y (1) denotes the arc-and-curve projection of 7: the union of arcs and curves
obtained by intersecting 1 with Y (likewise for v). Define K(Y) = log K, where K is
the smallest number so that  and v have a common K -quasi-parallel.

 If Y is an annular subsurface, let K(Y) = dy (1, v).
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Now define K to be the largest K(Y) where o« C 9Y . Then [36, Theorem 6.1] implies that

1
Hyp, (@) < o

o

where a is the balance time of « along the geodesic ray r.

In what follows we show that for all sufficiently large k, K, is approximately equal
to ey. Since we will be interested in subsurfaces Y with y; C 0Y (or subsurfaces of those,
Z CY), we can apply to Lemma 8.2 deducing that

+
dy (n.v) < dy (@, v).

We will assume that k is sufficiently large for this to hold, and will use this without further
mention.

First suppose Y is the annulus with core curve yg, and observe that by Proposition 4.5
and Lemma 8.2,

+ +
dy (n,v) < dy(u,v) < eg,

thus K(Y) ; ex- So we consider the case that Y is a nonannular subsurface with y; C 0Y,
and prove that for sufficiently large k, K(Y) < ey.

If Y contains no curves y; from the sequence as essential curves, then for every subsur-
face Z C Y, by Proposition 4.5 and Lemma 8.2 we have

+ +
dz(m,v) < dz(u,v) < 0.

Then choosing the threshold A in Theorem 2.7 larger than the upper bound on these projections,
and applying the theorem to 7y (1), 7y (v), we see that

iy (). 7y (v)) 0.

. + .
In this case we have K(Y) =< 0, and so K(Y') < ¢ for all sufficiently large k.
Next we suppose that there are curves from our sequence contained in Y. Let

ihiee S vrifeo

where £ is an ordered subset of N which is the set of curves from our sequence which are
contained in Y. From (4.1) in Theorem 4.1 we seethat £ C {k —m + 1,...,k + m — 1} since
any other curve in the sequence intersects yi. We proceed to find an upper bound for the
factor K(Y'). For this purpose let B € 7y (Yx+m) be any component arc of the projection.
Then from Theorem 2.7 and Lemma 8.2 we have

i(B.yv) =< Y AdwGkam-V)a+ Y, logldw Vicsm.v)}a

wcy, wcy,
nonannular annular

and

iB.ym < Y AdwVkem - Mia+ Y logldw Vitm. 1)}

wcy, wcy,
nonannular annular
= > AdwGram- e+ Y logldw Vigm. 1)}a-
wcy, wcy,
nonannular annular
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Choose the threshold constant A from Theorem 2.7 larger than the constant R(u) from Propo-
sition 4.5. Appealing to that proposition and the fact that any / € £ is less than k + m, the
first of these equations implies that i (8, 7y v) < 0. For the second set of equations, note that
any [ € £ with y; M yg4,, has | < k. Therefore, by Theorem 2.7 and the fact that {ef} is
increasing, we have

i(B.ryp) < Y logidy, (Vitm- 1)}a
lel
k

< Y log(dy, (kam. W)
I=k—m+1
k
= Z log(e;) < mlog(er) < eg.-
I=k—m+1

Therefore, f is a K-quasi-parallel with K < ej. Consequently,
K(Y) <log(K) < log(er) < ef.

This completes the proof of part (iii), and hence the proposition. |

Next we list some estimates for the locations of the intervals Jl.h C [0, o0), and provide
more information on the relative positions of the intervals.

Leth € {0,...,m — 1}. From part (i) and (iv) of Proposition 8.1, together with the defi-
nitions, we have that for i sufficiently large

log e’
(8.2) af Zaf - 22,
log e’
(8.3) at <ot + g21.

Together with these estimates, the next lemma tells us the location of the active intervals, up to
an additive error.

Lemma 8.3. Foranyh ={0,...,m — 1} and i sufficiently large,

i—1 h
nt n o logel'  logxp
(8.4) a; =< E_Ologbej + Tl -

~

The additive error depends on X, y(})l, and v.

Proof. The proof of this lemma is similar to that of [22, Lemma 6.3], so we just sketch
the proof. Choose i sufficiently large so that Jl.h # ¢ and alh > 0, and so that we may estimate
i()/l.h, ) using Lemma 5.11 (since u is a finite set of curves). Then appealing to the fact that X
is a fixed surface and w a short marking, we have

i—1
* * * * .
85) oy = lo(y!) =< Hypo(y/) < i(y]'. 1) < AO.h + im) = [ ] bel.
Jj=0
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Since vy (yl.h)h ¢ (yl.h) is constant in 7, and v (yl.h) = h,n (yl.h), we have, for i sufficiently large,
02, (") = v (kg (v
= vo(y)ho(y])
* . . -_—
=iyl Wil o)
" m—1
= i(V,-h,u)( > xai(yl, f)d))-
d=0

Since u is a fixed set of curves and yé‘ a fixed curve, i(y(l)’, yl.h) z i, yl.h) for all i sufficiently
large. Thus from (6.1), for & # d,d € {0,...,m — 1}, we have

. - * . - .
i) o) = ——— and iy 9)i} w) — 0.
l (Vl +1° M)
The above estimates and Lemma 5.11 imply that for i sufficiently large,
ow |
i ) s xp
vzh (yh = X X
d iy ) be;

Combining this with (8.5), we have

S
vo(y) _ vo(y) * H}:obej
exp(—al)vo(y]) v () [

Solving for al'.' and taking logarithms (discarding a constant log b) proves (8.4), completing
the proof. O

explal) =

-+
Lemma 8.4. For any k sufficiently large, we have ay < ay_,,, with additive error
depending on X, M, yé’, and v.

