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Abstract. We study an interval exchange transformation of [0, 1] formed by cu�ing the interval
at the points 1

n and reversing the order of the intervals. We �nd that the transformation is periodic
away from a Cantor set of Hausdor� dimension zero. On the Cantor set, the dynamics are nearly
conjugate to the 2–adic odometer.

Introduction

We study variations of the following interval exchange transformation: Consider the interval
[0, 1) and cut it into subintervals of the form [1− 1

k
, 1− 1

k+1
) for integers k ≥ 1. We are interested

in the dynamical system T1 : [0, 1)→ [0, 1) that reverses the order of the intervals, see Figure 1.
To study this map T1, we are also interested in similar maps TN on particular subintervals

XN ⊂ [0, 1). For this, let N be a positive integer and let XN denote the half-open interval
[0, 1

N
). Now consider the dynamical system TN : XN → XN where XN is cut into half-open

intervals of the form [ 1
N
− 1

k
, 1
N
− 1

k+1
) for k ≥ N . Reversing the order of these intervals can

be described by applying a translation by 1
k

+ 1
k+1
− 1

N
to each such interval. More formally, the

map TN : XN → XN is de�ned by

TN(x) = x− 1

N
+

1

k
+

1

k + 1
where k =

⌊
1

1
N
− x

⌋
.

Here b?c denotes the greatest integer less than or equal to ?. �e map TN is nearly a bijection: it
is one-to-one and its image is the open interval (0, 1

N
).

Following notation that is standard in the theory of dynamical systems, we use T jN(x) to indi-
cate the point that is obtained by applying this map j times to the point x ∈ XN . A point x is
called periodic under TN if there exists an integer j > 0 such that T jN(x) = x. We will show:

�eorem 1. For each positive integer N , there is a Cantor set Λ̄N ⊂ [0, 1
N

] of Hausdor� dimension
zero such that x is periodic under TN if and only if there exists an ε > 0 such that (x, x+ε)∩Λ̄N = ∅.
In particular, x is periodic if x 6∈ Λ̄N , so the vast majority of points are periodic under the map TN .

Let ΛN denote the set of points which are aperiodic (not periodic) under TN . �e dynamics of
the restriction of TN to ΛN turn out to be related to the 2–adic odometer which we now de�ne.

Figure 1. Top: �e interval [0, 1) cut into intervals of the form [1 − 1
k
, 1 − 1

k+1
).

Bo�om: �e images of these intervals under T1.
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Let A be the alphabet {0, 1} and N = {0, 1, 2, . . .}. �e 2–adic integers are the set of formal
sums

(1)
∑
k∈N

αk2
k with αk ∈ A for all k.

We identify the 2–adic integers with the space AN consisting of all sequences α = (α0, α1, . . .)
with each αk ∈ A. �e 2–adic integers form an abelian group with the operation of addition
allowing carrying of the form 1 ·2k+1 ·2k = 1 ·2k+1. �e addition-by-one map is given by adding
1·20 to a 2–adic integer. In terms of sequences, the addition-by-one map is the map f : AN → AN

de�ned by

(2) f(α)k =


0 if k < j

1 if k = j

αk if k > j

where j = min ({k : αk = 0} ∪ {+∞}).

�is map is also called the 2–adic odometer. It is a homeomorphism when we equip A with the
discrete topology and AN with the product topology. It is well known that f is minimal (all
orbits are dense) and uniquely ergodic (there is only one invariant Borel probability measure)
[Pyt02, §1.6.2].

Let N be the set of all 2–adic integers α ∈ AN which end in an in�nite sequence of ones, i.e.,

N = {α ∈ AN : there exists a K such that αk = 1 for k > K}.

Another characterization of this set is as the set of 2–adic integers α such that there exists an
n > 0 for which fn(α) = 0, where 0 ∈ AN is the zero element de�ned by 0k = 0 for all k.

