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Abstract. Even though big mapping class groups are not countably generated, certain big
mapping class groups can be generated by a coarsely bounded set and have a well defined quasi-
isometry type. We show that the big mapping class group of a stable surface of infinite type
with a coarsely bounded generating set that contains an essential shift has infinite asymptotic
dimension. This is in contrast with the mapping class groups of surfaces of finite type where the
asymptotic dimension is always finite. We also give a topological characterization of essential
shifts.

1. Introduction

In this paper, the surface Σ is an orientable, connected, second-countable 2–manifold without
boundary. We further assume that Σ is stable, that is, every end of Σ has a stable neighborhood
(see Definition 2.5). The mapping class group of Σ, denoted by Map(Σ), is the group of orientation
preserving homeomorphisms of Σ up to isotopy. A surface Σ is said to be of finite type when π1(Σ)
is finitely generated and is of infinite type otherwise. The mapping class groups of surfaces of
infinite type are referred to as big mapping class groups.

When Σ is a surface of finite type, Map(Σ) is finitely generated. A finite generating set defines
a word metric on Map(Σ) which is well-defined up to quasi-isometry independent of the particular
finite generating set. The large scale geometry of the mapping class group, that is the geometry
of the quasi-isometry class of such metrics, has been studied extensively [1, 5, 6, 7, 10, 15].

In contrast, big mapping class groups are not even countably generated. However, using the
framework of Rosendal for coarse geometry of non locally compact groups [20], we can establish
a notion large scale geometry for big mapping class groups when Map(Σ) has a coarsely bounded
generating set. For a Polish topological group G, a subset A ⊂ G is coarsely bounded, abbreviated
CB, if every compatible left-invariant metric on G gives A finite diameter. We say G is locally CB if
some neighborhood of the identity in G is CB, and we say G is CB generated if G has a generating
set that is a union of a CB neighborhood of the identity and a finite set. Such a generating set
defines a word metric on G that is well defined up to a quasi-isometry. Namely, word metrics on
G associated to different CB generating sets are quasi-isometric to each other.

Mann-Rafi gave a classification of mapping classes of stable surfaces that are CB generated
[13]. We are interested in the study of the coarse geometry of such big mapping class groups. In
particular, we would like to know if big mapping class groups have finite asymptotic dimension.
Definition 1.1 (Asymptotic Dimension). Let X be a metric space. We say that asdim(X) ≤ n if
for every R > 0 there exists a covering of X by open sets {Ui}∞i=1 such that supi∈N{diam(Ui)} <∞,
and every ball of radius R in X intersects at most n+1 elements of the cover {Ui}. The asymptotic
dimension is the least n for which asdim(X) ≤ n. We then write asdim(X) = n. If no such n
exists, then we say X has infinite asymptotic dimension.

The notion of asymptotic dimension was introduced by Gromov in [9] where he also proved that
δ-hyperbolic groups have finite asymptotic dimension. Many other groups have also been shown to
have finite asymptotic dimensions [3, 12, 16, 19]. The study of the asymptotic dimension in mapping
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class groups started with the work of Bell-Fujiwara [3] who modified Gromov’s argument to show
that the curve complex has finite asymptotic dimension. Masur and Minsky showed that the curve
complex is Gromov hyperbolic [14] and that the geometry of various curve complexes are closely
linked with the coarse geometry of the mapping class group [15]. Using these facts, Bestvina,
Bromberg and Fujiwara showed that, for surfaces of finite type, Map(Σ) has finite asymptotic
dimension by embedding Map(Σ) in a finite product of trees of curve complexes [4].

In comparison with surfaces of finite type, there are new phenomena present in big mapping
class groups. For example, there are homeomorphisms where parts of the surface are pushed to
infinity (never recurring back). The simplest form of such a map is a shift map. Consider an
infinite strip in R2 with Z acting on the strip by translations. Cut out an equivariant family of
disks and attach identical surfaces Σi (possibly of infinite type) to the boundaries of these disks.
Then Z still acts by translations on the strip, sending the surface Σi homeomorphically to the
surface Σi+1. Embedding this in a larger strip σ, we can construct a homeomorphism hσ of σ that
acts as described above in the smaller strip, but the restriction of hσ to the boundary of σ is the
identity. Assume Σ contains a copy of σ where the ends of σ exit different ends of Σ. Then there is
a homeomorphism of Σ (again called hσ) that is as described in σ and is the identity map outside
of σ. We call hσ a shift map. We say a shift map hσ ∈ Map(Σ) is essential if the group generated
by hσ, ⟨hσ⟩, is not a coarsely bounded subgroup of Map(Σ).

Theorem 1.2 (Main Theorem). Assume Σ is stable and Map(Σ) is CB generated. If Map(Σ)
contains an essential shift, then the asymptotic dimension of Map(Σ) is infinite.

That is, the existence of an essential shift results in Map(Σ) having very non-trivial geometry.
In fact, any subset of Zn for any n > 0 can be embedded quasi-isometrically in Map(Σ) (see
Theorem ??).

We also provide the topological classification of essential shifts. To do this, it is more natural
to work with a certain finite index subgroup of Map(Σ). Let E be the end space of Σ. Mann-Rafi
[13] defined a partial order on E measuring the local complexity. Let FMap(Σ) be the subgroup
of Map(Σ) that fixes the set of isolated maximal points in the end space E (see Section 2.4 for the
definition). In the setting of CB (but infinite) generated groups, it is not always true that a finite
index subgroup H of G is quasi-isometric to G. However, we show:

Theorem 1.3. The group FMap(Σ) is quasi-isometric to Map(Σ).

It turns out essential shifts are present when the end space is two-sided in a certain sense. Let
E(z) denote the FMap(Σ) orbit of z in E and Accu(z) ⊂ E be the accumulation set of E(z). Also
let EG ⊂ E be the set of non-planar ends of Σ (for x ∈ EG, every neighborhood of x in Σ has
non-zero genus).

Definition 1.4 (Two-sided). We say E(z) is two-sided if E(z) is countable and Accu(z) = X ⊔ Y
where X,Y are non-empty disjoint closed FMap(Σ)–invariant subsets of E. We say EG is two-sided
if EG = X ⊔ Y where X,Y are non-empty disjoint closed FMap(Σ)–invariant subsets of E. We
say E is two-sided if either E(z) is two-sided for some z ∈ E or if EG is two-sided.

Theorem 1.5 (Existence of essential shift). Map(Σ) contains an essential shift if and only if the
end space E of Σ is two-sided.

We can refine this theorem to give a characterization of exactly which shift maps are essential.
For a shift map hσ with support σ, let x, y ∈ E be the ends of Σ associated to the ends of σ, that
is, the ends σ exits towards. Let E(Σi) be set of ends of Σi, where the Σi are the subsurfaces
shifted by hσ, and let M(Σi) be the set of maximal points in E(Σi) (see Section 2.1).

Theorem 1.6 (Topological characterization of an essential shift). A shift map hσ is essential if
and only if either
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• Σi has finite genus and EG is two-sided giving a decomposition EG = X ⊔ Y where x ∈ X
and y ∈ Y ; or

• for some z ∈ M(Σi), E(z) is two-sided giving a decomposition Accu(z) = X ⊔ Y where
x ∈ X and y ∈ Y .

There are other topological properties of Σ that result in Map(Σ) having a non-trivial geometry.
A subsurface R of Σ is called non-displaceable if for every f ∈ Map(Σ), f(R) intersects R. In [11],
it was shown that Map(Σ) acts non-trivially on an infinite diameter hyperbolic space if and only
if Σ contains a non-displaceable subsurface. Using the classification of coarsely bounded mapping
class groups given in [13], we show:

Theorem 1.7 (Two sources of non-trivial geometry). If Map(Σ) does not have an essential shift
and Σ does not contain a non-displaceable subsurface then Map(Σ) is quasi-isometric to a point.

That is, any surface that does have an essential shift map or a non-displaceable subsurface does
not have interesting geometry. The finiteness of the asymptotic dimension of the mapping class
groups in the remaining cases is still open.

Question 1.8. Let Σ be a tame infinite type surface that contains a non-displaceable subsurface
such that Map(Σ) has no essential shifts. Is asdim(Map(Σ)) always finite?

Remark 1.9. The classification of CB generated big mapping class groups in [13] was carried out in
a larger class of tame surfaces where only certain ends are assumed to have stable neighborhoods.
Most of the arguments in this paper still work in the setting of tame surfaces as well, for example, an
essential shift does always imply infinite asymptotic dimension. However, without the assumption
that Σ is stable, E being two sided does not imply existence of a shift map. Hence the statement
and some arguments are cleaner with this assumption. The class of stable surfaces, first used in [8],
is a large and natural class of surfaces to work with and it includes all easily constructed infinite
type surfaces.

Outline of the paper. We show FMap(Σ) has infinite asymptotic dimension by embedding the
infinite dimensional cube, Q∞ ⊂ {0, 1}N, quasi-isometrically into FMap(Σ). We introduce the
definition of asymptotic dimension in Section ?? and show that Q∞ has infinite asymptotic dimen-
sion. In Section 2, we introduce the finite-index subgroup of the mapping class group FMap(Σ)
and show that it is quasi-isometric to the mapping class group, Map(Σ).

In Section 3, we carry out our main arguments in the simple case of the shark tank, T , which
is a cylinder with a Z action and a discrete set of punctures exiting both ends of the cylinder.
We define a length function on FMap(T ) which counts how many punctures from one side of the
cylinder are mapped to the other side. We then use this length function to show that there is a
quasi-isometric embedding from Q∞ to FMap(T ).

