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Abstract. We show that both Teichmüller space (with the Teichmüller metric)
and the mapping class group (with a word metric) have geodesic divergence that
is intermediate between the linear rate of flat spaces and the exponential rate of
hyperbolic spaces. For every two geodesic rays in Teichmüller space, we find that
their divergence is at most quadratic. Furthermore, this estimate is shown to be
sharp via examples of pairs of rays with exactly quadratic divergence. The same
statements are true for geodesic rays in the mapping class group. We explicitly
describe efficient paths “near infinity” in both spaces.

1 Introduction

The volume of a ball in Teichmüller space grows exponentially fast as a function of
its radius, as in the case of hyperbolic space. In this paper, we show that despite
this, the “circumference” of the ball grows only quadratically. To be precise, for
two geodesic rays γ1 and γ2 in a proper geodesic space X with a common basepoint
x ∈ X, let their divergence be the infimal length of all paths connecting γ1(t) to
γ2(t) which maintain a distance at least t from the basepoint:

div(γ1, γ2, t) = distX\Bt(x)
(
γ1(t), γ2(t)

)
,

where Bt(x) is the open ball of radius t about x. Note that div may be infinite in
this generality.

This definition is formulated to realize the trichotomy that positive, zero, and
negative curvature correspond to sublinear, linear, and superlinear divergence of
geodesics, respectively; the correspondence is discussed further below. The main
results of this paper provide an upper bound for the divergence of geodesics in
Teichmüller space and the mapping class group for surfaces of finite type.

Throughout this article, we compare non-negative functions f(t) and g(t) using

the symbols
+�,

.�,�,
+
�,

.
�,�,

+
≺,

.
≺,≺ to denote equality or inequality with respect

to an additive constant, a multiplicative constant, or both, respectively, where the
constants depend on the topology of S only. For example, f(t) � g(t) means that
there are constants c1 and c2 depending only on the topology of S such that

1
c1

f(t) − c2 ≤ g(t) ≤ c1f(t) + c2 ∀t .
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γ1(t)

γ2(t)

Figure 1: A path connecting γ1(t) to γ2(t) that stays outside the open ball of
radius t centered at the basepoint.

We may refer to this as the order of a function; for instance if f(t) � t2 we may say

that f is on the order of t2. Note that sometimes the distinction between
+
≺ and

.
≺

is crucial, as in many applications of Theorem 2.3 below. Note also that although
much of the exposition is streamlined by this notation, it is sometimes necessary to
pay attention to the constants, as when considering functions f(t) � t2 and g(t) � t2

and trying to prove that f(t) − g(t) � t2.
With this equivalence relation, any two linear functions (respectively, polynomial

of degree n) are identified. Having f � 1 means the function is bounded above.
Theorem A. Let S be a surface of genus g with p punctures, such that 3g +p > 4.
Let X be either the Teichmüller space T (S) with the Teichmüller metric or the
mapping class group Mod(S) with a word metric from a finite generating set. For
any pair of geodesic rays γ1(t),γ2(t) with a common basepoint x ∈ X,

div(γ1, γ2, t) ≺ t2.

To accomplish the quadratic upper bound, we explicitly construct paths that
travel through chains of product regions. In the Teichmüller case, this path travels
through the thin part of T (S), which is stratified into regions which have a prod-
uct structure, up to additive distortion. Estimating the length of the path uses a
combinatorial formula for distance in Teichmüller space (Theorem 2.4). In the case
of the mapping class group, we use the quasi-isometrically embedded copies of Z2

generated by pairs of Dehn twists about disjoint curves.
This theorem does not provide a quadratic or even linear lower bound for all

divergence rates in either space X, and indeed none is possible since in both cases
there are non-diverging pairs that pass every threshold separation. That is, based
at every point in Teichmüller space or the mapping class group, and for arbitrarily
large M > 0, there are pairs of rays with lim sup div(γ1, γ2, t) = M . One constructs
these examples in Teichmüller space from pairs of quadratic differentials with the
same underlying topology (see [M1]); in the mapping class group, one uses the many
undistorted copies of Z2.

On the other hand, the upper bound is sharp.
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Figure 2: An efficient path chains through product regions in the space.

Theorem B. For each X as above, there exist pairs of rays γ1, γ2 at every basepoint
such that div(γ1, γ2, t) � t2.

Examples realizing the quadratic rate are obtained from axes of pseudo-Anosov
mapping classes. The lower bound on the divergence is furnished by means of
quasi-projection theorems to these axes; in Teichmüller space, this is an immediate
application of a result of Minsky, while in the mapping class group an analogous
result is obtained using hyperbolicity of the curve complex. (See [B] for a different
treatment of divergence in the case of the mapping class group.)

We remark that when 3g+p = 4 (that is, when S is either a once-punctured torus
or a four-times-punctured sphere), the Teichmüller metric on T (S) has negative
curvature and the divergence is exponential. In higher complexity, Teichmüller space
is not hyperbolic ([MW], [Mi1]). However, there is a long-standing analogy between
the geometry of Teichmüller space and that of a hyperbolic space ([Be], [Ke], [M2],
[W1], [Mi2]). This paper provides another point of view from which the Teich-
müller space is quite different from a hyperbolic space.

These results should also be regarded as showing that T (S) and Mod(S) have
intermediate divergence in the following sense. A proper geodesic space X is said to
have exponential divergence if there exists a threshold value D > 0 such that for all
rays γ1, γ2,

div(γ1, γ2, t0) > D for some t0 =⇒ div(γ1, γ2, t) � et.

Gromov hyperbolicity (δ-hyperbolicity) is then equivalent to exponential divergence
(D = 3δ will suffice; see [BrH]). On the other hand, in flat spaces, every two geodesic
rays have a linear divergence function.

