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LENGTH OF A CURVE IS QUASI-CONVEX

ALONG A TEICHMÜLLER GEODESIC

Anna Lenzhen & Kasra Rafi

Abstract

We show that for every simple closed curve α, the extremal
length and the hyperbolic length of α are quasi-convex functions
along any Teichmüller geodesic. As a corollary, we conclude that,
in Teichmüller space equipped with the Teichmüller metric, balls
are quasi-convex.

1. Introduction

In this paper we examine how the extremal length and the hyperbolic
length of a measured lamination change along a Teichmüller geodesic.
We prove that these lengths are quasi-convex functions of time. The
convexity issues in Teichmüller space equipped with Teichmüller metric
are hard to approach and are largely unresolved. For example, it is
not known whether it is possible for the convex hull of three points in
Teichmüller space to be the entire space. (This is an open question of
Masur.)

Let S be a surface of finite topological type. Denote the Teichmüller
space of S equipped with the Teichmüller metric by T (S). For a Rie-
mann surface x and a measured lamination µ, we denote the extremal
length of µ in x by Extx(µ) and the hyperbolic length of µ in x by
Hypx(µ).

Theorem A. There exists a constant K, such that for every measured

lamination µ, any Teichmüller geodesic G, and points x, y, z ∈ T (S)
appearing in that order along G, we have

Exty(µ) ≤ Kmax
(
Extx(µ),Extz(µ)

)
,

and

Hypy(µ) ≤ Kmax
(
Hypx(µ),Hypz(µ)

)
.

In sec §7, we provide some examples showing that the quasi-convexity
is the strongest statement one can hope for:

Theorem B. The hyperbolic length and the extremal length of a curve

are in general not convex functions of time along a Teichmüller geodesic.
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This contrasts with the results of Kerckhoff [Ker83], Wolpert
[Wol87], and Bestvina-Bromberg-Fujiwara-Souto [BBFS09]. They
proved, respectively, that the hyperbolic length functions are convex
along earthquake paths, Weil-Petersson geodesics, and certain shearing
paths.

As a consequence of Theorem A, we show that balls in Teichmüller
space are quasi-convex.

Theorem C. There exists a constant c so that, for every x ∈ T (S),
every radius, r and points y and z in the ball B(x, r), the geodesic segment

[y, z] connecting y to z is contained in B(x, r + c).

We also construct an example of a long geodesic that stays near the
boundary of a ball, suggesting that balls in T (S) may not be convex.

A Teichmüller geodesic can be described very explicitly as a defor-
mation of a flat structure on S, namely, by stretching the horizontal
direction and contracting the vertical direction. Much is known about
the behavior of a Teichmüller geodesic. Our proof consists of combin-
ing the length estimates given in [Min96, Raf07b, CR07] with the
descriptions of the behavior of a Teichmüller geodesic developed in
[Raf05, Raf07a, CRS08].

As a first step, for a curve γ and a quadratic differential q, we provide
an estimate for the extremal length of γ in the underlying conformal
structure of q (Theorem 8) by describing what are the contributions
to the extremal length of γ from the restriction of γ to various pieces
of the flat surface associated to q. These pieces are either thick sub-

surfaces or annuli with large moduli. We then introduce the notions of
essentially horizontal and essentially vertical (Corollary 10 and Defini-
tion 12). Roughly speaking, a curve γ is essentially horizontal in q if the
restriction of γ to some piece of q contributes a definite portion of the
total extremal length of γ and if γ is mostly horizontal in that piece.
We show that, while γ is essentially vertical, its extremal length is es-

sentially decreasing, and while γ is essentially horizontal, its extremal
length is essentially increasing (Theorem 15). This is because the flat
length of the portion of γ that is mostly horizontal grows exponentially
fast and becomes more and more horizontal. The difficulty with making
this argument work is that the thick-thin decomposition of q changes as
time goes by and the portion of γ that is horizontal and has a significant
extremal length can spread onto several thick pieces. That is why we
need to talk about the contribution to the extremal length of γ from
every sub-arc of γ (Lemma 13). The theorem then follows from care-
ful analysis of various possible situations. The proof for the hyperbolic
length follows a similar path and is presented in §6.
Notation. The notation A

.≍ B means that the ratio A/B is bounded
both above and below by constants depending on the topology of S
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only. When this is true, we say A is comparable with B, or A and B are
comparable. The notation A

.≺ B means that A/B is bounded above by
a constant depending on the topology of S.

Acknowledgments. We would like to thank the referee for careful
reading of this manuscript and many helpful comments.

2. Background

Hyperbolic metric. Let x be a Riemann surface or equivalently (using
uniformization) a complete hyperbolic metric on S. By a curve on S we
always mean a free homotopy class of non-trivial non-peripheral simple
closed curve. Every curve γ has a unique geodesic representative in the
hyperbolic metric x which we call the x–geodesic representative of γ.
We denote the hyperbolic length of the x–geodesic representative of γ
by Hypx(γ) and refer to it as the x–length γ.

For a small positive constant ǫ1, the thick-thin decomposition of x is a
pair (A,Y), where A is the set of curves in x that have hyperbolic length
less than ǫ1, and Y is the set of components of S\(∪α∈Aα). Note that, so
far, we are only recording the topological information. One can make this
into a geometric decomposition as follows: for each α ∈ A, consider the
annulus that is a regular neighborhood of the x–geodesic representative
of α and has boundary length of ǫ0. For ǫ0 > ǫ1 > 0 small enough, these
annuli are disjoint (the Margulis Lemma) and their complement is a
union of subsurfaces with horocycle boundaries of length ǫ0. For each
Y ∈ Y we denote this representative of the homotopy class of Y by Yx.

If µ is a set of curves, then Hypx(µ) is the sum of the lengths of the
x–geodesic representatives of the curves in µ. A short marking in Yx is a
set µY of curves in Y so that Hypx(µY ) = O(1) and µY fills the surface
Y (that is, every curve intersecting Y intersects some curve in µY ).