The proof in the general case is essentially the same, except one has to define appropriate length
functions whenever E is two-sided. When E(z) is two-sided for some z ∈ E, the length function
counts the number of ends in E(z) that are moved from one side to another. When EG is two-
sided, we rely on the action of FMap(Σ) on homology to construct a suitable length function (see
Section 4). Using these length functions, we again show that there is a quasi-isometric embedding of
Q∞ to FMap(Σ) whenever E is two-sided which implies FMap(Σ) has infinite asymptotic dimension
(see Section 5).

Theorems 1.5 and 1.6 are proven in Section 6 and Theorem 1.7 is proven in Section 7.
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2. A finite index subgroup of the mapping class group

Recall from the introduction that Σ is an infinite-type, orientable, connected, second-countable
2–manifold without boundary with tame end space such that Map(Σ) has a CB generating set.
In this section, we recall the definition of tame end space and describe the CB generating set for
Map(Σ). We also introduce the finite-index subgroup FMap(Σ) of Map(Σ) and show that FMap(Σ)
is quasi-isometric to Map(Σ). Then Fact ?? implies that these groups have the same asymptotic
dimension.

2.1. A partial order on the space of ends of Σ. Each topological X has an space of ends
which is defined as the inverse limit lim←−K⊂Σ

π0(X∖K) as K ranges over the compact subsets of
X. We denote the space of end of Σ by E = E(Σ). For any subsurface Σ′ ⊂ Σ, E(Σ′) is the
space of end of Σ′. We always assume subsurfaces of Σ have compact boundary hence, to ensure
E(Σ′) ⊂ E(Σ).

A point x ∈ E is a non-planar end or is accumulated by genus if every neighborhood of x in
Σ has non-zero genus. Otherwise, x is a planar end and it admits a neighborhood which can be
embedded in the plane. We denote the subset of non-planar ends of Σ by EG. Topologically, E
is closed and totally disconnected and hence it is homeomorphic to a closed subset of the Cantor
set. The space EG is a closed subset of E.

Richards proved that orientable, boundary-less, infinite type surfaces are completely classified
by their genus (possibly infinite), the space of ends E, and the subset of ends accumulated by genus
EG [18]. When we talk about homeomorphisms between subsets of E, we always assume they are
type preserving. That is, we say U ⊂ E is homeomorphic to V ⊂ E if there is a homeomorphism
f : U → V such that f sends U ∩ EG homeomorphically to V ∩ EG. Every homeomorphism of Σ
induces a (type preserving) homeomorphism on the space of ends and, by Richards classification,
every homeomorphism of E is induced by some element of Map(Σ).

The following definition, given by Mann and Rafi, gives a ranking of the local complexity of an
end providing a partial order on equivalence classes of ends. See [13, Section 4 and Section 6.3]
for a detailed discussion.

Definition 2.1. Let ⪯ be the binary relation on E where y ⪯ x if, for every neighborhood U of
x, there exists a neighborhood V of y and f ∈ Mod(Σ) so that f(V ) ⊂ U . We say that x and y
are of the same type, denoted x ∼ y, if x ⪯ y and y ⪯ x, and write E(x) for the set {y | y ∼ x}.
One can easily verify that ∼ defines an equivalence relation.

From the definition of ⪯, we obtain a partial order on the set of equivalence classes under ∼.
Indeed, the relation ≺, defined by x ≺ y if x ⪯ y and x ≁ y, gives a partial order on the set of
equivalence classes under ∼.

Proposition 2.2 (Proposition 4.7 in [13]). The partial order ≺ has maximal elements. Further-
more, for every maximal element x, the equivalence class E(x) is either finite or a Cantor set.

The above statement also applies to every clopen subset of E. LetM =M(E) denote the set of
maximal elements for ≺. For a clopen subset A ⊂ E, we denote the maximal ends in A byM(A).

2.2. Map(Σ) is locally CB. A CB generating set is the union of a CB neighborhood of the
identity and a finite set.

Definition 2.3 (Locally CB). Let G be a topological group. A subset H ⊆ G is coarsely bounded,
abbreviated CB, in G if H has finite diameter with respect to every continuous left-invariant length
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function on G. We say G is locally CB if there is a neighborhood of the identity that is a CB
subset of G.

Mann and Rafi give a classification of surfaces Σ for which Map(Σ) is locally CB. In particular,
they show that if Map(Σ) is locally CB, then Σ has the following structure [13, Proposition 5.4].

Proposition 2.4. If Map(Σ) is locally CB, then there exists a subsurface of finite type L ⊂ Σ
giving a partition of the ends

E =
⊔
A∈A

A

where |A| equals the number of boundary components of L. Each set A ∈ A is clopen andM(A) ⊂
M(E). In fact, points in M(A) are all in the same equivalence class, and M(A) is either a
singleton or a Cantor set.

Furthermore, for every A,B ∈ A, there is a clopen set WA,B such that if E(x) intersects both
A and B, it also intersects WA,B [13, Lemma 6.10].

2.3. Stable surface. In this paper, we assume the surface is stable.

Definition 2.5. We say a neighborhood U of a point x ∈ E is stable if every neighborhood U ′ of
x contains a smaller neighborhood U ′′ of x that is homeomorphic to U . The surface Σ is called
stable if every point x in E has a stable neighborhood.

In fact, a stronger conclusion holds. Namely all clopen neighborhoods of x inside the stable
neighborhood are homeomorphic.

Lemma 2.6 (Lemma 4.17 in [13]). If U is a stable neighborhood of x ∈ E, then for any clopen
neighborhood U ′ ⊂ U of x, U ′ is homeomorphic to U .

2.4. The subgroup FMap(Σ). As mentioned above, M(A) is either an isolated point in M(E)
or a Cantor set. Let Aiso be the subset of A consisting of sets A where M(A) is isolated. Let xA
denote an element of M(A). The set A is always a stable neighborhood of xA and if xB ∈ E(xA)
then A is homeomorphic to B. Any f ∈ Map(Σ) acts by a permutation on the set of isolated
maximal ends,

Miso = {xA |A ∈ Aiso}
which is a finite set. There exists a map

σ : Map(Σ)→ Sym(Miso)

induced by the action of Map(Σ) on Miso. Since Miso is finite, this implies that ker(σ) is a finite
index subgroup of Map(Σ). We define FMap(Σ) = ker(σ), that is, FMap(Σ) the subgroup of
Map(Σ) that fixes the isolated maximal ends point-wise.

2.5. Coarsely bounded generating sets. In [13] Mann-Rafi gave a CB generating set for
FMap(Σ) and Map(Σ). Let L be the surface of finite-type as above. The first collection of el-
ements in our generating set are the elements fixing L

νL =
{
g ∈ Map(Σ) | g|L = id

}
.

When Map(Σ) is CB generated, there is a finite set F ⊂ FMap(Σ) such that νL∪F generates FMap
(See [13, Section 6.4] for details). We say π ∈ Sym(Miso) is type preserving if for every xA ∈Miso,
xB = π(xA) ∈ E(xA). For every type preserving π ∈ Sym(Miso) we fix a homeomorphism pπ which
permutes the sets in A, sending A to B when π(xA) = xB , but fixes the finite type subsurface L
set wise (that is the restriction of pπ to L is an element of Map(L)). In fact, we can choose these
so that pπ−1 = p−1

π . Since there are only finitely many such permutations, the collection P = {pπ}
is finite. Then νL ∪ F ∪ P is a CB generating sets for Map(Σ).
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2.6. FMap(Σ) is quasi-isometric to Map(Σ). Let SFMap and SMap be the generating sets for
FMap(Σ) and Map(Σ) from the previous section. Let ∥�∥FMap and ∥�∥Map be the associated word
lengths for FMap(Σ) and Map(Σ), respectively. Since FMap(Σ) and Map(Σ) are CB generated,
the word lengths with respect to any other generating sets would be bi-Lipschitz equivalent to the
word lengths associated to SFMap and SMap. Hence it is sufficient to consider these generating sets.

Also, recall that to show that a metric space (X, dX) is quasi-isometric to its subspace (Y, dY )
it is sufficient to check that the inclusion map Y → X is coarsely onto and a quasi-isometric
embedding. That is there are constants M,C > 0 such that:

• for every x ∈ X there is a y ∈ Y such that dX(x, y) ≤ C.
• for all y1, y2 ∈ Y , we have

1

M
dY (y1, y2)− C ≤ dX(y1, y2) ≤M · dY (y1, y2) + C.

Theorem 2.7. Let Σ be a surface such that Map(Σ) is CB generated. Then (FMap, ∥�∥FMap) and
(Map, ∥�∥Map) are quasi-isometric.

Proof. Let νL, F and P be as in Section 2.5 so that we have SFMap = νL∪F and SMap = νL∪F ∪P .
Notice that

Map(Σ) =
⋃

pπ∈P

pπ FMap(Σ).

Let H be the set of elements of FMap(Σ) that can be written in the form psp′ where s ∈ SMap

and p, p′ ∈ P . We begin by showing that

max
h∈H
∥h∥FMap

is finite. We consider the cases when s is in νL, or in F ∪ P separately.
For s ∈ νL and p, p′ ∈ P , if h = psp′ is an element of FMap(Σ), we must have p = pπ and

p′ = pπ−1 since s acts trivially on Miso. By the construction of P , this implies that p′ = p−1.
Since, s|L = id, we also have h|L = id. That is, h ∈ νL and ∥h∥FMap = 1.

Let H ′ be the subset of H consisting of elements of the type h = psp′, where s ∈ F ∪ P . Then
H ′ is a finite set. That is, letting

M = max
h∈H′
∥h∥FMap,

we also have
M = max

h∈H
∥h∥FMap = max{M, 1}.