A geodesic space can be said to have intermediate divergence if no rays diverge
faster than f(t), and some diverge at the rate f(t), for a function growing super-
linearly but subexponentially.
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In [G1,2], Gersten attributes to Gromov the expectation that there should be
no nonpositively curved spaces of intermediate divergence. However, Gersten con-
structed such an example, giving a finite CAT(0) 2-complex whose universal cover
possesses two geodesic rays which diverge quadratically and such that no pair of
rays diverges faster than quadratically. Furthermore, in those papers, Gersten in-
troduced a variation on divergence which appeals directly to the metric with no
reference to geodesics. (He measures the lengths of paths staying far from a base-
point x between pairs of points at a fixed distance from x, with a slightly weaker
equivalence relation on rates of growth than the one given here.) The advantage of
this approach is that it produces a quasi-isometry invariant, so that the divergence
of a finitely generated group can be discussed without specifying a generating set.
Gersten and Kapovich–Leeb ([G2], [KL]) study divergence in 3-manifold groups and
find that some (namely graph-manifold groups) have quadratic divergence in the
same sense as above. Here, we show that the same behavior occurs in the spaces
T (S) and Mod(S), which have been extensively studied in their own right. Note
that our Theorem A implies quadratic divergence in Gersten’s coarse sense, for the
word metric with respect to any finite generating set.

By contrast, symmetric spaces have a gap in the possible orders of div(−,−, t)
between linear and exponential rates; there, quadratic divergence never occurs for
any pair of rays [Gr]. Thus this paper also highlights the limitations of the long-
standing analogies between T (S) and symmetric spaces.

Acknowledgments. The authors would like to thank the Fields Institute for host-
ing the workshop at which these results were first conceived. We also thank Howard
Masur, Yair Minsky, Saul Schleimer, and Dylan Thurston for very helpful conversa-
tions during the conference. In particular, Saul Schleimer observed that the upper-
bound arguments for Teichmüller space would essentially carry over to the mapping
class group. Thanks also to Misha Kapovich, Rohit Thomas, and an anonymous
referee for helpful comments on the paper.

2 Background

Let S be an orientable, connected topological surface of genus g with p punctures.
Throughout this paper, we assume that 3g + p > 4. In this section, we review some
background material and establish a few lemmas.

The space of curves and arcs. Let Y be an essential subsurface of S (if it is a
proper subsurface, then it has boundary, and we write ∂Y for that set of curves). By
a curve in Y we mean a non-trivial, non-peripheral, simple closed curve in Y and by
an essential arc we mean a simple arc, with endpoints on the boundary of Y , that
cannot be pushed to the boundary of Y . In case Y is not an annulus, the homotopy
class of an arc is considered relative to the boundary of Y ; when Y is an annulus,
the homotopy class of an arc is considered relative to the endpoints of the arc. We
will use Dα to denote the Dehn twist about a simple closed curve α.



726 M. DUCHIN AND K. RAFI GAFA 

Let C(Y ) be the set of all homotopy classes of curves and essential arcs on the
surface Y . We define a distance on C(Y ) as follows: for α, β ∈ C(Y ), define dY (α, β)
to be equal to one if α �= β and α and β can be represented by disjoint curves or
arcs. The metric on C(Y ) is the maximal metric having the above property. Thus,
dY (α, β) = n if α = γ0, γ1, . . . , γn = β is some shortest sequence of curves or arcs
on S such that successive γi are disjoint. Note that the notation C(Y ) is often used
for the complex of curves on Y (see [MM1] for definitions). Instead, we use C(Y ) to
denote the zero-skeleton of the complex of curves and arcs, with distance induced
by the one-skeleton.

In [MM1], Masur and Minsky show that C(S) with the above metric is δ-
hyperbolic in the sense of Gromov, and consequences of this are discussed further
below. The curve complex is well known (and often proved) to be connected. The
isometry group of C(S) is the mapping class group Mod(S) of S, as shown by Ivanov,
Korkmaz, and Luo.

Subsurface projections. For α a curve in S, we define the subsurface projection
of α to the essential subsurface Y as follows: Let

f : S̄ → S

be a regular covering of S such that f∗(π1(S̄)) is conjugate to π1(Y ) (this is called the
Y -cover of S). Since S admits a hyperbolic metric, S̄ has a well-defined boundary at
infinity, and we use the same notation S̄ to denote the cover with its boundary added
when appropriate. Let ᾱ be the lift of α to S̄. Components of ᾱ that are essential
arcs or curves on S̄, if any, form a subset of C(S̄). The surface S̄ is homeomorphic
to Y . We call the corresponding subset of C(Y ) the subsurface projection of α to
Y and will denote it by αY . If there are no essential arcs or curves in ᾱ, then αY

is the empty set; otherwise we say that α intersects Y essentially. This projection
only depends on α up to homotopy.

Let α and α′ be curves in S that intersect a subsurface Y essentially. We define
the projection distance between α and α′ to be the maximum distance in C(Y )
between the elements of the projections αY and α′

Y , and denote it by dY (α,α′). If
Y is an annulus whose core is the curve γ, then we may denote C(Y ) by C(γ) and
dY (α,α′) by dγ(α,α′).

Many of the results in the Masur–Minsky papers on the geometry of the curve
complex proceed by analyzing the structure of C(S) in terms of subsurfaces Y by
means of subsurface projection. For instance, here is a useful result from [MM1].
Theorem 2.1 (Theorem 3.1 in [MM1]). There is a constant M0 such that if the
projection distance to some subsurface Y satisfies

dY (α, β) ≥ M0 ,

then any geodesic in C(S) connecting α to β intersects the 1-neighborhood of ∂Y .

Markings. Following Thurston, a pants decomposition on S is a maximal collec-
tion of disjoint curves; these 3g − 3 + n curves are called the pants curves of that
decomposition. The Fenchel–Nielsen coordinates on T (S) are obtained by assigning
a length and a twist coordinate to each curve in a pants decomposition. Alterna-
tively, a second set of curves may be chosen, transverse to the first, so that lengths
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of all 6g − 6 + 2n curves give approximate coordinates on T (S). Along these lines,
we define a marking on S to be a set of pairs of curves µ = {(α1, β1), . . . , (αm, βm)}
such that {α1, . . . , αm} is a pants decomposition of S, the curve βi is disjoint from
αj when i �= j, and intersects αi once (respectively, twice) if the surface filled by
αi and βi is a once-punctured torus (respectively, a four-times-punctured sphere).
The pants curves αi are called the base curves of the marking µ. For every i, the
corresponding βi is called the transverse curve to αi in µ. When the distinction
between the base curves and the transverse curves is not important, we represent
a marking as simply a set of 2m curves. Denote the space of all markings on S by
M(S).