If γ is a curve and Y ∈ Y, the restriction γ|Yx of γ to Yx is the union of
arcs obtained by taking the intersection of the x–geodesic representative
of γ with Yx. Let γ|Y be the set of homotopy classes (rel ∂Y ) of arcs in
Y with end points on ∂Y . We think of γ|Y as a set of weighted arcs to
keep track of multiplicity. Note that γ|Y has only topological information
while γ|Yx is a set of geodesic arcs. An alternate way of defining γ|Y is to

consider the cover Ỹ → S corresponding to Y ; that is, the cover where

Ỹ is homeomorphic to Y and such that π1(Ỹ ) projects to a subgroup of
π1(S) that is conjugate to π1(Y ). Use the hyperbolic metric to construct

a boundary at infinity for Ỹ . Then γ|
Ỹ

is the homotopy class of arcs

in Ỹ that are lifts of γ and are not boundary parallel. Now the natural

homeomorphism from Ỹ to Y sends γ|
Ỹ

to γ|Y .
By Hypx(γ|Y ), we mean the x–length of the shortest representatives

of γ|Y in Yx. It is known that (see, for example, [CR07])

(1) Hypx(γ|Y ) = Hypx(γ|Yx)
.≍ i(γ, µY ),
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where i(�, �) is the geometric intersection number and i(γ, µY ) is the
sum of the geometric intersection numbers between γ and curves in µY .

Euclidean metric. Let q be a quadratic differential on x. In a local
coordinate z, q can be represented as q(z)dz2 where q(z) is holomorphic
(when x has punctures, q is allowed to have poles of degree one at
punctures). We call the metric |q| = |q(z)|(dx2 + dy2) the flat structure
of q. This is a locally flat metric with singularities at zeros of q(z)
(see [Str84] for an introduction to the geometry of q). The q–geodesic
representative of a curve is not always unique; there may be a family of
parallel copies of geodesics foliating a flat cylinder. For a curve α, we
denote this flat cylinder of all q–geodesic representatives of α by F q

α or
Fα if q is fixed.

Consider again the thick-thin decomposition (A,Y) of x. (If q is a qua-
dratic differential on x, we sometimes call this the thick-thin decompo-
sition of q. Note that (A,Y) depends only on the underlying conformal
structure.) For Y ∈ Y, the homotopy class of Y has a representative
with q–geodesic boundaries that is disjoint from the interior of the flat
cylinders Fα, for every α ∈ A. We denote this subsurface by Yq.

Example 1. The subsurface Yq may be degenerate in several ways. It
may have an empty interior (see [Raf05] for an example of this and more
careful discussion). Even when Yq has some interior, it is possible for
the boundaries of Yq to intersect each other (not transversally, however)
or not to be embedded curves. To give the reader some intuition of
possible difficulties, we construct an example of a subsurface Y and a
curve β intersecting Y essentially so that the geodesic representative of
β intersects Yq at only one point.

Y
Y

S

γ

β

β

Figure 1. The arc β intersect, Yq at one point.

Let q be the quadratic differential obtained by gluing two Euclidean
squares along a slit at the middle and let Y be the subsurface homeo-
morphic to a twice punctured torus containing one of these squares (see
Fig. 1). Let γ be the curve going around the slit and let β be a curve
in the second torus that intersects the boundary components of Y once
each and is disjoint from γ. The picture on the left represents these ob-
jects topologically and the picture on the right depicts Yq and a geodesic
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representative for β in q. We can see that Yq has some interior but the
geodesic representatives of two boundaries of Y intersect each other. In
fact, they intersect the geodesic representative of γ. The intersection of
β with Yq is just a single point.

Let diamq(Y ) denote the q–diameter of Yq. We recall the following
theorem relating the hyperbolic and the flat lengths of a curve in Y .

Theorem 2 ([Raf07b]). For every curve γ in Y ,

ℓq(γ)
.≍ Hypx(γ) diamq(Y ).

Since Yq can be degenerate, one has to be more careful in defining

ℓq(γ|Y ). Again we consider the cover Ỹ → S corresponding to Y and

this time we equip Ỹ with the locally Euclidean metric q̃ that is the

pullback of q. The subsurface Yq lifts isometrically to a subsurface Ỹq

in Ỹ . Consider the lift γ̃ of the q–geodesic representative of γ to Ỹ
and the restriction of γ̃ to Yq. We define ℓq(γ|Y ) to be the q̃–length of
this restriction. Note that ℓq(γ|Y ) may equal zero. (See the example at
the end of [Raf07b].) However, a modified version of Equation (1) still
holds true for ℓq(γ|Y ):

Proposition 3. For every curve γ,

ℓq(γ|Y )
diamq(Y )

+ i(γ, ∂Y )
.≍ i(γ, µY ).

Proof. As above, consider the cover Ỹ → S, the subsurface Ỹq that
is the isometric lift of Yq, and the lift γ̃ of the q–geodesic representative
of γ. For every curve α ∈ µY , there is a lift of α that is a simple
closed curve. To simplify notation, we denote this lift again by α and
the collection of these curves by µY . Let d = diamq(Y ), let Z be the

d–neighborhood of Ỹq in Ỹ , and let ω be an arc in Z constructed as
follows. Choose an arc of γ|Ỹq

(which is potentially just a point) and at

each end point p, extend this arc perpendicularly to ∂Ỹq until it hits ∂Z
at a point p′ (see Fig. 2).

From the construction, we have

ℓq(ω) = ℓq(ω|Ỹq
) + 2d.

Summing over all such arcs, we have:
∑

ω

ℓq(ω) = ℓq(γ|Y ) + d i(γ, ∂Y ).

Also, ∑

ω

i(ω, µY ) = i(γ, µY ).

Hence, to prove the lemma, we only need to show

(2) d i(ω, µY )
.≍ ℓq(ω).
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γ̃

Figure 2. An arc in γ|Ỹq
can be extended to an arc with

end points on Z.

The arguments needed here are fairly standard. In the interest of
brevity, we point the reader to some references instead of repeating the
arguments. Let α be a curve in µY . By Theorem 2, the q–length of
the shortest essential curve in Z (which has hyperbolic length compa-
rable with 1) is comparable with d; hence the argument in the proof of
[Raf07b, lemma 5] also implies

ℓq(α) ℓq(ω)
.≻ d2 i(ω,α).

Therefore, lq(ω)
.≻ d i(ω,α). Summing over curves α ∈ µY (the number

of which depends on the topology of S only), we have

ℓq(ω)
.≻ d i(ω, µY ).

It remains to show the other direction of Equation (2). Here, one
needs to construct paths in Yq (traveling along the geodesics in µY )
representing arcs in γ|Y whose lengths are of order d i(γ, µY ). This is
done in the proof of [Raf07b, theorem 6]. q.e.d.

