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Geodesics in the mapping class group

KASRA RAFI
YVON VERBERNE

We construct explicit examples of geodesics in the mapping class group and show
that the shadow of a geodesic in the mapping class group to the curve graph does
not have to be a uniform quality quasigeodesic. We also show that the quasiaxis
of a pseudo-Anosov element of the mapping class group may not have the strongly
contracting property. Specifically, we show that, after choosing a generating set
carefully, one can find a pseudo-Anosov homeomorphism ¢, a sequence of points wg
and a sequence of radii r; such that the ball B(wy, ) is disjoint from a quasiaxis a4
of ¢, but, for any projection from the mapping class group to gy, the diameter of the
image of B(wg, rr) grows like log(rg).

20F34, 37E30, 57M07

1 Introduction

Let S be a surface of finite type and let Map(.S') denote the (pure) mapping class group
of S, that is, the group of orientation-preserving self-homeomorphisms of S fixing
the punctures of S, up to isotopy. This is a finitely generated group (see Dehn [9])
and, after choosing a generating set, the word length turns Map(.S) into a metric space.
The geometry of Map(S) has been a subject of extensive study. Most importantly,
in [16], Masur and Minsky gave an estimate for the word length of a mapping class
using the subsurface projection distances and constructed efficient quasigeodesics in
the mapping class group, called hierarchy paths, connecting the identity to any given
mapping class. The starting point of the construction of a hierarchy path is a geodesic
in the curve graph of .S which is known to be a Gromov hyperbolic space; see Masur
and Minsky [15]. Hence, by construction, the shadow of a hierarchy path to the curve
graph is nearly a geodesic.

It may seem intuitive that any geodesic in the mapping class group should also have
this property, considering that similar statements have been shown to be true in other
settings. For example, it is known that the shadow of a geodesic in Teichmiiller space
with respect to the Teichmiiller metric is a reparametrized quasigeodesic in the curve
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Figure 1: The curves ¢, ..., as used to generate Sy, .

graph [15]. The same is true for any geodesic in Teichmiiller space with respect to the
Thurston metric (see Lenzhen, Rafi and Tao [13]), for any line of minima in Teichmiiller
space (see Choi, Rafi and Series [7]), for a grafting ray (see Choi, Dumas and Rafi [6]),
and for the set of short curves in a hyperbolic 3—-manifold homeomorphic to S x R
(see Minsky [18]). However, it is difficult to construct explicit examples of geodesics
in Map(S) and, so far, all estimates for the word length of an element have been up to
a multiplicative error.

Here, we argue that one should not expect geodesics in Map(S) to be well behaved in
general. Changing the generating set changes the metric on Map(.S) significantly and
a geodesic with respect to one generating set is only a quasigeodesic with respect to
another generating set. Since Map(\S) is not Gromov hyperbolic (it contains flats), its
quasigeodesics are not well behaved in general. Similarly, one should not expect that
the geodesics with respect to an arbitrary generating set behave well either.

We make this explicit in the case where S = Sy 5 is the five-times punctured sphere.
Consider the curves o, ..., a5 depicted in Figure 1. Fix an integer n > 1 (to be
determined in the proof of Theorem 1.4), and consider the generating set for Map(.S)

Sn ={Dy;.si,j:1,] €Zs, j =i 1 mod 5},

where s;,; = Dy, D;jl and D, is a Dehn twist around a curve «. Since we are
considering the pure mapping class group, the set { Dg; } l.5:1 already generates Map(.S).
We denote the distance on Map(S) induced by the generating set S, by ds,. By an
Sp—geodesic, we mean a geodesic with respect to this metric.

Theorem 1.1 There exists an N > 1 such that for all n > N, for every K,C > 0,
there exists an S, —geodesic
G: [0, m] — Map(S)

such that the shadow of G to the curve graph C(S) is not a reparametrized (K, C)—
quasigeodesic.
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Even though the mapping class group is not Gromov hyperbolic, it does have hyperbolic
directions. There are different ways to make this precise. For example, Behrstock [3]
proved that in the direction of every pseudo-Anosov, the divergence function in Map(.S)
is superlinear. Another way to make this notion precise is to examine whether geodesics
in Map(S') have the contracting property.

This notion is defined analogously with Gromov hyperbolic spaces, where, for every
geodesic G and any ball disjoint from G, the closest point projection of the ball to G
has a uniformly bounded diameter. However, often it is useful to work with a different
projection map. We call a map

Proj: X - G
from a metric space X to a subset G C X a (dy, dy)—projection map, where dy, d, >0,
if, for every x € X and g € G, we have

dx (Proj(x), g) = dy -dx (x, g) + d>.

This is a weak notion of projection since Proj is not even assumed to be coarsely
Lipschitz. By the triangle inequality, the closest point projection is always a (2, 0)—
projection.