We show that the restriction of TN to the aperiodic set ΛN mirrors the action of the 2–adic
odometer:

�eorem 2. For each positive integer N and T = TN , there is a continuous bijection h = hN from
AN rN to the aperiodic set ΛN ⊂ XN such that T ◦ h(α) = h ◦ f(α) for all α ∈ AN.

We give an explicit description of the aperiodic set ΛN and an explicit description of the map h
in § 4.

�e least period of a periodic point x ∈ XN under TN is the smallest k > 0 such that T kN(x) = x.
An interesting question this work leaves open is (see also Remark 7):

�estion 3. Which integers p > 0 appear as least periods of periodic points under TN? For each
such p what is the Lebesgue measure of the set of periodic points of least period p?

Connections to other work. Another in�nite interval exchange transformation (IET) is given
by the Van der Corput map:

(3) S : [0, 1)→ [0, 1); x 7→ x− 1 + 2k + 2k−1 where k = blog2(1− x)c.

�is map is nearly conjugate to the 2–adic odometer; see discussions in [Pyt02, §5.2.3], [Sil08, §3.8]
and [LT16, §2]. �is map turns out to be semi-conjugate to the restriction of TN to ΛN as de-
scribed in �eorem 2.

Polygon and polytope exchange transformations (PETs) are higher dimensional analogs of IETs.
�ere are numerous examples in the literature of such maps admi�ing an open dense set of pe-
riodic points but with interesting dynamics on the complimentary sets. See for example [AH13],
[Goe00], [Goe03], [Hoo13], [Sch14], [Yi18]. �is sort of behaviour is impossible for IETs formed
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by permuting �nitely many intervals [MT02, �eorem 6.6]. Part of the purpose of this article is
to illustrate that this phenomenon arises in natural in�nite IETs.

It is not the case that every in�nite IET has a minimal component where the restriction of the
map to this component is conjugate to an odometer. For example, there exists an in�nite minimal
IET of [0, 1] with positive entropy such that all lengths are 2–adic rationals (see [DHV, §4]) but
odometers have entropy zero.

1. Generalities

Interval exchanges. For us, an interval exchange transformation (IET) is a one-to-one piecewise
translation T : X → X where X ⊂ R is a bounded interval. �at is, we have a partition of X
into countably many subintervals X =

⊔
j∈J Ij and a choice of translations τj ∈ R for j ∈ J

such that the map
T : X → X; x 7→ x+ τj when x ∈ Ij

is injective.
We call T rational if each τj lies in Q. �e following is a classical observation:

Proposition 4. If T is a rational IET and τj takes only �nitely many values, then every orbit of T
is periodic. More generally, if T : X → X is a rational IET and x ∈ X , then x has a periodic orbit
unless

{τj : there is an n ≥ 0 such that T n(x) ∈ Ij} is in�nite.

Proof. Since each τj ∈ Q and there are only �nitely many translations τj , there is a d ∈ Q such
that τj

d
∈ Z for all j. Observe that T permutes the �nitely many points in (x+ dZ) ∩X . �

When we were working on this project, we wondered how common it is to have a dense set of
periodic points for a rational IET which is in�nite in the sense that {τj} is in�nite. Some exper-
imental work of Anna Tao (undergraduate, CCNY) seems to suggest that this sort of periodicity
is rare. However, we still wonder if there are natural classes of in�nite rational IETs in which
having a dense set of periodic points is typical.

At this point, there are a number of in�nite rational IETs in the literature. Equation (3) gives
an in�nite rational IET without periodic orbits, and there are other examples corresponding to
p–adic odometers and the Chacon middle third transformation [Dow05, §3] [LT16]. One way to
get such a rational IET is from straight-line �ows in directions of rational slope on an in�nite-type
translation surface all of whose saddle connections have holonomy in Q2. Symmetric surfaces of
this form have been described in [Cha04], [Bow13] and [LT16].

Return maps. If Y ⊂ X is an interval, the �rst return time of y ∈ Y to Y is

r(y) = min
(
{n > 0 : T n(y) ∈ Y } ∪ {+∞}

)
.