Now, let g ∈ FMap(Σ). We can write g = s1s2 . . . sn, where si ∈ SMap and n = ∥g∥Map. Let
gi = sisi+1 . . . sn and let pi ∈ P be such that gi ∈ pi FMap(Σ), that is

gi = sisi+1 . . . sn = pifi

for some fi ∈ FMap(Σ). Therefore,

pifi = gi = si gi+1 = si pi+1 fi+1,

which implies
fif

−1
i+1 = p−1

i sipi+1.

Note that p−1
i , pi+1 ∈ P , si ∈ SMap and fif−1

i+1 ∈ FMap(Σ), hence p−1
i sipi+1 ∈ H and

∥p−1
i si pi+1∥FMap ≤M.

Now, by rewriting g as

g = (e s1 p2)(p
−1
2 s2 p3)(p

−1
3 s3 p4) . . . (pn sn e)
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we have that pisipi+1 ∈ H for 1 ≤ i ≤ n (by setting p0 = pn+1 = e where e is the identity).
Therefore,

∥g∥FMap ≤M · n =M · ∥g∥Map.

Since SFMap ⊂ SMap, we always have ∥g∥Map ≤ ∥g∥FMap. That is, the word lengths ∥�∥FMap

and ∥�∥Map are bi-Lipschitz equivalent in FMap(Σ). Also, for every g ∈ Map(Σ) there is an
f ∈ FMap(Σ) and p ∈ P such that g = pf , and thus dMap(f, g) ≤ 1. Hence (FMap, ∥�∥FMap) and
(Map, ∥�∥Map) are quasi-isometric. □

3. The Shark Tank

The shark tank, T , is a bi-infinite cylinder with a discrete countable set of punctures exiting in
both ends. The end space E = E(T ) is homeomorphic to the following subset of R:

{0} ∪
{
1

n

}∞

n=2

∪
{
n− 1

n

}∞

n=3

∪ {1}.

We call the ends of the cylinder which are accumulated by punctures the limit ends. These are
also the maximal elements of E. The group FMap(Σ) is the index two subgroup of Map(T ) which
fixes the limit ends point wise. In this section, we prove that FMap(T ), and as a result Map(T ),
have infinite asymptotic dimension.

The generating set given in [13] has a very simple form in the case of FMap(T ) which we now
describe. Fix a curve β on T that separates the two limit ends of T . This decomposes the end
space into two sets, which we denote by A and B. We denote the limit end in A by xA and the
limit end in B by xB . In addition, we fix an ordering on the punctures in T (the non-limit ends)
and label them with pi, i ∈ Z such that pi ∈ A for i ≤ 0 and pi ∈ B for i > 0.

xA xBh(β|σ)

p−1 p0 p1 p2

β|σ

Figure 1. The map h is homotopic to the shift map hσ whose support is the
strip σ and sends pi to pi+1.

There is a homeomorphism h : T → T fixing xA and xB such that h(pi) = pi+1 and f(β) is
disjoint from β with β and f(β) bounding a a surface with two boundary components and one
puncture. We refer to h as the shift map. This is consistent with the definition of shift in the
previous section; if we embed an strip σ in T containing all the punctures and limiting to xA
and xB , the homeomorphism hσ described in the previous section is homotopic to h since the
complement of σ is a strip with no topology (see Figure 1).

Define
νβ =

{
g ∈ FMap(Σ) | g(β) = β

}
.

Then S = νβ ∪ {hσ} is the generating set for FMap(T ) given in [13, Section 6.4]. We now equip
FMap(T ) with the word length associated to this generating set which we denote by ∥�∥FMap.
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Definition 3.1. For a group G, a function ∥�∥ : G → R+ is a called length function if it is
continuous, if ∥ϕ∥ = ∥ϕ−1∥ for all ϕ ∈ FMap(Σ) and if it satisfies the triangle inequality, namely,
for ϕ, ψ ∈ G we have

∥ϕψ∥ ≤ ∥ϕ∥+ ∥ψ∥.

We now define a length function on FMap(T ), namely, for ϕ ∈ FMap(Σ), define

(1) ∥ϕ∥ =
∣∣{pi ∈ A | ϕ(pi) ∈ B}∣∣+ ∣∣{pi ∈ B | ϕ(pi) ∈ A}∣∣.

Note that, since maps in FMap(T ) fix the limit ends, they also fix a neighborhood of these ends
and hence can move only a finitely many punctures from one side to another. That is, ∥ϕ∥ is a
finite number.

Theorem 3.2. The function ∥�∥ is a length function on FMap(T ). Furthermore, for ϕ ∈ FMap(T ),
we have

(2) ∥ϕ∥ ≤ ∥ϕ∥FMap.

Proof. We start by checking the triangle inequality. Consider ϕ, ψ ∈ FMap(T ). For any pi ∈ A
where ψϕ(pi) ∈ B, we either have(

pi ∈ A and ϕ(pi) ∈ B
)

or
(
ϕ(pi) ∈ A and ψϕ(pi) ∈ B

)
.

Therefore,

{pi ∈ A | ψϕ(pi) ∈ B} ⊂
{
pi ∈ A | ϕ(pi) ∈ B

}
∪
{
pi ∈ A | ϕ(pi) ∈ A and ψϕ(pi) ∈ B

}
.

and hence (denoting ϕ(pi) with qi), we have∣∣{pi ∈ A | ψϕ(pi) ∈ B}∣∣ ≤ ∣∣{pi ∈ A | ϕ(pi) ∈ B}∣∣+ ∣∣{qi ∈ A | ψ(qi) ∈ B}∣∣.
Similarly, ∣∣{pi ∈ B | ψϕ(pi) ∈ A}∣∣ ≤ ∣∣{pi ∈ B | ϕ(pi) ∈ A}∣∣+ ∣∣{qi ∈ B | ψ(qi) ∈ A}∣∣.
Therefore,

∥ϕψ∥ ≤ ∥ϕ∥+ ∥ψ∥.
Now we check that ∥�∥ is continuous. Note that, for ϕ ∈ νβ , we have ∥ϕ∥ = 0. That is ∥�∥ is zero
on some neighborhood of the identity. The triangle inequality above proves that ∥�∥ is continuous.
Also, since ϕ is a homeomorphism,

∥ϕ∥ =
∣∣{pi ∈ A | ϕ(pi) ∈ B}∣∣+ ∣∣{pi ∈ B | ϕ(pi) ∈ A}∣∣

=
∣∣{qi ∈ B | ϕ−1(qi) ∈ A}

∣∣+ ∣∣{qi ∈ A | ϕ−1(qi) ∈ A}
∣∣ = ∥ϕ−1∥.

Hence, ∥�∥ is a length function.
To see the second assertion, let s ∈ S be an element of the generating set of FMap(T ). If

s ∈ νβ , then s fixes the base curve β. Therefore, s(A) ⊂ A and s(B) ⊂ B, and therefore, ∥s∥ = 0.
Alternatively, if s = hσ then p0 is the only puncture in A that is mapped to B and no punctures
from B are mapped to A. That is,

∥h∥ =
∣∣{pi ∈ A | h(pi) ∈ B}∣∣+ ∣∣{pi /∈ B | h(pi) ∈ B}∣∣ = 1 + 0 = 1.

Now, for ϕ ∈ FMap(T ), if ∥ϕ∥ = n, then ϕ = s1 . . . sn where si ∈ S. By the triangle inequality,

∥ϕ∥ ≤
n∑

i=1

∥si∥ ≤ n = ∥ϕ∥FMap. □

We now recall two useful facts about asymptotic dimension. The first fact states high dimen-
sional space cannot be coarsely embedded in a small dimensional space.
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Fact 3.3 (Theorem 5 of [2]). If f : X → Y is a quasi-isometric embedding between two metric
spaces X and Y , then asdim(X) ≤ asdim(Y ).

The second fact is regarding the asymptotic dimension of Zn.

Fact 3.4 (Theorems 5 and 6 in [2]). Equip Zn with the L1 metric. That is, for a = (a1, .., an) and
b = (b1, .., bn) in Zn, define

dZn

(
a, b
)
= |a− b|Zn =

n∑
i=1

|ai − bi|.

The asymptotic dimension of Zn with respect to the L1 metric is exactly n.

Due to these two facts, we now construct a map from Zn to FMap(T ) for all n ∈ N which will
allow us to show that the asymptotic dimension of Map(T ) is infinite. As the asymptotic dimension
for Zn is n for all n ∈ N, by showing that the map we construct is a quasi-isometric embedding,
we will be able to conclude that the asymptotic dimension of FMap(T ) is greater than n for all
n ∈ N, which will show the asymptotic dimension is infinite.

Fix some n ∈ N. We begin by defining a homeomorphism, associated to a given element a ∈ Zn.
Notice that we are able to rearrange the puctures on the surface T to make n embedded infinite
strips of punctures, σ1, . . . , σn, and to each strip we can define a puncture shift, hσ1 , . . . , hσn .
Indeed, with respect to our labelling, we create n strips of punctures by placing the punctures
labelled . . . , 1 − 2n, 1 − n, 1, 1 + n, 1 + 2n, . . . in the first strip σ1, the punctures . . . , 2 − 2n, 2 −
n, 2, 2 + n, 2 + 2n, . . . in the second strip σ2, so on and so forth until we have n strips, with the
punctures labelled as . . . , i− 2n, i− n, i, i+ n, i+ 2n, . . . in strip σi. Associated to each strip, the
shift map hσi has support in σi and sends puncture i to puncture i+ n.

Now, for a given a = (a1, . . . , an) ∈ Zn, we define the map Φ to be

(3)

Φ: Zn → FMap(T )

a 7→
n∏

i=1

hai
σi
.