Regular and expanding annuli. Let (A,Y) be the thick-thin decom-
position of q and let α ∈ A. Consider the q–geodesic representative of α
and the family of regular neighborhoods of this geodesic in q. Denote the
largest regular neighborhood that is still homeomorphic to an annulus
by Aα. The annulus Aα contains the flat cylinder Fα in the middle and
two expanding annuli on each end which we denote by Eα and Gα:

Aα = Eα ∪ Fα ∪Gα.
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We call Eα and Gα expanding because if one considers the foliation of
these annuli by curves that are equidistant to the geodesic representa-
tive of α, the length of these curves increases as one moves away from
the q–geodesic representative of α. This is in contrast with Fα, where
all the equidistant curves have the same length. (See [Min92] for pre-
cise definition and discussion.) We denote the q–distance between the
boundaries of Aα by dq(α) and q–distance between the boundaries of
Eα, Fα, and Gα by eq(α), fq(α), and gq(α) respectively. When α and q
are fixed, we simply use e, f , and g.

Lemma 4 ([CRS08]). For α ∈ A,

1

Extx(α)

.≍ Modx(Eα) +Modx(Fα) +Modx(Gα).

Furthermore,

Modx(Eα)
.≍ log

(
e

ℓq(α)

)
, Modx(Gα)

.≍ log

(
g

ℓq(α)

)
,

and

Modx(Fα) =
f

ℓq(α)
.

Let γ be a curve. The restriction γ|Aα is the set of arcs obtained from
restricting the q–geodesic representative of γ to Aα, and ℓq(γ|Aα) is the
sum of the q–lengths of these curves.

Lemma 5. For the thick-thin decomposition (A,Y) of q, we have

ℓq(γ)
.≍
∑

Y ∈Y

ℓq(γ|Y ) +
∑

α∈A

ℓq(γ|Aα).

Proof. The annuli Aα are not necessarily disjoint. But the cardinality
of A is uniformly bounded and ℓq(γ) ≥ ℓq(γ|Aα). Similarly, the number
of elements in Y is uniformly bounded and ℓq(γ) ≥ ℓq(γ|Y ). Hence
(3) ℓq(γ)

.≻
∑

Y ∈Y

ℓq(γ|Y ) +
∑

α∈A

ℓq(γ|Aα).

To see the inequality in the other direction, we note that every seg-
ment in the q–geodesic representative of γ is either contained in some
Aα, α ∈ A or in some Yq, Y ∈ Y. q.e.d.

Teichmüller geodesics. Let q = q(z)dz2 be a quadratic differential on
x. It is more convenient to use the natural parameter ζ = ξ + iη, which
is defined away from its singularities as

ζ(w) =

∫ w

z0

√
q(z) dz.

In these coordinates, we have q = dζ2. The lines ξ = const with trans-
verse measure |dξ| define the vertical measured foliation, associated to q.
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Similarly, the horizontal measured foliation is defined by η = const and
|dη|. The transverse measure of an arc α with respect to |dξ|, denoted by
hq(α), is called the horizontal length of α. Similarly, the vertical length

vq(α) is the measure of α with respect to |dη|.
A Teichmüller geodesic can be described as follows. Given a Rie-

mann surface x and a quadratic differential q on x, we can obtain a 1–
parameter family of quadratic differentials qt from q so that, for t ∈ R, if
ζ = ξ+iη are natural coordinates for q, then ζt = etξ+ie−tη are natural
coordinates for qt. Let xt be the conformal structure associated to qt.
Then G : R → T (S), which sends t to xt, is a Teichmüller geodesic.

Let G : [a, b] → T (S) be a Teichmüller geodesic and qa and qb be
the initial and terminal quadratic differentials. We use ℓa(�) for the qa–
length of a curve; we use Exta(�) for the extremal length of a curve in qa.
Similarly, we denote by Moda(�) the modulus of an annulus in qa. We
denote the thick-thin decomposition of qa by (Aa,Yb). We also write
ea(α), da(α), fa(α), and ℓa(α) in place of eqa(α), dqa(α), fqa(α), and
ℓqa(α). When the curve α is fixed, we simplify notation even further
and use ea, da, fa, and ℓa. Also, we denote the flat annulus and the
expanding annuli corresponding to α in qa by F a

α , E
a
α, and Ga

α, or by
F a, Ea, and Ga when α is fixed. Similar notation applies to qb. The
following technical statement will be useful later.

Corollary 6. Let α be a curve in the intersection of Aa and Ab.

Then
Exta(α)

ℓa(α)

.≺ e(b−a)Extb(α)

ℓb(α)
,

Proof. The length of an arc along a Teichmüller geodesic changes at
most exponentially fast. That is, eb−a is an upper-bound for eb

ea
, fb
fa
, gb
ga
,

and ℓb
ℓa
. Let k = ℓb

ℓa
. Then

ℓbModb(E
b)

ℓaModa(Ea)

.≍ k
log eb

ℓb

log ea
ℓa

≤ k
log
(
eb−a

k
ea
ℓa

)

log ea
ℓa

≤ k
eb−a

k
log ea

ℓa

log ea
ℓa

≤ eb−a.

By a similar argument,

ℓb Modb(G
b)

ℓaModa(Ga)

.≺ eb−a,

We also have
ℓbModb(F

b)

ℓaModa(F a)
=

fb
fa

≤ eb−a.

Then, by Lemma 4 and the estimates above,

Exta
ℓa

÷ Extb
ℓb

.≍ ℓb
(
Modb(E

b) +Modb(F
b) +Modb(G

b)
)

ℓa
(
Moda(Ea) +Moda(F a) +Moda(Ga)

) .≺ eb−a,

which is the desired inequality. q.e.d.
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Twisting. In this section we define several notions of twisting and dis-
cuss how they relate to each other. First, consider an annulus A with
core curve α and let β̃ and γ̃ be homotopy classes of arcs connecting
the boundaries of A (here, homotopy is relative to the end points of an

arc). The relative twisting of β̃ and γ̃ around α, twα(β̃, γ̃), is defined to

be the geometric intersection number between β̃ and γ̃. If α is a curve
on a surface S, and β and γ are two transverse curves to α, we lift β
and γ to the annular cover S̃α of S corresponding to α. The curve β
(resp., γ ) has at least one lift β̃ (resp., γ̃) that connects the boundaries

of S̃α. We define twα(β, γ) to be twα(β̃, γ̃). This is well defined up to a
small additive error ([Min96, §3]).

When the surface S is equipped with a metric, one can ask how many
times the geodesic representative of γ twists around a curve α. However,
this needs to be made precise. When x is a Riemann surface, we define
twα(x, γ) to be equal to twα(β, γ) where β is the shortest hyperbolic
geodesic in x intersecting α. For a quadratic differential q, the definition
is slightly different. We first consider Fα and let β be an arc connecting
the boundaries of Fα that is perpendicular to the boundaries. We then
define twα(q, γ) to be the geometric intersection number between β and
any arc in γ|Fα . These two notions of twisting are related as follows:

Theorem 7 (Theorem 4.3 in [Raf07a]). Let q be a quadratic differ-

ential in the conformal class of x, and let α and γ be two intersecting

curves; then

∣∣ twα(q, γ)− twα(x, γ)
∣∣ .≺ 1

Extx(α)
.