Assuming r < +∞ on Y , we de�ne the �rst return map T̂ : Y → Y to be the map

T̂ : Y → Y ; y 7→ T r(y)(y).

If T is an IET in the sense above, then so is T̂ . Furthermore, T̂ is rational whenever T is rational.
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2. Basic return maps

Here we prove some basic results about the maps TN : XN → XN de�ned in the introduction.
First we fully describe the return map to XN(N+1).

Lemma 5. For any N , the �rst return map of TN to the interval XN(N+1) = [0, 1
N(N+1)

) is given
by TN(N+1). Furthermore, the return time is 2 on all of XN(N+1).

Proof. For each x ∈ XN(N+1) we see that k = b 1
1/N−xc = N and thus TN(x) = x + 1

N+1
. �is

shows TN(XN(N+1)) = [ 1
N+1

, 1
N

) and in particular, no point has least period 1. We have that[
1

N + 1
,

1

N

)
=

⋃
`≥N(N+1)

[
1

N
− 1

`
,

1

N
− 1

`+ 1

)
.

Set x′ = TN(x) ∈ [ 1
N+1

, 1
N

) and k′ = b 1
1/N−x′ c ≥ N(N + 1). We compute

(4) T 2
N(x) = TN(x′) = x′ − 1

N
+

1

k′
+

1

k′ + 1
= x− 1

N(N + 1)
+

1

k′
+

1

k′ + 1
.

Now observing that

k′ =

⌊
1

1
N
− x′

⌋
=

⌊
1

1
N
− x− 1

N+1

⌋
=

⌊
1

1
N(N+1)

− x

⌋
,

we see from (4) that T 2
N(x) coincides with TN(N+1)(x). �

We get periodic points as a consequence:

Corollary 6. For any N , every point in [ 1
N(N+1)

, 1
N+1

) has a periodic orbit under TN .

Proof. Observe that TN
(
[ 1
N(N+1)

, 1
N+1

)
)

= [ 1
N(N+1)

, 1
N+1

), because TN reverses the order of in-
tervals and we already know TN

(
[0, 1

N(N+1)
)
)

= [ 1
N+1

, 1
N

) and TN
(
[ 1
N+1

, 1
N

)
)

= (0, 1
N(N+1)

).
Moreover, there are only �nitely many distinct translations occurring on this interval, namely
the translations associated to ( 1

k+1
, 1
k
] for values of k satisfying N + 1 ≤ k < N(N + 1). Propo-

sition 4 then guarantees that every point in [ 1
N(N+1)

, 1
N+1

) is periodic. �

Remark 7. In the case N = 2, every point in the interval [1
6
, 1
3
) has a periodic orbit under T2 that

has least period 10. In general, however, there may be points in [ 1
N(N+1)

, 1
N+1

) that do not have the
same least period. For example, forN = 3, points may have least period either 920 or 930 under T3.
To describe more examples for larger N , we de�ne another family of IETs

Rm,n :

[
1

m
,

1

n

)
→
[

1

m
,

1

n

)
for allm > n > 0 by breaking this interval into subintervals of the form [ 1

k+1
, 1
k
) form > k ≥ n and

reversing the order of the subintervals. Note that the restriction of TN to the interval [ 1
N(N+1)

, 1
N+1

)

is RN(N+1),N+1. In fact, there are many subintervals in X1 of the form [ 1
m
, 1
n
) that are preserved by

a power of T1 and where the �rst return map is Rm,n.
For example, the interval [ 1

42
, 1
7
) is sent to itself by T6. �e restriction of T6 to [ 1

42
, 1
7
) coincides

withR42,7 and with the restriction of T 4
1 to this interval. Analyzing the periodic orbits in [ 1

42
, 1
7
) with
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[Del18], we see that there are nine di�erent least periods occurring under T6, namely:

272, 2002, 105252, 125986, 9515623638834,

70542359811724, 35513020871128, 13883349533760, 43184371863572.