Definition 1.2 A subset G of a metric space X is said to have the contracting property
if there is a constant p < 1, a constant B > 0 and a projection map Proj: X — G
such that, for any ball B(x, R) of radius R disjoint from G, the projection of a ball
B(x, pR) of radius pR has a diameter at most B:

diamy (Proj(B(x, pR))) <B.

We say G has the strong contracting property if p can be taken to be 1.

Remark 1.3 There are several closely related notions of contracting or strongly con-
tracting in the literature (see for example Arzhantseva, Cashen and Tao [2, Section 2.1]
for several such notions). Often, in these definitions, the projection map is assumed
to be the closest point projection map. However, there are many situations where the
closest point projection is not the most natural projection map. For example, in Duchin
and Rafi [11], the projection in Map(S) is made to be compatible with the closest
projection in the curve graph, which is not the same as taking the closest point projection
in Map(S) itself (see also Masur and Minsky [15], Eskin, Masur and Rafi [12] and
Clay, Rafi and Schleimer [8] for other such examples). But they always satisfy the
definition above. Our weaker assumption on the projection map makes Theorem 1.4
stronger.
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The axis of a pseudo-Anosov element has the contracting property in many settings.
This has been shown to be true in the setting of Teichmiiller space by Minsky [17], in
the setting of the pants complex by Brock, Masur and Minsky [5] and in the setting of
the mapping class group by Duchin and Rafi [11].

Arzhantseva, Cashen and Tao asked if the axis of a pseudo-Anosov element in the
mapping class group has the strong contracting property and showed that a positive
answer would imply that the mapping class group is growth tight [2]. Additionally,
using work of Yang [20], one can show that if one pseudo-Anosov element has a
strongly contracting axis with respect to some generating set, then a generic element in
mapping class group has a strongly contracting axis with respect to this generating set.
Similar arguments would also show that the mapping class group with respect to this
generating set has purely exponential growth.

However, using our specific generating set, we show that this does not always hold:

Theorem 1.4 For every dy,d, > 0 there exists an N > 1 such that, for all n > N,
there exists a pseudo-Anosov map ¢, a constant ¢, > 0, a sequence of elements
wy € Map(S) and a sequence of radii ry, > 0 with rp, — 0o as k — oo such that the
following holds: Let ay be a quasiaxis for ¢ in Map(S) and let Proj, Map(S) — a4
be any (dy, d,)—projection map. Then the ball B(wy, i) of radius ry centered at wy,
is disjoint from ay and

diamg, (Proj% (B(wk, 1)) = cnlog(rg).
We remark that, since ay has the contracting property [11], the diameter of the projection

can grow at most logarithmically with respect to the radius r; (see Corollary 5.7),
hence the lower bound achieved by the above theorem is sharp.

Outline of proof

To find an exact value for the word length of an element f € Map(S), we construct a

homomorphism
h:Map(S) — Z,

where a large value for i( f) guarantees a large value for the word length of f. At
times, this lower bound is realized and an explicit geodesic in Map(.S) is constructed
(see Section 2). The pseudo-Anosov element ¢ is defined as

d) = DasDa4Da3 DazDal .
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In Section 3, we find an explicit invariant train track for ¢ to show that ¢ is a pseudo-
Anosov. In Section 4, we use the geodesics constructed in Section 2 to show that the
shadows of geodesics in Map(S) are not necessarily uniform quality quasigeodesics in
the curve complex. In Section 5, we begin by showing that ¢ acts loxodromically on
Map(S), that is, it has a quasiaxis as which fellow-travels the path {¢"}. We finish
Section 5 by showing that the bound in our main theorem is sharp. In Section 6, we set
up and complete the proof of Theorem 1.4.
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2 Finding explicit geodesics

In this section, we develop the tools needed to show that certain paths in Map(.S)
are geodesics. We emphasize again that, in our paper, S is the five-times punctured
sphere and Map(.S) is the pure mapping class group. That is, all homeomorphisms are
required to fix the punctures pointwise.

By a curve on S we mean a free homotopy class of a nontrivial, nonperipheral simple
closed curve. Fix a labeling of the five punctures of S with elements of Zs, the cyclic
group of order 5. Any curve ¥ on S cuts the surface into two surfaces: one copy
of Sp,3 containing two of the punctures from S, and one copy of Sy 4 which contains
three of the punctures from S.

Definition 2.1 We say that a curve ¥ on S is an (i, j)—curve with i, j € Z5 if the
component of (S — y) that is a three-times punctured sphere contains the punctures
labeled i and j. Furthermore, if j =i £1 mod 5, we say that y separates two consec-
utive punctures, and, if j =i £2 mod 5, we say that y separates two nonconsecutive
punctures.