3. An Estimate for the Extremal Length

In [Min96], Minsky has shown that the extremal length of a curve is
comparable to the maximum of the contributions to the extremal length
from the pieces of the thick-thin decomposition of the surface. Using this
fact and some results in [Raf07b] and [Raf07a], we can state a similar
result relating the flat length of a curve γ to its extremal length.

Theorem 8. For a quadratic differential q on a Riemann surface x,
the corresponding thick-thin decomposition (A,Y) and a curve γ on x,
we have

Extx(γ)
.≍
∑

Y ∈Y

ℓq(γ|Y )2
diamq(Y )2

+
∑

α∈A

(
1

Extx(α)
+ tw2

α(q, γ) Extx(α)

)
i(α, γ)2.
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Proof. First we recall [Min96, theorem 5.1] where Minsky states that
the extremal length of a curve γ in x is the maximum of the contribu-
tions to the extremal length from each thick subsurface and from cross-
ing each short curve. The contribution from each curve α ∈ A is given by
an expression [Min96, equation (4.3)] involving i(α, γ), twα(x, γ) and
Extx(α). For each subsurface Y ∈ Y, the contribution to the extremal
length from γ|Y is shown to be [Min96, theorem 4.3] the square of the
hyperbolic length of γ restricted to a representative of Y with a horo-
cycle boundary of a fixed length in x. This is known to be comparable
to the square of the intersection number of γ with a short marking µY

for Y .
To be more precise, let µY be a set of curves in Y that fill Y so that

ℓx(µY ) = O(1). Then Minsky’s estimate can be written as

Extx(γ)
.≍
∑

Y ∈Y

i(γ, µY )
2+

∑

α∈A

(
1

Extx(α)
+ tw2

α(x, γ) Extx(α)

)
i(α, γ)2.

(4)

From Theorem 7,

∣∣ twα(x, γ)− twα(q, γ)
∣∣ = O

(
1

Extx(α)

)
,

and hence,

1 + twα(x, γ) Extx(α)
.≍ 1 + twα(q, γ) Extx(α).

Squaring both sides, and using (a+ b)2
.≍ a2 + b2, we get

1 + tw2
α(x, γ) Extx(α)

2 .≍ 1 + tw2
α(q, γ) Extx(α)

2.

We now divide both sides by Extx(α) to obtain
(

1

Extx(α)
+ tw2

α(x, γ) Extx(α)

)
.≍
(

1

Extx(α)
+ tw2

α(q, γ) Extx(α)

)
.

That is, the second sum in Minsky’s estimate is comparable to the
second sum in the statement of our proposition.

Now consider the inequality in Proposition 3 for every Y ∈ Y. After
taking the square and adding up, we get

∑

Y ∈Y

ℓq(γ|Y )2
diamq(Y )2

+
∑

α∈A

i(γ, α)2
.≍
∑

Y ∈Y

i(γ, µY )
2,

But the term
∑

α∈A i(γ, α)2 is insignificant compared with the term
i(γ,α)2

Extx(α)
appearing in the right side of Equation (4). Therefore, we can

replace the term
∑

Y ∈Y i(γ, µY )
2 in Equation (4) with

∑
Y ∈Y

ℓq(γ|Y )2

diamq(Y )2

and obtain the desired inequality. q.e.d.
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To simplify the situation, one can provide a lower bound for extremal
length using the q–length of γ and the sizes of the subsurface Yq, Y ∈ Y,
and Aα, α ∈ A.

Corollary 9. For any curve γ, the contribution to the extremal length

of γ from Aα, α ∈ A, is bounded below by
ℓq(γ|Aα )2

dq(α)2
. In other words,

Extx(γ)
.≻
∑

Y ∈Y

ℓq(γ|Y )2
diamq(Y )2

+
∑

α∈A

ℓq(γ|Aα)
2

dq(α)2
.

Proof. Recall the notations Eα, Fα, Gα, e, f , and g from the back-
ground section. Denote the q–length of α by a. Every arc of γ|Aα has to
cross Aα and twist around α, twα(q, γ)–times. Hence, its length is less
than dq(α) + twα(q, γ)a. Therefore,

ℓq(γ|Aα)
2 .≺ i(α, γ)2

(
dq(α)

2 + tw2
α(q, γ)a

2
)
.

Thus
(

ℓq(γ|Aα)

dq(α) i(α, γ)

)2
.≍ dq(α)

2 + tw2
α(q, γ)a

2

dq(α)2
.≍ 1 +

tw2
α(q, γ)

dq(α) 2/a2

.≺ 1

Extx(α)
+

tw2
α(q, γ)

log e
a
+ f

a
+ log g

a

.≍ 1

Extx(α)
+ tw2

α(x, γ) Extx(α)

We can now multiply both sides by i2(α, γ) and replace the common

term in the second sum of the estimate in Theorem 8 with
(
ℓq(γ|Aα )
dq(α)

)2

to obtain the corollary.
The estimate here seems excessively generous, but there is a case

where the two estimates are comparable. This happens when α is not
very short, the twisting parameter is zero, and γ|Aα is a set of i(γ, α)–
many arcs of length comparable to one. q.e.d.

Essentially horizontal curves. The goal of this subsection is to de-
fine essentially horizontal curves. We will later show that if a curve is
essentially horizontal at some point along a Teichmüller geodesic, its
extremal length is coarsely non-decreasing from that point on. First we
show that, for a quadratic differential q and a curve γ, there is a sub-
surface of q where the contribution to the extremal length of γ coming
from this subsurface if a definite portion of the extremal length of γ
in q. Then we will call γ essentially horizontal (see definition below); if
restricted to at least one such subsurface, γ is mostly horizontal (the
horizontal length of the restriction is larger than the vertical length of
the restriction). The coarsely non-decreasing property of an essentially
horizontal curve is a consequence of the fact that the flat length of a
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mostly horizontal curve grows exponentially fast along a Teichmüller
geodesic.

Corollary 10. Let (A,Y) be a thick-thin decomposition for q, and
let γ be a curve that is not in A. Then

1) For every Y ∈ Y,

Extx(γ)
.≻ ℓq(γ|Y )2
diamq(Y )2

.

2) For α ∈ A and a flat annulus Fα whose core curve is α,

Extx(γ)
.≻ ℓq(γ|Fα)

2 Extx(α)

ℓq(α)2
.

