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Abstract We address the question of determining which mapping class groups of infinite-type surfaces
admit nonelementary continuous actions on hyperbolic spaces.

More precisely, let Σ be a connected, orientable surface of infinite type with tame endspace whose
mapping class group is generated by a coarsely bounded subset. We prove that Map(Σ) admits a
continuous nonelementary action on a hyperbolic space if and only if Σ contains a finite-type subsurface
which intersects all its homeomorphic translates.

When Σ contains such a nondisplaceable subsurface K of finite type, the hyperbolic space we build is
constructed from the curve graphs of K and its homeomorphic translates via a construction of Bestvina,
Bromberg and Fujiwara. Our construction has several applications: first, the second bounded cohomology
of Map(Σ) contains an embedded �1; second, using work of Dahmani, Guirardel and Osin, we deduce
that Map(Σ) contains nontrivial normal free subgroups (while it does not if Σ has no nondisplaceable
subsurface of finite type), has uncountably many quotients and is SQ-universal.
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1. Introduction

Let Σ be a connected orientable surface, possibly of infinite type. We tackle the following
two questions: Under what conditions on Σ does the mapping class group Map(Σ) admit

a continuous nonelementary isometric action on a hyperbolic space? When it does, what

algebraic properties of Map(Σ) can one deduce from such an action?

1.1. Hyperbolic actions and nondisplaceable subsurfaces

Concerning the first of these questions, the case where Σ is a surface of finite type (i.e.,

with finitely generated fundamental group) has been famously answered by Masur and
Minsky, who proved in [32] that the curve graph of any connected orientable surface of

finite type is hyperbolic and admits a nonelementary action of Map(Σ), except in a few

low-complexity cases. Their theorem is a milestone in the theory of mapping class groups
of finite-type surfaces, thus motivating the analogous question for infinite-type surfaces.

There have been a lot of recent developments on this question. In 2009, Calegari defined

the ray graph of a plane minus a Cantor set [13], and conjectured that it is hyperbolic

and unbounded and that there are elements of Map(Σ) acting loxodromically on it. These
conjectures were answered positively by Bavard [6], which was the start of a lot of activity

on big mapping class groups. Further developments, providing actions of Map(Σ) on

hyperbolic graphs under various topological conditions on the surface, include [3, 20, 21],
for instance. The study of the geometry of such graphs is still in constant expansion (see,

e.g., [4, 7, 26]).

From a different viewpoint, Mann and the third author of this paper suggested in [31]
that this question should be part of a more general framework, phrased in the language of

Rosendal’s approach to geometric group theory of (nonfinitely generated, noncompactly

generated) Polish groups [38]. In particular, under a soft topological condition on the

endspace of Σ called tameness,1 they classified which mapping class groups admit
unbounded continuous isometric actions at all on metric spaces; they also classified

which mapping class groups are CB-generated – that is, have a generating set that has

bounded orbits in every continuous isometric action of Map(Σ). In addition, they coined
the notion of a nondisplaceable connected subsurface of Σ – defined as a subsurface K

such that φ(K)∩K �= ∅ for every φ ∈ Homeo(Σ) – and established that the existence

of nondisplaceable subsurfaces of finite type yields the existence of unbounded length
functions on Map(Σ). The same notion was also independently introduced by Clay,

Mangahas and Margalit [16] in their work on normal right-angled Artin subgroups of

mapping class groups of finite-type surfaces, where these were called orbit-overlapping

subsurfaces. The concept of nondisplaceable subsurfaces is key to our work, and we prove
the following classification theorem, in which we say that an isometric group action on a

hyperbolic space is nonelementary if it contains two independent loxodromic elements:

Theorem 1. Let Σ be a connected orientable surface of infinite type.

1This is satisfied, for instance, if every end ξ of Σ has a neighbourhood Uξ in the endspace which
is stable in the sense that every subneighbourhood contains a copy of Uξ. See Section 5.1 for
a complete definition.
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1. If Σ contains a nondisplaceable subsurface K of finite type, then Map(Σ) acts

continuously and nonelementarily by isometries on a hyperbolic space X. In addition,

the action can be chosen such that every element of Map(Σ) which preserves the
isotopy class of K and restricts to a pseudo-Anosov mapping class of K has the

WWPD property with respect to the Map(Σ)-action on X.

2. Assume in addition that Map(Σ) is CB-generated and that the endspace of Σ is tame.
If Σ does not contain any nondisplaceable subsurface of finite type, then Map(Σ) does

not admit any continuous nonelementary isometric action on a hyperbolic space.

The WWPD property that arises in the first statement of the theorem, introduced by

Bestvina, Bromberg and Fujiwara in [11], describes the dynamics of the action of an
element of Map(Σ) on X. A possible definition is as follows. Let G be a group acting

by isometries on a hyperbolic space X, and let g ∈ G be a loxodromic element for the

action. Denote by (g−∞,g+∞) the pair of fixed points of g in the Gromov boundary of

X. We say that g has the WWPD property if the G-orbit of (g−∞,g+∞) is discrete in
∂∞X×∂∞X\Δ, where Δ denotes the diagonal. In [12], Bestvina and Fujiwara introduced

the WPD property and proved that it holds for the action of a finite-type mapping class

group on its curve graph – but one cannot hope to have WPD elements in the infinite-type
case in view of work of Bavard and Genevois [8]. The WWPD property is a weakening of

Bestvina and Fujiwara’s notion. Having WWPD elements yields applications to bounded

cohomology, as explained in Corollary 2 and the paragraph after it.
The space X constructed in the proof of the first part of the theorem is a quasi-tree

of metric spaces in the sense of Bestvina, Bromberg and Fujiwara [10], where the pieces

are the curve graphs of all subsurfaces of Σ in the Map(Σ)-orbit of K. In the case of

finite-type subsurfaces, the same construction appears in recent work of Clay, Mangahas
and Margalit [16]. We also mention that after the first version of this paper was released,

Domat used a similar construction in the infinite-type setting [19]. The fact that K is

nondisplaceable is exactly the assumption one needs to define projection maps (as in
the work of Masur and Minsky [33]) between these various curve graphs. The axioms

needed to apply the Bestvina–Bromberg–Fujiwara machinery (specifically the Behrstock

inequality and the axiom on finiteness of large projections) are checked as in the case
of finite-type surfaces. The important point that allows us to extend the construction to

infinite-type surfaces is that the constants that arise in the projection axioms are uniform

over all finite-type surfaces.

Let us now illustrate our proof of the second part of Theorem 1 on a concrete example;
namely, our surface Σ is the avenue of chimneys illustrated in Figure 1. Assume that

Map(Σ) acts continuously on a hyperbolic space X. The surface Σ has two special

ends, namely the leftmost and rightmost ends in the picture. The existence of these
special ends is ensured in general by the assumptions made on Σ together with work of

Mann and the third author [31]. Let Map0(Σ) ⊆ Map(Σ) be the finite-index subgroup

made of mapping classes that preserve each of these two special ends, as opposed to
permuting them. Then there is a shift homomorphism Map0(Σ) → Z measuring the

average displacement of chimneys to the right – in general, one needs to consider finitely

many shift homomorphisms. The kernel of this homomorphism to Z contains all mapping
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Figure 1. An avenue of chimneys.

classes which are horizontally bounded – that is, supported on a subsurface that avoids
a neighbourhood of each of the two special ends (like R in the picture). In fact, all

mapping classes in the kernel of the shift homomorphism are limits of mapping classes

which are horizontally bounded. But every horizontally bounded mapping class can be
displaced toward infinity, and by [31] this implies that it acts elliptically on X – in fact

it acts with bounded orbits in any continuous isometric action of Map(Σ). Now we have

a homomorphism to Z whose kernel is contained in the closure of a normal subgroup, all

of whose elements act elliptically on X; it is then an exercise in actions on hyperbolic
spaces to conclude that the Map(Σ)-action on X is elementary.

1.2. Applications to largeness properties

We now discuss applications of our construction to algebraic properties of Map(Σ) in

the presence of nondisplaceable subsurfaces of finite type. In fact, we derive largeness

properties for subgroups of Map(Σ) that contain sufficiently many elements acting as a
pseudo-Anosov homeomorphism on a nondisplaceable subsurface of finite type.

Let Σ be a connected, orientable surface, let K ⊆ Σ be a subsurface of finite type and

let G⊆Map(Σ) be a subgroup. We denote by StabG(K) the subgroup of G made of all
mapping classes that preserve the homotopy class of K. Denoting by K̂ a surface obtained

from K by gluing a once-punctured disk on every boundary component of K, every

element of StabG(K) induces a mapping class of K̂. We say that a subgroup G⊆Map(Σ)
is K-nonelementary if StabG(K) contains two elements that induce independent pseudo-

Anosov mapping classes of K̂. Our first application is to bounded cohomology.

Corollary 2. Let Σ be a connected orientable surface, and let K ⊆Σ be a nondisplaceable
subsurface. Let G⊆Map(Σ) be a K-nonelementary subgroup.

Then the second bounded cohomology H2
b (G,R) contains an embedded copy of �1.

This follows from a theorem of Handel and Mosher [25, Theorem 2.10], as Theorem 1
ensures that G has a nonelementary action on a hyperbolic graph with at least one

WWPD element. Corollary 2 extends a theorem of Bestvina and Fujiwara for finite-type

surfaces [12], as well as earlier results of Bavard [6, Théorème 4.8] (answering a conjecture
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of Calegari [13]), Bavard and Walker [9, Theorem 9.1.1] and Rasmussen [36, Corollary

1.2] in the infinite-type setting.

Our next application provides further largeness properties of Map(Σ). We state it here
for the group Map(Σ) itself, but in fact the same statement holds true for many interesting

subgroups of Map(Σ), and we refer to Theorem 4.5 for the full statement. We mention

that the first conclusion of Theorem 3 partially answers a question raised by McLeay
in [34], by showing that the existence of a nondisplaceable subsurface of finite type in

Σ implies the existence of nongeometric normal subgroups of Map(Σ) – that is, normal

subgroups whose automorphism group is not equal to the extended mapping class group
of Σ.

Theorem 3. Let Σ be a connected orientable surface of infinite type which contains a
nondisplaceable subsurface of finite type. Then

1. Map(Σ) contains a normal nonabelian free subgroup,

2. Map(Σ) contains uncountably many normal subgroups and

3. every countable group embeds in a quotient of Map(Σ).

These statements were proved by Dahmani, Guirardel and Osin for finite-type sur-

faces [18]; their techniques were recently developed by Clay, Mangahas and Margalit [16]

to find normal nonfree right-angled Artin subgroups in the mapping class group. It is
interesting that in the infinite-type case, we still manage to get similar conclusions, despite

Map(Σ) not being acylindrically hyperbolic [8]. We mention that the uncountably many

normal subgroups we produce are all countable, made of mapping classes supported on
finite-type subsurfaces.