Proof. Letk =im + h, where h € {0,...,m — 1}. From (8.2), (8.3) and (8.4) we cal-
culate

- h —h
Ak4m — Gk =441 —4;

! log e? 1 log e
;Zbgbe]}-’—i— g¢i41 logxy logeiy,

‘ 2 2 2
J=0
i—1 h h
Z loge! logxy, loge;
_( logbej/ + > T2 o
J=0

= log belh — log el-h = logb.
Therefore ay z Ag 1, since log b is a constant. O
Letk,/ € N and 0 </ —k < m. Suppose that kK = h mod m and [ = d mod m, where
h,d €{0,...,m — 1}. Then for the pair (k, /) one of the following two hold:

(8.6) h < d and thereexistsani € N, sothatk =mi +hand/ = mi +d,
(87) h > d andthereexistsani € N,sothatk =mi + hand/ =m(@ +1) +d.
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Notation 8.5. Let {x;}{2, and {y; }{2, be sequences of real numbers. We write x; < y;
if x; < y; forall i sufﬁ01ent1y large and y; — x; — coasi — oo.

Lemma 8.6. Fork,l € N sufficiently large, where 0 < | — k < m, the following holds:
Aj—m < a; <K dy.

Proof. The proof is similar to the proof of [22, Lemma 7.3]. For the first inequality,
note that [ — (k — m) > m. By Proposition 8.1 (i)—(ii), Jx_,, occurs before J;, and so we have
dk—m <4aj.

We show that @; < ag. If [ = k, then since |Ji| — oo as k — oo, we have q; < dy.
Now assume that k </ and let k = h mod m and [ = d mod m with h,d € {0,...,m — 1}.
First, suppose that (8.6) holds so & < d. Using (3.1), (8.2), (8.3) and (8.4), and the fact that
ex > ak_fef for k > f, we have
d

ax —a; :C_lh—c_ll-

1 = 1
,\Zlogbe +loge ——logxh—Zlogbe -|——logxd

J=0 Jj=0
i—1 Pl
—Zlog—d+loge +—log—
j=0 J
i eh 1
—Zlog——l—logeo —logx—d
d 2 T xp
Jj=1 J 1

1
> Z(m +h—d)loga + 51og—
j=1

1
=i(m+h—d)loga+—logx—d.
2 Xp

Now since m + h — d > 0, the last term goes to co as i — o0.
Next suppose that (8.7) holds so & > d. Then we similarly have

- ~h_ d
A —4) = 4d; —4j4q

i—1 i
1
£ Zlogbe}-’ + logelh — Zlogbe}i + Elogi—d
j=1 j=1 h
h
_Zlog & —log——logb
J
h

= Zlog & +—log——logb

1 X
=i(h—d)loga + - log =% — log .
2 Xy,
Now since h — d > 0, the last term goes to oo as i — 0. i
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to (3.1):

To obtain a greater control over the arrangement of intervals Ji along the Teichmiiller
geodesic ray (see Lemma 8.8 below) we consider the following growth conditions, in addition

k 2
(8.8) %HZ<HQ).
Jj=0
step that (8.8) is satisfied

Such sequences exist simply by setting ep > a and defining ey recursively, ensuring at every
Condition (8.8) has the following consequence

Lemma 8.7. Suppose that a sequence {ey } satisfies (3.1) and (8.8)
(1) If (8.6) holds, then

(ed)% a9
h
j=0 j
(1) If (8.7) holds, then
i
d
(ei41)? 1—[ Lh
j=0¢j

Proof. Let k =d mod m and [ = h mod m, where d,h € {0
have

, . — 1}. First sup-
pose that (8.6) holds so & < d. Since {ej} is increasing (more than) exponentially fast, we

d
¢
—5 = 0.
- el
Jj=0 "J
Moreover, by (8.8) we have
()2 = ef
that is,
dr1
(eih)2 > 1
Thus (i) follows.

Now suppose that (8.7) holds so 4 > d. Then

m(i+1)+d—1

!

(Sl

i
d h
(€j41)2 = = 1_[ ey,

easily follows in this case as well

where the second inequality holds because m(i + 1) + d > mi + h. Therefore, condition (ii)

Lemma 8.8. Suppose that the growth condition (8.8) holds. Then for k,l € N suffi
ciently large with 0 < | — k < m we have

O

ap KL ay.
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Proof. Let f = h mod m and [ = d mod m, where h,d € {0,...,m — 1}.
First suppose that (8.6) holds so 4 < d. Then from (8.3) and (8.4) we calculate

al—c_zk:ald—dlh

i—1 d i—1
logef 1 1
z E logbejd—i—i— 08 1d —( E logbe;’-l—logelh— ngxh)

, 2 2 ,
Jj=0 Jj=0
d\L1 i—1 ,d
e’ )2 €; 1 X
:10g(% | | Lh) +§10g—h — 00,
€ =o€ Xd

where the sequence tends to infinity as i — oo by Lemma 8.7.
Now suppose that (8.7) holds so & > d. Then we have

- d ~h
aj — a4k = 4j41 —4;

X i d 1Ogel{j-i-l log xg4 — h h log xp,
= Z(:)logbei + I Zlogbej + loge; — >
j=

j=0
d 1 ! e]d 1 Xp

= log (ei+1)§l_[— + logh + = log — — o0,
j=oe? 2 X

where again the convergence to infinity as i — oo is by Lemma 8.7.