β Φ(β)

−→

Figure 2. Consider the element (4,−2, 5,−4) ∈ Zn. This image illustrates the
action of the map Φ on the base curve β.

For a, b ∈ Zn, we would like to compute ∥Φ(b)−1Φ(a)∥. For any i > 0 where ai ≥ 0, the map
Φ(a) moves ai punctures from A into B applying a puncture shift hσi

exactly ai times. If bi ≥ 0,
then Φ(b)−1 moves bi punctures from B into A by applying a puncture shift h−1

σi
exactly bi times.

If If bi < 0, then Φ(b)−1 moves bi punctures from A into B by applying a puncture shift hσi
exactly

bi times. Similarly, for any i > 0 where ai < 0, the map Φ(a) moves ai punctures from B into A
applying a puncture shift h−1

σi
exactly ai times. If bi ≥ 0, then Φ(b)−1 moves bi punctures from
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B into A by applying a puncture shift h−1
σi

exactly bi times. If If bi < 0, then Φ(b)−1 moves bi
punctures from A into B by applying a puncture shift hσi

exactly bi times. This implies that

(4) ∥Φ(b)−1Φ(a)(β)∥ = |a− b|Zn .

We now show that Φ is a quasi-isometric embedding from Q∞ to FMap(T ). Recall that the
distance between two elements f, g,∈ FMap(T ) is ∥fg−1∥FMap, where ∥�∥FMap is the word length
with respect to the generating set S. A quasi-isometric embedding is a map that preserve distances
up to uniform additive and multiplicative errors.

Proposition 3.5. For all n ∈ N, for Φ as in Equation 3, and for a, b ∈ Zn, we have

|a− b|Zn ≤ ∥Φ(b)−1Φ(a)∥FMap ≤ |a− b|Zn + 3.

That is, the map
Φ: (Zn, |�|Zn)→ (FMap(T ), ∥�∥FMap)

is a quasi-isometric embedding.

Proof. The left inequality follows from Equations (2) and (4). To prove the right inequality, let
a, b ∈ Zn, we will find elements in si ∈ S such that (

∏
si) ◦ Φ(b)−1Φ(a) is the identity.

Let ω = Φ(b)−1Φ(a)(β|σ), and let ωi = ω|σi
. We begin by rearranging the n strips of punctures

back into a single strip of punctures. Recall for σi, the labeling of the punctures is . . . , i− 2n, i−
n, i, i+ n, i+ 2n, . . . inside of the strip. We rearrange the punctures so that we have a single strip
with the labeling as indicated in Figure 1.

For each i such that ai− bi ≥ 0, there are ai− bi = k1i punctures between ωi and β|σ in B. Let
the total number of punctures between ω and β|σ in B be denoted by k1 =

∑n
i=1 k1i . Using an

element s1 ∈ νβ such that h−k1(s1(ωi)) ∈ A for all 1 ≤ i ≤ n, we can rearrange the punctures in
the single strip σ such that the k1 punctures are in positions p1, p2, ...pk1 in B. Then h−k1

σ sends
all these punctures to A. That is, h−k1

σ s1 sends ω to an arc ω′ that is completely to the left side
of β.

↓

↓s1

−→
h−4
σ

↑h2σ

↑s2

Figure 3. This image illustrates the elements of S required to build the inverse
of Φ(3,−2, 1) where (3,−2, 1) ∈ Z3.

There are still k2 punctures between ω′ and β|σ in A since there are |ai− bi| punctures between
ω and β|σ in A whenever ai − bi < 0. We now find s2 ∈ νβ that lines up these punctures in the
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positions p−k2+1, . . . , p0. Then hk2
σ sends these punctures back to B. That is hk2

σ s2(ω
′) = β|σ.

Now the composition (
hk2
σ s2h

−k1
σ s1

)
◦ Φ(b)−1Φ(a)

sends every puncture in A to a puncture in A and every puncture in B to a puncture in B. Hence,
this map is equal to some element s−1

3 ∈ νβ . Therefore, we have shown that(
s3h

k2
σ s2h

−k1
σ s1

)
◦ Φ(b)−1Φ(a) = id.

Hence
∥Φ(b)−1Φ(a)∥FMap ≤ k1 + k2 + 3,

where k1 + k2 = |a− b|. This completes the proof. □

Theorem 3.6. The group FMap(T ) has infinite asymptotic dimension.

Proof. By Proposition, 3.5, for each n ∈ N the map Φ: Zn → FMap(T ) is a quasi-isometric
embedding. Since quasi-isometric embeddings preserve asymptotic dimension by Fact 3.3, and the
asymptotic dimension of Zn is n by Fact 3.4, we have that for all n, the asymptotic dimension of
FMap(T ) is at least n. This shows that the asymptotic dimension of FMap(T ) is infinite. □

By Theorem 2.7, (FMap(T ), ∥�∥S) and (Map(T ), ∥�∥SMap
) are quasi-isometric. Fact 3.3 tells us

that asymptotic dimension is preserved under quasi-isometry. Therefore since (FMap(T ), ∥�∥S)
has infinite asymptotic dimension, so does (Map(T ), ∥�∥SMap

).

Theorem 3.7. The group Map(T ) has infinite asymptotic dimension.

4. The length functions

As we saw in the last section, the length function ∥�∥, defined on FMap(T ), is how we provide
a lower bound for the word length. In this section, we show that when the end space is two-sided,
there is a similar length function on FMap(Σ) that is bounded above by the word length. This
implies that the word lengths of powers of an associated shift map grow linearly, and hence the
shift map is essential.

4.1. Two-sided end. Assume, for z ∈ E, that E(z) is two-sided. Recall from the introduction
that this means Accu(z) = X ⊔ Y , where X,Y are non-empty disjoint closed FMap(Σ)–invariant
subsets of E and where Accu(z) is the accumulation set of E(z).

Let the subsurface L be as in Proposition 2.4 giving the decomposition

E =
⊔
A∈A

A.

As before, we fix a point xA ∈M(A) ⊂M(E).
Observe that, for A ∈ A, either X ∩ A = ∅ or Y ∩ A = ∅. This is because, if x ∈ X ∩ A, then

E(x) ⊂ X and Accu(x) ⊂ X. But xA is an accumulation point of every type of point in A. That
is, xA ∈ Accu(x) ⊂ X. Similarly, if y ∈ Y ∩ A, then xA ∈ Accu(y) ⊂ Y . This contradicts the
assumption that X and Y are disjoint. Hence, we can find a curve β in L so that Σ∖β consists of
two subsurfaces Σ+ and Σ− such that X ⊂ E(Σ−) and Y ⊂ E(Σ+). Then there is a decomposition
A = A+ ⊔ A− such that E(Σ+) = ∪A∈A+

A and E(Σ−) = ∪B∈A−B. We denote E(Σ+) by E+

and E(Σ−) by E−.

Theorem 4.1 (Length function associated to a two-sided end). For z ∈ E, assume E(z) is two-
sided. Let β be the curve defined above so that

Σ∖β = Σ− ∪ Σ+, X ⊂ E− = E(Σ−) and Y ⊂ E+ = E(Σ+).

Then, the function ∥�∥ : FMap(Σ)→ Z defined by

(5) ∥ϕ∥ =
∣∣{p ∈ E(z) | p ∈ E−, ϕ(p) ∈ E+}

∣∣+ ∣∣{p ∈ E(z) | p ∈ E+, ϕ(p) ∈ E−}
∣∣
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is a length function on FMap(Σ).

Proof. We first check that, for every ϕ ∈ FMap(Σ), ∥ϕ∥ is finite. Suppose towards a contradiction
that ∥ϕ∥ is infinite. By replacing ϕ with ϕ−1 if necessary, we may assume that ϕ maps infinitely
many points from E(z) ∩ E− into E+. That is, there is a sequence zi ∈ E(z) ∩ E− such that
ϕ(zi) ∈ E+. After taking a sub-sequence, we can assume zi → x ∈ X. Since ϕ is continuous, and
E+ is closed, ϕ(x) ∈ E+. But this contradicts the fact that X ⊂ E− is FMap(Σ) invariant.

The proof of the triangle inequality and the fact that ∥ϕ∥ = ∥ϕ−1∥ are identical to the proof in
Theorem 3.2. Also, the subgroup of FMap(Σ) that fixes L is a neighborhood of the identity where
∥�∥ is zero, hence ∥�∥ is continuous. □

Proceeding as in Section 3, we now show that the length function ∥�∥ is bounded above by a
uniform multiple of the word length.

Theorem 4.2. For z ∈ E, assume E(z) is two-sided and let ∥�∥ be the associated length function.
Let S be a CB generating set for FMap(Σ), and let ∥�∥S denote the associated word length on
FMap(Σ). Then there exists a constant c > 0 such that for every ψ ∈ FMap(Σ)

(6) ∥ψ∥ ≤ c · ∥ψ∥S .

Proof. Since FMap(Σ) is CB generated, the word length associated to every two CB generating sets
are Lipschitz equivalent. Hence, without loss of generality, we can assume FMap(Σ) is equipped
with the generating set given in Section 2.5. That is, there is a finite set F such that S = νL ∪ F .
For A ∈ A, denote the complementary component of (Σ− L) associated to A by ΣA. We further
write

νL = ∪A∈AνA

where elements of νA have support in ΣA.
If s ∈ νL, then s fixes every A ∈ A set-wise. In particular, s fixes E+ and E− set-wise. Therefore,

∥s∥ = 0. Now define
c = max

s∈F
∥s∥.

Then, for s ∈ S, ∥s∥ ≤ c. For ϕ ∈ FMap(Σ), if ϕ = s1 . . . sn, where si ∈ S and n = ∥ϕ∥S , then

∥ϕ∥ ≤
n∑

i=1

∥si∥ ≤ c · n.