Furthermore, the interval [ 1
42
, 1
7
) itself has subintervals of the same type that are preserved by some

power of T1. Namely, [ 1
15
, 1
10

) is sent to itself under T 8
1 which coincides with T 2

6 and withR15,10. Also
each of the intervals [ 1

18
, 1
15

), [ 1
24
, 1
18

) and [ 1
42
, 1
24

) are sent to themselves under T 16
1 which coincides

with T 4
6 and the �rst return map is of the form Rm,n. In case of the interval [ 1

42
, 1
24

), there are again
�ve di�erent least periods occurring.

In all these cases, every possible least period has to be a divisor of the least common multiple of
the denominators n, n + 1, . . . ,m. It would be interesting to classify for which pairs (m,n) every
point in the interval [ 1

m
, 1
n
) has the same least period under Rm,n.

3. Cantor sets

In this section we work through a general construction of a Cantor set. We will see later in the
article that the set Λ̄N arises as such a Cantor set.

�e free monoid on the alphabet A = {0, 1} is the set A∗ of all �nite sequences in A equipped
with the binary operation of concatenation. An element w ∈ A is called a word and has a length
|w| ∈ N representing the number of elements strung together. We writeAk to denote the collec-
tion of all w ∈ A∗ with length k. �e unique element ε ∈ A∗ with length zero is called the empty
word and is the unique identity element of the monoid.

Every element w ∈ A∗ can be wri�en as
w = w0w1 . . . w|w|−1 with each wi ∈ A.

Concatenation is the operation de�ned by
xy = x0x1 . . . x|x|−1y0y1 . . . y|y|−1.

More formally, xy is de�ned to be the �nite sequence z of length |x|+ |y| such that

zi =

{
xi if i < |x|,
yi−|x| if |x| ≤ i ≤ |x|+ |y|.

We use exponential notation for repeated concatenation so that wk denotes the concatenation of
k copies of w. For example 09 denotes the word w where |w| = 9 and wi = 0 for i = 0, . . . , 8.

We now informally describe the Cantor sets that we are interested in. We use a variant of the
standard construction of the Cantor ternary set in R, where the Cantor set is obtained by remov-
ing the middle third interval of [0, 1], then removing the middle third intervals of the remaining
segments, and so on. Our Cantor set is similarly de�ned as the intersection

⋂
k≥0Ck and each Ck

is a �nite union of closed intervals. �e sets Ck are de�ned inductively starting with a single
interval C0 = [a0, b0] and the set Ck+1 is formed by removing middle intervals of equal length
from each of the intervals making up Ck. In contrary to the construction of the Cantor ternary
set, the ratio of the lengths of intervals making up Ck+1 to the lengths of intervals making up Ck
is not necessarily the same for all k. We denote these ratios by numbers sk.

We now give a more formal construction of our Cantor set. Fix an initial interval [a0, b0] and a
sequence s = {sk}k∈N of real numbers satisfying

(5) 0 < sk ≤
1

2
for all k ∈ N and lim sup sk <

1

2
.
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Figure 2. �e intervals Iw0 and Iw1 produced from Iw when s|w| = 1
4
.

We inductively de�ne an interval Iw for each w ∈ A∗. We de�ne Iε = [a0, b0]. Assuming Iw is
de�ned to be [a, b], we de�ne

(6) Iw0 = [a, a+ s|w|(b− a)] and Iw1 = [b− s|w|(b− a), b];

see Figure 2. Observe that if s|w| < 1
2

then Iw0 ∪ Iw1 is the interval Iw with the middle open
interval removed whose length is 1 − 2s|w| times the length of the whole interval. On the other
hand, if s|w| = 1

2
the intervals Iw0 and Iw1 are formed by cu�ing Iw at the midpoint. In particular,

the length of the interval Iw only depends on |w| and the �xed sequence s. �e length is given
by `|w| where

(7) `0 = b0 − a0 and `k = (b0 − a0)
k−1∏
j=0

sj for k ≥ 1.