Still following [MM2], there are two types of elementary moves in M(S).
1. Twist: Replace βi by β′

i, where β′
i is obtained from βi by a Dehn twist or a

half twist around αi.
2. Flip: Replace the pair (αi, βi) with (βi, αi); also “clean up” by, for j �= i,

replacing βj with a curve β′
j that does not intersect βi (the new base curve)

in such a way that dαj (βj , β
′
j) is as small as possible (see [MM2] for details).

In the first move, a twist can be positive or negative. A half twist is allowed when
αi and βi intersect twice. Masur–Minsky analyzed the geometry of the curve com-
plex by finding efficient paths of markings through elementary moves. The follow-
ing theorem is a version of their result in which the high powers of Dehn twists
are rearranged to appear consecutively; this adaptation facilitates computations of
Teichmüller distance through changes of marking.
Theorem 2.2 [R1]. There exists a constant K (depending on S) such that for any
two markings η1, η2 on S, there is a path of markings

η1 = µ1, . . . , µn = η2 ,

where µi and µi+1 differ by an elementary move except that, for each α with
dα(η1, η2) ≥ K, there is a unique index iα such that

µiα+1 = Dp
αµiα with |p| +� dα(η1, η2) .

This path is efficient:
n �

∑
Y ⊆S

[
dY (η1, η2)

]
K

,

where the sum is over non-annulus subsurfaces Y and [N ]K :=

{
N , N ≥ K ,

0 , N < K .

Product regions in Teichmüller space. Let T (S) denote the Teichmüller space
of S equipped with the Teichmüller metric. A point τ ∈ T (S) is a hyperbolic metric
on S (constant curvature −1). Minsky has shown that the thin part of Teich-
müller space has a product-like structure, as we now describe. Let Γ be a set of
disjoint curves on S and let Thinε(Γ) denote the set of points in Teichmüller space
such that all curves from Γ are short in hyperbolic length:

Thinε(Γ) :=
{
τ ∈ T (S)

∣∣ lτ (γ) < ε for all γ ∈ Γ
}

.
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These cover the ε-thin part of Teichmüller space, which consists of those metrics
with some short curve:

Thinε :=
{
τ ∈ T (S)

∣∣ injrad(τ) < ε
}

.

The ε-thick part is the complement of Thinε. Let Prod(Γ) denote the product space,

Prod(Γ) := T (S \ Γ) ×
∏
γ∈Γ

Hγ ,

where S \Γ is considered as a surface of lower complexity and each Hγ is a horoball
in the copy of the hyperbolic plane parametrizing the Fenchel–Nielsen coordinates
corresponding to a short curve γ (the x-coordinate in Hγ represents the twist pa-
rameter along γ in σ and the y-coordinate represents the reciprocal of the length
of γ in σ; see [Mi1]). Endow Prod(Γ) with the sup metric. Minsky has shown, for
small enough ε, that Thinε(Γ) is well-approximated by Prod(Γ).
Theorem 2.3 (Product regions [Mi1]). The Fenchel–Nielsen coordinates on T (S)
give rise to a natural homeomorphism π : T (S) → Prod(Γ). There exists an ε0 > 0
sufficiently small that this homeomorphism restricted to Thinε0(Γ) distorts distances
by a bounded additive amount.

Note that T (S \ Γ) =
∏

Y T (Y ), where the product is over all connected com-
ponents Y of S \ Γ. Let π0 denote the coordinate factor of π mapping to T (S \ Γ),
let πY denote the coordinate factor mapping to T (Y ), and, for γ ∈ Γ, let πγ denote
the coordinate factor mapping to Hγ .

Short markings and Teichmüller distance. Let σ be a point in the Teich-
müller space T (S) of S. A short marking on σ is a marking whose curves are chosen
greedily to be as short as possible with respect to hyperbolic length. That is, let
α1 be a simple closed curve of minimal length in σ, α2 a shortest curve disjoint
from α1, and so on, to form a pants decomposition of S (the Bers constant gives
an upper bound on the lengths of curves in a greedily chosen pants decomposition).
Then, let the transverse curve βi be the shortest curve intersecting αi and disjoint
from αj , i �= j. There are only finitely many choices in this process. The following
distance formula relates the Teichmüller distance between two points σ1 and σ2 to
the combinatorics of short markings in σ1 and σ2. Let ε0 be as before. Define Γ12
to be the set of curves that are ε0-short in both σ1 and σ2, and, for i = 1, 2, define
Γi to be the set of curves that are ε0-short in σi but not in σ3−i. Let η1 and η2 be
short markings on σ1 and σ2, respectively.
Theorem 2.4 [R1]. For sufficiently large K, the distance in T (S) between σ1 and
σ2 is given by the following formula:

dT (σ1, σ2) �
∑
Y

[
dY (η1, η2)

]
K

+
∑

α�∈Γ12

log
[
dα(η1, η2)

]
K

+ max
α∈Γ12

dHα(σ1, σ2) + max
α∈Γi
i=1,2

log
1

lσi(α)
, (1)

where [N ]K :=

{
N , N ≥ K ,

0 , N < K ,
as before.
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For the rest of the paper, we fix ε0 so that Minsky’s product regions theorem
and Theorem 2.4 hold.

Subsurface distances and word length in the mapping class group. Con-
sider the mapping class group Mod(S) of the surface S. We fix a finite set A of
curves in S such that the set {Dα : α ∈ A} of Dehn twists around curves in A
generates Mod(S). (It follows that the curves in A fill S.) Equip Mod(S) with the
word metric corresponding to this generating set and denote the word length of an
element h ∈ Mod(S) by |h|.
Definition 2.5 (Subsurface distance). Let Y be a subsurface of S and µ1, µ2 be
two sets of curves on S. We define

dY (µ1, µ2) = max
α1∈µ1, α2∈µ2

dY (α1, α2) ,

where dY (α1, α2) is as defined above. For h ∈ Mod(S), let

dY (h) = dY

(
A, h(A)

)
,

A as above. When Y is an annulus whose core curve is γ, we may write dγ(h)
instead of dY (h).

Note that since A fills S, h(A) fills S as well for every h; therefore, h(A) intersects
every subsurface essentially and the projection of h(A) to Y is always non-empty.