Our proof of Theorem 3 has similarities with the aforementioned work of Clay,

Mangahas and Margalit – in fact the first statement can probably be deduced from

[16, Theorem 1.6]. It relies on the geometric small cancellation tools that were developed
by Dahmani, Guirardel and Osin in [18], applied twice: once within the curve graph of

a finite-type nondisplaceable subsurface and once within the quasi-tree of metric spaces

constructed in the proof of Theorem 1.
It is worth pointing out that allowing for quotients in the last conclusion of Theorem 3

is crucial, and it is not true in general that every countable group embeds in Map(Σ).

In the case where Σ is the plane minor a Cantor set, Calegari and Chen proved in
[14, Theorem 5.1] that a countable group Γ embeds in Map(Σ) if and only if Γ is circularly

orderable. Also, as was pointed to us by the referee, the combination of recent works

of Afton, Calegari, Chen and Lyman [1, Theorem 2] and Aougab, Patel and Vlamis

[2, Propositions 9.1 and 9.2] yields many examples of mapping class groups of connected
orientable surfaces with nondisplaceable subsurfaces of finite type in which certain finite

groups do not embed.

We also observe that the existence of nontrivial normal free subgroups, provided by
the first conclusion of Theorem 3, is in fact a characterisation of the existence of a

nondisplaceable subsurface of finite type.
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Theorem 4. Let Σ be a connected orientable surface of infinite type. Then Map(Σ)

contains a nontrivial normal free subgroup if and only if Σ contains a nondisplaceable

subsurface of finite type.

The ‘only if’ statement is proved as follows. Assume that Σ contains no nondisplaceable

subsurface of finite type. Given a normal subgroup N �Map(Σ), we show that we can

always find a nontrivial commutator of the form k = g
(
hg−1h−1

)
=

(
ghg−1

)
h−1 with

g ∈N and h finitely supported. Such an element k belongs to N and is finitely supported,

being the product of the finitely supported elements ghg−1 and h. As we are assuming

that Σ has no nondisplaceable subsurface of finite type, the support of k is displaceable
off itself by a mapping class η, and k and ηkη−1 generate a noncyclic abelian subgroup

of N – in particular, N is not free. Details are given in Section 4.3.

1.3. Organisation of the paper

Section 2 collects background material regarding surfaces of infinite type and group

actions on hyperbolic spaces. In Section 3, we study the case of surfaces that have a
nondisplaceable subsurface of finite type and establish the first half of Theorem 1; we

also give our application to bounded cohomology of subgroups of Map(Σ). The proofs

of Theorems 3 and 4, which study normal subgroups of Map(Σ), are given in Section 4.

Finally, Section 5 is concerned with surfaces having no nondisplaceable subsurface of finite
type: we prove the second half of Theorem 1.

2. General background

2.1. Surfaces

A surface is a (boundaryless) 2-dimensional topological manifold – that is, a second-

countable Hausdorff space Σ such that every point in Σ has an open neighbourhood

homeomorphic to an open subset of R2. The mapping class group of a connected,
orientable surface Σ is defined as the group Map(Σ) of all isotopy classes of orientation-

preserving homeomorphisms of Σ. The group Map(Σ) is equipped with the quotient

topology of the compact-open topology on the group Homeo+(Σ) of all orientation-
preserving homeomorphisms of Σ.

Given a connected, orientable surface Σ, we let g(Σ) be the genus of Σ (possibly infinite),

E(Σ) be the end space of Σ and Eg(Σ) ⊆ E(Σ) be the subspace made of ends that are

accumulated by genus (nonplanar in the terminology of [37]). By a theorem of Richards
[37], connected, orientable surfaces Σ are classified up to homeomorphism by the data of

their genus g(Σ), their endspace E(Σ) and the subspace inclusion Eg(Σ)⊆ E(Σ).

A surface Σ is of finite type if it has finitely many connected components and the
fundamental group of every such connected component is finitely generated. When Σ is

connected, we defined the complexity of Σ as ξ(Σ) = 3g(Σ)+ |E(Σ)| − 3. Thus Σ is of

finite type if and only if ξ(Σ)<+∞.
A bordered surface is a topological space obtained from a surface Σ by removing finitely

many pairwise disjoint open disks. It is of finite type if the surface Σ can be chosen to be

of finite type.
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A subsurface of a surface Σ is a closed subset of Σ whose boundary consists of a finite
number of pairwise nonintersecting simple closed curves, such that none of these boundary

curves bounds a disk or a once-punctured disk. Every subsurface of Σ is naturally a

bordered surface; we say that a subsurface of Σ is of finite type if the corresponding
bordered surface is as well.

Given a subsurface R⊆Σ, the endspace of R naturally embeds into the endspace of Σ;

we let Ends(R)⊆ E(Σ) be the image of this embedding.

As a matter of fact, every surface Σ can be exhausted by an increasing sequence of
subsurfaces of finite type, which in addition can be chosen to be connected. In particular,

every compact subset of Σ is contained in a subsurface of Σ of finite type.

Every subsurface K ⊆ Σ of finite type determines a partition ΠK of the ends of Σ,
given by the endspaces of the finitely many complementary components of K. Given two

subsets X,Y ⊆ E(Σ), we say that K separates X and Y if X and Y belong to distinct

subsets of the partition ΠK .

Lemma 2.1. Let Σ be a connected orientable surface, and let E be the endspace of Σ.

Let X1, . . . ,Xk be finitely many pairwise disjoint closed subsets of E.

Then there exists a k-holed sphere K ⊆ Σ that pairwise separates X1, . . . ,Xk.

Proof. We can find a clopen partition E = Y1	·· ·	Yk such that for every i ∈ {1, . . . ,k},
we haveXi ⊆ Yi. It is therefore enough to show that there exists a k-holed sphere in Σ that

pairwise separates Y1, . . . ,Yk. For every i ∈ {1, . . . ,k}, it follows from [37, Theorem 2] that
there exists a bordered surface Σi with a single boundary component whose endspace

is homeomorphic to Yi, so that the subspace made of ends accumulated by genus is

homeomorphic to Yi ∩Eg. In addition, we can ensure that the sum of the genera of

the surfaces Σi is equal to the genus of Σ. Gluing a k-holed sphere along the boundary
components of the surfaces Σi thus yields a surface which is homeomorphic to Σ by the

classification of surfaces [37] (by a homeomorphism sending Ends(Σi) to Yi), and the

lemma follows.

2.2. Nondisplaceable subsurfaces

A key concept in the work of Mann and the third author [31], which is also central

in the present work, is that of a nondisplaceable subsurface of Σ – most specifically,

the important point is whether Σ contains nondisplaceable subsurfaces of finite type.
As in [31, Definition 1.8], we say that a connected subsurface K ⊆ Σ is nondisplaceable

if for every φ ∈ Homeo(Σ), we have φ(K)∩K �= ∅. This definition can be extended to

disconnected subsurfaces of Σ in the following way (see [31, Definition 2.7]): a subsurface
K ⊆ Σ is nondisplaceable if for every φ ∈Homeo(Σ) and every connected component K1

of K, there exists a connected component K2 of K such that

φ(K1)∩K2 �= ∅.

Notice that if K and K ′, K ⊆K ′, are two subsurfaces with K nondisplaceable and K ′

connected, then K ′ is nondisplaceable. In particular, whenever a connected orientable

surface Σ contains a nondisplaceable subsurface of finite type, it actually contains one
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which is connected (since every connected surface has an exhaustion by connected

subsurfaces of finite type).

2.3. Hyperbolic actions and the WWPD property

We assume the reader to be familiar with basics on hyperbolic spaces in the sense of

Gromov [23] and isometric group actions on them.
An isometric action of a group G on a hyperbolic space X is nonelementary if G has

unbounded orbits in X and does not have any finite orbit in the Gromov boundary

∂∞X – the terminology we use here departs from Gromov’s [23], where this was called
an action of general type, but seems to prevail in the current literature.

In the present paper, we will consider certain dynamic properties of isometric group

actions on hyperbolic metric spaces. In particular, we will make use of the WWPD

property, introduced by Bestvina, Bromberg and Fujiwara in [11] as a weakening of the
WPD property introduced by Bestvina and Fujiwara in [12]. A possible definition is the

following (see [25, Proposition 2.3] for its equivalence with the original definition): given

an isometric action of a group G on a hyperbolic space X, an element g ∈G is WWPD
with respect to the G-action on X if g is loxodromic and the G-orbit of (g−∞,g+∞) is a

discrete subspace of (∂∞X×∂∞X) \Δ, where Δ denotes the diagonal in ∂∞X×∂∞X.

It is WPD if, in addition, the G-stabiliser of the pair (g−∞,g+∞) is virtually cyclic (see
[25, Corollary 2.4]).

3. Nondisplaceable subsurfaces and hyperbolic actions

Let Σ be an orientable surface. In this section, we prove that whenever Σ contains
a nondisplaceable subsurface K of finite type, then Map(Σ) admits a nonelementary

continuous action on a hyperbolic space. In addition this action can be constructed so

that elements of Map(Σ) that restrict to pseudo-Anosov mapping classes on K have
the WWPD property with respect to the action. As a consequence, using a theorem of

Handel and Mosher [25], we deduce in Section 3.4 that the second bounded cohomology

H2
b (Map(Σ),R) is infinite-dimensional, and in fact contains an embedded copy of �1.

3.1. Curves, homotopies and mapping class groups

3.1.1. Curve graphs. A simple closed curve on a surface Σ is essential if it does not

bound a disk or a once-punctured disk. Let Σ be a surface, and let K ⊆Σ be a subsurface
of finite type; when Σ is a bordered surface, we also require that not be homotopic into

the boundary of Σ. We let CΣ(K) be the graph whose vertices are the isotopy classes of

simple closed curves on Σ that have a representative contained in K which is essential in
K (in particular, not homotopic to one of the boundary curves of K), where two distinct

isotopy classes are joined by an edge if they have disjoint representatives in Σ. The graph

CΣ(K) is thus an induced subgraph of the curve graph C(Σ) of Σ – that is, the vertex
set of CΣ(K) is a subset of C(Σ), and two vertices are joined by an edge in CΣ(K) if and

only if they are joined by an edge in C(Σ). Viewing K as a bordered surface, we can also

consider its curve graph C(K); the following two lemmas show that the inclusion K ⊆ Σ
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induces an inclusion of C(K) into C(Σ) whose image is precisely CΣ(K). Also, CΣ(K)

only depends on the isotopy class of K: if K and K ′ are isotopic, then there is a natural

identification between CΣ(K) and CΣ(K ′).