In [14], Luo gave a simple presentation of the mapping class group where the generators
are the set of all Dehn twists

S=1{D, :yisacurve}
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and the relations are of a few simple types. In our setting, we only have the following
two relations:

¢ Conjugating relation For any two curves 8 and y,
-1
Dp, g = DyDgD,".

¢ The lantern relation Let i, j, k, [ and m be distinct elements in Zs and
Vi,j» Vik Yk,i and v, be curves of the type indicated by the indices. Further
assume that each pair of curves among y;,j, ¥j x and yi ; intersect twice and
that they are all disjoint from y; ,,. Then

DJ/i,j DVj,k D)/k,i = Dw,m-

Using this presentation, we construct a homomorphism from Map(.S) into Z.

Theorem 2.2 There exists a homomorphism h: Map(S) — Z whose restriction to the
generating set S is as follows:

Dy, —1 if y separates two consecutive punctures,

D, — —1 if y separates two nonconsecutive punctures.

Proof To show that 4 extends to a homomorphism, it suffices to show that / preserves
the relations stated above.

First, we check the conjugating relation. Let 8 and y be a pair of curves. Since D,
is a homeomorphism fixing the punctures, if 8 is an (i, j)—curve, so is Dy (B). In
particular, 1(Dp,,g)) = h(Dg). Hence,
h(Dp,, ) = h(Dg) = h(Dy) + h(Dg) —h(Dy)
= h(Dy) + h(Dpg) +h(D,") = h(Dy DgD,").
We now show that /4 preserves the lantern relation. For any three punctures of S,

labeled i, j, k € Z5, two of these punctures are consecutive. Without loss of generality,
suppose j =i £ 1 mod 5. There are two cases:

(1) Assume k is consecutive to one of i or j. That is, without loss of generality,
suppose kK = j £ 1 mod 5. Then kK =i £ 2 mod 5 and the remaining two
punctures, / and m, are consecutive: m =1/ £ 1 mod 5. Thus,

h(DVi.j DVj.kDVk,i) = h(DVi,j) +h(Dngk) +h(DVk,i)
=1+1+(=1)
=1=h(Dy,,).
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(2) Otherwise, k = j £2 mod 5 and k =i &2 mod 5, so that the remaining two
punctures, / and m, are nonconsecutive: m =/ £ 2 mod 5. Thus,

h(DVi,j DJ/j,k Dyk,i) = h(DJ’i,j) + h(D)’j.k) + h(DVk,i)
=14+ (-1)+(-1)
=(-1)= h(Dy,'m).

Thus, / preserves the lantern relation. |

Now, we switch back to the generating set S, given in the introduction. The homomor-
phism of Theorem 2.2 gives a lower bound on the word length of elements in Map(S).
Note that

h(si,j)=m—1) and h(Dy)=1.

Lemma 2.3 Let n> 2. Forany f € Map(S), let
h(f)=qmn—-1)+r
for integers ¢ and r, where 0 < |r| < %n —1. Then || fls, = |g] +|7].
Proof First we show that, if #(f) =a(n—1)+b forintegers a and b, then |a|+|b| >

|g| + |7|. To see this, consider such a pair @ and b where |a| + |b| is minimized. We
argue in two cases:

Case1 Assume a < ¢q. Then
(D b=(q—a)yn—1)+r>m—-1)—(in-1)=1n

We claim that, if we increase a by 1 and decrease b by n—1, we decrease the quantity
|a| + |b| which is a contradiction. This is clear if » > n—1. Otherwise, using (1), we
have

b—m—1)|<m—-1)—-b< (n—l)—%n = %n—l <|b|—1.

Case 2 Assume a > ¢. Then
b=(@—a)(n—1)+r <—(n—1)+%n—1 =—%n.

Therefore, we can decrease ¢ by 1 and increase b by n—1 to decrease the quantity
|a| + |b|, which again is a contradiction. Hence, ¢ = ¢ and consequently b = r.

Now, write f = g1g5 - gk, where g; €S, or gi_1 €Sy and k = f|s, . Foreach g;,
h(g;) takes one of the values 1, —1, n—1 or 1—n. Hence, there are integers ¢’ and b’
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such that
h(f) =h(g1) +h(ga) +--+h(gp) =d (n—1)+0,
where k > |a’| 4+ |b’|. But, as we saw before, we also have |d’| + |b'| > |gq| + |r]|.

Hence k > |q| +|r|. m|

This lemma allows us to find explicit geodesics in Map(S). We demonstrate this with
an example.