Next, we need the following theorem of Masur and Minsky which relates the word
length of a mapping class h to the subsurface distances corresponding to h. The sum
in the statement of the theorem is broken into two parts (summing over annular and
non-annular subsurfaces) to highlight the comparison between this case and that in
Theorem 2.4. The theorem essentially says that word length is comparable to the
sum of the very large subsurface projections.
Theorem 2.6 (Word length in the mapping class group [MM2]). There is a
constant K0 such that for every threshold K ≥ K0 there exists c such that for every
h ∈ Mod(S),

|h|
c ≤

∑
α

[
dα(h)

]
K

+
∑
Y

[
dY (h)

]
K
≤ c |h| , (2)

where the first sum is over all curves on S, the second sum is over all subsurfaces of

S that are not an annulus or a pair of pants and [N ]K :=

{
N , N ≥ K ,

0 , N < K .

We will sometimes refer to such a constant c as the word-length constant (for a
threshold K), taking c0 to be the value corresponding to K0.

We also need the following few simple lemmas.
Lemma 2.7. For h1, h2, h3 ∈ Mod(S) and any subsurface Y of S, we have the
following triangle inequality.

dY

(
h1(A), h3(A)

) +
≺ dY

(
h1(A), h2(A)

)
+ dY

(
h2(A), h3(A)

)
.

Proof. The set A has bounded diameter in C(S), therefore its projection to any
subsurface Y also has bounded diameter. The same is true for hi(A), i = 1, 2, 3.
But dY satisfies the triangle inequality in C(Y ). Therefore, the above inequality is
also true with the additive error of at most 3 diam(A) in C(S). �
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One may think of dα as measuring the relative twisting between two curves
around α.
Lemma 2.8. For any curve α in S and any mapping class h ∈ Mod(S),

dα(Dn
α h)

+
� n − c |h| ,

where c is the word-length constant.

Proof. Using Lemma 2.7, we have

dα(Dn
α h) = dα

(
A,Dn

α h(A)
) +
� dα

(
h(A),Dn

α h(A)
)
− dα

(
A, h(A)

)
+
� n − dα(h) .

Here, the last estimate is valid because h(A) fills, so it contains a curve β such that

dα(β,Dn
αβ)

+� n. Finally, Theorem 2.6 implies that dα(h)
+
≺ c |h| and the lemma

follows. �

Lemma 2.9. If α and β are disjoint, then dα(Dn
β) has an upper bound that is

independent of n.

Proof. Let S̄ be the annular cover of S with respect to α, let ᾱ be the lift of α that
is a closed curve and Ā be the set of lifts of the elements of A which intersect ᾱ.
Let γ be a curve in S intersecting α but not β such that dα(A, γ) � 1 (the last
condition can be obtained after applying an appropriate power of Dα to γ). Let γ̄
be a lift of γ to S̄ that intersects ᾱ.

Since S is hyperbolic, S̄ has a well-defined boundary at infinity. The lifts of β are
arcs with endpoints on the boundary; a Dehn twist around β in S lifts to shearing
along these arcs in S̄. Since γ̄ is disjoint from all lifts of β, no amount of shearing
of Ā along lifts of β can change the intersection number of Ā with γ̄. That is,

dα(γ,A) = dα(γ,Dn
βA) � 1 ,

and therefore
dα(A,Dn

βA) ≤ dα(γ,A) + dα(γ,Dn
βA) � 1 . �

Lemma 2.10. For all words h ∈ Mod(S), all integers n,m, and all curves α and β
such that i(α, β) = 0, we have

|Dn
αDm

β h|
+
� max(|n|, |m|)

c
− |h|

for the word-length constant c.

Proof. Without loss of generality, n ≥ m ≥ 0. We have

|Dn
αDm

β h|
+
� dα(Dn

αDm
β h)/c (Theorem 2.6)

= dα(Dn
βDm

α h)/c (Dα and Dβ commute)
+� dα(Dn

α h)/c (Lemma 2.9)
+
� n/c − |h| . (Lemma 2.8)

This completes the proof. �
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Below, we will need to construct paths outside the ball Bt(e) in Mod(S). To
initiate, it will be necessary to push away from the ball; the following lemma says
that for any Dehn twist, a power of either it or its inverse accomplishes this. Let

φ : N → Mod(S)
be a geodesic ray in Mod(S) based at the identity.
Lemma 2.11 (Pushing off). There is a constant d ∈ N such that, for any curve
α ∈ A and any nonnegative integers n,m, t ∈ N, the magnitudes |Dn

αφ(dt)| and
|D−m

α φ(dt)| are not both less than or equal to t.

Proof. Let c be the word-length constant from Theorem 2.6 and set d > c + 2. Let
h = φ(dt) and suppose, for contradiction, that

|Dn
α h| ≤ t and |D−m

α h| ≤ t

for some m,n. Then |Dm+n
α | ≤ 2t. But dα(Dm+n

α ) ≥ m + n − 1. Using the word-
length constant from Theorem 2.6, we obtain

m + n ≤ 2c t + 1 . (3)
Since Dα is a generator for Mod(S), |Dn

α| ≤ n. Thus
t ≥ |Dn

αh| ≥ |h| − |Dn
α| ≥ dt − n .

That is, n ≥ (d − 1)t. Similarly, m ≥ (d − 1)t and
m + n ≥ 2(d − 1)t > 2(c + 1)t = 2c t + 2t > 2c t + 1 ,

which is a contradiction. �

Consequences of hyperbolicity. Recall that a space is called is δ-hyperbolic
for some δ > 0 if every geodesic triangle is δ-thin: each side is contained in a
δ-neighborhood of the union of the other two sides. Also, if a geodesic is re-
garded as an isometric embedding from (a subinterval of) R into X, then a Q-
quasi-geodesic replaces the equality with a coarse equality with additive and multi-
plicative constant Q. We collect here some standard consequences of hyperbolicity
for use later in the paper. (See [BrH] for a reference on hyperbolic spaces and
quasi-geodesics.)

For the following three lemmas, let X be a δ-hyperbolic space and let L ⊂ X be
a Q-quasi-geodesic line, ray, or segment. Suppose a, b ∈ X and ā, b̄ ∈ L are such
that d(a, ā) and d(b, b̄) realize the distance from a and b, respectively, to L.
Lemma 2.12 (Thin quadrilaterals). There exist constants M1 = M1(δ,Q) and
M2 = M2(δ,Q) such that if d(ā, b̄) > M1, then any geodesic from a to b intersects
the M2-neighborhood of L.

Lemma 2.13 (Bounded shadows). There exists a constant M3 = M3(δ,Q) such
that for any geodesic segment I from a to ā, the closest-point projection of I to L
has diameter ≤ M3.