That is, ∥ϕ∥ ≤ c · ∥ϕ∥S . □

4.2. Two-sided EG. Assume EG is two-sided. Recall from the introduction that this implies that
EG = X ⊔ Y , where X,Y are non-empty disjoint closed FMap(Σ)–invariant subsets of E. As in
the previous section, for every A ∈ A, we have either X ∩ A = ∅ or Y ∩ A = ∅. Therefore, we
can choose a curve β in L giving a decomposition Σ = Σ− ∪ Σ+, where X ⊂ E− = E(Σ−) and
Y ⊂ E+ = E(Σ+).

Heuristically, to follow the two-sided end case, for ϕ ∈ FMap(Σ) we would like to count the
genus of the subsurface of Σ− that is moved by ϕ to Σ+ plus the genus of the subsurface of Σ+

that is moved by ϕ to Σ−. But this is not the correct measurement. For example, consider a large
genus subsurface Y that intersects both Σ− and Σ+ and let ϕ be a pseudo-Anosov homeomorphism
with support in Y . Then no subsurface of Σ− is moved to Σ+. Instead, ∥ϕ∥ will be the genus of
the subsurface Y .

We use the Z2–homology of the surface Σ, where Z2 = Z/2Z. We note that separating curves
on infinite-type surfaces represent elements of homology which are not necessarily zero (see [17]).
However, we quotient H1(Σ,Z2) by Hsep

1 (Σ,Z2), the subgroup of H1(Σ,Z2) generated by homology
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classes that can be represented by simple separating closed curves on the surface. We denote this
quotient by

Ĥ = Ĥ1(Σ,Z2) = H1(Σ,Z2)/H
sep
1 (Σ,Z2).

Since the curve β represents a trivial class in Ĥ, the decomposition Σ = Σ+ ∪Σ− gives a splitting
Ĥ = H+ ⊕H− where

H+ = Ĥ1(Σ+,Z/2) and H− = Ĥ1(Σ−,Z/2).

Note that H− ∩H+ = ∅ since Σ− and Σ+ are disjoint.
For ϕ ∈ FMap(Σ), we denote the induced map on homology by ϕ∗ : H1(Σ,Z/2)→ H1(Σ,Z/2).

Since ϕ sends separating curves to separating curves, we also have an induced isomorphism
ϕ∗ : Ĥ → Ĥ.

Define ∥�∥ : FMap(Σ)→ Z+ by

(7) ∥ϕ∥ = codim
(
Ĥ :

(
H+ ∩ ϕ∗(H+)

)
⊕
(
H− ∩ ϕ∗(H−)

))
,

where codim(V :W ) is the co-dimension of a subspace W in a vector space V .

Theorem 4.3. Assume EG is two-sided. Then ∥�∥ : FMap(Σ)→ N is a length function.

Proof. We start by showing that, for ϕ ∈ FMap(Σ), ∥ϕ∥ is finite. Since ϕ fixes X set-wise, there is
a small neighborhood of X in Σ− that is contained in Σ−. That is, there is a subsurface Σ′ ⊂ Σ−
such that X ⊂ E(Σ′) and ϕ(Σ′) ⊂ Σ−. The subsurfaces (Σ− − Σ′) and (Σ− − ϕ(Σ′)) both have
finite genus because the fact that EG ∩ E(Σ−) = X implies that their end space is disjoint from
EG This means that

codim(H− : Ĥ1(Σ
′,Z2)) <∞ and codim(H− : Ĥ1(ϕ(Σ

′),Z2)) <∞.

But
Ĥ1(Σ

′,Z2) ∩ Ĥ1(ϕ(Σ
′),Z2) ⊂ H− ∩ ϕ∗(H−).

Therefore,

codim(H− : H− ∩ ϕ∗(H−)) ≤ codim(H− : Ĥ1(Σ
′,Z2)) + codim(H− : Ĥ1(ϕ(Σ

′),Z2)) <∞.

Similarly, codim(H+ : H+ ∩ ϕ∗(H+)) <∞ and hence ∥ϕ∥ <∞.
We now check that ∥�∥ satisfies the triangle inequality. Consider ϕ, ψ ∈ FMap(Σ). We have

codim
(
H± : H± ∩ ψ(ϕ(H±))

)
≤ codim

(
H± : H± ∩ ψ(H±) ∩ ψ(ϕ(H±))

)
= codim

(
H± : H± ∩ ψ(H±)

)
+ codim

(
H± ∩ ψ(H±) : H± ∩ ψ(H±) ∩ ψ(ϕ(H±))

)
≤ codim

(
H± : H± ∩ ψ(H±)

)
+ codim

(
ψ(H±) : ψ(H±) ∩ ψ(ϕ(H±))

)
= codim

(
H± : H± ∩ ϕ(H±)

)
+ codim

(
H± : H± ∩ ϕ(H±)

)
.

Summing over ± we get
∥ψ ◦ ϕ∥ ≤ ∥ψ∥+ ∥ϕ∥.

The subgroup νL of FMap(Σ) is a neighborhood of the identity and for ϕ ∈ νL, ϕ preserves
Σ±. Hence, ϕ∗ fixes H± and ∥ϕ∥ = 0. This fact and the triangle inequality imply that ∥�∥ is
continuous. Also, since

(ϕ∗)−1(H± ∩ ϕ∗(H±)) = (ϕ∗)−1(H±) ∩ (H±)

we have ∥ϕ∥ = ∥ϕ−1∥. Therefore ∥�∥ is a length function. □

We now show that the function ∥�∥ is bounded above by the word metric on FMap(Σ).
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Theorem 4.4. There exist a constant c > 0 such that

(8) ∥ϕ∥ ≤ c · ∥ϕ∥S ,
where ∥�∥S denotes the word metric on FMap(Λ).

Proof. This proof follows the same reasoning as the proof of Theorem 4.2, except we use that EG is
2-sided in place of E(z) being two-sided. As before, we assume that FMap(Σ) is equipped with the
generating set (νL, F ) given in Section 2.5. If s ∈ νL, then s fixes the curve β which is contained
in L and hence it fixes Σ±. In particular, s∗ fixes H±. Therefore, ∥ϕ∥ = 0. Now, for

c = max
ϕ∈F
∥ϕ∥,

we have ∥ϕ∥ ≤ c · ∥ϕ∥S . □

5. Infinite asymptotic dimension

In this section, we prove that the mapping class group of an infinite type surface Σ with a
two-sided end space has infinite asymptotic dimension. For any such surface, we construct an
associated shift map and we use the length function from Section 4 to show that they are essential.
We then follow the arguments in Section 3 to embed Q∞ in FMap(Σ).

Proposition 5.1. If E = E(Σ) is two-sided, then FMap(Σ) contains an essential shift.

Proof. Assume first that EG is two-sided. That is, EG = X ⊔ Y where X and Y are non-empty
closed FMap(Σ) invariant sets. Let β be a curve in L separating X from Y and, as before, let Σ−
and Σ+ be the components of Σ− β. Also, let ∥�∥ be the norm defined in Theorem 4.3.

Pick x ∈ X and y ∈ Y . Since every neighborhood of x and y in Σ have non-zero genus, we
can find a sequence of disjoint surfaces Σi, each homeomorphic to a genus one surface with one
boundary component, such that Σi → x as i → −∞ and Σi → y as i → ∞. We choose these so
that Σi ∈ Σ− for i ≤ 0 and Σi ∈ Σ+ for i > 0.

We connect Σi−1 to Σi by an arc ωi so that the arcs ωi are disjoint from each other and the
other Σj , and so only ω0 intersects β. Let σ be a regular neighborhood of the union of the Σi and
ωi. Then σ is a strip of infinite genus exiting towards x and y in each end and intersecting β in an
arc β|σ. Denote the components of σ − β|σ by σ− and σ+.

Let hσ be the shift map with support in σ sending Σi to Σi+1. Choosing a basis for the homology
of each Σi and extending it to the homology of Σ− and Σ+, we can decompose the homology of
Σ± as follow:

H− = H− ⊕
0⊕

i=−∞
Hi and H+ = H+ ⊕

∞⊕
i=1

Hi

where Hi = Ĥ(Σi,Z2) and H± are the homology of Σ± − σ. Then, h∗σ fixes H± and sends Hi to
Hi+1. Therefore, for n > 0

(h∗σ)
n(H−) = H− ⊕

n⊕
i=1

Hi. and (h∗σ)
n(H+) = H+ ⊕

∞⊕
i=n+1

Hi

That is,

∥hnσ∥ = codim
(
Ĥ :

(
H+ ∩ (h∗σ)

n(H+)
)
⊕
(
H− ∩ (h∗σ)

n(H−)
))

= dim

(
n⊕

i=1

Hi

)
= 2n.

Theorem 4.4 implies that the diameter of the group ⟨hσ⟩ is infinite. Hence, by definition, ⟨hσ⟩ is
not CB and hence hσ is essential.

Now assume E(z) is two-sided. That is, Accu(z) = X ⊔Y where X and Y are non-empty closed
FMap(Σ) invariant sets. The proof in this case is similar. Let β be a curve in L separating X from
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Y , let Σ− and Σ+ be the components of Σ− β, and let ∥�∥ be the norm defined in Theorem 4.1.
Pick x ∈ X and y ∈ Y . Since every neighborhood of x and y in Σ has a point in E(z), we can find
a sequence of points zi ∈ E(z) where zi → x as i→ −∞ and zi → y as i→∞, where zi ∈ E− for
i ≤ 0 and zi ∈ Σ+ for i > 0. Choose disjoint stable neighborhoods Ei of zi so that M(Ei) = zi;
this is possible since E(z) is countable. Let Σi be a subsurface of Σ with one boundary component
and with E(Σi) = Ei. We can assume the Σi are disjoint from each other and from β. Then
Σi → x as i→ −∞, Σi → y as i→∞, Σi ∈ Σ− for i < 0, and Σi ∈ Σ+ for i ≥ 0.