Lemma 3.1. Let Σ be a surface, and let K ⊆ Σ be a subsurface of finite type. Let

c and c′ be two essential simple closed curves on Σ which are homotopic in Σ and

both contained and essential in K. Then c and c′ are homotopic within K – that is,
there exists a homotopy H : S1× [0,1]→ Σ with H

(
S1×{0}

)
= c, H

(
S1×{1}

)
= c′ and

H
(
S1× [0,1]

)
⊆K.

Proof. Let H : S1× [0,1]→Σ be a homotopy from c to c′. Then H
(
S1× [0,1]

)
is compact,

and thus contained within a finite-type subsurface K ′ ⊆ Σ (and we can assume that
K ⊆ K ′). The conclusion therefore follows from the particular case where the ambient

surface is of finite type, established in [22, Lemma 3.16].

Similarly, the following lemma can be proved by reducing to the case of finite-type
surfaces:

Lemma 3.2. Let Σ be a surface and K ⊆ Σ be a subsurface of finite type. Let c and c′

be two essential simple closed curves on Σ which are both contained in K. If the isotopy
classes of c and c′ have disjoint representatives, then they have disjoint representatives

contained in K.

3.1.2. Restriction homomorphisms. Let Σ be a surface, and let K ⊆ Σ be an

essential subsurface of finite type. Viewing K as a bordered surface, we let K̂ be a surface

obtained from K by gluing a once-punctured disk on each boundary component of K. By
[22, Proposition 3.9], the inclusionK ↪→ K̂ induces a homomorphism Map(K)→Map(K̂),

whose kernel is free abelian, generated by twists about the boundary curves of K.

Let now StabMap(Σ)(K) be the subgroup of Map(Σ) made of all mapping classes
that preserve the isotopy class of K. The following lemma yields a homomorphism

StabMap(Σ)(K)→Map(K̂):

Lemma 3.3. Let Σ be a surface, and let K ⊆ Σ be a subsurface of finite type. Then
every Φ ∈ StabMap(Σ)(K) has a representative φ ∈ Homeo(Σ) such that φ(K) = K, and

in addition any two such representatives induce the same element of Map(Σ̂).

Proof. Let φ0 be a representative of Φ in Homeo(Σ). Every isotopyK× [0,1]→Σ between
K and φ0(K) has image contained in a subsurface of Σ of finite type, and therefore can be

extended to an isotopy of Σ. The first part of the lemma follows. The remainder follows

from the observation that any two such representatives have the same action on homotopy

classes of essential simple closed curves of K.

We also let FixMap(Σ)(K) be the subgroup of Map(Σ) made of all elements that have

a representative φ ∈ Homeo(Σ) such that φ(K) =K and φ|K = idK . We note that Dehn

twists about boundary curves of K belong to FixMap(Σ)(K).

Lemma 3.4. Let Σ be a surface, K ⊆Σ be a subsurface of finite type and K̂ be a surface

obtained from K by gluing a once-punctured disk on each boundary component of K.
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Then there exists a homomorphism StabMap(Σ)(K)→Map(K̂) whose kernel is equal to

FixMap(Σ)(K).

Proof. Every element in the kernel of this homomorphism has a representative φ ∈
Homeo(Σ) such that φ(K) =K, and being in the kernel implies that this representative

φ is a product of peripheral Dehn twists. One can thus isotope φ to get a representative

φ′ such that φ′
|K = id.

Lemma 3.5. Let Σ be a surface, and let K ⊆ Σ be a subsurface of finite type.

1. The setwise stabiliser of CΣ(K) in the Map(Σ)-action on C(Σ) is equal to

StabMap(Σ)(K).

2. The pointwise stabiliser of CΣ(K) in the Map(Σ)-action on C(Σ) is equal to
FixMap(Σ)(K).

Proof. An element of Map(Σ) is in the stabiliser of C(Σ) if and only if it has a

representative φ that preserves the set of boundary curves of K (and therefore such that

φ(K) =K). The second statement then follows from the case of finite-type surfaces.

3.2. Review on quasi-trees of metric spaces

We now review the celebrated construction of Bestvina, Bromberg and Fujiwara from [10],

which will be used in the next section.
An action of a group G on a collection Y of metric spaces is metric-preserving if for

every g ∈G and every Y ∈Y, there exists an isometry ιYg : Y → gY , so that for all g,h∈G

and every Y ∈ Y, one has ιYgh = ιhYg ◦ ιYh . A G-equivariant projection family is a pair
(Y,(πY (Z))Y �=Z∈Y) where

• Y is a collection of metric spaces equipped with a metric-preserving G-action,
• πY (Z) is a nonempty subset of Y for any two distinct Y ,Z ∈ Y and
• for every g ∈G and any two distinct Y ,Z ∈ Y, one has πgY (gZ) = ιYg (πY (Z)).

Definition 3.6. Let G be a group. A G-equivariant projection family (Y,(πY (Z))Y �=Z∈Y)

is a BBF family for G if, letting dY (X,Z) := diam(πY (X)∪πY (Z)) for every X,Y ,Z ∈Y

with Y �=X,Z, there exists θ > 0 such that the following conditions hold:

(P0) For all distinct X,Y ∈ Y, one has dY (X,X)≤ θ.
(P1) For all pairwise distinct X,Y ,Z ∈ Y, if dY (X,Z)> θ, then dX(Y ,Z)≤ θ.
(P2) For all X,Z ∈ Y, the set {Y �=X,Z | dY (X,Z)> θ} is finite.

Given a metric space X, a subset Q ⊆ X and r ≥ 0, we denote by Q+r the closed

r-neighbourhood of Q. Given two subsets Q1,Q2 ⊆X, we define the overlap of Q1 and

Q2 as

ΔX(Q1,Q2) := diam
(
Q+20δ

1 ∩Q+20δ
2

)
.

The following statement records the output of the Bestvina–Bromberg–Fujiwara con-

struction:
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Theorem 3.7 (Bestvina–Bromberg–Fujiwara [10]). Let G be a group. Assume that there

exists a BBF family (Y,(πY (Z))Y �=Z∈Y) for G and that there exists δ ≥ 0 such that all

spaces in Y are δ-hyperbolic. Then G acts by isometries on a hyperbolic metric space C(Y)
with the following properties:

1. Every Y ∈ Y embeds as a geodesically convex subspace of C(Y).
2. There exists D > 0 such that for all Y ,Z ∈ Y with Y �= Z, one has ΔC(Y)(Y ,Z)<D.

3. For every Y ∈ Y and every g ∈ StabG(Y ), if g is loxodromic WPD for the action of

StabG(Y )/FixG(Y ) on Y , then g is loxodromic WWPD for the G-action on C(Y).

Proof. Let C(Y) be the quasi-tree of metric spaces defined in [10, Definition 4.1]. As all
spaces in Y are δ-hyperbolic for the same δ≥ 0, the space C(Y) is hyperbolic [10, Theorem
4.17]. Every space in Y is geodesically convex in C(Y) by [10, Lemma 4.2]. The existence

of the constant D follows from the fact that projections have uniformly bounded diameter
in view of axiom (P0) together with [10, Corollary 4.10]. The conclusion about WWPD

isometries is given in [10, Proposition 4.20].

3.3. Quasi-trees of curve graphs for big mapping class groups

Let Σ be a connected orientable surface. Assume that Σ contains a connected nondis-

placeable subsurface K of finite type, and denote by [K] the isotopy class of K. Then

Map(Σ) acts in a metric-preserving way on

YK := {CΣ ([K ′])|[K ′] ∈Map(Σ) · [K]} .

As K is nondisplaceable and of finite type, given any two distinct subsurfaces K1,K2 ∈
Homeo(Σ) ·K, at least one of the boundary components of K2 intersects the subsurface

K1 in an essential curve or arc. This observation yields, for every K1 ∈ Map(Σ) ·K, a

projection

πCΣ(K1)(CΣ(K2))⊆ CΣ(K1)

equal to the set of all isotopy classes of essential simple closed curves on K1 that are

disjoint from some boundary curve of K2 that intersects K1 (see [33]). The family YK

and these projections form a Map(Σ)-equivariant projection family.

Proposition 3.8. Let Σ be a connected orientable surface which contains a connected

nondisplaceable subsurface K of finite type.
Then the projection family (YK,(πY (Z))Y �=Z∈YK

) is a BBF family for Map(Σ).

Proof. The argument is the same as in the proof of [16, Proposition 3.2]. Given Y ∈ Y

and X,Z ∈ Y \ {Y }, we let dY (X,Z) := diamY (πY (X)∪πY (Z)). We will now check the

various projection axioms from Definition 3.6.
Condition (P0) is satisfied because the projections have uniformly bounded diameter.

We now check condition (P1). Let X,Y ,Z ∈ Y be pairwise distinct – these are curve

complexes associated to finite-type subsurfaces KX,KY ,KZ of Σ. As KX ∪KY ∪KZ is
compact, it is contained in some subsurface K̃ ⊆ Σ of finite type. By working within the

surface K̃, condition (P1) follows from [10, Lemma 5.2] – notice indeed that the threshold

constant θ given in that lemma is independent from the topology of K̃.
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We finally check condition (P2). The proof comes from [10, Lemma 5.3]. It is enough to

prove that given any two essential simple closed curves x,y on Σ, there are only finitely

many isotopy classes of subsurfaces K ′ in the Map(Σ)-orbit of K such that x and y both
intersect K ′, and whenever x′,y′ are simple closed curves that are contained and essential

in K ′ and are disjoint from x and y, respectively, then dCΣ(K′)(x
′,y′)> 10. Let Kxy ⊆ Σ

be the smallest subsurface of Σ (of finite type) that contains x and y: this is well defined
up to isotopy. If K ′ cannot be isotoped to be contained in Kxy, then there is a curve or

an arc in K ′ \Kxy, so dC(K′)(x
′,y′) is bounded. We can thus restrict to only considering

subsurfaces K ′ with K ′ ⊆ Kxy, and in this case the result follows from the finite-type
case [10, Lemma 5.3] – again, it is important to observe that the constants given by that

lemma are independent from the topology of K ′.

Given a subsurface K of Σ, we say that an element f ∈Map(Σ) is K-pseudo-Anosov
if f preserves the isotopy class of K and, denoting by K̂ a surface obtained from K by

gluing a once-punctured disk on every boundary component of K, the mapping class f

induces a pseudo-Anosov mapping class of K̂.

Theorem 3.9. Let Σ be a connected orientable surface with ξ(Σ) > 0, and assume that

Σ contains a nondisplaceable connected subsurface K of finite type.

Then there exists an unbounded hyperbolic space X equipped with a continuous

nonelementary isometric action of Map(Σ) such that every element of Map(Σ) which
is K-pseudo-Anosov is a WWPD loxodromic element for the Map(Σ)-action on X.