Lemma 2.14 (Bounded projection). There exists a constant M4 = M4(δ,Q) such
that d(ā, b̄) ≤ M4 · d(a, b) + M4.

Below, we will write ProjL for the closest-point projection to a quasi-geodesic L.
Since ProjL(a) is of bounded diameter, this is a coarsely well-defined map.

Recalling from above the Masur–Minsky result that C(S) is δ-hyperbolic, we will
reserve the notation δ for this particular hyperbolicity constant.



732 M. DUCHIN AND K. RAFI GAFA 

3 Divergence in Teichmüller Space

As before, let T (S) denote the Teichmüller space of S equipped with the Teich-
müller metric. For a quadratic differential q on a Riemann surface of topological
type S, let [q] be the corresponding point of T (S). (That is, [q] is the hyperbolic
metric in the conformal class of q; for more background on Teichmüller space and
quadratic differentials, see for instance [St], [A], or [H].) Take σ ∈ T (S) and two
quadratic differentials q1 and q2 such that [q1] = [q2] = σ. Let q1(t) and q2(t) be the
images of q1 and q2, respectively, under the time-t Teichmüller geodesic flow. The
maps

t �→
[
qi(t)

]
, i = 1, 2 ,

from [0,∞) to T (S) are geodesic rays in T (S) emanating from σ. We want to show
that for all σ, q1, q2 as above and t > 0, there is a path from [q1(t)] to [q2(t)] in T (S)
with length on the order of t2 that stays outside Bt(σ), the open ball of radius t in
T (S) centered at σ (see Fig. 1).

We will repeatedly use the same argument to show that a point in T (S) maintains
a distance at least t from σ: we show that the value ε(t) = e−2t is small enough that
any point in τ ∈ T (S) with an ε-short curve satisfies dT (τ, σ) ≥ t. Then we carry
out the appropriate sequence of elementary moves while maintaining some ε-short
curve at all times.

Constructing a path for the upper bound. To begin the progress from one
ray to the other, we push off from the ball Bt(σ) of radius t around σ so that the
subsequent moves are guaranteed to stay far from σ. It suffices to construct, for
sufficiently large t, a path between σ1 = [q1(3t)] and σ2 = [q2(3t)] whose length is
of order t2, while controlling the distance from σ. The path will follow a sequence
of elementary moves, maintaining a sufficiently short curve at all times in order to
ensure that we stay outside Bt(σ).

Fix ε = e−2t and suppose α on S and τ ∈ T (S) satisfy lτ (α) ≤ ε. In [W2], it is
shown that for a K-quasi-conformal map between Riemann surfaces, the hyperbolic
lengths of curves are changed by at most a multiplicative factor of K. Consequently
the Teichmüller distance is bounded below by the ratio of hyperbolic lengths for any
particular curve.

dT (σ, τ) ≥ 1
2

log
lσ(α)
lτ (α)

≥ 1
2

log
ε1

ε
≥ t .

That is, this value of ε has the property described above that if any curve on a
surface τ is ε-short, then τ �∈ Bt(σ).

We first give the argument under the assumption that the path starts and ends
in the ε0-thick part (that is, σ1, σ2 �∈ Thinε0); we will treat the general case last.
Recall that ε0 is chosen as in the product regions theorem.

Let µ1, . . . , µn be the sequence of markings described in Theorem 2.2 such that
η1 = µ1 is a short marking on σ1 and η2 = µn is a short marking on σ2. Note that
the condition that σ1 and σ2 are in the ε0-thick part of Teichmüller space implies
that the length of ηi in σi is bounded independent of t.
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For an elementary move on a marking, let the associated base curve be either the
twisting curve, if the move is a twist, or the (initial) base curve in the flipped pair, if
the move is a flip. For the sequence of markings {µi}, let αi be the associated base
curve for the move µi → µi+1 and let γi be any base curve of the marking µi which
is different from αi (the complexity condition 3g + p > 4 implies that there are at
least two base curves in every marking). Note that γi and γi+1 have intersection
number zero. For any marking µi and M sufficiently large, the set

Bi =
{
τ ∈ T (S) : lτ (µi) ≤ M

}
⊂ T (S)

is nonempty and has bounded diameter (this follows, again, from the Wolpert for-
mula). Fix such an M , which is suppressed in the notation Bi from here on.

Since we can assume t is sufficiently large, we will proceed taking t> max{diam Bi}
and t > log 1/ε1, where ε1 is the injectivity radius of σ.

Let τ1 = σ1, τn = σ2 and, for 1 < i < n, choose τ i to be a point in Bi.
Let τ i

γi
be the point of T (S) that has the same Fenchel–Nielsen coordinates as

τ i except that γi (which has bounded length in τ i) is pinched to have length equal
to ε. Let τ i

γi−1
and τ i

γi−1γi
be defined similarly. Consider the piecewise geodesic path

P in T (S) defined by connecting up the points in the sequence below:

σ1 = τ1 p1−→ τ1
γ1

e1−→ τ2
γ1

p2−→ τ2
γ1γ2

p̄1−→ τ2
γ2

e2−→ τ3
γ2

p3−→ τ3
γ2γ3

p̄2−→ τ3
γ3

−→ · · ·

· · · −→ τn−1
γn−2γn−1

p̄n−2−→ τn−1
γn−1

en−1−→ τn
γn−1

p̄n−1−→ τn = σ2 .

There are three kinds of steps:
(pi) pinches the next curve, γi, by shortening it to length ε;
(ei) applies an elementary move while keeping the curve γi short;
(p̄i) releases the previous curve, γi, by restoring it to its length before pinching.

We may think of pi, p̄i and ei as paths in T (S) which are subpaths of P . We
denote the lengths of these paths by |pi|, |p̄i| and |ei| respectively. We will bound
the lengths of these subpaths and show that they stay outside Bt(σ) in order to
complete the proof of Theorem A for T (S).

Except along p1 and p̄n−1, at every point in the path P , at least one curve has
length equal to ε; therefore, by the choice of ε, these points are outside Bt(σ). The
lengths of the subpaths p1 and p̄n−1 are (up to an additive error) equal to t and they
have one point at distance 3t from σ; therefore these subpaths are also outside Bt(σ).