We de�ne the Cantor set C = C
(
s, [a0, b0]

)
by de�ning

Ck =
⋃
w∈Ak

Iw and C =
⋂
k∈N

Ck.

It is a standard observation that as long as the sequence s satis�es the conditions in (5) that C is a
Cantor set: it is compact, totally disconnected and perfect. �e following is a standard result on
the Hausdor� dimension of C (compare [Mat95, §4.10-11]).

Proposition 8. If limk→∞ sk = 0 then the Hausdor� dimension of C is zero.

Proof. Recall that the d–dimensional Hausdor� content of C is

Cd
H(C) = inf

{∑
i

rdi : there is a covering of C by balls of radius ri > 0
}
.

�e Hausdor� dimension of C is inf{d : Cd
H(C) = 0}.

Fix d > 0. Now consider an integer k > 0 and consider that
⋃
w∈Ak Iw contains C. Each

interval in the union has length `k and there are 2k words inAk, so for this covering
∑

i r
d
i yields

2k(`k/2)d. Observe from (7) that

lim
k→∞

2k
(
`k
2

)d
=
(
b0−a0

2

)d
lim
k→∞

k−1∏
j=0

(
2sdj
)

and since sj → 0, this limit is zero. �is shows that the d–dimensional Hausdor� content is zero
for any d > 0 and so the Hausdor� dimension is zero. �

We can now de�ne the map h that was announced in �eorem 2 to give a continuous bijection
from AN rN to the aperiodic set of TN . Recall that AN is the set of 2–adic integers, consisting
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of all sequences α = (α0, α1, . . .) with each αk ∈ A = {0, 1}. De�ne the map h : AN → R
depending on a sequence s as in (5) and on an interval [a0, b0] by

(8) h(α) = a0 +
∞∑
k=0

αk(`k − `k+1).

We will see in Lemma 10 that the function h is closely related to our construction of the Cantor set
C(s, [a0, b0]

)
. We will also see in § 4 that h can be used to give a 2–adic in�nite address to every

point in the aperiodic set of TN , and that h describes a semi-conjugacy to the 2–adic odometer.
But �rst we observe that h can be used to describe the endpoints of the intervals Iw used in the
construction of the Cantor set C(s, [a0, b0]

)
.

Proposition 9. For each w ∈ A∗, we have Iw =
[
h(w0), h(w1)

]
, where w0 and w1 denote the

elements of AN whose �rst |w| entries are given by w and whose remaining entries are all zeros or
all ones respectively.

Proof. Fix w and let k = |w|. Observe that the lengths of Iw and
[
h(w0), h(w1)

]
match since the

length of Iw is `k and

h
(
w1
)
− h

(
w0
)

=
∞∑
j=k

(`j − `j+1) = `k

since limj→∞ `j = 0. It follows that checking Iw =
[
h(w0), h(w1)

]
is equivalent to checking that

the le� endpoint of Iw is h(w0) or checking that the right endpoint of Iw is h(w1).
We proceed by induction on the length of the word w. Observe that h(0) = a0 and hence

Iε =
[
h(0), h(1)

]
. Now suppose that Iw = [a, b], h(w0) = a and h(w1) = b. We have to

check that Iw0 =
[
h(w00), h(w01)

]
and Iw1 =

[
h(w10), h(w11)

]
. �e statement for Iw0 holds

because the le� endpoint of Iw0 coincides with the le� endpoint of Iw by de�nition in (6), and
by hypothesis we have a = h(w0) = h(w00). �e statement for Iw1 holds because the right
endpoint of Iw1 coincides with the right endpoint of Iw by (6), and by hypothesis we have b =
h(w1) = h(w11). �

Lemma 10. �e image h(AN) is the Cantor set C = C(s, [a0, b0]
)
. Furthermore, h is one-to-one at

all x ∈ C except at those x of the form x = h(w01) = h(w10) for some w ∈ Ak with sk = 1
2
. �e

la�er case happens only �nitely o�en and in this case, h is two-to-one at x.