Proof. Let K ⊆Σ be a nondisplaceable connected subsurface of Σ of finite type; without

loss of generality we can assume that K supports a pseudo-Anosov mapping class. All
graphs CΣ([K ′]) with [K ′] ∈ Map(Σ) · [K] are isomorphic to the curve graph of K; in

particular, in view of work of Masur and Minsky [32], they are all hyperbolic (with the

same hyperbolicity constant) and unbounded. Theorem 3.7 thus yields an unbounded

hyperbolic space X = C(YK) associated to the BBF family (YK,(πY (Z))Y �=Z∈YK
), on

which Map(Σ) acts by isometries.

The action of Map(Σ) on X is continuous because if f ∈Map(Σ) and (fn)n∈N ∈Map(Σ)N

converges to f , then for every isotopy class K of finite-type subsurfaces, the images fn(K)
are eventually constant, and for every isotopy class c of essential simple closed curves,

the images fn(c) are eventually constant.

We finally check that all K-pseudo-Anosov elements of Map(Σ) are loxodromic WWPD
elements for the Map(Σ)-action on X. By work of Bestvina and Fujiwara [12, Proposition

11], the action of every pseudo-Anosov element of Map(K̂) on the curve graph C(K̂) is

WPD. The conclusion therefore follows from Theorem 3.7, together with the identification

of StabMap(Σ)(CΣ(K))/FixMap(Σ)(CΣ(K)) with a subgroup of Map(K̂), provided by
Lemmas 3.4 and 3.5.

3.4. Application to bounded cohomology

Given a subgroup G ⊆Map(Σ) and a subsurface K ⊆ Σ of finite type, we let StabG(K)

be the subgroup of G made of all mapping classes that preserve the isotopy class of K –

in other words, StabG(K) = StabMap(Σ)(K)∩G.
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Definition 3.10. Let Σ be a connected orientable surface, and let K ⊆Σ be a finite-type
subsurface. Let K̂ be a surface obtained from K by gluing a once-punctured disk on every

boundary component of K.

A subgroup G ⊆ Map(Σ) is K-nonelementary if the image of StabG(K) in Map(K̂)
contains two independent pseudo-Anosov mapping classes of K̂.

A theorem of Handel and Mosher [25, Theorem 2.10] asserts that for every group G

acting isometrically on a hyperbolic space with two independent loxodromic elements

and at least one loxodromic WWPD element, the second bounded cohomology H2
b (G,R)

contains an embedded �1. As a consequence of Theorem 3.9, we thus obtain the following

corollary, which generalises earlier results of Bavard and Walker [9, Theorem 9.1.1] and

Rasmussen [36, Corollary 1.2]. Again, the case of finite-type surfaces is due to Bestvina

and Fujiwara [12].

Corollary 3.11. Let Σ be a connected orientable surface with ξ(Σ)> 0, and assume that

Σ contains a nondisplaceable subsurface of finite type. Then H2
b (Map(Σ),R) contains an

embedded �1.
More generally, let K be a nondisplaceable connected subsurface of finite type of Σ, and

let H ⊆ Map(Σ) be a subgroup which is K-nonelementary. Then H2
b (H,R) contains an

embedded �1.

4. Normal subgroups via geometric small cancellation

The goal of this section is to prove Theorem 3 from the introduction: if Σ contains
a nondisplaceable subsurface of finite type, then Map(Σ) contains uncountably many

normal subgroups, including nonabelian free normal subgroups, and is SQ-universal. This

is proved in Section 4.2, after we recall in Section 4.1 some background on geometric small

cancellation as developed by Dahmani, Guirardel and Osin [18]. Finally, in Section 4.3
we show that in fact Map(Σ) contains nontrivial normal free subgroups exactly when Σ

has nondisplaceable subsurfaces of finite type.

4.1. Review on geometric small cancellation

We now review work of Dahmani, Guirardel and Osin [18] that will be used in the next

section, following the exposition from [24].
Let X be a hyperbolic metric space equipped with an isometric action of a group G,

and let δ ≥ 0 be the hyperbolicity constant of X. Recall that given a subset Q⊆X and

r ≥ 0, we denote by Q+r the closed r-neighbourhood of Q, and that given two subsets
Q1,Q2 ⊆X, we define the overlap of Q1 and Q2 as

ΔX(Q1,Q2) := diam
(
Q+20δ

1 ∩Q+20δ
2

)
.

We say that Q is almost convex if given any two points x,y ∈ Q, there exist

x′,y′ ∈ Q, with d(x,x′) ≤ 8δ and d(y,y′) ≤ 8δ, such that there exist geodesic segments
[x,x′],[x′,y′],[y′,y] that are contained in Q.

A moving pair for the G-action on X is a pair (H,Q), where Q is an almost convex

subset of X and H is a normal subgroup of the setwise G-stabiliser of Q, which we denote
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Figure 2. The small cancellation condition.

by StabG(Q). The injectivity radius of the pair (H,Q) is defined as

injX(H,Q) = inf{dX(x,hx) | x ∈Q,h ∈H \{1}},

and its fellow travelling constant is

Δ∗
X(H,Q) = sup{ΔX(Q,tQ) | t ∈G\StabG(Q)}.

Given A > 0 and ε > 0, we say that a moving pair (H,Q) satisfies the (A,ε)-small

cancellation condition if injX(H,Q)≥Aδ and Δ∗
X(H,Q)≤ ε · injX(H,Q).

Example 4.1. A first example to keep in mind is the following: let G be a group acting

on a hyperbolic space X, and let g ∈G be a WPD loxodromic element. For simplicity, let
us assume that G is torsion-free and that g has an invariant axis Ag on which it acts by

translation – for example, G could be a surface group acting properly discontinuously on

the hyperbolic plane H2. Then for every n∈N, the pair (〈gn〉,Ag) is a moving pair. Using

the WPD property, we can always choose n ∈ N large enough to ensure that the overlap
between distinct G-translates of Ag is always small compared to the translation length of

gn (as in Figure 2). In other words, for every A> 0 and ε > 0, there exists n ∈ N so that

the moving pair (〈gn〉,Ag) satisfies the (A,ε)-small cancellation condition.

We define the translation length of an isometry g of X as ‖g‖X = infx∈X d(x,gx). The

following theorem is (in a slightly simplified version) the main theorem of geometric small
cancellation theory, due to Dahmani, Guirardel and Osin [18] (see also [24, Theorem 1.3]):

Theorem 4.2 (Dahmani–Guirardel–Osin [18]). Let G be a group, and let X be a

hyperbolic metric space equipped with an isometric G-action. For every C ≥ 0, there exist

A = A(C) > 0 and ε = ε(C) > 0 such that for every moving pair (H,Q) satisfying the
(A,ε)-small cancellation condition, the following hold:

1. There exists a subset Z ⊆G such that the normal subgroup 〈〈H〉〉 of G generated by
H satisfies 〈〈H〉〉= ∗t∈Z

(
tHt−1

)
.

2. The projection G → G/〈〈H〉〉 induces an injective homomorphism StabG(Q)/H →
G/〈〈H〉〉.
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3. All nontrivial elements of 〈〈H〉〉 act loxodromically on X with translation length at

least C.

Following [18], given a group G and an element g ∈G, we define the elementary subgroup
EG(g) as

EG(g) =
{
h ∈G | ∃n,m ∈ Z\{0},gm = hgnh−1

}
.

We will need the following proposition, which provides a situation where we can apply
the geometric small cancellation theorem (see [18, Section 6.2] or [24, Proposition 2.15]):

Proposition 4.3. Let G be a group, and let X be a hyperbolic metric space equipped

with a nonelementary isometric G-action. Let H ⊆ G be a subgroup. Assume that H

is not cyclic, and that there exists g ∈ H which acts loxodromically on X and has the
WPD property with respect to the G-action on X, and such that EG(g) is isomorphic

to Z.

Then for every A > 0 and every ε > 0, there exist a rank 2 free subgroup F ⊆ H and
an almost convex subspace QF ⊆ X with StabG(QF ) = F , such that (F,Q) satisfies the

(A,ε)-small cancellation condition.

4.2. Abundance of normal subgroups

Given a group G and an element g ∈G, we say that g is symmetryless if EG(g) = 〈g〉. We

recall the definition of a K-nonelementary subgroup from Definition 3.10.

Definition 4.4. Let Σ be a connected orientable surface, and let K ⊆ Σ be a finite-type
subsurface. Let K̂ be a surface obtained from K by gluing a once-punctured disk on every

boundary component of K.

A subgroup G ⊆ Map(Σ) is K-generic if G is K-nonelementary and in addition G

contains an element g supported on K whose image in Map(K̂) is a symmetryless pseudo-
Anosov mapping class.

Notice that when Σ is an infinite-type surface that contains a nondisplaceable subsurface

of finite type, one can always find a nondisplaceable subsurface K ⊆ Σ of finite type
such that Map(Σ) is K-generic. Indeed, as soon as K̂ supports two independent pseudo-

Anosov mapping classes, the group Map(Σ) is K-nonelementary. Indeed, we can find a

nondisplaceable subsurface K of finite type such that the maximal finite normal subgroup

of Map(K̂) is trivial (this follows from [28, Theorem 2.9], for instance). By [18, Lemma
6.18], we can therefore find a symmetryless pseudo-Anosov mapping class of K̂ (and up

to raising it to a power, we can further assume that it does not permute the punctures

of K̂). By lifting this element to a mapping class of Σ supported on K, we get an element
g ∈Map(Σ), as desired.

The K-genericity condition is also satisfied by many interesting subgroups of Map(Σ),

such as the Torelli subgroup, the pure mapping class group (acting trivially on the space
of ends) and the countable subgroup made of finitely supported elements.

We would also like to observe that a K-generic subgroup G of Map(Σ) actually contains
many elements that are supported onK: indeed, starting from a pseudo-Anosov element f
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supported onK and an element g that preservesK and induces a pseudo-Anosov mapping
class of K̂, one builds a new element supported on K by considering the commutator

[f,g].

Recall that a group G is SQ-universal if every countable group embeds in some quotient
of G. The goal of this section is to prove the following theorem, which is an elaboration

on Theorem 3 from the introduction:

Theorem 4.5. Let Σ be a connected orientable surface with ξ(Σ) > 0, and assume that
Σ contains a nondisplaceable subsurface K of finite type. Let G⊆Map(Σ) be a K-generic

subgroup. Then the following conclusions hold:

1. The group G contains a normal nonabelian free subgroup.

2. There exists a rank 2 free subgroup F ⊆ G such that for every countable group Γ,
there exists a quotient θ : G � G such that Γ embeds in θ(F ). In particular, G is

SQ-universal and contains uncountably many normal subgroups.

Here is a comment about the second conclusion: the last part – namely that G contains
uncountably many normal subgroups – follows from the first in the following way. Since

F is countable, any given quotient of F is countable and therefore can only contain

countably many 2-generated subgroups. On the other hand, there are uncountably many
2-generated groups, and every such group embeds in a quotient of F of the form F/(F ∩N)

for some normal subgroup N �G. Therefore, the groups F ∩N take uncountably many

values as N ranges over all normal subgroups of G. This shows that G has uncountably
many normal subgroups.