We will estimate the lengths of the pi and p̄i by showing that

dT (τ i, τ i
γi

)
+� dT (τ i, τ i

γi−1
)

.� t ,

and
dT (τ i

γi−1
, τ i

γi−1γi
)

+� dT (τ i
γi−1γi

, τ i
γi

)
.� t ,

To estimate the distance from τ i to τ i
γi

, consider first pinching the curve γi in τ i

to obtain a new metric τ ∈ T (S), where γi has length ε0. The path from τ i to τ
has bounded length because both τ i and τ are in Bi, which has bounded diameter.
Now letting Γ = {γi}, we note that τ, τ i

γi
are both in Thinε0(Γ) and Theorem 2.3

applies. But their projections to S \Γ are identical. Therefore, their distance, up to
an additive error, is equal to the distance in Hγi between πγi(τ

i
γi

) and πγi(τ), their
projections to that factor. The points τ and τ i

γi
have the same twisting parameters



734 M. DUCHIN AND K. RAFI GAFA 

around γi (the x-coordinates of their projections to Hγi are the same), but different
length parameters (the y-coordinates are 1/ε0 and 1/ε respectively). Therefore

dT (τ i
γi

, τ)
+� dHγi

(
πγi(τ

i
γi

), πγi(τ)
)

= 1
2 log ε0

ε

+� t .

Next, we estimate the lengths of the ei by showing that

dT (τ i
γi

, τ i+1
γi

)
+�

{
1 if µi and µi+1 differ by an elementary move ,

log p if µiα+1 = Dp
αµiα , |p| +� dα(η1, η2) ≥ K .

If the elementary move from µi to µi+1 is a simple twist or flip, then the length
of the segment (ei) is bounded. This is because πγi(τ

i
γi

) and πγi(τ
i+1
γi

) are within
bounded distance, and therefore

dT (τ i
γi

, τ i+1
γi

)
+� dS\γi

(
π0(τ i

γi
), π0(τ i+1

γi
)
)

+� dS\γi

(
π0(τ i), π0(τ i+1)

)
+
≺ dT (τ i, τ i+1) � 1 .

But there can also be high powers of twists: for every α where dα(µ1, µn) is large
there is an index iα where µiα+1 = Dp

αµiα , as in Theorem 2.2. Here the length of
(ei) is on the order of log dα(µ1, µn). Therefore the total length of P is∑

i

|pi| + |p̄i| + |ei| � n t +
∑
α

log
[
dα(µ1, µn)

]
K

.

But Theorem 2.2 and Theorem 2.4 imply
n �

∑
Y ⊆S

[
dY (µ1, µn)

]
K
≤ dT (σ1, σ2) ≤ 6t .

It follows that the length |P | is at most on the order of
(6t) t + 6t

.� t2.

This tells us in particular that the elementary moves (which move within a sin-
gle product region) contribute negligibly to the total length of the path when the
quadratic rate is realized; the pinch-and-release steps (which pivot from one product
region to the next) account for the whole length of the path, asymptotically.

Above, we assumed that the starting and ending points of the path were in the
ε0-thick part. This condition was used in the definition of τ i (for example we have
assumed that τ1 ∈ B1). This assumption is not always true. However, we can
modify the beginning and the end of the path above to accommodate the general
case as follows:

Let τ be a point in T (S) with the same Fenchel–Nielsen coordinates as σ1 except
that the length of γ1 is ε. Let τ1

γ1
be the point obtained by increasing the lengths

of other short curves (lengths less than ε0) to a moderate length. We will show
that these paths P1 = [σ1, τ ] and P2 = [τ, τ1

γ1
] are outside Bt(σ) and have length of

order t; the rest of the calculation reverts to the arguments above.
Note that there is a lower bound on the σ1-lengths of all curves. That is, again

using [W2] and recalling that ε1 is the injectivity radius at σ,
1
2

log
lσ(γ)
lσ1(γ)

≤ 3t ∀γ =⇒ lσ1(γ) ≥ lσ(γ)
e6t

≥ ε1e
−6t.
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Since there is no twisting or other change in the marking, it follows from Theorem 2.4
that both of the paths P1 and P2 have length at most on the order of t (the only
contribution to distance comes from the length ratios). The path P2 stays outside
Bt(σ) because along this path the curve γ1 has length ε. To see that the path P1
is outside Bt(σ) we take two cases. If the length of γ1 in σ1 is less than ε, then
it remains less than ε along this path and we are done. If ε0 ≥ lσ1(γ1) ≥ ε, then

the length of this path is no more than 1
2 log ε0

ε

+� t by the product regions theorem
(Theorem 2.3). But dT (σ, σ1) = 3t, which completes the argument.

Applying the same modifications to the end of path P , we obtain the desired
result for the general case.

Example realizing the quadratic rate. To see that the quadratic estimate is
sharp, we must furnish an example of a pair of rays whose divergence rate is exactly
quadratic. We will use a quasi-projection result of Minsky [Mi2] which shows that
intervals which are far (relative to their length) from a cobounded geodesic (segment,
ray, or line) project to sets whose diameter is uniformly bounded above. Recall that
an ε-cobounded geodesic in T (S) is one which stays in the ε-thick part. (Note
that part of the proof entails that Proj, the closest-point projection, is coarsely
well-defined in the following setting.)
Theorem 3.1 (Quasi-projection for T (S) [Mi2]). For every ε > 0 there are
constants b1, b2 depending on ε and the topology of S such that the following holds.
Let G be an ε-cobounded geodesic in T (S), suppose τ ∈ T (S) satisfies d(τ,G) > b1,
and let r = d(τ,G) − b1. Then

diam
(
ProjG(Br(τ))

)
≤ b2 .

It is straightforward to replace the geodesic in the statement of the theorem with
a quasi-geodesic. Also note that it suffices to check a bounded geometry condition
for the endpoints of the geodesic (in T (S) or on the Thurston boundary) to ensure
that it stays in the thick part [R2].

To apply this theorem, we may for instance choose q and q′ = −q to point in
opposite directions along the axis of a pseudo-Anosov mapping class. (Cobounded-
ness is guaranteed because pseudo-Anosov axes project to closed curves in moduli
space.)
Proposition 3.2. For any ε-cobounded geodesic G in T (S) and any point σ ∈ G,
let σt and σ′

t be the points on G at distance t from σ. Then for any path P in T (S)
from σt to σ′

t which maintains a distance at least t from σ,

|P | � t2.