Proof. First we show that for any α ∈ AN we have h(α) ∈ C. We must show h(α) ∈ Ck for
every k. Fix a k and set w = α0α1 . . . αk−1. �en observe that

h
(
w0
)
≤ h(α) ≤ h

(
w1
)

which implies h(α) ∈ Iw ⊂ Ck.
Now suppose x ∈ C. We study the number of preimages of x under h. Observe that for

each k ≥ 0 there exists a w ∈ Ak such that x ∈ Iw. We break into two cases. First suppose
that for each k there exists a unique w ∈ Ak such that x ∈ Iw. Denote each such word by wk.
Observe that w′ is an initial word of wk if and only if Iw′ ⊃ Iwk . It follows that for j < k, wj is
the initial subword of wk of length j. �en we can unambiguously de�ne α ∈ AN by αi = wki
for some k > i. Now observe that h(α) ∈ Iwk for each k. Since the length of Iwk tends to zero
as k → ∞, we see that h(α) = x. Finally, suppose β ∈ AN is distinct from α. �en there is a k
such that the initial word of length k of β di�ers from wk. We see that h(β) ∈ Iβ0...βk−1

but x is
not in this interval, so h(β) 6= x. �us h is one-to-one at x.
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If we are not in the �rst case, then there is a smallest k such that there are two words in Ak
for which x lies in both the corresponding intervals. From the argument about initial words in
the previous paragraph, we see that because k is smallest, the two words have the same initial
words. �at is, the two words must have the form w0 and w1. �us we have x ∈ Iw0∩ Iw1. By (6)
we see that Iw0 ∩ Iw1 6= ∅ if and only if sk = 1

2
. And if this intersection is non-empty then the

intersection just consists of the midpoint of Iw. In this case, x is the right endpoint of Iw0 and
the le� endpoint of Iw1. So by Proposition 9 we see x = h(w01) = h(w10). Furthermore, it can
be deduced by an inductive application of (6) that for any j > 0, we have w′ ∈ Ak+j and x ∈ Iw′
if and only if w′ ∈ {w01j, w10j}. �en if β ∈ AN r {w01, w10}, there is some initial word w′
of β of length k + j such that w′ 6∈ {w01j, w10j} and we have h(β) ∈ Iw′ but x is not in this
interval, so h(β) 6= x. �is shows that h is two-to-one at x. Furthermore, there are only �nitely
many k > 0 such that sk = 1

2
because of (5), so this case only appears �nitely o�en. �

Recall from the introduction that N = {w1 : w ∈ A∗} ⊂ AN. �is is an important set for us,
and we prove the following.

Proposition 11.
(1) �e restriction of h to AN rN is injective.
(2) �e Cantor set C is the closure of h(AN rN ).
(3) �e set h(AN rN ) is the set of all x ∈ C such that (x, x+ ε) ∩ C 6= ∅ for all ε > 0.

Proof. Statement (1) is a consequence of Lemma 10 since h is one-to-one at all points except that
it is possible that x = h(w01) = h(w10). But we have w01 ∈ N .

Since C = h(AN) and C is closed by construction, to prove statement (2) we just need to �nd
for each α ∈ N a sequence αk ∈ AN r N such that h(αk) converges to h(α). For each k, let
wk = α0 . . . αk−1 ∈ Ak and de�ne αk = wk0. �en both h(α) and h(αk) lie in Iwk for each k and
the length of Iwk tends to zero so we see that h(α) = limh(αk) as desired.

Finally consider statement (3). First suppose that α ∈ AN rN . �en there exists a sequence
kj →∞ such that αkj = 0. For j ≥ 0, de�ne βj ∈ A so that the sequence agrees with α except
that βjkj = 1. Observe that by de�nition of h, we have h(βj) > h(α) and limh(βj) = h(α). �is
proves that

(
h(α), h(α) + ε

)
intersects C = h(AN) for all ε > 0.