Example 2.4 Let f = DZT_I € Map(S). We have
h(f) =nfF-1= (n—l)(nk_1 k2 1).
Therefore, by Lemma 2.3 || f||s, > nk=1' 4 nk=2 4 ... 4 n2 4 n+ 1. On the other

hand (assuming k is even to simplify notation), we have

k_ k g k— o k— _ _
DI = (DE D (D Dy ) (D DY (DL, D))

o]

k—1

2
k—

1 k—2
__ oh n
=812 52

RERAEEI Y- RE

Since we used exactly n€~14-nk=24...4n+1 elements in S,, we have found a
geodesic path. However, notice there is a second geodesic path from the identity to f
(which works for every k), namely

D™t = (DG D) (DG, D) (Df_ D) (D, D)

Op—1 Q41
k—1 k—2
— n P n
=512 %23 Sk—1,k5kJe+1

where the indices are considered to be in Zs. This shows that geodesics are not unique

in Map(S). Either way, we have established that

k_ _ —
2) IDE s, =nF " k2t L

We now use a similar method to compute certain word lengths that will be useful later

in the paper. Define
¢ ::l)asl)a4l)a3l)azl)a1-

We will show in the next section that ¢ is a pseudo-Anosov element of Map(.S). We

also use the notation
k/5
¢*/> = Dy Dy, -+ Day, »

where again the indices are considered to be in Z5. This is accurate when k is divisible
by 5 but we use it for any integer k. For a positive integer k, define

me=nf+nF" 4+ dn+1 and L =nF—nkt_pk2 o p—1,
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and let wg = Dg'* and uy = Dﬁ’; . Additionally, for k£ odd, we will define

v = DG kD2 p kD2,

In fact, for the rest of the paper, we always assume k is odd. We will show that
and wy are closer to a large power of ¢ than the identity even though they are both
just a power of a Dehn twist.

Proposition 2.5 Let n > 3. For uj;, and wy, as above, we have
lwrg™ D)5, = fweviells, = n* 7+ 2072 4o (k= D+ k
and

% Puglls, = n*~1 —n* =3 —2nF =4 — . — (k=3 — (k —2) + 1.

Proof Note that
Mg~ *FVEY = @F 4 nk "t )~ (k+ 1)
=m—D@E F20* 24 (k= D+ k).
Lemma 2.3 implies that
lwig™ D5, = n 1 4202 e (k= D+ k.
On the other hand, since mj — 1 = nmy_;, we have

wk¢_(k+1)/5 — Dlek (Dgll D(;21 . D—l )

Ole4-1

= D(le_l (Dizzl D0731 D;kl-i-l)

= S;}flzc_l Dorfzki1 (D0721 D0721 o D(;k1+1)
=137 DT T (D Dyl Dl )

= 5751555 DGt (D Do+ Do)

My—1 Mi—2

f— . ml
=512 923 Sg—1 4,5k k+1-

Therefore,
lwed™®+DS o =mp g+ 4my+1=n* " 42052 (k= D+ k.

To show that
||wkvk”8n = nk_l + znk_z + ot + (k - l)n +k
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is as above, but in place of applying s; ;41 for 1 <i <k, we alternate between applying
1,2 and s7 1 to find (recall that k is odd and Dy, and Dy, commute)

_ k-1 M2 M
WiVk =51, S §2,151,2

which proves our claim. Similarly, we have
(o Pup) =k + =k —c.n—1)
=m—D)@*F " —nk 3 okt k=3 — (k—2)) + 1,
and Lemma 2.3 implies
6% ug s, =nk=t —nk=3 —2nk=4 —.. (k= 3)n— (k —2) + 1.
On the other hand, since £; + 1 = nf;_;, we have
*/uj = (Day, -+ Day Du) Dy
= (D, +++ Doy D) D!

o]

— l) D D De — ek*l
—( o o3 0(2) al; 151’2

D D D DE —1+1 ek—l
—( ai "oy a3) otl; ! 31’2

Lr—o Li—
= (Day Doy Day) D255 515!

2,3 51,2

— 2 A Lo Li—

= Doy Doy Sic_y j 52,3 S1,2

_ 4 Lie—2 Llic—1

= D“k+1sk,k+lsk—1,k 83 S
Therefore,
lurd® s, =k +- -4+ +2=nF 1 —n* 3 _2p* =4 _(k=3)n—(k—2) +1.
This is because the coefficient of n’ is 1 in ¢; and is —1 in £, ...,£;; . Summing
up, we get —(k —i —2) as the coefficient of ‘. m|

3 The pseudo-Anosov map ¢

In this section, we introduce the pseudo-Anosov map ¢ which will be used in the proof
of Theorem 1.4. Define

¢ = Dys Dy, Dy Dy, Dy, .

We check that ¢ is, in fact, a pseudo-Anosov.
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2c+d

3c+2d

6a+3b+6c+4d 4a+2b+3c+2d

¥

6a+4b+ 4c
+2d + 3e

12a+ 8b + 6¢

+3d + 6e

3a+2b+2e 3a+2b+2e
Q

12a+ 8b + 6¢
+3d + 6e

6a+3b+6c+4d  4q42b+3c+2d 6a++3fd+6c 4a+2b+3c+2d

Figure 2: The train track ¢ (7) is carried by 7.