Proof. Take G0 to be the subsegment of G of length t, centered at σ. Then any path
P between σt and σ′

t outside Bt(σ) maintains a distance at least t/2 from G0 at all
times.

Now if P is a path connecting σt and σ′
t in T (S) of length |P |, we can divide it

into pieces of length t/2, taking P = I1 ∪ · · · ∪ In for successive pieces of length t/2
(with In possibly shorter). The number of these intervals, n, satisfies

2|P | ≤ nt ≤ 2|P | + t .
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Each Ii maintains a distance at least t/2 from G0. Since |Ii| ≤ t/2 and t is
large, Ii is covered by two balls of radius t/2 − b1, centered on the endpoints of the
interval. Thus Minsky’s quasi-projection theorem assures that |ProjG0

(Ii)| < 2b2
for each i. If the endpoints of Ii are xi−1 and xi and x̄i−1 and x̄i are closest-point
projections to G, we see that d(x̄i−1, x̄i) ≤ 2b2. But then t = d(x̄0, x̄n) ≤ 2nb2, and
since nt � |P |, we obtain |P | � t2. �

4 The Mapping Class Group

Constructing a path for the upper bound. Consider two infinite distinct
geodesic rays,

φ : N → Mod(S) and ψ : N → Mod(S) ,

in Mod(S) emanating from a common point (without loss of generality, the identity
element) in Mod(S). We want to show that, for all t ∈ N, there is a path from
φ(t) to ψ(t) in Mod(S), such that no point in this path is within distance t of the
origin, and whose length is on the order of t2. We construct this path by traveling
iteratively through chained copies of Z2, each copy generated by Dehn twists about a
pair of disjoint curves. However, first we need to move far enough from the identity,
to points φ(dt) and ψ(dt), so that the first few steps of the sequence are sure not to
backtrack near the identity. This is accomplished by taking d from Lemma 2.11.

Let Bt = Bt(e) be the ball of radius t in Mod(S) about the identity. The segments
[φ(t), φ(dt)] and [ψ(t), ψ(dt)] stay outside Bt and their lengths are of order t. To
prove Theorem A for Mod(S), it is sufficient to build a path P between the two
points u = φ(dt) and v = ψ(dt) that stays outside Bt and has length on the order
of t2.

The path from u to v will involve high powers of Dehn twists arranged in “switch
moves” from one twist flat to the next. We fix the exponent m = m(t) to be larger
than (3dc + c)t (but of order t).
Lemma 4.1 (Switch moves). For any two curves α, β ∈ A, any w ∈ Mod(S) with
|w| ≤ 3dt, and m chosen as above, there is a path (
) from Dm

α w to Dm
β w staying

outside Bt and of length ≺ t.

Proof. For the curves α, β, we fix a chain of curves
{γαβ

i } = {γαβ
1 , . . . , γαβ

k }, with k = k(α, β) , (4)
having the property that

α − γαβ
1 − · · · − γαβ

k − β

is a path in the curve complex, that is, each adjacent pair of curves is disjoint on S.
When there is no ambiguity about α and β, we denote these curves simply by {γi}.
Define (
) to be the following path from Dm

α w to Dm
β w:

Dm
α w

Dm
γ1−→ Dm

γ1
Dm

α w
D−m

α−→ Dm
γ1

w
Dn

γ2−→ Dm
γ2

Dm
γ1

w → · · · → Dm
γk

Dm
β w

D−m
γk−→ Dm

β w .
(
)

Every word visited by this path has the form Dm
γi

Dm′
γj

w for some 0 ≤ m′ ≤ m
and by Lemma 2.10 has word length at least m/c− 3dt ≥ t. Therefore, the subpath



GAFA DIVERGENCE OF GEODESICS 737 

(
) stays outside Bt. Also, an upper bound for k = k(α, β) depends on the choice
of A only. Therefore the length of each subpath (
) (which is 2km) is of order t. �

To illustrate how the switch moves work we consider the following example.
Suppose that α− γ1 − γ2 −β is a path in the curve complex from α to β and denote
the associated Dehn twists by a, g, h and b, respectively. Note that 〈a, g〉, 〈g, h〉 and
〈h, b〉 are free abelian subgroups of Mod(S). Let w be the word

w = h−m bm g−m hm a−m gm.

After cancellation, w is equivalent to bma−m. Assuming that a, g, h and b are all
in the generating set of Mod(S), we can also consider w as path along the edges of
the Cayley graph of Mod(S) connecting am to bm (first follow edges marked by the
generator g for m steps, then follow edges marked a−1 for m steps, and so on). Note
that, in the process of carrying out the word, we stay far from the identity in the
Cayley graph: for any decomposition w = vw′, the word w′am contains a high power
of at least one of a, g, h or b, so its word-length is large. This path starts from am,
travels through the quasi-flat 〈a, g〉 to gm, through 〈g, h〉 to hm and through 〈h, b〉
to bm. (On the other hand, the shorter path connecting am to bm corresponding to
the word bma−m would go through the identity.)

. . .
gn

gn

(
)

g2g1

. . .

g2

g1

. .
.

(
)

(
)

Figure 3: The path in the Cayley graph pushes off from the ball Bt and moves
through a chain of Dehn twist flats in Mod(S).

Now we will build a path P from u to v using these switch moves. Let n = |u v−1|
and write u v−1 = gn · · · g2g1, where gi = D±1

αi
, αi ∈ A, is a generator. For 0 ≤ r ≤ n,

let vr = gr · · · g1 v, so that v0 = v and vn = u.

v
g±m
1−→ g±m

1 v
g1−→ g±m

1 v1
(�)−→ gm

2 v1
g2−→ gm

2 v2
(�)−→ gm

3 v2 −→ · · ·

· · · −→ gm
n−1vn−1

(�)−→ g±m
n vn−1

gn−→ g±m
n vn

g∓m
n−→ vn = u .
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The signs ± are chosen by Lemma 2.11, which implies that the segments [v, gm
1 v]

and [v, g−m
1 v] do not both intersect Bt. We choose the segment for the beginning

of P that is disjoint from Bt. Similarly, the sign for the power at the last step is
chosen so that the path from vn to g±m

n vn is outside Bt. Note that n ≤ 2dt and
|vi| ≤ |v| + n ≤ 3dt; therefore, by Lemma 2.8 and the assumption on m,

dαj (g
m
j vi)

+
� m − 3dct ≥ ct .