3) For α ∈ A and an expanding annulus Eα whose core curve is α,

Extx(γ)
.≻ i(α, γ)2 Modx(Eα).

Furthermore, at least one of these inequalities is an equality up to a

multiplicative error.

Remark 11. In light of Theorem 8, we can think of the terms appear-
ing in the right hand sides of the above inequalities as the contribution
to the extremal length of γ coming from Y , Fα, and Eα respectively.
Then Corollary 10 states that one of these subsurfaces contributes a
definite portion of the extremal length of γ.

Proof of Corollary 10. Parts one and three follow immediately from The-
orem 8. We prove part two. As before,

(5) ℓq(γ|Fα)
2 .≺ (twα(q, γ)

2ℓq(α)
2 + fq(α)

2) i(α, γ)2.

Hence

ℓq(γ|Fα)
2 Extx(α)

ℓq(α)2
.≺ twα(q, γ)

2ℓq(α)
2 + fq(α)

2

ℓq(α)2
Extx(α) i(α, γ)

2

.≺ twα(q, γ)
2 Extx(α) i(α, γ)

2

+ Extx(α)Modx(Fα)
2 i(α, γ)2.

But Extx(α)Modx(Fα)
2 ≤ 1

Extx(α)
and thus, by Theorem 8, the above

expression is bounded above by a multiple of Extx(γ).
To see that one of the inequalities has to be an equality, we observe

that the number of pieces in the thick-thin decomposition (A,Y) is
uniformly bounded. Therefore, some term in Theorem 8 is comparable
to Extx(γ). If this is a term in the first sum, then the inequality in part
one is an equality. Assume for α ∈ A that

Extx(γ)
.≍ i(α, γ)2

Extx(α)
.
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We either have Extx(Eα)
.≍ Extx(α) or Extx(Fα)

.≍ Extx(α). In the first
case, the estimate in part three is comparable to Extx(γ). In the second
case,

Extx(γ)
.≍ i(α, γ)2

Extx(Fα)
=

(
i(α, γ)2fq(α)

2

ℓq(α)2

)(
ℓq(α)

fq(α)

)
.≺ ℓq(γ|Fα)

2

ℓq(α)2
Extx(α),

which means the inequality in part two is an equality.
The only remaining case is when

Extx(γ)
.≍ twα(q, γ)

2 Extx(α) i(α, γ)
2.

In this case, the estimate in part two is comparable to Extx(γ). This

follows from ℓq(γ|Fα)
.≻ twα(q, γ)ℓq(α) i(α, γ). q.e.d.

Definition 12. We say that γ is essentially horizontal, if at least one
of the following holds:

1) Extx(γ)
.≍ ℓq(γ|Y )2

diamq(Y )2
and γ|Y is mostly horizontal (i.e., its horizon-

tal length is larger than its vertical length) for some Y ∈ Y.

2) Extx(γ)
.≍ ℓq(γ|Fα)2 Extx(α)

ℓq(α)2
and γ|Fα is mostly horizontal for some

flat annulus Fα whose core curve is α ∈ A.

3) Extx(γ)
.≍ i(α, γ)2 Modx(Eα) for some expanding annulus Eα whose

core curve is α ∈ A.

Extremal length of geodesic arcs. Consider the q–geodesic repre-
sentative of a curve γ and let ω be an arc of this geodesic. We would
like to estimate the contribution that ω makes to the extremal length of
γ in q. Let (A,Y) be the thick-thin decomposition of q. Let λω be the
maximum over diamq(Y ) for subsurfaces Y ∈ Y that ω intersects and
over all dq(α) for curves α ∈ A that ω crosses. Let σω be the q–length
of the shortest curve β that ω intersects. We define

X(ω) =
ℓq(ω)

2

λ2
ω

+ log
λω

σω
,

and claim that the contribution from ω to the extremal length of γ is
at least X(ω). This is stated in the following lemma:

Lemma 13. Let Ω be a set of disjoint sub-arcs of γ. Then

Extq(γ)
.≻ |Ω|2 min

ω∈Ω
X(ω).
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Proof. Let (A,Y) be the thick-thin decomposition of q. We have

Extx(γ) ≥
∑

Y ∈Y

ℓq(γ|Y )2
diamq(Y )2

+
∑

α∈A

ℓq(γ|Aα)
2

dq(α)2

(6)

.≻
(
∑

Y ∈Y

ℓq(γ|Y )
diamq(Y )

+
∑

α∈A

ℓq(γ|Aα)

dq(α)

)2

(7)

≥
(
∑

Y ∈Y

∑

ω∈Ω

ℓq(ω|Y )
diamq(Y )

+
∑

α∈A

∑

ω∈Ω

ℓq(ω|Aα)

dq(α)

)2

(8)

.≻
(
∑

ω∈Ω

(
∑

Y ∈Y

ℓq(ω|Y )
λω

+
∑

α∈A

ℓq(ω|Aα)

λω

))2

≥
(
∑

ω∈Ω

ℓq(ω)

λω

)2

.(9)

Inequality (6) follows from Corollary 9. To obtain (7), we are using

n∑

i=1

x2i ≥
1

n

( n∑

i=1

xi

)2

and the fact that the number of components in Y and in A are uniformly
bounded. Line (8) follows from the fact that arcs in Ω are disjoint sub-
arcs of γ. To get (9), we then rearrange terms and use the fact that for
all non-zero terms, diamq(Y ) and dq(α) are less than λω.

Now let α1, . . . , αk be the sequence of curves in A that ω intersects as
it travels from the shortest curve β to the largest subsurface it intersects,
which has size of at most λω. Note that either α1 = β or α1 is the
boundary of the thick subsurface containing βω. Either way, ℓq(α1)

.≺
σω. Also, dq(αi)

.≻ ℓq(αi+1). This is because αi and αi+1 are boundaries

of some subsurface Y ∈ Y. Finally, dq(αk)
.≻ λω. Therefore,

k∑

i=1

log
dq(αi)

ℓq(αi)
= log

k∏

i=1

dq(αi)

ℓq(αi)

.≻ log
dq(αk)

ℓq(α1)

.≻ log
λω

σω
.

Since |A| .≍ 1, we can conclude that, for each ω, there is curve α so that

i(α, ω) ≥ 1 and log
dq(α)

ℓq(α)

.≻ log
λω

σω
. Using Theorem 8,
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Extq(γ)
.≻
∑

α∈A

i(α, γ)2

Extq(α)

.≻
(
∑

α∈A

i(α, γ)√
Extq(α)

)2

.≻
(
∑

ω∈Ω

∑

α∈A

i(α, ω)

√
log

dq(α)

ℓq(α)

)2

.≻
(
∑

ω∈Ω

√
log

λω

σω

)2

.