The following conveniently summarizes the relative positions of intervals for large

indices. See Figure 4.

Lemma 8.9. For k < [ sufficiently large and | < k + m, we have
a o) L a Lag <Ay, a KLap <apjy, Ldagim.

Furthermore,
+

Afe X Qpypy-

Proof. 'This is immediate from Lemmas 8.4, 8.6 and 8.8.

ar ak dic Acm Akc+m
® ©

| _. ®
aj aj a; Aj4m

Figure 4. Relative positions of active intervals, k <[ <k + m.

9. Limit sets of Teichmiiller geodesics

In this section, we continue with the assumptions from the previous section on the
sequences {yx}7—, and {ex}72, (including both condition (3.1) and condition (8.8)), limit-
ing lamination v € 9C(S) of {yx}72 . Teichmiiller geodesic ray r(¢) = X; with quadratic
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differential ¢, at time ¢ € [0, 00), vertical foliations v = ZZ:(} x; " and horizontal foliation
1 for (X, q) = (Xo, qo), short marking p for X, and active intervals Jx = [ay, ax] with mid-
point a;. We will also be appealing to all the estimates from the previous sections regarding
this data.

In addition, we will need one more condition on {yx }2=,, which we add to the proper-
ties & assumed already: For any k > 0, let

Ok =Yk YVk+1 Y- U¥Vktm—1-
The additional condition is

& (iv) Let o be any essential curve in S\og. Then there is no subsurface Y € S with o € oY
which is filled by a collection of the curves in the sequence {yx }7— -

Recall that when Y is an annular subsurface by « C 0Y, we mean that « is the core curve of Y.

Remark 9.1. Note that when oy is a pants decomposition of S, condition J (iv) holds
vacuously because there are no essential curves in S\oj. Together with the other conditions
in #, the new condition & (iv) is equivalent to requiring that any subsurface filled by a subset
of {yx}7—, has as boundary a union of curves in {y } 72, According to Lemma 7.7 condition
P (iv) holds for the sequences constructed in Section 7.

Under these assumptions, Theorem 1.4 from the introduction, which describes the limit
set of 7(¢) in the Thurston compactification Teich(S) = Teich(S) U PML(S), can be restated
as follows. Recall that the set of projective classes of measures on v is a simplex A(v) spanned
by the projective classes of the ergodic measures [0°], ..., [0 1].

Theorem 9.2. The accumulation set of r(t) in PML(S) is the simple closed curve in
the simplex A(v) that is the concatenation of edges

1 N S T ] IS EERY | G N

We begin by reducing this theorem to a more manageable statement (Theorem 9.3), which
also provides more information about how the sequence limits to the simple closed curve. We
then briefly sketch the idea of the proof, and describe some of the necessary estimates. After
that we reduce the theorem further to a technical version (Theorem 9.17), providing even more
detailed information about what the limit looks like, and which allows for a more concise proof.
After supplying the final estimates necessary, we carry out the proof.

9.1. First reduction and sketch of proof. By Proposition 8.1, the intervals J; are
nonempty for all k sufficiently large. Combining this with Lemma 8.8, it follows that for
all k < [ sufficiently large, a; < a;, and that a; — oo with /. Therefore, the set of intervals
[k, ag+1] for all sufficiently large k, cover all but a compact subset of [0, 00), and consecutive
segments intersect only in their endpoints. Theorem 9.2 easily follows from

Theorem 9.3. Fixh,h' € {0,...,m—1}withh’ = h+1 mod m and suppose that {t; } is
a sequence With t; € [Ajym+h, Aim+h+1] for all sufficiently large i. Then r(t;) = X;, accumu-
lates on the edge [[1"], [?"']] € A(v).
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Furthermore, if {t; — Qjm+n} is bounded independent of i, then
lim X, = ["].

1—>00
Proof of Theorem 9.2 assuming Theorem 9.3. From the second part of Theorem 9.3
applied to #; = d;p;4p, it follows that forall 2 € {0, ..., m — 1},

1, Kanss =

If ' = h + 1 as in Theorem 9.3, then combining this with the first part of that theorem, we see
that the accumulation set of the sequence of subsets {7 ([@;m+h. @im+h+1]) )72 C Teich(S) is
contained in [[5”], [1"']] and contains the endpoints. Consequently, any Hausdorff limit of this
sequence of connected sets is a connected subset of [[5”], [1#]] containing the endpoints, and
hence is equal to [[7"], [5%']]. The accumulation set of this sequence of sets therefore contains
[[5"], [5"']], and is thus equal to it. Since this holds for every i € {0,...,m — 1}, and the

intervals {[ay, ax1]} cover all but a compact subset of [0, 00), this completes the proof. O

Remark 9.4. Before proceeding we note that the assumptions on {yy }72 , and {ex }72 ,
are “shift invariant”, meaning that if we start the sequence at any k¢ > 0, and reindex (without
changing the order), the resulting sequence will also satisfy all the required conditions. Con-
sequently, it suffices to prove Theorem 9.3 for 2 = 0 and 4’ = 1. This greatly simplifies the
notation, and allows us to avoid duplicating essentially identical arguments.

To sketch the proof, we recall that a sequence {Z;} C Teich(S) converges to a point
[A] € PML(S) if and only if
Hypz, (8)  i(4,9)
im = —
i—oo Hypz, (') i(A,8)
for all simple closed curves 8,8’ with i (A, 8") # 0; see Section 2. Thus we must provide suf-
ficient control over the hyperbolic lengths of curves and relate these to intersection numbers
with measures on v.