Remark 4.6. Theorem 4.5 shows in particular that every countable group embeds in a

quotient of Map(Σ). Notice that it is not always true that every countable group embeds
in Map(Σ) itself: for instance, Calegari and Chen proved in [14, Theorem 5.1] that a

countable group embeds in the mapping class group of the plane minus a Cantor set if

and only if it is circularly orderable. Still, it is natural to ask whether there exist surfaces Σ

for which every countable group embeds in Map(Σ) without having to pass to quotients.
Aougab, Patel and Vlamis have recently proved [2, Theorem 6.2] that this is the case

if Σ has infinite genus, no planar end and a self-similar endspace; in fact, in this case

every countable group can be realised as the isometry group of some complete hyperbolic
metric on Σ. But to our knowledge, the question remains open for surfaces that contain

nondisplaceable subsurfaces of finite type: for those, Aougab, Patel and Vlamis show that

only finite groups can be realised as isometry groups of a complete hyperbolic metric.
Notice also that Theorem 4.5 states the SQ-universality of many countable subgroups

of Map(Σ), for which this stronger conclusion can never hold, as there are uncountably

many 2-generated groups.

We also mention that it is also natural to further ask the following question: which
countable groups quasi-isometrically embed in Map(Σ) when this group is CB-generated?

Remark 4.7. We can be a bit more precise about the output of our construction. In
particular, the group F that arises in the statement of Theorem 4.5 is made of elements

that are supported on K, and all elements in the normal subgroups N we produce are

supported on finite-type subsurfaces (in particular, N is countable).
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We now turn to the proof of Theorem 4.5. We make the following definition:

Definition 4.8. Let Σ be a connected orientable surface, K ⊆ Σ be a connected

nondisplaceable subsurface of finite type and G ⊆ Map(Σ) be a subgroup. Let H ⊆
StabG(K) be a subgroup made of elements that are supported on K, and let Q ⊆ CΣ(K)

be a subspace. Denote by Ĝ and Ĥ the respective images of StabG(K) and H in Map(K̂),

and by Q̂ the image of Q under the natural identification between CΣ(K) and C(K̂).

Let A > 0 and ε > 0. We say that (H,Q) is an (A,ε)-small cancellation pair if the
following conditions hold:

1. (Ĥ,Q̂) is a moving pair and satisfies the (A,ε)-small cancellation condition with
respect to the Ĝ-action on C(K̂).

2. The Ĝ-stabiliser of Q̂ has a lift in StabG(K) containing H and made of elements

that are supported on K.

We say that H is an (A,ε)-small cancellation subgroup if there exists Q ⊆ CΣ(K) such

that (H,Q) is an (A,ε)-small cancellation pair.

Our proof of Theorem 4.5 relies on three essential steps: finding appropriate small

cancellation subgroups in StabG(K), applying small cancellation theory to the StabG(K)-

action on the curve graph CΣ(K) and applying small cancellation theory once more to
the G-action on the quasi-tree of metric spaces constructed in Theorem 3.9.

Step 1: Small cancellation on the curve graph of K̂.

Lemma 4.9. For every L > 0, there exist A = A(L) > 0 and ε = ε(L) > 0 such that
the following holds. Let Σ be a connected orientable surface which contains a connected

nondisplaceable subsurface K of finite type, and let G⊆Map(Σ) be a subgroup. Let H ⊆
StabG(K) be a subgroup made of elements supported on K, and let 〈〈H〉〉 be the normal

subgroup of StabG(K) generated by H. Assume that there exists a subset Q⊆ CΣ(K) such
that (H,Q) is an (A,ε)-small cancellation pair.

Then (H,Q) is a moving pair and satisfies the (A,ε)-small cancellation condition with

respect to the action of StabG(K) on CΣ(K). In particular, the following are true:

1. 〈〈H〉〉 is equal to a free product of conjugates of H.

2. Denoting by GQ the setwise stabiliser of Q in StabG(K), the group H is normal in

GQ and the inclusion GQ ⊆ StabG(K) induces an injective homomorphism

GQ/H ↪→ StabG(K)/〈〈H〉〉.

3. All nontrivial elements in 〈〈H〉〉 have translation length at least L on CΣ(K).

Proof. We focus on proving that (H,Q) is a moving pair and satisfies the (A,ε)-small
cancellation condition with respect to the action of StabG(K) on CΣ(K); the rest of the

conclusion then follows from Theorem 4.2. As in Definition 4.8, we will denote by Ĝ and

Ĥ the respective images of StabG(K) and H in Map(K̂), and by Q̂ the image of Q under
the natural identification between CΣ(K) and C(K̂).

We first prove that (H,Q) is a moving pair for the StabG(K)-action on CΣ(K). By the

first assumption from Definition 4.8, the pair (Ĥ,Q̂) is a moving pair for the Ĝ-action on
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C(K̂), so Q̂ (and hence Q) is almost convex. Therefore, we only need to check that H is

normal in GQ. By the second assumption of Definition 4.8, the Ĝ-stabiliser of Q̂ has a

lift S̃tab(Q̂) in GQ which contains H and is made of elements that are supported on K.

This implies that the extension

1→ FixG(K)→GQ → Stab
̂G(Q̂)→ 1

is split and every element of S̃tab(Q̂) commutes with every element of FixG(K). Therefore

GQ splits as a direct product isomorphic to S̃tab(Q̂)×FixG(K). In addition, as Ĥ is

normal in the Ĝ-stabiliser of Q̂, it follows that H is normal in S̃tab(Q̂), and thus in GQ.
We now prove that (H,Q) satisfies the (A,ε)-small cancellation condition with respect

to the action of StabG(K) on CΣ(K). As H ⊆ S̃tab(Q̂), we have H ∩FixG(K) = {1}, and
therefore the injectivity radius of (H,Q) is equal to the injectivity radius of (Ĥ,Q̂). Set

now t ∈ StabG(K)\GQ. Then the image t̂ of t in Ĝ does not stabilise Q̂, and

ΔCΣ(K)(Q,tQ) = ΔC( ̂K)(Q̂,t̂Q̂).

As (Ĥ,Q̂) satisfies the (A,ε)-small cancellation condition (condition 1 from Definition 4.8),
the conclusion follows.

Step 2: Construction of small cancellation subgroups. This is the crucial place in

the argument where we use the fact that G is K-generic.

Lemma 4.10. Let Σ be a connected orientable surface, K ⊆ Σ be a connected nondis-
placeable subsurface of finite type and G⊆Map(Σ) be a K-generic subgroup. Let g ∈G be

an element supported on K which induces a symmetryless pseudo-Anosov mapping class

of K̂.
Then for every A > 0 and ε > 0, there exists n ∈ N such that the cyclic group 〈gn〉 is

an (A,ε)-small cancellation subgroup.

Proof. Let ĝ ∈ Ĝ be the image of g. By [12, Proposition 11], the pseudo-Anosov element
ĝ satisfies the WPD property for the action of Ĝ on C(K̂). As ĝ is symmetryless, we

deduce that there exist n ∈ N and a ĝ-invariant almost convex subset Q ⊆ C(K̂) whose

stabiliser in Map(K̂) is equal to 〈ĝ〉, such that (〈ĝn〉,Q) is a moving pair for the Ĝ-action
on C(K̂) which satisfies the (A,ε)-small cancellation condition (see, e.g., [24, Proposition

2.8]). As 〈g〉 is a lift of 〈ĝ〉 to StabG(K), the second assumption from Definition 4.8 is

also satisfied. The lemma follows.

Lemma 4.11. Let Σ be a connected orientable surface, K ⊆ Σ be a connected nondis-

placeable subsurface of finite type and G⊆Map(Σ) be a K-generic subgroup.

Then for every A > 0 and every ε > 0, there exist a rank 2 nonabelian free subgroup
F ⊆ StabG(K) made of elements supported on K and a subspace Q ⊆ CΣ(K) stabilised

by F , such that for every normal subgroup N �F , the pair (N,Q) is an (A,ε)-small

cancellation pair.

Proof. Let g ∈G be an element supported on K which induces a symmetryless pseudo-

Anosov mapping class of K̂ – this exists because G is K-generic. Set L > 0 and let A=
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A(L)> 0 and ε= ε(L)> 0 be the constants provided by Lemma 4.9. By Lemma 4.10, there

exists n∈N such that 〈gn〉 is an (A,ε)-small cancellation subgroup. Applying Lemma 4.9,

the normal subgroup 〈〈gn〉〉 of StabG(K) generated by gn is free, and every nontrivial
element of 〈〈gn〉〉 induces a pseudo-Anosov mapping class of K̂ (because it acts on CΣ(K)

with translation length at least L, by the third conclusion of Lemma 4.9). In addition,

every element of 〈〈gn〉〉 is supported on K, and 〈〈gn〉〉 is not cyclic because G is K-
nonelementary. Let H = 〈〈gn〉〉, and let Ĥ be its image in Map(K̂). Notice that the

natural homomorphism StabG(K)→Map(K̂) restricts to a bijection H → Ĥ.

By [12, Proposition 11], every pseudo-Anosov element of Map(K̂) has the WPD
property for the Map(K̂)-action on C(K̂). As E

̂G(ĝ) is cyclic, we can apply Proposition 4.3

and get a rank 2 free subgroup F̂ ⊆ Ĥ and an almost convex subspace Q̂⊆C(K̂) such that
F̂ = Stab

̂G(Q̂) and the moving pair (F̂ ,Q̂) satisfies the (A,ε)-small cancellation condition

with respect to the Ĝ-action on C(K̂).
Let F ⊆H be the preimage of F̂ under the natural bijection H → Ĥ, so F is a rank 2

nonabelian free subgroup of StabG(K) made of elements supported on K. Let Q⊆CΣ(K)

be the image of Q̂ under the natural identification between C(K̂) and CΣ(K). Then Q is
stabilised by F , and for every normal subgroup N �F , the pair (N,Q) is an (A,ε)-small

cancellation pair, as required.

Step 3: Small cancellation on the quasi-tree of metric spaces.

Lemma 4.12. Let Σ be a connected orientable surface and K ⊆ Σ be a nondisplaceable

subsurface of finite type, and set G ⊆ Map(Σ). There exists L > 0 such that for every

normal subgroup N �StabG(K), if every element of N acts on CΣ(K) with translation

length at least L, then

1. the normal subgroup 〈〈N〉〉 of G generated by N is a free product of conjugates of N
and

2. the inclusion StabG(K)⊆G induces an injective homomorphism

StabG(K)/N ↪→G/〈〈N〉〉.