Combining the above two inequalities, we get

Extq(γ)
.≻
(
∑

ω∈Ω

ℓq(ω)

λω

)2

+

(
∑

ω∈Ω

√
log

λω

σω

)2

.≻
(
∑

ω∈Ω

√
X(ω)

)2

≥ |Ω|2 min
ω

X(ω).

q.e.d.

We also need the following technical lemma.

Lemma 14. Let qa and qb be two points along a Teichmüller geo-

desic and let (Aa,Ya) and (Ab,Yb) be their thick-thin decompositions

respectively. Let Y ∈ Ya:

• If β ∈ Ab intersects Y , then db(β) ≤ e(b−a) diama(Y ).

• If Z ∈ Yb intersects Y , then diamb(Z) ≤ e(b−a) diama(Y ).

Similarly, if α ∈ Aa,

• If β ∈ Ab intersects α, then db(β) ≤ e(b−a)ℓa(α).

• If Z ∈ Yb intersects α, then diamb(Z) ≤ e(b−a)ℓa(α).

Proof. Let γ be the shortest curve system in qa that fills Y . Then
lb(γ)

.≺ e(b−a) diama(Y ). If Y intersects β ∈ Ab, then some curve in γ
has to intersect Aβ essentially and we have

db(α) ≤ lb(γ)
.≺ e(b−a) diama(Y ).

If Y intersects some subsurface Z ∈ Yb, then Z has an essential arc ω
in Z whose qb–length is less than the qb–length of γ. Also, if Y intersects
a boundary component δ of Z,

ℓb(γ)
.≻ db(δ) ≥ ℓb(δ).

By doing a surgery between ω and δ, one obtains an essential curve in
Z whose qb–length is less than a fixed multiple of γ. Hence

diamb(Z)
.≺ lb(γ)

.≺ e(b−a) diama(Y ),

which is what we claimed. The argument for α ∈ Aa is similar. q.e.d.
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4. The Main Theorem

Let G : R → T (S) be a Teichmüller geodesic. We denote the Riemann
surface G(t) by Gt and the corresponding quadratic differential in Gt by
qt. For a curve γ, denote the extremal length of γ on Gt by Extt(γ) and
the thick-thin decomposition of qt simply by (At,Yt).

Theorem 15. There exists a constant K, such that for every mea-

sured foliation µ, any Teichmüller geodesic G, and points x, y, z ∈ T (S)
appearing in that order along G, we have

Exty(µ) ≤ Kmax
(
Extx(µ),Extz(µ)

)
.

Proof. Let the times a < b < c ∈ R be such that x = Ga, y = Gb, and
z = Gc. Recall ([Ker80]) that the extremal length

Ext: MF(S)× T (S) → R

is a continuous function, and that the weighted simple closed curves
are dense in MF(S). Since the limit of quasi-convex functions is itself
quasi-convex, and a multiple of a quasi-convex function is also quasi-
convex (with the same constant in both cases), it is sufficient to prove
the theorem for simple closed curves only. That is, we can assume that
every leaf of µ is homotopic to a curve γ and the transverse measure is
one.

Suppose first that the extremal length Extb(γ) is small. Then it is
comparable to the hyperbolic length of γ [Mas85]. In this case the
result is already known. More precisely, if γ is in Aa, Ab, and Ac, the
statement for the hyperbolic length follows from [Raf07a, corollary 3.4]
and [Raf07a, theorem 1.2]. Also, if γ ∈ Ab but either γ 6∈ Aa or γ 6∈ Ac,
then the statement is clearly true. Therefore, we can assume there is a
lower bound on the length of γ at b, where the lower bound depends on
the topology of x only.

Choose any element in the thick-thin decomposition of qb with sig-
nificant contribution to the extremal length of γ, i.e. where the corre-
sponding inequality in Corollary 10 is an equality up to a multiplicative
error. The restriction of γ to this subsurface is either mostly horizon-
tal or mostly vertical. That is, γ is either essentially horizontal or es-
sentially vertical. If γ is essentially horizontal, Proposition 16 implies
Extb(γ)

.≺ Extc(γ) and we are done. Otherwise, γ is essentially vertical.
In this case, we can reverse time, changing the role of the horizon-
tal and vertical foliations, and using Proposition 16 to again conclude
Extb(γ)

.≺ Exta(γ). This finishes the proof. q.e.d.

Proposition 16. If γ is essentially horizontal for the quadratic dif-

ferential qa, then for every b > a we have

Extb(γ) ≻ Exta(γ).
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Proof. We argue in 3 cases according to which inequality in Corol-
lary 10 is an equality up a multiplicative error.

Case 1. Assume there is a subsurface Y ∈ Ya so that

Exta(γ)
.≍ ℓa(γ|Y )2
diama(Y )2

such that γ|Y is mostly horizontal. We then have ℓb(γ|Y )
.≻ e(b−a)ℓa(γ|Y ).

Let Z be the set of subsurfaces in Yb that intersect Y and let B be a set
of annuli Aβ, where β ∈ Ab and β intersects Y . Then Y is contained in
the union of

⋃
Z∈Z Zb and

⋃
β∈B Ab(β). Therefore,

ℓb(γ|Y ) ≤
∑

Z∈Z

ℓb(γ|Z) +
∑

β∈B

ℓb(γ|Ab(β)).

We also know from Lemma 14 that

diamb(Z) ≤ e(b−a) diama(Y ) and db(β) ≤ e(b−a) diama(Y ).

Therefore,

Extb(γ)
.≻
∑

Z∈Z

ℓb(γ|Z)2
diamb(Z)2

+
∑

β∈B

ℓb(γ|Ab(β))
2

(db(β))2

.≻
∑

Z∈Z ℓb(γ|Z)2 +
∑

β∈B ℓb(γ|Ab(β))
2

e2(b−a) diama(Y )2

.≻
(

e(b−a)ℓa(γ|Y )
e(b−a) diama(Y )

)2
.≍ Exta(γ).

Case 2. Assume that there is a curve α ∈ Aa so that

Exta(γ)
.≍ ℓa(γ|Fα)

2 Exta(α)

ℓa(α)2
,

and γ|Fα is mostly horizontal. Then ℓb(γ|Fα)
.≻ e(b−a)ℓa(γ|Fα). If α is still

short in qb, i.e. if α ∈ Ab, then the proposition follows from Corollary 6.
Otherwise, let Z be the set of subsurfaces in Yb that intersect α and

let B be the set of curves in Ab that intersect α. Since Fα has geodesic
boundaries, it is contained in the union of

⋃
Z∈Z Zb and

⋃
β∈B Ab(β). The

rest of the proof is exactly as in the previous case with the additional
observation that Extb(α) ≥ ǫ1 ≥ Exta(α).