Theorem 3.1 The map ¢ is pseudo-Anosov.

Proof In order to prove that ¢ is a pseudo-Anosov map, we find a train track T on S
such that ¢(7) is carried by 7 and show that the matrix representation of ¢ in the
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coordinates given by t is a Perron—Frobenius matrix (see [19] for basic information
about train tracks).

The series of images in Figure 2 depict the train track t and its images under successive
applications of Dehn twists associated to ¢p. We see that ¢ () is indeed carried by 7
and, keeping track of weights on 7, we calculate that the induced action on the space
of weights on 7 is given by the matrix

Note that the space of admissible weights on 7 is the subset of R> given by positive
real numbers a, b, ¢, d and e such that a + b 4+ e = ¢ + d. The linear map described
above preserves this subset. The square of the matrix A is strictly positive, which
implies that the matrix is a Perron—Frobenius matrix. In fact, the top eigenvalue is

A=~1342V2V/13+7+4,

which is associated to a unique irrational measured lamination F carried by 7 that is
fixed by ¢. We now argue that F is filling. Note that curves on S are in one-to-one
association with simple arcs connecting one puncture to another. We say an arc is
carried by 7 if the associated curve is carried by 7. If F is not filling, it is disjoint
from some arc w connecting two of the punctures. Modifying @ outside of a small
neighborhood of 7, we can produce an arc that is carried by t. In fact, for any two
cusps of the train track t, either an arc going clockwise or counterclockwise connecting
these two cusps can be pushed into 7. Hence, we can replace the portion of w that
is outside of a small neighborhood of t with such an arc to obtain an arc o’ that is
still disjoint from F but is also carried by t. Hence, if F is not filling, it is disjoint
from some arc (and thus some curve) carried by t. But F is the unique lamination
carried by t that is fixed under ¢, which is a contradiction. This implies that ¢ is
pseudo-Anosov. a

4 Shadow to curve complex not a uniform quality
quasigeodesic

The curve graph C(S) is a graph whose vertices are curves on S and whose edges
are pairs of curves with disjoint representatives. We assume every edge has length 1,
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turning C(S) into a metric space. This means that, for a pair of curves « and B,

decsy(a, B) = n if
“:VO,---,Vn:,B

is a shortest sequence of curves on .S such that the successive y; are disjoint. Masur
and Minsky showed that C(S) is an infinite diameter Gromov hyperbolic space [15].

We also talk about the distance between subsets of C(S) using the same notation. That
is, for two sets of curves g, 1 C C(S) we define

de(sy (o, 1) = max decsy (Yo, v1)-
YoERO
V1€ML

Definition 4.1 The shadow map from the mapping class group to the curve complex
is the map defined as

T:Map(S) —C(S), [+ flar).
The shadow map from Map(.S) equipped with d, to the curve complex is 4—Lipschitz:

Lemma 4.2 For any f € Map(S), we have
3) decsy(ar, far) = 4| fls,-

In particular, the Lipschitz constant of the shadow map is independent of n.

Proof It is sufficient to prove the lemma for elements of S,,. Consider Dy, € Sp,. If
i(aj, 1) =0 then

desy(ar, Dy, (1)) = decsy(ay, o) = 0.
If i(oj, 1) = 2, then there is a curve «; that is disjoint from both «; and o; and
hence «; is also disjoint from Dy, (a1). Therefore, de(sy(a1, Do, (1)) = 2.

1

Now consider the element s; ;1 € S,. Note that s,

& = «;. Hence,
decsy (@i, sijr10r) < deesy(oy, o) + decsy (@i, Siiv100)
< 2+ de(s)(si4 @i )
§2+dc(5)(06,',061)§2+2=4. O
Using this lemma and the theorems from Section 3, we show that the shadows of

geodesics from the mapping class group to the curve complex are not always uniform
quality quasigeodesics.
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Theorem 4.3 For all K > 1 and C > 0, there exists a geodesic in the mapping class
group whose shadow to the curve complex is not a (K, C')—quasigeodesic.

Proof Let k be a positive integer which is a multiple of 5. Recall that, for a positive
integer k, we have

T L B Ay L
wi = Dg/* and uy = Df/{. Note that my_; + £ = n¥. Hence, we can write
k —k/5\(1k/5
D = (we—19 %) (@* up).

Also,
k _ —_
hDE)=nk =1 +n* 2+t )+ L

Therefore, by Lemma 2.3,

k _ —
4) ID%, s, = n 0" 2 42,
But, from Proposition 2.5, we have

lwk—167 s, =072+ 20" 4k (k=D (k= 1)
and
6% Pulls, =n* ' =n* 7 —2nF 7t — o — (k=3 — (k= 2) + 1.
The sum of the word lengths of the two elements is
22,
which is equal to the lower bound found in (4). Thus,

k —k/5 k/5
ID2 s, = lwk—1¢™* % |5, + 19" uklls,.