Proof. Let X be the quasi-tree of metric spaces associated to the BBF family YK provided

by Proposition 3.8. For every K ′ ∈Map(Σ) ·K, the space CΣ(K ′) embeds as a geodesically

convex subspace in X (by the first conclusion of Theorem 3.7). Let D > 0 be a constant

(provided by the second conclusion of Theorem 3.7) such that for any two distinctK1,K2 ∈
Map(Σ) ·K, one has ΔX(CΣ(K1),CΣ(K2))<D. Let A> 0 and ε > 0 be constants given by

the small cancellation theorem (Theorem 4.2), applied to the G-action on X with C = 0.

As already recalled, the first assertion of Theorem 3.7 ensures that CΣ(K) is geodesically
convex in X. It is also StabG(K)-invariant, so we can (and shall) choose L > 0 such that

for every g ∈ StabG(K), if ‖g‖CΣ(K) > L, then ‖g‖X >max{A,D/ε}.
We will now prove that (N,CΣ(K)) satisfies the (A,ε)-small cancellation condition with

respect to the G-action on X; the lemma will then follow from the geometric small

cancellation theorem (Theorem 4.2). First, the group N is normal in StabG(K), which is

equal to the G-stabiliser of CΣ(K) in X (Lemma 3.5). Second, the injectivity radius of N
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is at least equal to max{A,D/ε}. Finally, for every t ∈G\StabG(K), we have

ΔX(CΣ(K),tCΣ(K))<D < ε injX(N,CΣ(K)).

The lemma follows.

Conclusion.

Proof of Theorem 4.5. In the whole proof, we let L > 0 be the constant provided by

Lemma 4.12, and we let A = A(L) > 0 and ε = ε(L) > 0 be the constants provided by

Lemma 4.9. Let G be a K-generic subgroup of Map(Σ).
We start by proving the existence of a normal nonabelian free subgroup of G. By

Lemma 4.10, there exists an element k ∈ StabG(K) supported on K such that 〈k〉 is

an (A,ε)-small cancellation subgroup. Applying Lemma 4.9, we deduce that the normal

subgroup N0 of StabG(K) generated by k is free and purely K-pseudo-Anosov; in fact,
all nontrivial elements of N0 are supported on K and act on CΣ(K) with translation

length at least L. It is also nonabelian, as G is K-nonelementary. It therefore follows

from Lemma 4.12 that the normal subgroup of G generated by N0 is a nonabelian free
group.

We now turn to proving the second conclusion of Theorem 4.5. By Lemma 4.11, we

can find a rank 2 nonabelian free subgroup F ⊆ StabG(K) and a subspace Q ⊆ CΣ(K)
stabilised by F such that for every normal subgroup N �F , the pair (N,Q) is an (A,ε)-

small cancellation pair.

Let Γ be a countable group. We aim to embed Γ in a quotient G of G in such a way

that the image of Γ in G is contained in the image of F under the quotient map G�G.
As every countable group embeds in a two-generated group – in other words, F2 is

SQ-universal [29, Theorem 10.3] – we can find a normal subgroup N �F such that Γ

embeds in F/N . Our choice of F and Q ensures that (N,Q) is an (A,ε)-small cancellation
pair. Let N ′ be the normal closure of N in StabG(K). Let GQ be the setwise stabiliser of

Q in StabG(K). Then F/N embeds in GQ/N , and by Lemma 4.9 this in turns embeds in

StabG(K)/N ′, and all elements ofN ′ act loxodromically on CΣ(K) with translation length
at least L. Denoting by N ′′ the normal subgroup of G generated by N ′, Lemma 4.12 then

ensures that StabG(K)/N ′ embeds in G/N ′′. In conclusion, we have proved that

Γ ↪→ F/N ↪→ StabG(K)/N ′ ↪→G/N ′′,

concluding our proof.

4.3. Normal free subgroups and nondisplaceable finite-type subsurfaces

In fact, the existence of nontrivial normal free subgroups in the mapping class group

turns out to be a characterisation of surfaces that contain nondisplaceable subsurfaces of
finite type.

Theorem 4.13. Let Σ be a connected orientable surface of infinite type. The following

statements are equivalent:

1. The surface Σ contains a nondisplaceable subsurface of finite type.

2. The group Map(Σ) contains a nontrivial normal free subgroup.
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Proof. The fact that 1⇒ 2 has been proved in Theorem 4.5, so we focus on proving that
¬1⇒¬2. Assume that every subsurface of Σ of finite type is displaceable, and let N be

a normal subgroup of Map(Σ). We will prove that N contains an abelian subgroup of

rank 2.
Set g ∈N \{id}. We first claim that there exists a Dehn twist h∈Map(Σ) that does not

commute with g. Indeed, otherwise g would fix the isotopy class of every simple closed

curve on Σ, and it follows that g = id by [27].

Let now f = [g,h], which is nontrivial. Writing f =
(
ghg−1

)
h−1, we see that f is a

product of two finitely supported mapping classes, so f is supported on a subsurface K

of finite type. In addition, writing f = g
(
hg−1h−1

)
, we see that f ∈N . By assumption,

there exists η ∈Map(Σ) such that η(K)∩K = ∅. Then the subgroup generated by f and
ηfη−1 is abelian of rank 2, concluding our proof.

5. Surfaces with no finite-type nondisplaceable subsurface

Under some light topological conditions on the surface Σ, we now aim to prove a converse

statement to the work from Section 3, saying that in the absence of nondispaceable sub-

surfaces, the mapping class group Map(Σ) does not have any nonelementary continuous
action on a hyperbolic space.

5.1. Statement

We now present the two conditions that we will impose on the surface Σ.

Tameness of the endspace. The first one is a topological condition giving some control

on the topology of the endspace E of Σ. The space E is equipped with the following

preorder [31, Definition 4.1]: given x,y ∈E, we let y � x if for every open neighbourhood
U ⊂E of x, there exist an open neighbourhood V ⊂E of y and f ∈Homeo(Σ) such that

f(V ) ⊆ U (which automatically also implies that f(V ∩Eg) ⊆ U ∩Eg). We say that an

end x ∈ E is of maximal type if it is maximal for the preorder �.

Set x ∈ E. A neighbourhood U of x is stable [31, Definition 4.14] if for every open
neighbourhood U ′ ⊆ U of x, there is a homeomorphic copy of (U,U ∩Eg) inside (U ′,U ′∩
Eg) via a homeomorphism fixing x. Following [31, Definition 6.14], we say that Σ has

tame endspace if every x∈E which is either of maximal type or an immediate predecessor
of an end of maximal type (for the preorder �) has a stable neighbourhood. We refer to

[31, Section 6.3] for a thorough discussion of this condition. Also, we mention that even

if we restrict to surfaces with tame endspaces, we are still considering a large class; in
particular, there are uncountably many pairwise nonhomeomorphic surfaces with tame

endspace (see [21, Remark 5.5]).

CB generation of the mapping class group. The second condition we impose on Σ

says roughly that the mapping class group Map(Σ) has a well-controlled geometry, from
the point of view of geometric group theory of Polish groups as developed by Rosendal in

[38]. Let G be a Polish topological group. A subset A⊆G is coarsely bounded, abbreviated

CB, if for every continuous isometric G-action on a metric space X, the diameter of every
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A-orbit in X is finite. The group G is CB-generated if it admits a generating subset which
is coarsely bounded. Among surfaces with tame endspaces, surfaces whose mapping class

group is CB-generated have been fully characterised by Mann and the third author in

[31, Theorem 1.6].

We say that an action of a Polish group G on a metric space X is coarsely continuous if

for every x ∈X, there exists D> 0 such that for every sequence (gn)n∈N ∈GN converging
to the identity element and every sufficiently large n∈N, we have d(gnx,x)≤D. The goal

of this section is to prove the following theorem:

Theorem 5.1. Let Σ be a connected orientable surface with a tame endspace such that

Map(Σ) is CB-generated. Assume that Σ does not contain any nondisplaceable subsurfaces

of finite type.
Then Map(Σ) does not have any coarsely continuous nonelementary isometric action

on a hyperbolic metric space.

Remark 5.2. It would be interesting to know whether the assumption of coarse continuity

can be removed from the statement of Theorem 5.1 – in other words, whether such

Map(Σ) admits any nonelementary isometric action on a hyperbolic metric space X at
all. A related question is whether Map(Σ) satisfies an automatic continuity property,

saying that every homomorphism from Map(Σ) to a separable topological group (e.g.,

to Isom(X), where X is a separable metric space) is continuous. This question has been
recently answered in the affirmative by Mann [30] in some cases where the endspace of

Σ is the union of a Cantor set and a finite set. It appears to remain open in general,

however.

5.2. An obstruction to continuous isometric actions on hyperbolic spaces

Our proof of Theorem 5.1 relies on the following general criterion. We will check that
Map(Σ) satisfies this criterion in the next section.

Lemma 5.3. Let G be a topological group. Assume that there exists a split short exact

sequence

1→N →G→A→ 1,

with A abelian and N contained in the closure of a normal subgroup H�G such that for

every element h ∈H, there exists a CB subgroup of G that contains h.

Then G does not have any coarsely continuous nonelementary isometric action on a

hyperbolic space.

Proof. Let X be a hyperbolic space equipped with a coarsely continuous isometric action
of G. We aim to prove either that all G-orbits in X have finite diameter or else that G

has a finite orbit in ∂∞X.

Since every element h ∈ H is contained in some CB subgroup of G (which might
depend on h), it follows that every element of H acts elliptically on X. Using Gromov’s

classification of isometric group actions on hyperbolic spaces [23] (see also, e.g., [15,

Proposition 3.1]), we deduce that either all H-orbits in X have finite diameter or else the
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H-action on X is horocyclic. In the latter case, as H is normal in G, the unique point of
∂∞X in the limit set of H is G-invariant.

We can therefore assume that all H-orbits in X have finite diameter. As the G-action

on X is coarsely continuous and N is contained in the closure of H, it follows that all
N -orbits in X have finite diameter.

Let T be a lift of A in G. As T is abelian, either all T -orbits in X have finite diameter

or else the limit set Λ∞T ⊆ ∂∞X has cardinality 1 or 2.

We first assume that all T -orbits in X have finite diameter. Notice that every element
of G is a product of an element of N and an element of T . As we have already proved

that all N -orbits have finite diameter, it follows that all G-orbits have finite diameter,

and we are done.
We finally assume that |Λ∞T | ∈ {1,2}. Let M ≥ 0 be sufficiently large so that

YM := {x ∈X | diam(N ·x)≤M}

is nonempty. By the normality of N , the set YM is G-invariant. In particular, YM is

T -invariant, so denoting by Λ∞YM ⊆ ∂∞X its limit set, we have Λ∞T ⊆ Λ∞YM . In

addition, it follows from the definition of YM that every point in Λ∞YM is fixed by N .
In particular, Λ∞T is N -invariant. As G is generated by N and T , it follows that Λ∞T

is a finite G-invariant set in ∂∞X. This concludes our proof.