By Theorem 2.6, we get |gm
j vi| ≥ t, which confirms that all of P stays outside Bt.

We have shown that the length of path P , which contains n − 1 “switch move”
subpaths, is of order t2. This finishes the proof of Theorem A for Mod(S).

Example realizing the quadratic rate. We now prove Theorem B for the case
of Mod(S) by first establishing a quasi-projection theorem. Note that closest-point
projection is not in general well-behaved in the mapping class group itself, so the the-
orem is stated in terms of projection in the curve complex. We map from Mod(S) to
C(S) by the coarse map g �→ gA. Note that the word-length formula (Theorem 2.6)
ensures that this map is coarsely Lipschitz.

Distance contraction results for the mapping class group with arguments based
on subsurface projection appear with various formulations in the literature (includ-
ing Masur–Minsky, Behrstock, and forthcoming work of Brock–Masur–Minsky). A
statement is given and proved here in the generality which we will require, providing
a strong parallel with Theorem 3.1.

A geodesic line, ray, or segment in Mod(S) is called E-cobounded if for every
proper subsurface Y ⊂ S and for every two elements a, b ∈ G, we have dY (aA, bA)
≤ E.
Theorem 4.2 (Quasi-projection for Mod(S)). For every E > 0 there exist con-
stants B1 and B2 depending on E and the topology of S such that the following
holds. Let G ⊂ Mod(S) be an E-cobounded geodesic, suppose g ∈ Mod(S) satisfies
d(g,G) > B1, and let R = d(g,G)/B1. Then G = GA is a quasi-geodesic in C(S)
and

diam
(
ProjG(BR(g)A)

)
≤ B2 .

As before, the theorem could be stated for quasi-geodesics with the same argu-
ment. Note that for quasi-projection to a segment, it suffices that the endpoints
a, b ∈ Mod(S) satisfy dY (aA, bA) ≤ E in order for the conclusion to obtain.

For a concrete application, consider a pseudo-Anosov element w and its axis {wn}
in Mod(S). These axes are known to be cobounded by work of Masur–Minsky.
We then apply the quasi-projection theorem exactly as above to show that, for
a high power m, any path P connecting w−m to wm outside the ball of radius
t := |wm| � |m| must have length at least on the order of t2. (Since projection to the
curve complex coarsely contracts distances, this agrees with the desired inequality.)

The rest of this section is devoted to proving Theorem 4.2. The constants in the
rest of this section will depend on the choice of E, which is chosen once and for all.
Keeping this in mind we can write, for example,

dS(A,G) � 1 .
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Proof of Theorem 4.2. Let h ∈ BR(g). Let α = g(A) and β = h(A) (these are sets
of curves, and they fill S). Let α and β be closest-point projections of α and β to G,
respectively. Choose g, h ∈ G so that

g(A) ∩ α �= ∅ and h(A) ∩ β �= ∅ ,

which is possible because G = GA. Our goal is to show that dS(α, β) ≤ B2, so
assume for contradiction that

dS(α, β) > B2 .

α

M2

> B2

β

β

α

G

Figure 4: We assume for contradiction that the projections of α and β to G
are far apart in C(S).

Given any K, c as in Theorem 2.6, we can define Y to be the set of proper
subsurfaces Y � S with dY (α,α) ≥ K. By the theorem’s hypothesis, we have
|g−1g| = d(g, g) ≥ d(g,G) = B1R and so∑

Y ∈Y
dY (α,α) + dS(α,α) ≥ |g−1g|

c
≥ B1R

c
.

We will proceed in two cases. First assume that

dS(α,α) ≥ B1R

2c
. (5)

If B2 > M1, then any geodesic connecting α to β passes through the M2-neighbor-
hood of G, by Lemma 2.12. Hence for large enough B1, we have

dS(α, β) ≥ dS(α,α) − M2 ≥ B1R

2c
− M2 ≥ B1R

3c
.

Enlarging B1 again if necessary, we can assume dS(α, β) ≥ K0. Theorem 2.6 implies

|h−1g| ≥ 1
c
dS(α, β) ≥ B1R

3cc0
> R ,

for B1 sufficiently large. But this contradicts the assumption that d(g, h) ≤ R.
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In the second case, the assumption of Equation (5) is not true, so we have∑
Y ∈Y

dY (α,α) ≥ B1R

2c
, (6)

where again Y is chosen relative to the threshold K.
Next we show that the subsurfaces with large projection distance between α and

α do not also have a large distance between β and β.

Claim. For every Y ∈ Y, dY (β, β) ≤ M0.

Proof. If K > M0, then Theorem 2.1 implies that any geodesic [α,α] intersects the
1-neighborhood of ∂Y for every Y ∈ Y. Applying Lemma 2.13 and Lemma 2.14 we
can conclude that

dS

(
α,Proj(∂Y )

)
≤ M3 + 2M4 .

If dY (β, β) > M0 for any particular Y ∈ Y, we similarly get
dS(β,Proj

(
∂Y )

)
≤ M3 + 2M4 .

But then
dS(α, β) ≤ 2M3 + 4M4 .

For B2 larger than this final constant, this is a contradiction. �

Note that g, h ∈ G and G is a E-cobounded geodesic. Therefore, for every Y ∈ Y,
dY (α, β) = dY

(
g(A), h(A)

)
≤ E .

Using the triangle inequality for the projection distance (Lemma 2.7) we get

dY (α, β)
+
� dY (α,α) − dY (α, β) − dY (β, β) ≥ dY (α,α) − M0 − E .

By choosing K large enough, we can ensure for Y ∈ Y that dY (α, β) is much
larger than these additive errors in order to get a multiplicatively coarse equality

dY (α, β)
.� dY (α,α)

as well as ensuring that
dY (α, β) ≥ K0 .

We apply these, as well as Theorem 2.6 one last time, to see that

c0 |h−1g|
+
�

∑
Y ∈Y

[
dY (g(A), h(A))

]
K0

+�
∑
Y ∈Y

[
dY (α, β)

]
K0

.�
∑
Y ∈Y

dY (α,α) ≥ B1R

2c
,

where the final inequality comes from (6). We have shown that

|h−1g| � B1R

2cc0
.

Again, choosing B1 large enough provides the contradiction. �
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