On the other hand, suppose that x ∈ Crh(ANrN ). We need to show that there exists an ε > 0
such that (x, x+ε)∩C = ∅. If x = h(1) then this is clearly true since h(1) is the right endpoint of Iε
by Lemma 13 and C ⊂ Iε. Otherwise there exists aw ∈ A∗ such that x = h(w01). Furthermore, h
is one-to-one at x since otherwise we would have x = h(w10) as well which would contradict that
x 6∈ h(AN rN ). Se�ing k = |w| we see therefore that sk < 1

2
by Lemma 10. Since x = h(w01)

we see that x is the right endpoint of Iw0. Let [a, b] = Iw. �en we see in the notation of (6) that
x = a+ sk(b− a) and the removed interval Iw r (Iw0 ∪ Iw1) is

(
x, x+ (1− 2sk)(b− a)

)
which

gives an interval of positive length not intersecting C as required. �

4. The conjugacy

Fix a positive integer N and extend it to a sequence inductively by de�ning

N0 = N and Nk+1 = Nk(1 +Nk) for all k ≥ 0.

By an inductive application of Lemma 5 we see:

Corollary 12. For each k, the �rst return map of TN to XNk
is TNk

.
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Figure 3. �e construction of the Cantor set C when N = 1.

Set [a0, b0] = [0, 1
N

] and de�ne the sequence s = {sk} by sk = 1
1+Nk

. With this data, we
de�ne the Cantor set C = C(s, [a0, b0]) and the map h : AN → R as in § 3. See Figure 3 for a
sketch of C when N = 1. Observe that this choice of [a0, b0] and of s and application of (7) yields
`0 = 1

N
− 0 = 1

N0
and inductively we have

`k = `k−1 · sk−1 =
1

Nk−1
· 1

1 +Nk−1
=

1

Nk

for every k.

We use this information to de�ne the intervals Iw as before.
Recall the de�nition of the 2–adic odometer f : AN → AN in (2). We want to extend this

addition-by-one map to A∗ = ∪k≥0Ak. At words of the form 1k for some k ≥ 0, we leave the
map f unde�ned. We de�ne f : Ak r {1k} → Ak such that

(9)
(
f(w)

)
i

=


0 if i < j

1 if i = j

wi if i > j

where j = min {i : wi = 0}.

For this section, if I is a closed interval, we write I? to denote I with its right endpoint removed.
�e key to the results announced in the introduction is the following:

Lemma 13. For anyw ∈ Akr{1k}, the restriction of TN to I?w is a translation carrying I?w to I?f(w).
If w = 1j0 for some j ≥ 0 then this is a translation by − 1

N0
+ 1

Nj
+ 1

1+Nj
.

Proof. First we prove this for the special case when w = 1j0. By Proposition 9, the endpoints
of Iw are

h
(
w0
)

=

j−1∑
i=0

(
1

Ni

− 1

Ni+1

)
=

1

N0

− 1

Nj

,

h
(
w1
)

=

j−1∑
i=0

(
1

Ni

− 1

Ni+1

)
+

∞∑
i=j+1

(
1

Ni

− 1

Ni+1

)
=

1

N0

− 1

Nj

+
1

Nj+1

=
1

N0

− 1

1 +Nj

.

�us if x ∈ I?w then we see by de�nition of TN that

(10) TN(x) = x− 1

N0

+
1

Nj

+
1

1 +Nj

.

�e word f(w) is a string of j zeros followed by a one. �us, we see that the endpoints of If(w) are

h
(
f(w)0

)
=

1

Nj

− 1

Nj+1

=
1

1 +Nj

,

h
(
f(w)1

)
=
∞∑
i=j

(
1

Ni

− 1

Ni+1

)
=

1

Nj

.