Now the idea of the proof of this theorem is as follows. For any sufficiently large 7,
we estimate hyperbolic lengths Hypy, (6) in terms of “contributions” from the intersections
of § with the curves in a bounded length pants decomposition (Proposition 9.6). When ¢ is in
the interval [y, a4 1], we choose a bounded length pants decomposition containing either oy
or 0k 41, depending on more precise information about . The contributions from the curves
in these sub-multicurves dominate the contributions from the other curves (the ratios tend to
zero), and so the key is to understand these contributions.

On the active interval Jj, the contribution from y; grows linearly in the first half of the
interval (Lemma 9.10), but during the second half, they speed up. Thus near dy, the con-
tribution from y; will be greater than from the rest of oy, since ay is still in the first half
of Jy,forl =k +1,...,k +m— 1. As we proceed far beyond dy, the bounded length pants
decomposition eventually changes to become oy 4 1. The contribution from yy, transitions to the
contribution from yg 4,, and until the contribution from 4.1 speeds up, this is the dominat-
ing term. However, as the contribution from yj . speeds up, its contribution eventually takes
over. During the transition, the contribution from y;, for 2 <[ < m — 1 is still dominated by

either g 4, O Vi+41.
With this sketch in mind, we now start to discuss the details.
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9.2. General hyperbolic geometry estimates. For a curve o € €(S) and a point
Z e Teich(S), we have the length and width Hyp, (o) and wz(e), respectively, as defined
in Section 2. Given two curves &, § € €(S) and Z € Teich(S), we will also need the rwist of &
about a with respect to Z, denoted twy (8, Z). This is defined as

twe (8, Z) = diamg (74 (8§) U %) > 0,

where a7 is the set of Z-geodesics in the annular cover Y, meeting (the lift of the geodesic

representative of) o orthogonally.

Remark 9.5. There are different definitions of twy (8, Z) in the literature (see e.g.
[9, 10, 33]). Some of these come equipped with a sign which we have no need of, and our
definition agrees with (the absolute values of) the other definitions, up to a uniformly bounded
additive error (at least those we will be appealing to).

For curves o, 8 € €(S) and Z € Teich(S) define the contribution to the Z-length of §
coming from o by

9.1) Hypz(§. o) :=i(8, a)[wz (o) + twe (8, Z) Hypz ()]

The next fact, from [10, Lemma 7.2], provides our primary means of control on hyper-
bolic lengths.

Proposition 9.6. Given L > 0 and Z € Teich(S), suppose that P is an L-bounded
length pants decomposition (Hyp(«) < L for all o« € P). Then for any curve § € €(S) we

have
=0(Zi(5,a)),

aeP

'Hypz(5) — > Hypz (5, )

aeP

where the constant of the O-notation depends only on L.

To effectively use this proposition to analyze lengths of curves in X; as t — 0o, we must
develop a better picture of the hyperbolic geometry of bounded length curves in X;.

9.3. Hyperbolic estimates for {y;}. As in Section 8, we will write

Hyp,(«) = Hypy, (@), Hyp,(,@) = Hypy, (§,&) and w;(a) = wy, (@).

By a result of Wolpert [41], hyperbolic lengths change (grow/shrink) at most exponentially in
Teichmiiller distance, and hence we have:

Lemma 9.7. For any curve o and any t,s € R, we have
Hyp, (o) < exp(2(|t — s])) Hypg(e).

From Lemma 8.9, all sufficiently large ¢ are either contained in exactly m intervals
Jis ooy Jk4m—1 or in exactly m — 1 intervals Jx41, ..., Jx4m—1 and the bounded length
interval [ag,ay,,] (the interval after J; but before Ji4,,). In the former case, every curve
in oy has length at most €g, the Margulis constant. In the latter case, we can use Lemma 9.7 to
bound the length of curves in oy. It will be useful to have a slight generalization of that, which
we state here.
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Lemma 9.8. Forany W > 0, ift is sufficiently large (depending on W), is contained in

Je+1sJk+2, - s Jkrm—1, and satisfies 0 < t — ay < W, then every curve in oy has X;-length
at most exp(2W)eo.

Proof.  Since ay is in all the intervals Ji, ..., Jx4m—1, we have Hypz (y;) < €0 for
k <1 <k + m—1. Now apply Lemma 9.7. i

In particular, note that once k is sufficiently large, Lemma 8.4 guarantees that a; , ,, — dx
is uniformly bounded by some constant W, and so setting Lo = exp(2Wp)e€o, we see that for
any sufficiently large #, there is always some k so that all curves of o3 have length at most L.
In addition, this gives us lower bounds on lengths as well.

Lemma 9.9. For all k sufficiently large, Hyp,, (Yr) 1= Hypgz, (vk)-

The multiplicative constant here depends only on W), the constants in property J, and
the Margulis constant €.

Proof. We already have Hyp,, (Yx) < €0, so we need to prove a uniform lower bound.

Since i (Yi, Yk—m) € [b1,b2] from £, and Hyp,, (Vk—m) < Lo = exp(2Wp)e€p, according to
Lemma 2.12 we have

1
. 1 —1
Hyp,, (Vi) = way (Vik—m)i (Vi Yk—m) = 2 sinh (—Sinh (Lo ))bl-
A similar argument applies for the estimate on Hypz, (vk)- |

We will also need good estimates on w;(yg ), especially on the first half of the interval
when yy initially becomes short.