. . . . k . .
which means there is a geodesic connecting DZ; to the identity that passes through
k/5
¢ Pu .

Since ¢ is a pseudo-Anosov map, there is a lower bound on its translation distance
along the curve graph (see Theorem 4.6 from [15]). Namely, there is a constant o > 0
such that, for every m,

) de(s) (e, ¢™ar) = om.
Also, upo; = ay, which implies

decsy (@1, ¢* P upar) = degsy (1. ¢*/ %) = Lok
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That is,
Y(id) = Y(D) = ay.

However, Y (¢*/5uy) is at least distance %Uk away from «;. Therefore, choosing
k large compared with o, K and C, we see that the shadow of this geodesic (the
one connecting id to D(’)’: which passes through ¢*/3u;) to C(S) is not a (K, C)—
quasigeodesic. |

S Acxis of a pseudo-Anosov in the mapping class group

Consider the path
Ap:Z — Map(S), i ¢

Since |¢|ls, <S5, then |¢||s, < Si. Also, using Lemma 4.2 and (5) we get
167115, = 3decs) (1. d'en) = gio.

Therefore,
$10 = 9'lls, < 5i.

This proves the following lemma:

Lemma 5.1 The path Ay is a quasigeodesic in (Map(S),ds,) for every n with
uniform constants.

We abuse notation and allow Ay to denote both the map and the image of the map
in Map(S). For i, j € Z, let g = g;,; be a geodesic in (Map(S), ds,) connecting ¢’
to ¢/. Let G = Y oy be the shadow of 4 to the curve complex and let

Proj;: Map(S) — G

be the composition of Y and the closest point projection from C(.S) to G. The following
theorem, proven in more generality by Duchin and Rafi [11, Theorem 4.2], is stated
for geodesics g;,; and the path G.

Theorem 5.2 The path G is a quasigeodesic in C(S). Furthermore, there exists a
constant B, which depends on n and ¢, and a constant B depending only on ¢, such
that the following holds: For x € Map(S) with ds, (x,g) > By, let r = ds, (x,4)/Bn
and let B(x,r) be the ball of radius r centered at x in (Map(S), ds,). Then

diame(s) (Projg (B(x,r))) < B.
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Remark 5.3 In the proof of [11, Theorem 4.2], it can be seen that B,, (B; in their
notation) is dependent on the generating set since Bj, is taken to be large with respect to
the constants from the Masur—Minsky distance formula, which depend on the generating
set [16]. Let S be a fixed generating set for Map(.S). Then the word lengths of elements
in Sy in terms of S grow linearly in n with respect to S. Hence, the constants involved
in the Masur—Minsky distance formula also change linearly in n. That is, B, < n,
where the symbol =< means that the equality is true up to an additive constant and
a multiplicative constant. Also, one can see that the constant B (B, in their proof)
depends only on ¢ and the hyperbolicity constant of the curve graph, but not the
generating set.

Remark 5.4 Since T is Lipschitz (Lemma 4.2) and the closest point projection is
Lipschitz, the map Projg is also Lipschitz. We assume B is larger than the Lipschitz
constant of this map.

Since Ay is a quasigeodesic, Theorem 5.2 and the usual Morse argument (for example
see [1]) implies the following:

Proposition 5.5 The paths Agli, j] and g;,; fellow-travel each other and the constant
depends only on n. That is, there is a bounded constant &, , depending on n, such that

On Zmax( max min ds,(p,q), max min dsn(p,q)).
PEAI,j19€4i. PEgi.j geAyli,j]

We now show that ¢ acts loxodromically on (Map(S), ds,). That is, there exists a
geodesic ag on (Map(S), ds,) that is preserved by a power of ¢. This is a folklore
theorem, but we were unable to find a reference for it in the literature. The proof given
here follows the arguments in [4, Theorem 1.4], where Bowditch showed that ¢ acts
loxodromically on the curve graph, which is more difficult since the curve graph is not
locally finite. Bowditch’s proof in turn follows the arguments of Delzant [10] for a
hyperbolic group.

Proposition 5.6 There is a geodesic
ag: Z — Map(S)

that is preserved by some power of ¢. We call the geodesic a4 the quasiaxis for ¢.
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Proof The statement is true for the action of any pseudo-Anosov homeomorphism
in any mapping class group equipped with any word metric coming from a finite
generating set. We only sketch the proof since it is a simpler version of the argument
given in [4].