10 RENORMALIZING AN INFINITE RATIONAL IET

Observe that these new endpoints di�er from the endpoints of Iw found earlier by a translation by
− 1
N0

+ 1
Nj

+ 1
1+Nj

which is exactly how TN acts. �is proves the second statement of the lemma.
Now suppose that w′ ∈ A∗ is a word which has at least one zero. As in (9), we can then de�ne

j = min {i : w′i = 0}. Hence w = w′0 . . . w
′
j is a word consisting of j ones followed by a zero, so

the previous paragraph implies that TN restricted to I?w is a translation by− 1
N0

+ 1
Nj

+ 1
1+Nj

. Recall
that I?w′ ⊂ I?w which implies that the restriction of TN to I?w′ also acts by the same translation.
�e intervals Iw′ and If(w′) have the same length and their le� endpoints di�er by

h
(
f(w′)0

)
− h

(
w′0
)

= h
(
f(w)0

)
− h

(
w0
)

= − 1

N0

+
1

Nj

+
1

1 +Nj

so that indeed TN(I?w′) = I?f(w′). �

�eorem 14. If x ∈ XN r h(AN rN ), then x is periodic under TN .

Proof. Let x ∈ XN r h(AN r N ). �en either x is not contained in the closed set C or we can
apply statement (3) of Proposition 11. In both cases, there is an ε such that (x, x + ε) ∩ C = ∅.
Since XN = I?ε , the interval (x, x+ ε) must lie in one of the gaps of the Cantor set, i.e., there is a
w ∈ Ak such that

(x, x+ ε) ⊂ Iw r (Iw0 ∪ Iw1).
It follows that x ∈ I?wr(I?w0∪I?w1). �en I?

0k
has the same length as I?w and so we have I?w = τ+I?

0k

for some τ ∈ R acting by translation. Set x0 = x− τ ∈ I?
0k

. Observe that there exists an m ≥ 0
such that fm(0k) = w, where f is as in (9). By Lemma 13, we know that TmN restricted to I?

0k
is a

translation carrying this interval I?
0k

to I?w. �us TmN (x0) = x. It also follows that TmN (I?
0k+1) = I?w0

and TmN (I?
0k1

) = I?w1 and in particular x0 6∈ I?0k+1 ∪ I?0k1.
Now observe that I?

0k
= XNk

= [0, 1/Nk) by Proposition 9, and by Corollary 12 the �rst return
map of TN to this interval is TNk

. Since I?
0k+1 = [0, 1/Nk+1) and I?

0k1
= [1/Nk − 1/Nk+1, 1/Nk),

Corollary 6 tells us that x0 is periodic under TNk
and therefore also periodic under TN . Since

x = TmN (x0), x is also periodic. �

�eorem 15. For any α ∈ AN r N , we have TN ◦ h(α) = h ◦ f(α). In particular, no point in
h(AN rN ) has a periodic orbit.

Proof. Fix α ∈ ANrN . De�ne j = min ({k : αk = 0}∪{+∞}) as in (2). Since α 6∈ N we have
j < +∞. �e initial word of α then has the form 1j0 and the initial word of f(α) is 0j1. �e rest
of the sequence f(α) agrees with α. �erefore we have

(11) h ◦ f(α)− h(α) =

(
1

Nj

− 1

Nj+1

)
−

j−1∑
i=0

(
1

Ni

− 1

Ni+1

)
= − 1

N0

+
1

Nj

+
1

1 +Nj

.

Let x = h(α). �en x ∈ I?1j0 and TN acts as a translation by − 1
N0

+ 1
Nj

+ 1
1+Nj

on I?1j0; see
Lemma 13. �us by equation (11) we see that h◦f(α) = TN ◦h(α). Since f has no periodic orbits
and h restricted toANrN is injective, we see that TN has no periodic orbits in h(ANrN ). �

We �nish by proving the �rst two theorems of our article.
Proof of �eorems 1 and 2. Recall that ΛN denoted the set of points in XN with aperiodic orbits
under TN . Together �eorem 14 and �eorem 15 guarantee that ΛN = h(AN rN ). �eorem 15
then directly implies �eorem 2. Statement (2) in Proposition 11 shows that the closure Λ̄N is the
Cantor set C. Further by statement (3) of Proposition 11 we see that ΛN has the form claimed in
�eorem 1. �e fact that ΛN has Hausdor� dimension zero follows from Proposition 8. �
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