Lemma 9.10. For all sufficiently large k and t € |ay., ay], we have
+
we(yk) < 41 —ag).
The implicit constant depends on the constant from Lemma 9.9.

Remark 9.11. There is a mistake in [22, Lemma 8.3], which claims that the width
grows at most linearly with coefficient 1 (instead of 4). This does not affect any of the proofs.
It is also worth noting that only an upper bound was proved there, whereas here there are both
upper and lower bounds.

Proof. We first prove the upper bound on w; (). For this, we note that by Lemma 9.7,

*
1 < Hyp,, (v&) = exp(2(t —ay)) Hyp, (v«)-

Dividing by Hyp, (yx) and taking logarithms, we get

+
log| ——— ) <2(t —a,).
Og(Hypt(Vk))< =)
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Multiplying by 2 and applying (2.1) proves

+
we(y) < 41 — ag).
For the lower bound, we will appeal to (8.1), which for k sufficiently large implies

€k

k
mod(cyl < —"
@) =

Lifting cyl, (yx ) to the annular cover Y, , the modulus of the former is bounded above by the
modulus of the latter by monotonicity of modulus of annuli. The latter on the other hand can
be computed explicitly as 7 /Hyp, (yx) (see e.g. [27]). Thus, taking logs and noting that

log(cosh? (¢ — ag)) z 2|t —ag| = 2(ap — 1),

we have

log(ex) —2(ax — 1) X ]og(m).
t

Then by Proposition 8.1 we have log(ey) ; 2(ay — ay) and hence

200 ) < 1Og(Hyp ()/k))'
t

Appealing to (2.1) again we have 4( — a;) i we(Ve). O

We will also want to estimate tw,, (§, X;), for an arbitrary curve §. This is given by the
following formula from [37].

Theorem 9.12. Given a curve § € €y(S) and large enough k € N we have
1
5 X)) = 0+ O(Hypxt(yk))’ I=d.
tWyk( 5 l‘) - + 0( 1 ) t>
€k Hypy, )7 1 = k-

This theorem shows, in particular, that the twisting is independent of § (up to an error).
In fact, arguing as in Lemma 8.2, we can easily prove that this is the case in general.

Lemma 9.13. For any two curves 8,8 and constant L, there exists T > 0 with the
following property. If « € €(S) is a curve and to > T with Hyp, («) < L, then for all t,

twa (8, X1) G twa (8, X0),

where G is the constant from Theorem 2.11 (for geodesics).

Proof.  For sufficiently large ¢, a curve o with bounded length must have bounded dis-
tance from some y; in €(S). As in the proof of Lemma 8.2, this can be assumed to be very
far from the geodesic in €(S) between § and §’ (by assuming 7o, and hence k, is very large).
Appealing to Theorem 2.11, we see that d (8, 8’) < G. Since twg (8, X;) is defined in terms of
distance in € («), the lemma follows from the triangle inequality in € (). m)
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9.4. Bounded length pants decompositions. When m = £(S), then for all sufficiently
large times ¢, there exists k so that oy is a bounded length pants decomposition for X;. In this
case, the estimates from the previous subsection then provide many of the necessary ingredients
to apply Proposition 9.6 to control Hyp, (8), for an arbitrary curve §.

If m < £(S), then a bounded length pants decompositions will contain other curves not
in the sequence {yy }, and in this subsection, we describe the necessary estimates to handle the
contribution to length from these. The reader only interested in the case m = £(S) may skip
this subsection.

We begin by bounding from below the length of the other curves in a bounded length
pants decomposition.

Lemma 9.14. There exists € > 0 depending on R(j1) from Proposition 4.5 such that for
all sufficiently large t, if Hyp,(a) < €, then o € {yi}72 -

Proof.  Let a be a curve not in {yx}7— . We will show that K¢ is uniformly bounded.
This requires us to bound K(Z) for all essential subsurfaces Z with ¢ € 0Z; see the proof of
Proposition 8.1 for the definition of Ky and K(Z).

By Proposition 4.5 and Lemma 8.2, dy (9, v) < R(it) + G + 1. Consider the set of curves
in {yx}z—, that are contained in and fill an essential subsurface Z with the property that
a C 0Z. Then, by P (iv), this set of curves is contained in a subsurface ¥ C Z such that «
is not a boundary component of Y.

Let W C S — (Y Ua) be the (possibly disconnected) union of components meeting «
(so two components of dW are isotopic to « in §). Since W contains no curves in {yg},
it follows from Proposition 4.5 and Lemma 8.2 that for all connected subsurfaces V C W,
dy(n,v) < R(n) + G + 1. By Theorem 2.7, i (w (n), ww (v)) is bounded above (depending
only on R(u) and G). Consequently, there exists a simple closed curve w in S intersect-
ing « at most twice with i (my (w), 7w (1)) and i (ww (@), 7w (v)) uniformly bounded (again
depending on R(u) and G). Therefore, i (w7 (w), 7z (n)) and i (wz(w), wz(v)) are uniformly
bounded, hence so is K(Z).

According to [36, Theorem 6.1], there is a uniform lower bound for Hyp, («). The lemma
is completed by setting € > 0 to be any number less than this uniform lower bound. |

In what follows, we will assume L > Lo = exp(2Wy)ep as in Section 9.3.

Theorem 9.15. Let 6 € €(S) be any curve and L > Lg. Then there exist constants
K,C,T > 0, depending on L, 5, and R(j) from Proposition 4.5, with the following properties.
Suppose t > T and that P is an L-bounded length pants decomposition of S containing oy,
for some k. Then for all @ € P \ oy, we have

i8,2) <k Ak +m—1) and twg(S,X;) < C.