As before, connect Σi−1 to Σi by an arc ωi so that the ωi are disjoint from each other and the
other Σj , and so only ω0 intersects β. Let σ be a regular neighborhood of the union of Σi and ωi.
Then σ is a strip containing Σi exiting towards x and y in each end and intersecting β in an arc
β|σ. Then, hσ acts as a shift on zi with hnσ(zi) = zi+n. Therefore,

∥hnσ∥ = n,

which implies ⟨hσ⟩ has infinite diameter and hσ is essential. □

As in Section 3, we now construct a map from Zn to FMap(Σ) for all n ∈ N which will allow us
to show that the asymptotic dimension of Map(Σ) is infinite.

Recall that hσ be the shift map with support in σ sending Σi to Σi+1 Fix some n ∈ N. We
begin by defining a homeomorphism, associated to a given element a ∈ Zn. Notice that we are
able to rearrange the subsurfaces on the strip σ to make n embedded infinite strips of subsurfaces,
σ1, . . . , σn, and to each strip we can define a shift map, hσ1

, . . . , hσn
. Indeed, with respect to

our labelling, we create n strips of subsurfaces by placing the subsurfaces labelled . . . , 1− 2n, 1−
n, 1, 1 + n, 1 + 2n, . . . in the first strip σ1, the subsurfaces . . . , 2− 2n, 2− n, 2, 2 + n, 2 + 2n, . . . in
the second strip σ2, so on and so forth until we have n strips, with subsurfaces labelled . . . , i −
2n, i− n, i, i+ n, i+ 2n, . . . in strip σi. Associated to each strip, the shift map hσi

has support in
σi and sends the subsurface labelled i to the subsurface labelled i+ n.

Now, for a given a = (a1, . . . , an) ∈ Zn, we define the map Φ to be

(9)

Φ: Zn → FMap(T )

a 7→
n∏

i=1

hai
σi
.

For a, b ∈ Zn, we would like to compute ∥Φ(b)−1Φ(a)∥. For any i > 0 where ai ≥ 0, the map
Φ(a) moves ai subsurfaces from A into B by applying a shift hσi

exactly ai times. If bi ≥ 0, then
Φ(b)−1 moves bi subsurfaces from B into A by applying a shift h−1

σi
exactly bi times. If If bi < 0,

then Φ(b)−1 moves bi subsurfaces from A into B by applying a shift hσi
exactly bi times. Similarly,

for any i > 0 where ai < 0, the map Φ(a) moves ai subsurfaces from B into A applying a shift
h−1
σi

exactly ai times. If bi ≥ 0, then Φ(b)−1 moves bi subsurfaces from B into A by applying a
shift h−1

σi
exactly bi times. If bi < 0, then Φ(b)−1 moves bi subsurfaces from A into B by applying

a shift hσi
exactly bi times. That is, the number of surfaces that are sent from Σ± to Σ∓ under

Φ(b)−1Φ(a) is exactly equal to |a− b|Zn .
When EG is two sided, the surfaces Σi are genus one surfaces with one boundary component.

Therefore, sending one of these surfaces from Σ± to Σ∓ contributes 2 to the norm defined in
Equation (7) and we have

(10) ∥Φw(b)
−1Φw(a)(β)∥ = 2|a− b|Zn .

In the case where E(z) is two-sided, Σi has one maximal end which is a point in E(z). Therefore,
sending one of these surfaces from Σ± to Σ∓ contributes 1 to the norm defined in Equation (5)
and we have

(11) ∥Φw(b)
−1Φw(a)(β)∥ = |a− b|Zn .
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We now show that Φ is a quasi-isometric embedding from Q∞ to FMap(Σ).

Proposition 5.2. Assume E = E(Σ) is two-sided and let Φ: Q∞ → FMap(Σ) be the map from
Equation 9. Then there exists C > 0 such that, for every a, b ∈ Q∞ we have:

1

C
· |a− b|Zn ≤ ∥Φw(a)Φw(b)

−1∥S ≤ C · |a− b|Zn + 3

and hence Φ is a quasi-isometric embedding from (Q∞, |�|Zn) to (FMap(Σ), ∥�∥S).
Proof. To obtain inequality on the left, we assume C is larger than the constants in Theorems 4.2
and 4.4. We then combine Equation (10) with Theorem 4.4 in the case where EG is two-sided and
we combine Equation (11) with Theorem 4.2 in the case where E(z) is two-sided.

Recall that x, y ∈ E are the ends of Σ associated to σ. Let A ∈ A be the set containing x
and B ∈ A be the set containing y. We now argue as in the proof of Theorem 3.5, but in place
punctures, we use disjoint subsurfaces Σi. We find homeomorphisms s1, s3 ∈ νB and s2 ∈ νA such
that

(s3h
k2
σ s2h

k1
σ s1) ◦ Φw(a)Φw(b)

−1 = id,

where k1 is the number indices i where ai = 1 and bi = 0 and k2 is the number of indices where
ai = 0 and bi = 1. Further assuming that C ≥ ∥hσ∥S , we have

∥Φw(a)Φw(b)
−1∥S ≤ C · (k1 + k2) + 3 = C · |a− b|Zn + 3

since the si are generators. This finishes the proof. □

Theorem 1.2, restated below, now follows immediately.

Theorem 5.3. Assume Σ has a two-sided end space. Then FMap(Σ) and Map(Σ) have infinite
asymptotic dimension.

Proof. By Proposition, 5.2, for each n ∈ N the map Φ: Zn → FMap(Σ) is a quasi-isometric
embedding. Since quasi-isometric embeddings preserve asymptotic dimension by Fact 3.3, and the
asymptotic dimension of Zn is n by Fact 3.4, we have that for all n, the asymptotic dimension of
FMap(Σ) is at least n. This shows that the asymptotic dimension of FMap(Σ) is infinite.

By Theorem 2.7, FMap(Σ) and Map(Σ) are quasi-isometric. Fact 3.3 tells us that asymptotic
dimension is preserved under quasi-isometries, and hence Map(Σ) has infinite asymptotic dimen-
sion. □

6. Equivalence of Algebraically and Topologically Essential

In this section we prove Theorems 1.5 and 1.6 from the introduction. Let hσ be a shift map as
described in the introduction. Recall that the support of hσ is a strip σ, containing a collection of
sub-surfaces Σi, exiting towards points x, y ∈ E. We make use of the following theorem of Rosendal
giving an equivalent condition for the notion of coarsely bounded sets that is more suitable for our
purposes.

Theorem 6.1 (Rosendal, Prop. 2.7 (5) in [20]). Let A be a subset of a Polish group G. The
following are equivalent

• A is coarsely bounded.
• For every neighborhood ν of the identity in G, there is a finite subset F and some k ≥ 1

such that A ⊂ (Fν)k.
We prove several special cases of Theorem 1.5. We then combine them to give a proof of the

general case.

Proposition 6.2. Assume Σi is a surface of genus g with one boundary component. If hσ is
essential, then EG is two-sided giving a decomposition EG = X ⊔ Y such that x ∈ X and y ∈ Y .
In particular, if EG is not two-sided, then hσ is not essential.
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Proof. Let A,B ∈ A be such that x ∈ A and y ∈ B. There is a homeomorphic copy σ′ of σ which
is the concatenation of an infinite genus half-strip in ΣA, a zero genus compact strip in L, and an
infinite genus half-strip in ΣB . Let g be a homeomorphism sending σ to σ′. For F and ν as in
Theorem 6.1, let F ′ = g−1Fg and ν′ = g−1νg. Then

hnσ ∈ (Fν)k ⇐⇒ hnσ′ ∈ (F ′ν′)k.

That is, ⟨hσ⟩ is CB if and only if ⟨hσ′⟩ is CB. In fact, in general, any set conjugate to a CB set is
CB. Hence, it is enough to prove the Proposition for hσ′ .

Claim: Assume there is no decomposition EG = X ⊔ Y where x ∈ X, y ∈ Y and X,Y are closed
FMap(Σ)–invariant sets. Then, there is a sequence

A = A0, A1, . . . , Ak = B, Ai ∈ A
and a sequence of ends zi ∈ EG and z′i ∈ E(zi), i = 0, . . . , (k − 1) such that z0 ∈ A0 −M(A0),
z′k−1 ∈ Ak −M(Ak) and, for i = 1, . . . , (k − 1) , z′i−1, zi ∈ Ai −M(Ai−1).

To see that this claim holds, let A′ be the subset of A such that, for C ∈ A′, there is a sequence
as described above starting from A and ending in C. Let B′ = A −A′. Then, for every A′ ∈ A′,
B′ ∈ B′ and z ∈ EA′ ∩ EG we have E(z) ∩ EB′ = ∅. Define

X =
⋃

A′∈A′

EA′ ∩ EG and Y =
⋃

B′∈B′

EB′ ∩ EG.

The sets X and Y are closed and FMap(Σ) invariant, and the definition of X implies that we have
x ∈ X. The assumption implies that y cannot be in Y . Therefore B ∈ A′ and the above sequence
exists, which proves the claim.

ΣA = ΣA0

ΣA1

ΣB = ΣA2

xA0

xA1

xA2

z0

Z0

Y0
ω0

Y1
ω1

z′0 z1

Z ′
0 Z1

z′1

Z ′
1

∂0

∂1

∂2

σ′σ′
n

Figure 4. This is the picture of the our set up for k = 2. The arcs ωi and
∂i are chosen so that, the concatenation of ∂0, ω0|L, ∂1, ω1|L is homotopic to the
concatenation of σ′|L followed by ∂2.