Case 3. Assume there is an expanding annulus E with large modulus
and the core curve α such that

Exta(γ)
.≍ i(α, γ)2 Moda(E)

and γ|E is mostly horizontal. Let Ω be the set of sub-arcs of γ that start
and end in α and whose restriction to E is at least (1/3)–horizontal (that
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is, the ratio of the horizontal length to the vertical length is bigger than
1/3–times). We have

|Ω| ≥ (1/4) i(α, γ).

Otherwise, (3/4) of arcs are 3-vertical, which implies that the total
vertical length is larger than the total horizontal length. Recall that

Moda(E)
.≍ log(da(α)/ℓa(α)).

For ω ∈ Ω we have ℓa(ω) ≥ 2da(α). Since the restriction of ω to E is
mostly horizontal, we have

ℓb(ω) ≻ e(b−a)da(α).

The arc ω intersects α, so σω ≤ ℓb(α) ≤ e(b−a)ℓa(α). Therefore,

X(ω)
.≻ e2(b−a)(da(α))

2

λ2
ω

+ log
λω

e(b−a)ℓa(α)
.

This expression is minimum when λω =
√
2e(b−a)da(α). That is,

X(ω)
.≻ log

da(α)

ℓa(α)

.≍ Moda(E).

Using Lemma 13, we have

Extb(γ) ≻ |Ω|2 min
ω∈Ω

X(ω)
.≻ i(α, γ)2 Moda(E)

.≍ Exta(γ).

This finishes the proof in this case. q.e.d.

5. Quasi-Convexity of a Ball in Teichmüller Space

Consider a Riemann surface x. Let B(x, r) denote the ball of radius r
in T (S) centered at x.

Theorem 17. There exists a constant c such that, for every x ∈
T (S), every radius, r and point y and z in the ball B(x, r), the geodesic

segment [y, z] connecting y to z is contained in B(x, r + c).

Proof. Let u be a point on the segment [y, z]. It is sufficient to show
that

dT (x, u) ≤ max
(
dT (x, y), dT (x, z)

)
+ c.

There is a measured foliation µ such that

dT (x, u) =
1

2
log

Extu(γ)

Extx(γ)
.

Also, from the quasi-convexity of extremal lengths (Theorem 15) we
have

Extu(µ) ≤ Kmax
(
Exty(µ),Extz(µ)

)
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Therefore,

dT (x, u) ≤
1

2
log

(
Kmax

(
Exty(γ),Extz(γ)

)

Extx(γ)

)

≤ max
(
dT (x, y), dT (x, z)

)
+ c.

q.e.d.

6. Quasi-Convexity of Hyperbolic Length

In this section, we prove the analogue of Theorem 15 for the hyper-
bolic length:

Theorem 18. There exists a constant K′, such that for every mea-

sured foliation µ, any Teichmüller geodesic G, and times a < b < c ∈ R,

we have

Hypb(µ) ≤ K
′ max

(
Hypa(µ),Hypc(µ)

)
.

Proof. The argument is identical to the one for Theorem 15, with
Corollary 20 and Proposition 23 being the key ingredients. They are
stated and proved below. q.e.d.

Our main goal for the rest of this section is Proposition 23. To make
the reading easier, we often take note of the similarities and skip some
arguments when they are nearly identical to those for the extremal
length case.

In place of Theorem 8, we have

Theorem 19. For a quadratic differential q on a Riemann surface

x, the corresponding thick-thin decomposition (A,Y), and a curve γ on

x, we have

Hypx(γ)
.≍
∑

Y ∈Y

ℓq(γ|Y )
diamq(Y )

+

∑

α∈A

[
log

1

Extx(α)
+ twα(q, γ) Extx(α)

]
i(α, γ).

(10)

Proof. The hyperbolic length of a curve γ is, up to a universal mul-
tiplicative constant, the sum of the lengths of γ restricted to the pieces
of the thick-thin decomposition of the surface. The hyperbolic length of
γ|Y is comparable to the intersection number of γ with a short marking
µY of Y , which is, by Proposition 3, up to a multiplicative error,

ℓq(γ|Y )
diamq(Y )

+
∑

α∈∂Y

i(γ, α).
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The contribution from each curve α ∈ A is (see, for example, [CRS08,
corollary 3.2]),

[
log

1

Hypx(α)
+ Hypx(α) twα(x, γ)

]
i(α, γ).

Thus, we can write an estimate for the hyperbolic length of γ as

Hypx(γ)
.≍
∑

Y ∈Y

ℓq(γ|Y )
diamq(Y )

+
∑

α∈A

[
log

1

Hypx(α)
+ Hypx(α) twα(x, γ)

]
i(α, γ).

Note that we are not adding 1 to the sum in the parentheses above since
the sum is actually substantially greater.

To finish the proof, we need to replace Hypx(α) with Extx(α) and
twα(x, γ) with twα(q, γ). Maskit has shown [Mas85] that, when Hypx(α)
is small,

Hypx(α)

Extx(α)

.≍ 1.

Hence, we can replace Hypx(α) with Extx(α). Further, it follows from
Theorem 7 that

| twα(q, γ) Extx(α)− twα(x, γ) Extx(α)| = O(1).

Since log 1
Extx(α)

is at least 1 for α ∈ A, we have

log
1

Extx(α)
+ twα(q, γ) Extx(α)

.≍ log
1

Extx(α)
+ twα(x, γ) Extx(α),

which means that we can replace twα(x, γ) with twα(q, γ). q.e.d.

We almost immediately have:

Corollary 20. Let (A,Y) be a thick-thin decomposition for q and let

γ be a curve that is not in A. Then

1) For every Y ∈ Y,

Hypx(γ)
.≻ ℓq(γ|Y )
diamq(Y )

.

2) For every α ∈ A and the flat annulus Fα whose core curve is α,

Hypx(γ)
.≻ logModx(Fα)i(α, γ),

3) For every α ∈ A,

Hypx(γ)
.≻ twα(q, γ) Extx(α)i(α, γ).

4) For every α ∈ A and an expanding annulus Eα whose core curve

is α,
Hypx(γ)

.≻ logModx(Eα)i(α, γ).
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Furthermore, at least one of these inequalities is an equality up to a

multiplicative error.