Proof.  We first prove the bound on intersection numbers. For any ¢, suppose « is part of
an L-bounded length pants decomposition. Then [38, Theorem 6.1] and the triangle inequality
imply that for every subsurface Z # Y, we have

+
dz(n.a) +dz(a,v) < dz(n.v),

where the additive error depends on S and L.
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We assume that 7o > 0 is large enough so that for all ¢+ > Ty there exists k so that every
curve in oj has length at most L at time ¢. We write k(¢) for such a k. As in the proof of
Lemma 8.2 and Lemma 9.13, we may take 7" > T so that forallr > T,

J’_
dz(8.v) < dz(n.v)

for surfaces Z with ds(0Z, yi(r)) < 2.

Now let7 > T and let P be an L-bounded length pants decomposition containing o),
and let Y be the component of S \ ox(;) containing & and Z C Y any subsurface. According
to Proposition 4.5 and Lemma 8.2 we have dz(n,v) < R(u) + G + 1, and so combining the
inequalities above, there exists R’ (depending on R(u) and L) so that for all surfaces Z C Y,

we have
dz(5,a) < R'.

Therefore, taking the threshold sufficiently large in Theorem 2.7 for the subsurface Y, there
exists a constant / (depending on R’ and Theorem 2.7) so that

i(ry (8), ) < I.

Now, every arc of 7y (§) comes from a pair of intersection points with curves in oy (). Conse-
quently, taking «(§) to be the constant from Lemma 5.11, we have

k(@)+m—1 k(t)+m—1
3
iGa)<I Y iy =l Y. A0.d)<mIAQ0.k(t)+m—1).
d=k(t) d=k(t)

Thus, setting K = m 1k (§) proves the first statement.
For the bound on twist number, we again appeal to [37]—the same estimate in Theo-
rem 9.12. Since & & {yx}7~, (and & has bounded length at time 7 > T'), we have

do(n,v) < R(n) + G + 1,

where R(u) is from Proposition 4.5 and G the constant appearing in Lemma 8.2 (from Theo-
rem 2.11). Since the length of « is bounded below by €, according to Lemma 9.14, it follows
from [37] that

twog (8, X;) < C

for some C > 0 depending on R(i), G, € and the surface S. m|

9.5. Second reduction and division into cases. We now consider the setup as in Theo-
rem 9.3. As mentioned in Remark 9.4, to simplify the notation we assume 7 = 0 and &’ = 1.
It is convenient to switch to the notation )/l.h = YVim+h- al’.’ = dim+h- ol.h = Ojm+h etC.

We consider sequences {#;} with t; € [c'z?, Ezl.l] for all sufficiently large i, falling into one
of two possible cases:

Case 1. There exists W > O so thatt; € [Ez?, Ez? + W].
Case 2. We have limj o0 f; — Gy = .

For any curve § € €(S) define
U 1.8) = wi(y]) + tw,n (8. X0) Hyp, (v]).
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We will also fix a curve §q for reference and write
Uty = U, 89).

The next lemma is not needed for the reduction, but for later use we make note of it now.

Lemma 9.16. For any curve § € €(S) and L > 0, there exists T > 0 so that for all
t > T andi,h with Hypt(y ) < L, we have

Ut X6 U@,
Here the constant G is from Theorem 2.11 appearing in Lemma 9.13.

Proof. Given L, Lemma 9.13 provides 7" > 0 so that for all # > T, if Hyp,(yh) <L,
then
|tWyg1(8,Xt) —twy;,(ao,X,)| <G.

Therefore, we have
U] 0.8) = U )] = [tw, (8. X2) — tw, (0. X0) | Hyp, (') < GL.

as desired. O
We now turn to our second reduction.

Theorem 9.17. Suppose that {t;} is a sequence with t; € [C_l?,é_ll-l] for all sufficiently
large i and § is any curve (not necessarily 8¢).

o If{t;} falls into Case 1, then
UP()i(8,y))
i—oo  Hyp,(§)

o If{t;} falls into Case 2, then

Ul (6)i (8, ) + ULy (6)i 6, J/,+1)
i—’°° Hyp,, (§)

Note in this theorem, the terms U jh (t;) do not depend on § (cf. Lemma 9.16).

Proof of Theorem 9.3 assuming Theorem 9.17.  Suppose {; };”;O with t; € [é?]_ , éil,-] for
all sufficiently large j and some i;, so that X;; converges to some point in PML(S). We may
pass to a subsequence so that either 7; — ao < W for some W, or else 1; — aoj — oo with j.
This subsequence can be viewed as a subsequence of a sequence falling into Case 1 or Case 2,
respectively, and hence the conclusion of Theorem 9.17 holds for {¢; }.