For i = 0, . . . , (k−1), fix disjoint sub-surfaces Zi ⊂ ΣAi
−xAi

and Z ′
i ⊂ ΣAi+1

−xAi+1
such that

zi is an end of Zi, z′i is an end of Z ′
i and Zi is homeomorphic to Z ′

i, for example, we can choose
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Zi so that E(Zi) is an stable neighborhood of zi. Connect Zi to Z ′
i by an arc ωi that is contained

in L ∪ ΣAi
∪ ΣAi+1

. Let Yi be a regular neighborhood of Zi ∪ Z ′
i ∪ ωi. Further, we assume that

subsurfaces Yi are disjoint from each other and are disjoint from the strip σ′ (see Figure 4). For
i = 1, . . . (k−1), let ∂i be a sub-arc of ∂ΣAi

connecting ωi−1∩∂ΣAi
to ωi∩∂ΣAi

. Also, let ωi|L be
the restriction of ωi to L. We further assume that the concatenation of ωi|L and ∂i, which is an arc
connecting ∂ΣA to ∂ΣB , is homotopic (relative ∂ΣA ∪ ∂ΣB) to either arc in the the restriction of
∂σ′ to L, which we denote by ∂σ′|L. Let ∂0 be the sub-arc of ∂ΣA connecting a point in ∂σ′∩∂ΣA

to the points ω0 ∩∂ΣA and similarly let ∂k be the sub-arc of ∂ΣB connecting a point in ∂σ′ ∩∂ΣB

to the points ωk−1 ∩ ∂ΣB . Again, these can be chosen such that the concatenation (∂iωi|L)(k−1)
i=0

is homotopic to the concatenation of an arc in ∂σ′|L and ∂k relative their end points.
Let gi be a homeomorphism that sends Zi to Z ′

i, whose support is in Yi and that sends ωi to
itself in the reverse direction. Let F = {gi}(k−1)

i=0 .
We now show that, for every n ∈ Z, hnσ′ ∈ (νLF)k+1. Let σ′

n be a sub-strip of σ′ of genus n so
that the genus of what remains between σ′

n and ∂A is zero. Choose an element f0 ∈ νA0 that sends
σ′
n to a Z0, which is possible since z0 ∈ EG and therefore Z0 has infinite genus. In fact, we can do

this in a way such that f0(σ′) ∩ ΣA starts the same as σ′ ∩ ΣA away from a small neighborhood
of ∂ΣA, then it follows ∂0 (staying in a small neighborhood of ∂ΣA) to the intersection point of
∂ΣA and ω0 ∩ ΣA, then follows ω0 ∩ ΣA (staying in Y0) to Z0, then comes back the same way
along ω0 ∩ ΣA and ∂0 and continues along σ′ into B (see the left picture in Figure 5). Then,
g0 ◦ f0(σ′

n) ⊂ Z ′
0.

f0(σ
′
n)

x
g1 f1 g0 f0(σ

′
n)

x

Figure 5. The picture on the left depicts the image of σ′ and σ′
n under the

map f0. The picture on the right depicts the image of σ′ and σ′
n under the map∏k−1

i=0 gi ◦ fi(σ′). The strip
∏k−1

i=0 gi ◦ fi(σ′) can be homotoped to σ′ inducing the
shift map hnσ′ .

We then find a f1 ∈ νA1 that sends g0 ◦ f0(σ′
n) to Z1. We can do this in a way such that

f1 ◦ g0 ◦ f0(σ′) starts the same as σ′ inside ΣA (away from a small neighborhood of ∂ΣA) then it
follows ∂0, then ω0|L, then ∂1 to the intersection point of ∂ΣA1

and ω1, then it follows ω1 ∩ ΣA1

(staying in Y1) to Z1, then comes back the same way along ω1 ∩ ΣA1
, ∂1, ω0|L and ∂0, and then

follows σ′ into B. We then apply g1 and we have g1 ◦ f1 ◦ g0 ◦ f0(σ′
n) ⊂ Z ′

1.
Following the same argument, we can find fi, i = 0, . . . , (k − 1) such that(

k−1∏
i=0

gi ◦ fi

)
(σ′

n) ⊂ Z ′
k−1 ⊂ ΣAk

= ΣB .

The strip
∏
gi ◦ fi(σ′) starts the same as σ′ in ΣA, then follows the concatenation of the arcs ωi|L

and ∂i (which by assumption is homotopic to arcs ∂σ′|L), then follows ωk ∩ ΣB to Zk, then back
the same way to ∂ΣA ∩ σ′, and then continues the same as σ′ (see the right picture in Figure 5).
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The portion of
∏k−1

i=0 gi ◦ fi(σ′
n) traveling back from ∂ΣB to ∂ΣA has genus zero and can be

homotoped into ΣB . The portion going forward from ∂ΣA to ∂ΣB also has genus zero and can be
homotoped to a neighborhood of the concatenation of ∂σ′|L and ∂k. Hence, there is fk ∈ νB such
that fk ◦

∏
gi ◦ fi(σ′) can be homotoped into σ′ and hence fk ◦

∏
gi ◦ fi can be considered as a

map with support in σ′. Since, σ′
n has moved from A to B, we in fact have fk ◦

∏
gi ◦ fi = hnσ′ .

That is hnσ′ ∈ (νLF)k+1. This finishes the proof. □

Proposition 6.3. Assume Σi is a surface with either zero or infinite genus and where E(Σi)
has a single maximal point z. If hσ is essential, then E(z) is two-sided giving the decomposition
Accu(x) = X ⊔ Y where x ∈ X and y ∈ Y .

Proof. The proof is nearly identical to the proof of Proposition 6.2. We outline it here. Let x, y
be the ends of Σ associated to the strip σ. Let A,B ∈ A be such that x ∈ A and y ∈ B. First find
g ∈ FMap(Σ) such that σ′ = g(σ) starts in ΣA, continues in L, and then enters ΣB . It is enough
to to show that the group generated by hσ′ = ghσg

−1 is CB.
Note that x, y ∈ Accu(z). We can find a sequence

A = A0, A1, . . . , Ak = B, Ai ∈ A
and a sequence of ends zi ∈ Accu(z) and z′i ∈ E(zi), i = 0, . . . , (k− 1) such that z0 ∈ A0−M(A0),
z′k−1 ∈ Ak −M(Ak) and, for i = 1, . . . , (k − 1) , z′i−1, zi ∈ Ai −M(Ai−1). A similar argument to
the proof of Proposition 6.2 shows that if such a sequence does not exist, then E(z) is two-sided
which would be a contradiction.

We then construct sub-surfaces Zi and Yi and maps gi as before, and set F = {gi}k−1
i=0 . Let

σ′
n be a sub-strip of σ′ that contains the n sub-surfaces Σi that are nearest to ∂ΣA. As in the

proof of Proposition 6.2, we can choose fi ∈ νAi
such that fk

∏
gi ◦ fi sends σ′ to the strip that

is homotopic to σ′ and moves σn from ΣA to ΣB . That is hnσ′ = fk
∏
gi ◦ fi ∈ (νLF)k+1. This

finishes the proof. □

Proposition 6.4. Assume Σi is a surface with either zero or infinite genus, and whereM(E(Σi))
is a Cantor set. Then hσ is not essential.

Proof. As before, after conjugation, we can assume σ intersects only ΣA ∪L∪ΣB , where Σi ∈ ΣA

for i ≤ 0 and Σi ∈ ΣB for i > 0. Consider a simple closed curve in the strip σ separating Σi and
Σi+1 from the rest of the strip. Denote this subsurface by Σi,i+1. If the set of maximal ends in Σi

is a Cantor set, the end space of Σi is homemorphic to the end space of Σi,i+1 (see Figure 6).

Σi,i+1

Σi−1 Σi+2

Figure 6. When M(E(Σi)) is a cantor set the surface Σi,i+1 is homeomorphic to Σi.

Similarly, the subsurface Σi,i+n, which is a subsurface of σ with one boundary component
containing the sub-surfaces Σi,Σi+1, . . . ,Σi+n, is also homeomorphic to Σi. Hence, for every n,
there is a homeomorphism fn ∈ νA with support in σ such that Σi is sent to Σi+n for i < −n,
Σi is sent to itself for i > 0, and the surface Σ−n,0 is sent to Σ0. Similarly, there there is a
homeomorphism gn ∈ νA with support in σ such that Σi is sent to Σi+n for i > 1, Σi is sent
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to itself for i ≤ 0, and the surface Σ1 is sent to Σ1,n+1. Then hnσ = gnhσfn. That is, we can
collect the surfaces Σ−n . . .Σ0 to the surface Σ0, shift σ once and the expand these surfaces to
Σ1, . . . ,Σn+1, which means we have written hnσ as a composition of 3 homeomorphisms. By letting
F = {hσ}, we have that ⟨hσ⟩ is contained in (νLF)2. Therefore, by Theorem 6.1, ⟨hσ⟩ is a CB
subset of FMap(Σ) and hσ is not essential. □

We are now in a position where we can prove Theorem 1.5, which states that Map(Σ) contains
an essential shift if and only if the endspace of Σ is two-sided.

Proof of Theorem 1.5. One direction is already proven by Proposition 5.1. It remains to show
that, if E is not two-sided then there is no essential shift map.