5.3. Avenue surfaces and proof of Theorem 5.1

5.3.1. Avenue surfaces. In proving Theorem 5.1, we can always assume that Map(Σ)

itself is not CB, as otherwise the conclusion is obvious (every continuous isometric action

of a CB group on any metric space has bounded orbits). For the remainder of this section,
we will therefore assume that the surface Σ is of the following form:

Definition 5.4. An avenue surface is a connected orientable surface Σ which does not
contain any nondisplaceable subsurfaces of finite type, whose endspace is tame and whose

mapping class group Map(Σ) is CB-generated but not CB.

The terminology avenue surface comes from the fact that Σ has exactly two maximal

ends, as established in our next lemma. An example to keep in mind is the avenue of

chimneys from the introduction, depicted in Figure 1. We recall (see Section 5.1) that
the endspace E of Σ is equipped with a preorder �. This induces an equivalence relation

on E, where two ends x and y are equivalent, x∼ y, if and only if x� y and y � x. In the

following, when we talk about equivalence classes of ends, this will always be with respect

to this equivalence relation. Notice that if there exists f ∈Homeo(Σ) such that f(x) = y,
then x∼ y; in particular, equivalence classes of ends are invariant under Homeo(Σ).

Lemma 5.5. Let Σ be an avenue surface. Then Σ has genus either 0 or infinite, and Σ
has exactly two ends of maximal type.

Proof. Notice first as in [31, Example 2.4] that the genus of Σ is either 0 or infinite,

as otherwise any finite-type subsurface of Σ whose genus matches that of Σ would be

nondisplaceable.
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Figure 3. The situation in the third paragraph of the proof of Lemma 5.5.

Let E be the endspace of Σ, and let M be the set of all maximal elements in E. We aim

to prove that |M| = 2. By [31, Proposition 4.7], the set M is nonempty. Also, |M| �= 1:
otherwise [31, Lemma 4.12] implies that (E,Eg) is self-similar in the sense of [31, Section

3.1].2 As Σ has genus 0 or infinite, [31, Proposition 3.1] then implies that Map(Σ) is

globally CB, contradicting our assumption that Σ is an avenue surface.
We first claim that M does not contain any infinite equivalence class. Indeed, otherwise,

let X be such an equivalence class. By [31, Proposition 4.7], the class X, viewed as a

subspace of E, is a Cantor set. If X is the unique maximal equivalence class, then [31,

Lemma 4.13] implies that (E,Eg) is self-similar, and therefore Map(Σ) is globally CB as
before – a contradiction. So assume that there exists another maximal equivalence class

X ′ (which may be finite or infinite). We can partition X into two disjoint closed subsets

X1 and X2. As X
′ is a closed subset of E (see [31, Lemma 4.6]), it follows from Lemma 2.1

that there exists a finite-type subsurface K of Σ that pairwise separates X1,X2 and X ′ –
see Figure 3. We now claim that this subsurface K is nondisplaceable, which gives a

contradiction.
To prove our claim that K is nondisplaceable, let Σ′ be the connected component of

Σ \K whose end set contains X ′, and assume toward a contradiction that there exists

f ∈Homeo(Σ) such that f(K)∩K = ∅. Then f(K) cannot be contained in a component

of Σ \K distinct from Σ′, as otherwise one of the complementary components of f(Σ′)
would contain ends in both X and X ′. And f(K) cannot be contained in Σ′ either, as
otherwise only one complementary component of f(Σ′) would contain ends in X. This

contradiction shows that K is nondisplaceable.
Therefore, every equivalence class of maximal elements is finite, and by [31, Lemma 5.3],

there are finitely many such classes. So M is finite. It remains to prove that |M| ≤ 2,

so assume toward a contradiction that |M| ≥ 3. By Lemma 2.1, there exists a finite-type
subsurface K of Σ that pairwise separates all ends in M. We claim that the surface K

is nondisplaceable. Indeed, otherwise there would exist f ∈ Homeo(Σ) such that K is

contained in one complementary component Σ′ of f(K). Thus Ends(Σ′) would contain

two ends in M, which is impossible, as f−1(Σ′) is a complementary component of K.

2This means that for any partition E =E1�·· ·�En into clopen subsets, there exist i∈ {1, . . . ,n}
and a clopen subset D ⊆ Ei such that (D,D∩Eg) is homeomorphic to (E,Eg).
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We have thus proved that K is nondisplaceable, and this contradiction completes our
proof.

Lemma 5.6. Let Σ be an avenue surface, E be its endspace, and xA,xB be the two

maximal ends of Σ. Then for every x∈E\{xA,xB}, the equivalence class of x accumulates

to both xA and xB.

Proof. Let [x] be the equivalence class of x. Assume toward a contradiction that [x]

does not accumulate to xB . The set [x]∪{xA} is a closed subset of E of cardinality at

least 2, so it admits a partition [x]∪{xA} =X1 	X2 into two nonempty subsets which
are both closed in E. By Lemma 2.1, there exists a finite-type subsurface K ⊆ Σ that

pairwise separates the closed sets X1,X2 and {xB}. We claim that K is nondisplaceable:

this will give a contradiction, showing that [x] accumulates to xB . By symmetry, [x] also

accumulates to xA, which completes our proof.
We are thus left proving the claim that K is nondisplaceable. Assume toward a

contradiction that there exists f ∈ Homeo(Σ) such that f(K)∩K = ∅. Let ΣB be the

complementary component of Σ \K that contains xB . Then f(K) cannot be contained
in a complementary component of K distinct from ΣB , as otherwise one complementary

component of f(K) would contain both xB and ends in [x] – while no complementary

component of K does. And f(Σ) cannot be contained in ΣB , as otherwise one of
the complementary components of f(K) would contain both xA and all ends in [x] –

while no complementary component of K does. This contradiction shows that K is

nondisplaceable.

5.3.2. Horizontally bounded mapping classes.

Definition 5.7. Let Σ be an avenue surface and let xA,xB be the two maximal ends
of Σ. A subsurface R of Σ (possibly of infinite type) is horizontally bounded if R is

disjoint from some neighbourhood of xA and from some neighbourhood of xB – that is, if

Ends(R)∩{xA,xB}= ∅.
An element f ∈Map(Σ) is horizontally bounded if f has a representative in Homeo(Σ)

which is supported on a horizontally bounded subsurface.

An example of a horizontally bounded subsurface is the subsurface R represented

in Figure 1 on the avenue of chimneys. We will also say that a horizontally bounded
subsurface is standard if it is bounded by exactly two separating curves. Notice that

every horizontally bounded subsurface is contained in a standard one (because every

neighbourhood of either xA or xB in Σ∪E(Σ) contains a subneighbourhood bounded

by a single separating curve, as follows from Lemma 2.1). Therefore, every horizontally
bounded mapping class has a representative in Homeo(Σ) that is supported on a standard

horizontally bounded subsurface.

We let Map0(Σ) be the subgroup of Map(Σ) of index at most 2 made of all mapping
classes that fix the two maximal ends xA and xB , as opposed to permuting them. We

denote by HB(Σ) the subset of Map0(Σ) made of all horizontally bounded mapping

classes.
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Lemma 5.8. Let Σ be an avenue surface. The subset HB(Σ) is a normal subgroup of

Map0(Σ).

Proof. That HB(Σ) is a subgroup follows from the observation that the union of two

horizontally bounded subsurfaces is again horizontally bounded. Normality follows from
the fact that if f ∈ HB(Σ) and g ∈Map0(Σ), then the support of gfg−1 is equal to the

g-translate of the support of f , again a horizontally bounded subsurface.

5.3.3. Horizontally bounded mapping classes are contained in CB
subgroups.

Lemma 5.9. Let Σ be an avenue surface, with maximal ends xA and xB. Then all clopen

neighbourhoods of xA in Ends(Σ) that do not contain xB are homeomorphic.

Proof. Let UA be a stable neighbourhood of xA in Ends(Σ) and let W be another

neighbourhood of xA that does not contain xB ; we aim to prove that UA and W are

homeomorphic. Changing UA to a smaller neighbourhood of xA does not change its
homeomorphism type, and hence we can assume UA ⊂ W . From [31, Lemma 4.18], we

know that for every point y in W −UA and any sufficiently small neighbourhood Uy of

y, (UA∪Uy) is homeomorphic to UA. Since W −UA is compact, there is a finite covering
of W −UA with such neighbourhoods. Making the Uy smaller, we can assume this is a

finite covering by disjoint clopen sets Uy1
, . . . ,Uyk

. Then each Uyi
can be absorbed into

UA: more explicitly, the space UA ∪ (Uy1
∪·· ·∪Uyk

) is homeomorphic to UA – in other
words, W is homeomorphic to UA. This finishes the proof.

Lemma 5.10. Let Σ be an avenue surface, with maximal ends xA and xB. Let R1,R2 ⊆Σ
be two standard horizontally bounded subsurfaces. Assume that

1. R1 and R2 have the same genus (possibly infinite),

2. for every maximal countable equivalence class C of ends in E \ {xA,xB}, the

intersections C ∩Ends(R1) and C ∩Ends(R2) have the same positive cardinality,
and

3. Ends(R1) and Ends(R2) both contain a representative of every uncountable equiva-

lence class of ends.

Then there exists η ∈Homeo+(Σ) such that η(R1) =R2.

Proof. The proof is analogous to the argument found in [31, Lemma 6.17]. For every

i ∈ {1,2}, let Xi be the set of ends that are maximal in E \ {xA,xB} and contained in
Ends(Ri) and whose equivalence class in E is countable. By [31, Observation 6.12], the

sets X1 and X2 are finite, and our second assumption ensures that there is a bijection

θ : X1 → X2 such that for every y ∈ X1, the ends y and θ(y) are equivalent. As Σ has
tame endspace, for every i ∈ {1,2}, every end y ∈Xi has a stable neighbourhood Vi,y. As

any two stable neighbourhoods of equivalent ends are homeomorphic [31, Lemma 4.17],

for every y ∈X1 the neighbourhoods V1,y and V2,θ(y) are homeomorphic.
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For every i ∈ {1,2}, let

Wi = Ends(Ri)−
⋃

y∈Xi

Vi,y.

We claim that for every i ∈ {1,2}, the space Wi ∪ Ends(R3−i) is homeomorphic to
Ends(R3−i) by a homeomorphism preserving the subspace made of ends that are

accumulated by genus. Indeed, our assumptions ensure that Ends(R3−i) contains a

representative of every equivalence class of ends that is maximal in E \ {xA,xB}. Now,
for every point w ∈ Wi, either w is nonmaximal or else the intersection of E(w) with
Ends(R3−i) is a Cantor set (see [31, Proposition 4.7]); in both cases, there exists a point

w′ ∈Ends(R3−i) of maximal type in E \{xA,xB} such that w′ is an accumulation point of

E(w). As Σ has tame endspace, the point w′ has a stable neighbourhood. By [31, Lemma
4.18], there exist a clopen neighbourhood Uw of w and a stable neighbourhood Vw′ of w′

such that Uw ∪Vw′ is homeomorphic to Vw′ . As Wi is compact, it is covered by finitely

many neighbourhoods Uw. Shrinking these neighbourhoods if needed, we can in fact write
Wi as the disjoint union of finitely many neighbourhoods Uw with the foregoing property.