Let £(i, j) be the set of all geodesics connecting ¢’ to ¢/. Note that every point on
every path in £(i, j) lies in the §,—neighborhood of Ay . Letting i — oo, j — —00
and using a diagonal limit argument (Map(S) is locally finite), we can find bi-infinite
geodesics that are the limits of geodesic segments in sets £(i, j). Let £ be the set of all
such bi-infinite geodesics. Then ¢ (£) = £ and every geodesic in £ is also contained
in the 6, —neighborhood of Ay . Let £/¢ represent the set of edges which appear in a
geodesic in £ up to the action of ¢. Then £/¢ is a finite set.

Choose an order for £/¢. We say a geodesic g € L is lexicographically least if, for all
vertices x, y € g, the sequence of ¢—classes of directed edges in the segment gy C g4
between x and y is lexicographically least among all geodesic segments from x to y
that are part of a geodesic in £. Let L7 be the set lexicographically least elements
of £. We will show that every element of Ly is preserved by a power of ¢.

Let P be the cardinality of a ball of radius 8, in (Map(S),ds,). We claim that
|£r| < P%. Otherwise, we can find P2 + 1 elements of £; which all differ in
some sufficiently large compact subset of Ng, (Ag), the 6,—neighborhood of Ag. In
particular, we can find x, y € N5, (Ag) so that each of these P? 41 geodesics has a
subsegment connecting a point in N, (x) to a pointin Ns, (), and these subsegments
are all distinct. But then at least two such segments must share the same endpoints,
which means they cannot both be lexicographically least.

Since ¢ permutes elements of L7 , each geodesic in Ly, is preserved by ¢(P Mg
As before, we use the notation a4 to denote both the map and the image of the map
in Map(S). We now show that the projection of a ball that is disjoint from a4 to ay

grows at most logarithmically with the radius of the ball, proving that Theorem 1.4 is
sharp.

Corollary 5.7 There are uniform constants cy, cy > 0 such that, for x € Map(S) and
R =ds,(x, ay), we have

diam¢ () (Projg (Ball(x, R))) < c¢in-1og(R) + ¢an.
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Proof Consider y € Ball(x, R— B;,). Let
X =X0,X1,..., XN =)
be a sequence of points along the geodesic connecting x to y such that

d i,
S (Xi, ag) 41

(6) ds, (xi, Xj+1) < 3
n
and, fori =0,...,N-2,
ds, (Xi, ag)
dsn(xi’xi-i-l) = B—l%
n

Note that
ds,(Xi,ap) > R—ds, (X0, X;) > ds, (xi, y).
Therefore, fori =1,..., N—-2,

ds, (xi. ag) _ ds, (x1. )
Bn - Bn ’

dsn (xivxi-i-l) =

This implies

1
ds,(Xiy1,y) =ds,(xi, y) —ds, (Xi, Xj11) < (1 — B—)dsn (xi,»)
n

and hence

ds, 20 =(1-5) ds,on=(1-0) R,

But d
s,(XN—2.85) _ B
ds,(XN-2,y) = ds,(XN—2,XN-1) = B—¢ = B

n n

Therefore,

N-2
(1_L) rR>2
Bn Bn

This means, for some constant ¢, depending only on 7, we have (see Remark 5.3)

1 ~—
—log(1—1/By) ~
where the symbol < means that the equalities are true up to an additive constant and a

(7 N <¢,log R with ¢, < B, = n,
multiplicative constant.
Setting r; = ds,, (xi, a5)/ By, equation (6) implies that there exists z € B(x;, r;) such
that ds,(z,x;+1) < 1. Applying Theorem 5.2 to B(x;,r;) and Remark 5.4 to z
and x;41, we get
de(s) (Projg, (xi), Projg, (xi4+1))
< de(s)(Projg, (xi), Projg, (2)) + dc(s) (Projg, (2), Projg, (xi+1))
<2B.
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In view of (7), we have

(8) de(s) (Projg, (x), Projg, (1)) = 2Bc) log R.

Now, for any " € Ball(x, R) there is a y € Ball(x, R— B,,) with ds, (v, y') < B,. But
T is 4-Lipschitz and the closest point projection from C(S) to Gy is also Lipschitz
with a Lipschitz constant depending on the hyperbolicity constant of C(.S). Therefore,
© degs) (Projg, (), Projg, () < " B,

where ¢”, the Lipschitz constant for Projg » is a uniform constant. The second part
of (7) implies that there is a constant ¢; such that 2Bc), < c¢jn. Also, there is a
constant ¢, with ¢’/ B, < con. Corollary 5.7 now follows from (8), (9) and the triangle
inequality. |

6 The logarithmic lower bound

In this section, we will show that the quasiaxis ag of the pseudo-Anosov map ¢ does
not have the strongly contracting property, proving Theorem 1.4 from the introduction.

Definition 6.1 Given a metric space (X, dy), asubset G of X and constants dy, d, >0,
we call a map Proj: X — G, a (dy, dy)—projection map if, for every x € X and g € G,
dx (Proj(x), g) <dy-dx(x,g) + da.