Assume EG is not two-sided and there does not exist any z ∈ E such that E(z) is two-sided.
Let hσ be any shift map with support on a strip σ, containing the subsurfaces Σi, exiting towards
x, y ∈ E. The end space E(Σi) has finitely many maximal types each of which is either a Cantor
set or a finite set. Therefore we can find finitely many sub-surfaces Σj

i ⊂ Σi, j = 0, . . . , ℓ, each
with one boundary component such that:

(1) The surfaces Σj
i are disjoint. Furthermore, Σ−Σj

i is a compact planar surface which means
E(Σi) = ⊔jE(Σj

i ).
(2) For j > 0, Σj

i has zero genus or infinite genus. That is, if Σi has finite genus we include
all the genus in the surface Σ0

i so every other subsurface of Σi contains no genus. If Σi

already has zero genus or infinite genus, then there is no need to choose Σ0
i . We can choose

Σ0
i to be a disk or have j range from 1 to ℓ. Also, if E(Σj

i ) ∩ EG = ∅ then we make sure
Σj

i has genus zero.
(3) For every j = 0, . . . , ℓ, the surfaces Σj

i are homeomorphic for all i ∈ Z. That is we
decompose each Σi in the same way.

Now the strip σ can be decomposed to parallel strips σj each containing sub-surfaces Σj
i . Since

hσj have disjoint support, they commute and hσ =
∏
hσj . That is, the group generated by hσj

,
j = 0, . . . , ℓ, is an abelian group that contains the group generated by hσ. Hence, if each ⟨hσj ⟩ is
CB then ⟨hσ0,...,h

σℓ
⟩ is also CB and thus ⟨hσ⟩ is CB.

Since EG is not two-sided, by Proposition 6.2, hσ0 is not essential and ⟨hσ0⟩ is CB. For j =

1, . . . , ℓ, if M(E(Σj
i )) is a single point then ⟨hσ0⟩ is CB by Proposition 6.3. If M(E(Σj

i )) is a
Cantor set, then ⟨hσ0⟩ is CB by Proposition 6.4. This finishes the proof. □

Finally, we prove Theorem 1.6 which tells us that a shift map is essential if and only if there
is either a decomposition of the ends accumulated by genus, or there is a decomposition of the
accumulation set of a maximal point of the surface.

Proof of Theorem 1.6. We begin by proving the forward direction. Consider the decomposition
of the shift map hσ =

∏
j hσj constructed in the proof of Theorem 1.5. As mentioned before, if

hσ is essential then some hσj
is essential. If hσ0

is essential, then since Σ0
i contains finite genus,

Proposition 6.2 implies the first bullet point in Theorem 1.6 holds. If j > 0 and M(E(Σj
i )) is

a single point, then by Proposition 6.3 the second bullet point in Theorem 1.6 holds. Finally,
M(E(Σj

i )) cannot be a Cantor set by Proposition 6.4, which proves the forward direction.
In the other direction, first suppose that EG is two-sided giving a decomposition EG = X ⊔ Y

where x ∈ X and y ∈ Y , then the proof of Proposition 5.1 shows that hσ0 is essential. In fact,
there is a length function ∥�∥ such that, for n > 0, ∥hnσ0∥ = 2n. Since, in this case, Σj

i have genus
zero for j > 0, the shift maps hσj act trivially on homology. Hence ∥hnσ∥ = 2n and hence hσ is
essential.

Similarly, if there exists some z ∈ M(Σi) such that E(z) is two-sided giving a decomposition
Accu(z) = X ⊔ Y where x ∈ X and y ∈ Y , then the proof of Proposition 5.1 shows that hσj is
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essential for some j > 0. In fact, there is a length function ∥�∥ such that, for n > 0, ∥hnσ0∥ = n. It
is possible that the Σj

i are homeomorphic for several different j. We can assume, after re-indexing,
that Σ1

i , . . . ,Σ
ℓ′

i all have same type of countable maximal end. Then ∥hnσ∥ = ℓ′ · n and hence hσ is
essential. □

7. Two sources of non-trivial topology

In this section, we prove Theorem 1.7 which states that if Σ does not have a non-displaceable
subsurface and FMap(Σ) does not have an essential shift then Map(Σ) and FMap(Σ) are CB. This
implies that Map(Σ) and FMap(Σ) are quasi-isometric to a point and therefore do not have an
interesting geometry. To prove this theorem, we make use of the notion of an avenue surface first
introduced in [11]. Recall that we always assume that Σ is stable.

Definition 7.1. An avenue surface is a connected orientable surface Σ which does not contain any
non-displaceable subsurface of finite type, and whose mapping class group Map(Σ) is CB-generated
but not CB.

That is, the only possible examples for surfaces that have no non-displaceable subsurfaces, no
essential shifts, and are not CB are the avenue surfaces. A topological description of avenue surfaces
was given in [11].

Lemma 7.2 (Lemmas 4.5 and 4.6 in [11]). Let Σ be an avenue surface. Then Σ has either 0 or
infinite genus, and Σ has exactly two ends of maximal type, that is,M(E) = {x1, x2}. Furthermore,
for every x ∈ E − {x1, x2}, the set E(x) accumulates to both x1 and x2.

In order to state the classification of CB mapping class groups from [13], we must first define
the notion of self-similarity for a space of ends, and the notion of telescoping for an infinite-type
surface.

Definition 7.3. A space of ends (E,EG) is said to be self-similar if for any decomposition E =
E1 ⊔ E2 ⊔ . . . ⊔ En of E into pairwise disjoint clopen sets, there exists a clopen set D in some Ei

such that (D,D ∩ EG) is homeomorphic to (E,EG).
A surface Σ is telescoping if there are ends x1, x2 ∈ E and disjoint clopen neighborhoods Vi

of xi in Σ such that for all clopen neighborhoods Wi ⊂ Vi of xi, there exist homeomorphisms
fi, hi ∈ FMap(Σ), with

fi(Wi) ⊃ (Σ− V3−i) hi(Wi) = V i, and hi(V3−i) = V3−i.

A classification of CB mapping class groups was given in [13].

Theorem 7.4 (Theorem 1.7 in [13]). The group Map(Σ) is CB if and only if Σ has infinite or
zero genus and E is either self-similar or telescoping.

We are now ready to prove Theorem 1.7 restated below.

Theorem 1.7. (Two sources of non-trivial geometry). If Map(Σ) does not have an essential shift
and Σ does not contain a non-displaceable subsurface then Map(Σ) is quasi-isometric to a point.

Proof. By way of contradiction, suppose that Σ does not have a non-displaceable subsurface,
FMap(Σ) does not contain an essential shift, and that FMap(Σ) is not CB. Then by assumption,
Σ is an avenue surface. By Lemma 7.2, M(E) = {x1, x2} and for any other x ∈ E − {x1, x2},
E(z) accumulates to both x1 and x2. Consider an end z ∈ M(E − {x1, x2}), that is, an end
that is maximal in E − {x1, x2}. If E(z) is countable, then E is two-sided with X = {x1}
and Y = {x2}. This cannot happen since we are assuming there are no essential shifts (see
Theorem 1.5). Therefore, E(z) is a Cantor set.
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Furthermore, either Σ has genus zero or it is infinite genus and {x1, x2} ⊂ EG (otherwise,
Map(Σ) is not even locally CB, see [13, Theorem 1.4]). We now show that these assumptions
imply that Σ is telescoping and, by Theorem 7.4, Map(Σ) is CB, which will prove our claim.

We check the definition of telescoping. For i = 1, 2, let Vi be disjoint stable neighborhoods of xi
such that E − (V1 ∪ V2) contains every maximal type in E −{x1, x2}. Let Wi be the given smaller
neighborhoods of xi. Since the Vi are stable neighborhoods, we have that Vi is homeomorphic to
Wi. We claim that E − (V1 ∪ V2) is homeomorphic to E − (V1 ∪W2). Since all maximal types
in E − {x1, x2} are present in E − (V1 ∪ V2), the sets E − (V1 ∪ V2) and E − (V1 ∪W2) have the
same maximal types. But all these types are Cantor sets. Therefore, for every y ∈ V2 −W2 there
is a z ∈ E − (V1 ∪ V2) such that E(y) accumulates to z. By [13, Lemma 4.18], there are small
neighborhoods Uy of y and Uz of z such that Uy ∪Uz is homeomorphic to Uz. The neighborhoods
Uy give a covering of V2 −W2, hence there is a finite sub-covering. By making the neighborhoods
smaller, we can assume that they are disjoint. Since each neighborhood Uy can be absorbed into
Uz, the set V2−W2 can be absorbed into E− (V1 ∪V2) and hence, E− (V1 ∪V2) is homeomorphic
to E − (V1 ∪W2).

Now consider surfaces ΣVi and ΣWi whose end points are Vi and Wi. We can choose these
surfaces so that ΣWi ⊂ ΣVi and so that ΣVi is disjoint from ΣV3−i . Also, we can assume ΣVi −ΣWi

and Σ− (ΣW1
∪ΣW2

) all have genus zero or infinity. The end space of ΣVi
−ΣWi

is homeomorphic
to the end space of Σ − (ΣW1

∪ ΣW2
) and they have the same genus. Also ΣV1

and ΣW1
have

homeomorphic end spaces and the same genus. Hence, there is a map h1 such that h1(ΣW1
) = ΣV1

and h1(ΣV2) = h1(ΣV2). The map h2 in Definition 7.3 can also be similarly constructed.
The construction of the maps fi follows similarly. As above, we can send ΣW1 to Σ−ΣV2 while

fixing some neighborhood W ′
2 of x2 as long as W ′

2 is small enough so that V2 −W ′
2 intersect E(z)

for every z ∈ M(E − {x1, x2}). This proves that Σ is telescoping and hence Map(Σ) is CB. Note
that since FMap(Σ) and Map(Σ) are quasi-isometric this means FMap(Σ) is also CB which proves
the theorem. □
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