Now let §, 8" € €(S) be any two curves. If we are in Case 2, then by Theorem 9.17 and
Theorem 5.10 we have

- 5 UO( ;)i (8, yl )
Hyp,, ()] ) yPy; (8) Hypt ©® . i(&)/i(;) i(8,v°)
_1m—/=_1m 0o 5 = lim ——G— = ——.
j—o0 Hyp,j(S) j—o0 ()i( ,)/, ) joooi(S ’Vij) i(6,v9)

Py, () s,y

Since & and §' were arbitrary, it follows that X, — [©9].
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Now suppose we are in the second case. Compactness of PML(S) implies that by pass-
ing to a further subsequence (of the same name) the sequence

(U5 @)y + US4 )y 111520
converges in PML(S). Note that this limit is necessarily of the form
[o9® + y19'] € [[2°]. 0]
by Theorem 5.10. Now observe that for all j, the numerator from Case 2 of Theorem 9.17 is
given by
Ui; (tj)i(& Vii') + Ui2+1(tj)i(87 Vi(;_H) = i(S» Ui; (Zj)yii + Ui?+1(tj))/£-+1)-
Therefore, similar to the above calculation, appealing to Theorem 9.17 we have
Hyp,, (8) - (6. ULy +US @Y ) (8. o0 + y1ih)
im ————=1i = - - —.
j=oo Hypy (8)  j=>o00 i(8", Up (1)), + US4 t)y) 1) i(8, p000 + y1bh)

Again, because d, 8" were arbitrary we see that X, limits to [yo 7% + y;91]. This completes
the proof. m)

9.6. Final estimates and proof of Theorem 9.17. Here we provide the final estimates
necessary for the proof of Theorem 9.17 (and hence the main theorem). The proof for each of
the two cases are similar, and many of the estimates can be made simultaneously.

We assume for the remainder of the paper that {z; } is a sequence so that t; € [c'z?, Ell.l] for
all sufficiently large i and that § is an arbitrary curve (not necessarily our reference curve o).

If we are in Case 1 with #; — Zz? < W, then by Lemma 9.8, for all sufficiently large i there
exist L > exp(2W )e and an L-bounded length pants decomposition P; for X;; containing al.o.
Let

Pf= Pi\o).

If we are in Case 2, then by Lemma 8.4, for i sufficiently large, we have t; € [c_l? 1 a? 1l

and there exist L > 0 (depending only on §) and an L-bounded pants decomposition P; for

X}, containing 01.1. Similar to Case 1, we let
1

We use Proposition 9.6 to estimate Hyp,, (§). Appealing to Theorem 9.15 together with
Lemma 5.11 and monotonicity of {A(0,k)}?2, (Lemma 5.6) to group together all the inter-
section number errors in Proposition 9.6, this takes a somewhat simpler form. To write it, recall
that forall & € {0,...,m — 1} and i > 0, we have

i—1
] = AQ.im + h) = [ ] bel.
=0
The estimates are then similar, but depend on the case:

Case 1. We have

m—1
02 Hyp, (8) = 3 Hyp, (6. 7) + 3 Hyp, (5.0) + 0" ™).
h=0 aePf

The O-error term depends on L (hence W) and &, but is independent of .
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Case 2. We have

m—1
(9.3) Hyp,, (8) = Y Hyp,, (8. %) +Hyp, (8. v ) + Y Hyp, (8.0) + O(c)y ).
h=1 ocEPl-C

In this case, the O-error term depends on L (which depends only on S) and §, but is again
independent of ;.

We will appeal to the various estimates previously made, specifically those in Section 8,
Section 9.3, and Section 9.4. The first estimate involves the contributions to (9.2) and (9.3)
from the curves of Pf.

Lemma 9.18. For all i sufficiently large and o € Pf, we have

Hyp, (5. ) O(clm_l) in Case 1,
(§,a) =
Py O(c" ) inCase 2.

Here the implicit constant in the O-notation depends on §.

Proof. From (9.1) we have
Hyp,, (8. ) = (wy, (@) + twa (8, X1,) Hyp,, (@))i (8. ).

By Lemma 9.14 and Theorem 9.15, every term on the right except i (§, «) is bounded, depend-
ing on § and L (and the resulting constants from those statements). The lemma follows. |

Corollary 9.19. For all i sufficiently large we have

m—1

(9.4) Hyp, (§) = Z Hypy, (8, yih) + 0(c" ) in Case 1,
h=0
m—1

(95)  Hyp,(§) = Y _ Hyp, (8.¥/") +Hyp, (6. 1) + O(clyy) in Case?2.
h=1

We write the remaining terms using the notation set in the previous section as

Hyp,, (8, ) = U (1, 8)i (8, v]).

Estimates for these terms are given in the next four lemmas.

Lemma 9.20. For all sufficiently large i and all 1 < h < m — 1, we have

i 0
+ € -
Uih(zl-,S) x4(§ log(%) —|—t,~—a?).
J=1

-1
In Case 1, this also holds for h = 1.

Proof. Notethatforl <h <m — 1 (aswellash = 1inCase 1), we havegf’ <t < af’,

for all sufficiently large i. Therefore, Hyp,()/l.h) < €p < L and so Theorem 9.12 implies

*
tw,, (8. Xy,) Hyp,, (7/) < 1.
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On the other hand by Lemma 9.10,

wi, (Y1) L 4 — al) = 4@° — a! + (1 — a?)).

since c_zf-’ < &? <t < ai (for sufficiently large i and all 1 </ <m — 1 in both cases, and
also 4 = 1 in Case 1) by Lemma 8.9. The lemma now follows from this by substituting in from
(8.2), (8.3), and (8.4) and dropping constants. D

Lemma 9.21. Suppose that {t;} falls into Case 1 with constant W. Then for all suffi-
ciently large i, we have

*
Uio(tl'i 8) = e?,

where the multiplicative error depends on W, 8, (and all resulting constants), but not i.

Proof. Because t; — ao < W, Hyp,, (y ) is bounded above and below by Lemma 9.9
and Lemma 9.7, the bound dependmg on W. By Lemma 2.12, wy, (yl ) is also bounded. To
complete the proof, we note that by Theorem 9.12,

twylp(S,ti) < e?. m|
Lemma 9.22. Suppose that {t; } falls into Case 2. Then for all large i, we have
UL, (1. 8) % 41 —a?).
Proof. This is almost identical to the proof of Lemma 9.20, so we omit it. O
For the only remaining situation, a very coarse estimate will suffice.