The claim follows.

This claim implies that Ends(R1) is homeomorphic to

W2∪Ends(R1) =W1∪

⎛
⎝W2∪

⋃
y∈X1

V1,y

⎞
⎠,

which in turn is homeomorphic to

W1∪Ends(R2) =W1∪

⎛
⎝W2∪

⋃
y∈X1

V2,θ(y)

⎞
⎠

and finally to Ends(R2). All these homeomorphisms preserve the subspaces made of

ends accumulated by genus. So R1 and R2 have homeomorphic endspaces. In addition,

they have the same genus, and they both have two boundary curves (because they are

standard). So Richards’ classification of infinite-type surfaces [37] implies that R1 and R2

are homeomorphic (and we can choose the homeomorphism to send the boundary curve

of R1 closer to xA to the boundary curve of R2 closer to xA).

To conclude the proof, it remains to observe that the complementary components
Σ1,Σ2 of R1,R2 containing xA are homeomorphic, and likewise that the complementary

components of R1 and R2 containing xB are homeomorphic. This follows from the fact

that they have the same genus (either 0 or infinite), and homeomorphic endspaces in view
of Lemma 5.9.

Lemma 5.11. Let Σ be an avenue surface, xA,xB be the two maximal ends of Σ and R

be a standard horizontally bounded subsurface of Σ.

Then for every neighbourhood U of either xA or xB in Σ, there exists an orientation-
preserving homeomorphism η of Σ such that η(R)⊆ U .

Proof. Let E be the endspace of Σ. By Lemma 5.6, every equivalence class of ends in

E \ {xA,xB} accumulates to both xA and xB . In addition, as Map(Σ) is CB-generated,
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it follows from [31, Lemma 6.4] that no end set of Σ has limit type in the sense of [31,

Definition 6.2]. Up to increasing R, we can therefore assume that R contains an end from

every equivalence class in E \{xA,xB}.
We denote by Emc(xA,xB) the subspace of E \ {xA,xB} made of all ends that are

maximal in E\{xA,xB} and whose equivalence class in E is countable. Using an argument

similar to [31, Lemma 6.13], we will now prove that Emc(xA,xB) is a union of finitely
many equivalence classes of ends. Indeed, otherwise – applying [31, Definition 6.5] with

G=Map0(Σ), with X = {xA} and with U a sufficiently small neighbourhood of xA – we

would deduce that Map(Σ) has infinite rank, and is therefore not CB-generated by [31,
Lemma 6.7]: a contradiction.

Without loss of generality, we will assume that the neighbourhood U is standard –

that is, bounded by a single separating curve α on Σ. As U contains a representative

of every equivalence class in E \ {xA,xB} (Lemma 5.6) and the endspace of Σ is not
of limit type, we can find a separating curve β so that denoting by R′ the subsurface

bounded by α and β, the set Ends(R′) contains a representative of every equivalence class

of ends in E \ {xA,xB} and contains at least as many representatives from every class
of Emc(xA,xB) as R. Up to removing a stable neighbourhood of some of the equivalence

classes in Emc(xA,xB), we can assume that Ends(R) and Ends(R′) have the same number

of representatives in each of these classes. By adjusting the genus, we can arrange it so
that R and R′ have the same genus. The lemma therefore follows from Lemma 5.10.

Lemma 5.12. Let Σ be an avenue surface. Every element in HB(Σ) is contained in a

CB subgroup of Map(Σ).

Proof. By [31, Theorem 5.7], there exists a finite-type subsurface K ⊆ Σ such that

the subgroup H ⊆ Map(Σ) made of all mapping classes which are represented by a

homeomorphism of Σ supported on Σ \K is CB in Map(Σ). Now set f ∈ HB(Σ). By

definition, the mapping class f has a representative supported on a standard horizontally
bounded subsurface R. Lemma 5.11 therefore ensures that that there exists an orientation-

preserving homeomorphism η of Σ such that η(R) ⊆ Σ \K. It follows that ηfη−1 ∈ H.

Therefore f is contained in η−1Hη, which is a CB subgroup of Map(Σ).

5.3.4. The kernel of the twist homomorphisms.

Lemma 5.13. Let Σ be an avenue surface. There exist n ∈ N and a split exact sequence

1→N →Map0(Σ)→ Zn → 1

such that N is contained in the closure of HB(Σ).

Proof. Let E be the endspace of Σ. By [31, Proposition 5.4], the space E has a partition
E =A	B into two disjoint self-similar subsets, each of which contains exactly one of the

two ends of Σ of maximal type xA,xB . Following [31, Definition 6.11], we let Emc(xA,xB)

be the subspace of E \ {xA,xB} made of all ends that are maximal in E \ {xA,xB} and
whose equivalence class in E is countable.

We aim to define a homomorphism Φ : Map0(Σ) → Zn for some n ∈ N. Let k be the

number of equivalence classes of ends contained in Emc(xA,xB), which is finite by the
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same argument as in the proof of Lemma 5.11. Let [y1], . . . ,[yk] be these equivalence

classes. In other words, Emc(xA,xB) = ∪k
i=1[yi]. Consider the map

Ψ: Map0(Σ)→ Zk, Ψ(f) = (n1(f), . . . ,nk(f)),

where for every i ∈ {1, . . . ,k}, we let

ni(f) = |{x ∈ [yi]|x ∈A,f(x) ∈B}|− |{x ∈ [yi]|x ∈B,f(x) ∈A}| .

Notice that this is well defined: indeed, every mapping class f ∈Map0(Σ) fixes xA and

xB , and as the equivalences classes [yi] are countable – and thus discrete in E (see [31,

Observation 6.12]) – it follows that the two quantities that appear in the definition of
ni(f) are finite (see also the proof of [2, Theorem 4.13] for a very similar fact). In addition,

Ψ is a homomorphism: indeed, one checks that ni(g ◦ f) = ni(g)+ni(f) by partitioning

the points x ∈E into eight subsets, depending on whether x belongs to A or B, whether

f(x) belongs to A or B and whether g ◦ f(x) belongs to A or B, counting the points in
each of these subsets and recording their contribution to ni.

If some end in E \{xA,xB} is accumulated by genus, or if Σ has genus 0, then we let

n= k and Φ = Ψ.
If Σ has infinite genus and no end in E \ {xA,xB} is accumulated by genus, then we

let n= k+1. In this case, following work of Aramayona, Patel and Vlamis [5, Section 3],

we define an extra homomorphism Φg : Map0(Σ) → Z in the following way (and we let
Φ = (Ψ,Φg)). Let c be a separating curve on Σ which separates the two ends xA,xB , and

set f ∈Map0(Σ). Let R⊆Σ be a horizontally bounded subsurface of Σ which is bounded

by two separating curves αA,αB which both separate xA from xB , such that both c and

f(c) are contained in R – with αA closer to xA than αB . Then c separates R into two
subsurfaces RA (containing αA in its boundary) and RB (containing αB in its boundary),

while f(c) separates R into two subsurfaces R′
A (containing αA in its boundary) and R′

B

(containing αB in its boundary). We then let Φg(f) = genus(R′
A)− genus(RA). This

quantity does not depend on the choice of R, and Φg is the desired homomorphism (see

[5, Proposition 3.3]).

We claim that in all cases, the homomorphism Φ : Map0(Σ) → Zn is surjective and
admits a section. Indeed, a section of Ψ was constructed in step 3 of the proof of [31,

Proposition 6.18]. When Σ has infinite genus and no end in E \{xA,xB} is accumulated

by genus, a section of Φg is given by the cyclic subgroup generated by a handle shift as

defined in [35, Section 6] (see also [31, Definition 6.20]).
Finally, let N �Map0(Σ) be the kernel of Φ, and set f ∈ N ; we aim to prove that f

belongs to the closure of HB(Σ). Using Lemma 5.11 (applied to a horizontally bounded

subsurface R such that Ends(R) contains a representative of every equivalence class of
ends in E \{xA,xB}), we can find an exhaustion of Σ by subsurfaces Rj (with j ∈N) that

are all horizontally bounded, so that the boundary of each Rj consists of two separating

curves, and for every j ∈ N, each of the two connected components of Rj \Rj−1 contains
a representative of every equivalence class in E \{xA,xB}. We can assume that for every

j ∈ N, one of the complementary components of Rj has all its ends contained in A and

the other has all its ends contained in B, and the same holds true for f (Rj).
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Let � : N→ N be a map such that for every j ∈ N we have

f (Rj)⊆R�(j)−1.

Then
(
R�(j)−Rj

)
and

(
R�(j)−f (Rj)

)
both have two connected components. We denote

the components of
(
R�(j)−Rj

)
by Q−

j and Q+
j and the components of

(
R�(j)−f (Rj)

)
by T−

j and T+
j . Since f ∈N , for every i ∈ {1, . . . ,k} we have∣∣Q−

j ∩ [yi]
∣∣= ∣∣T−

j ∩ [yi]
∣∣ and

∣∣Q+
j ∩ [yi]

∣∣= ∣∣T+
j ∩ [yi]

∣∣,
genus

(
Q−

j

)
= genus

(
T−
j

)
and genus

(
Q+

j

)
= genus

(
T+
j

)
.

Furthermore, our choice of exhaustion ensures that Q+
j ,Q

−
j ,T

+
j ,T−

j all contain a repre-

sentative of every equivalence class in E \{xA,xB} (notice here that it was important to
assume that f(Rj) is contained in R�(j)−1 and not only in R�(j)). Therefore, Lemma 5.10

ensures that Q−
j is homeomorphic to T−

j and Q+
j is homeomorphic to T+

j . Therefore,

there is a homeomorphism fj ∈ Map
(
R�(j)

)
such that fj

∣∣
Rj

= f
∣∣
Rj

. As fj ∈ HB(Σ), it

follows that f is in the closure of HB(Σ), as desired.

We are now in a position to conclude our proof of the main theorem of the section.

Proof of Theorem 5.1. We can assume that Map(Σ) is not CB, as otherwise the
conclusion is obvious. Therefore Σ is an avenue surface. In view of Lemmas 5.8, 5.12

and 5.13, the group G =Map0(Σ) satisfies all assumptions from Lemma 5.3, with H =

HB(Σ). Therefore every coarsely continuous isometric action of Map0(Σ) on a hyperbolic
space is elementary. As Map0(Σ) has finite index in Map(Σ), the same conclusion holds

true for Map(Σ).
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