To prove this theorem, notice first that the geodesic found in Section 2 may not determine
the nearest point of Ay to wy = DZ’I", where my, = Kk n41.

Lemma 6.2 If ¢?* is the nearest point of Ay to wy, then py > %(k +1).
Proof Consider a point ¢ on Ay where m < %k. Applying the homomorphism /,
we have

h(wpd™) = (mge —S5m) > (mge = (k + 1) = h(wpp~ V),

But my—(k+1) is divisible by n—1. Hence, if we write m; —m = q(n—1)+r with
|r| < %(n — 1), we have

my —(k+1)

lq| = — -1

Lemma 2.3 implies that |wge™ | s, > |wgp~K+D/5 ||s, » which means the closest

and |r|>0.

point in Ay to wy is some point ¢pP* with py > %(k +1). O
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Figure 3: Setup for the proof of Theorem 1.4.
Let Rg = ds, (wg, ¢7%) = ds, (i, Ag) and Ay = ds, (wg, *+D/3).

Proof of Theorem 1.4 For fixed d, d> >0, let Proj,, : Map(S) — ag be any (dy,d>)—
projection map. Fix n large enough that
5d,
n—1"
Choose the sequence {k;} = {2n’ — 3} and recall that
v, = Dy kit D12 p kit /2,

(10) o

By Example 2.4 (notice that %(k,- +1)=ni — 1),

: ki
(1n ds, (v 1) = g, s, = =

+1 1
= ||V y
— = llvglls,
and by Proposition 2.5 we have
dSn (wki ’ v[:il) = Ak,‘ .

Consider a ball B(wy,, ;) of radius r; = Ry, — (8, + 1) around wy, . This ball is
disjoint from ay since Ay and ay are §,—fellow-travelers by Proposition 5.5, and
Ry, = ds, (wg,, Ae). For the rest of the proof, we refer to Figure 3.

Since /4 is a homomorphism, we have

h(wki¢—ki/5) — h(wki¢_pki) +h(¢Pki¢—k,’/5)'
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Proposition 2.5 showed
hwy ¢~ 6D = (n = 1) A
from Lemma 2.3, we have
h(wi,¢~P%) < (n— DRy,
and since ||¢|s, = 5, we have
h(gPi =D = 5pp, — (ki +1).

The above equations imply

5pk,’ - ki

Ak, — Ry, <
k=T

Consider a point p on the geodesic from wy, to v,:il such that ds, (wg, , p) = ri, ie
such that

—1 Spkl_kl
ds,(p.vg, ) = Ak, —ri = Mg, = (Rg; =0n— 1) = —1+5n+ 1.

This and (11) imply

+1  Spp. —k; S5pk. +
n Pk; Pki

ki 1
ds,(id,p) < —— + ===+, +1= + 60+ 1.

n—1

Since ag and Ay are §, —fellow-travelers by Proposition 5.5, there exists a point xg € ag
in the 8, —neighborhood of the identity. Thus ds,, (p, xo) < (Sp; +1)/(n—1)+28, +1
and

(12) dSn (1d7 Proj ag (p)) = dSn (ldy X()) + dSn (.X(), Proj ag (p))
<dn+dy-ds,(xo0, p) +d>

< 5dl Dk;

A9
_n_l—l-p

where A, is a constant depending on J,, d; and d» but independent of k;. Similarly,
we consider a point ¢ on the geodesic from wy, to ¢pP*i such that ds, (wg,;,q) =ri.
Again, since a4 and Ay are §,—fellow-travelers by Proposition 5.5, there exists an
X1 € ag such that ds, (pP%i, x1) < 8, and thus ds, (¢, x1) < 26, + 1. Therefore,

(13) ds, (@7, Proj, (¢)) < ds, (", x1) + ds, (x1,Proj,, (¢))
Sén+di- 28+ 1) +dy < Ay,
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where, again, 4, depends on §,, d; and d; but is independent of k;. Since p,q €
B(wg;.ri), we have

diamg,, (Proj% (B(wg; , ri)))
= dSn (Proj ag (p)’ Proj% (q))
> ds, (id, %) — ds, (id, Proj,, (p)) — ds, (Proj,, (¢). $%).

But ds, (id, i) > %apki . By combining this fact and equations (12) and (13), we
find

(14) diamg,, (Proj%(B(wki,ri))) > 70Dk

v

|—
=

|

5d,
:pkl(%o’—n_l)—AP—Aq

By our assumption (10) on 7, this expression is positive and goes to infinity as py, — 00.

But, for n large enough, r; < Ry, < Ay, < nki. Also, Pik; = %ki. Hence,
Spk; logn > logr;.
Hence, there is a constant ¢, such that

diamg,, (Proj% (B(wy; r,-))) > cplogr;. O
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