Lemma 9.23. Suppose that {t; } falls into Case 2. Then

U, 8) — oo.
Proof. Since we are in Case 2, we have t; — gil >t — c'z? — 00. Then either #; < ai1
or al-1 <t < Zzl.l. In the former case, Lemma 9.10 shows that wy, ()/1.1) — 00. In the latter case,
either wy, (yl.l) — o0, and we are done, or else wy; ()/l.l) is bounded. If wy; (yil) is bounded,
then (2.1) implies Hyp,, (yil) is bounded below. Since el.1 — 00, Theorem 9.12 implies that
w1 (6, yl.l) — 00, completing the proof. m]

From these, we deduce the following:

Corollary 9.24. If the sequence {t;} falls into Case 1 (and hence t; — W), then
for all i sufficiently large and 1 < h < m — 1 we have

(9.6) Hyp;, (8.7/") = (Zlog( )) [T2e.
j 1

1

0.7) Hyp,, (5.77) = H be).
j=0
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If the sequence {t; } falls into Case 2 (and hence t; — Ez? — 00), then for all i sufficiently large
and?2 < h <m — 1 we have

eO
(9.8) Hyp,, (8, y; hy < (Zlog( hj ) + 1t — ) 1_[ be",
1 €j-1
(9.9) Hn%x&y&4)i(n—é?)r1b¢%

The multiplicative constants depend on W (in Case 1) and §, and all constants that depend
on these.

Proof. By Lemma 5.11, there exists «(8) > 0 so that

i(8, yl)AK((g) A(0, zm+h)—c l_[belh

Since
Hyp,, 6.y}) = Ul @, 8)i (6. v}).
the corollary follows from Lemmas 9.20, 9.21, 9.22, and 9.23. |

Proof of Theorem 9.17. Observe that from Lemmas 9.20, 9.21, 9.22, and 9.23, we see
that for all 4, as i — oo we have

UPMG, 1) > 00 and UL (8,4) — oo,

where the second limit is only true in Case 2, and the first is only relevant for # = 0 in Case 1.
By Lemma 9.16, it suffices to prove Theorem 9.17 replacing all terms of the form U h(t;) with
terms U (t,6).

The proof will use the estimates (9.4) and (9.5) from Corollary 9.19 and we divide it into
the two cases.

Proof in Case 1. 'We look at each term on the right -hand side of (9.4) and divide by the
term Hyp,, (3, y; 9). Doing this for the terms Hyp,, (8, y; ) for 1 < h < m — 1, equations (9.6)
and (9.7) imply

Hyp,. (6, e Loeh LoeY Loel
yptl( Vl Abeo(ZIOg( )) JOI =10g( hJ Jol~
Hypt,- (8,)/1 -1 j=1 ej j=1 €ji—1 j=1 ej

i
Since jm > (j — 1)m + h implies ej > aej}-’ 1» We have
[ oeh .
Jj—1 <qt
eV '
j=1 J
and since a > 1,
Hyp,, (8, v; )

Iim
i—oo Hyp, (8.77)
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The only remaining term, other than Hyp,. (4, yl.o), is O(c;”_l). For this, we note that by defi-
nition
i—1
=10t
j=0

and therefore, for the same reason as above, we have

O(ch)
Hyp,, (v?) iz1 €

as i — oo. Now combining all these estimates into (9.4) we have

Hyp,. (§ "1 Hyp, (8, y" O(cm—!
Jim yp;; ( )O ~ Jim Z ypy, ( ylo)+ (c] )0 _
i—oo Hypy, (8,y;)  i—oco /= Hyp, (8.y;)  Hyp, (8.y;)

This completes the proof since

Hyp,, (6,7) = UL (1, 8)i 8, v)).

Proofin Case 2. We again look at each term on the right-hand side of (9.5) and this time
begin by dividing most of the terms by Hyp,, (4, yl.O 't 1)- Doing this for the terms Hyp,, (3, yl.h)
for2 < h < m — 1, equations (9.8) and (9.9), together with the fact that #; — Zz(.) — 00, imply

el

Hyp, (8.y/") « bel ’
1 Ol - 0 Zlog( )"l_tl 1_[ ]

Hyp, (8, y; 1)  ti— ha el

h ¢ e
§be0<1+10g(1_[h—)) H‘e—o.

j=1%-1/)/) j=1 €

Now as above, the right-hand side tends to 0 as i — oo, and hence

. Hyp, (6.¥"
lim

lim —1 L =0.
i—oo Hyp,, (8,7, 1)

Next we consider the O(c; +1) term of (9.5). By the definition of cl 1 together with (9.9) and
the fact that ¢; — alo — 00, as I — oo we have
0 i 0
O(CH_]) * Hj:obej _ 1 S0

Hyp, 6,700 (1 —a®) [Ti—g bed 1 —a}

Since Hyp,, (4, yl-l) + Hyp,, (3, Vi0+1) > Hypy, (4, yl.OH), we could have divided by this larger
quantity, and the above limits would still be zero. Plugging into (9.5), we deduce

Hyp,, (8)
lim
i—oo Hyp, (8, ) + Hyp,, (. V,+1)

Since

Hyp,. (8.7) + Hyp, (8. v 1) = U (1. 8)i (8. v}) + U2, (1. 8)i (8. v 1),

this completes the proof of Case 2, and hence of the theorem. O
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