Proof. Parts (1–4) follow immediately from Theorem 19 and the fact
that the reciprocal of the extremal length of a curve α is bounded be-
low by the modulus of any annulus homotopic to α. Further, since the
number of pieces in the thick-thin decomposition (A,Y) is uniformly
bounded, some term in Theorem 19 has to be comparable with Hypx(γ).
The only non-trivial case is when that term is log 1

Extx(α)
i(α, γ) for some

α ∈ A. But by Lemma 4, either

1

Extx(α)

.≍ Modx(Fα),

or

1

Extx(α)

.≍ Modx(Eα),

and the lemma holds. q.e.d.

As in §3, we need a notion of essentially horizontal for hyperbolic length.
We say that γ is essentially horizontal if at least one of the following
holds

1) Hypx(γ)
.≍ ℓq(γ|Y )

diamq(Y ) and γ|Y is mostly horizontal (i.e., its horizon-

tal length is larger than its vertical length) for some Y ∈ Y.

2) Hypx(γ)
.≍ logModx(Fα)i(α, γ) and γ|Fα is mostly horizontal for

some flat annulus Fα whose core curve is α ∈ A.

3) Hypx(γ)
.≍ twα(q, γ) Extx(α)i(α, γ) and γ|Fα is mostly horizontal

for some flat annulus Fα whose core curve is α ∈ A.

4) Hypx(γ)
.≍ logModx(Eα)i(α, γ) for some expanding annulus Eα

whose core curve is α ∈ A.

Further, Corollary 9 is replaced with

Corollary 21. For any curve γ, the contribution to the hyperbolic

length of γ from Aα, α ∈ A, is bounded below by
ℓq(γ|Aα )
dq(α)

. In other words,

Hypx(γ)
.≻
∑

Y ∈Y

ℓq(γ|Y )
diamq(Y )

+
∑

α∈A

ℓq(γ|Aα)

dq(α)
.

Proof. Identical to the proof of Corollary 9 after removing the squares
and taking log when necessary. q.e.d.
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Instead of the function X(ω), to estimate the hyperbolic length of an
arc, we define

H(ω) =
ℓq(ω)

λω
+ logmax

{
log

λω

σω
, 1

}
.

In place of Lemma 13 we get

Lemma 22. Let Ω be a set of disjoint sub-arcs of γ. Then

Hypx(γ) ≻ |Ω| min
ω∈Ω

H(ω).

Proof. Identical to the proof of Lemma 13 after removing the squares
and taking log when necessary. q.e.d.

Finally, we have the analog of Proposition 16.

Proposition 23. If γ is essentially horizontal for the quadratic dif-

ferential qa, then for every b > a we have

Hypb(γ) ≻ Hypa(γ).

Proof. By the definition of essentially horizontal, there are four cases
to consider. We deal with two of them, the flat annulus case and the
twisting case, at once in Case 2.

Case 1. There is a thick subsurface Y where γ is mostly horizontal and
such that

Hypa(γ)
.≍ ℓa(γ|Y )
diama(Y )

,

The proof is as in the extremal length case after removing the squares.

Case 2. There exists a curve α ∈ A so that

(11) Hypa(γ)
.≍ logModa(Fα)i(α, γ),

or

(12) Hypa(γ)
.≍ twα(a, γ) Exta(α)i(α, γ),

and γ|Fα is mostly horizontal. We argue in three sub-cases.

Case 2.1. Suppose first that α is no longer short at t = b and either
(11) or (12) holds. Let Z be the set of subsurfaces in Yb that intersect α
and let B be the set of curves in Ab that intersect α. Then, by Corollary
21 and Lemma 14,

Hypb(γ)
.≻
∑

Z∈Z

ℓb(γ|Z)
diamb(Z)

+
∑

β∈B

ℓb(γ|Aβ
)

db(β)

.≻
∑

Z∈Z

ℓb(γ|Z)
eb−aℓa(α)

+
∑

β∈B

ℓb(γ|Aβ
)

eb−aℓa(α)
.
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But Fα is contained in
(⋃

Z∈Z Z
)
∪
(⋃

β∈B Aβ

)
:

.≻ ℓb(γ|Fα)

eb−aℓa(α)

.≻ ℓa(γ|Fα)

ℓa(α)
.≻ max

{
logModa(Fα)i(α, γ), twα(a, γ) Exta(α)i(α, γ)

}
.≍ Hypa(γ).

Case 2.2. Suppose now that α ∈ Ab and that (11) holds. If α is mostly
vertical at time a, the extremal length of α is decreasing exponentially
fast for some interval [a, c]. That is, Modc(Fα)

.≻ Moda(Fα). It is suffi-
cient to show that for b ≥ c,

Hypb(γ)
.≻ logModc(Fα) i(α, γ).

Our plan is to argue that, while the modulus of Fα is decreasing,
the hyperbolic length of γ is not decreasing by much because the curve
is twisting very fast around α. We need to estimate the twisting of
γ around α. Let ω be one of the arcs of γ|Fα . Note that ω is mostly
horizontal at c (since it was at a) and its length is larger than fc(α).
Also, since α is mostly horizontal at c, ft(α) is decreasing exponentially
fast at t = c. Hence, after replacing c with a slightly larger constant,
we can assume ω is significantly larger than fa(α) and therefore, the
number of times ω twists around α is approximately the length ratio of
ω and α (see equation 15 and 16 in [Raf07a] and the related discussion
for more details). That is, for c ≤ t ≤ b, twα(qt, γ) is essentially constant:

twα(qt, γ)
.≍ ℓt(ω)

ℓt(α)

.≍ e(t−a)ℓa(ω)

e(t−a)ℓa(α)
=

ℓa(ω)

ℓa(α)
.

Therefore,

Modc(Fα) =
fc(α)

ℓc(α)
≤ ℓa(ω)

ℓa(α)

.≍ twα(qc, γ).

Keeping in mind that, for k ≥ 0, the function f(x) = − log x + kx >
log k, we have

Hypb(γ)
.≻
[
log

1

Extb(α)
+ twα(b, γ) Extb(α)

]
i(α, γ)

.≻ log
(
twα(qb, γ)

)
i(α, γ)

.≻ logModc(Fα) i(α, γ).

Case 2.3. Suppose that α ∈ Ab and that (12) holds. Since γ crosses α,
Hypa(γ) is greater than a large multiple of i(α, γ). Hence

Hypa(γ)
.≍ twα(a, γ) Exta(α)i(α, γ)

implies that twα(a, γ) is much larger than Moda(Fα). That is, the angle
between γ and α is small. Therefore, after perhaps replacing a with a
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slightly larger number, we can assume that α is mostly horizontal and
that, for a ≤ t ≤ b,

(13) twα(t, γ)
.≍ ℓt(ω)

ℓt(α)
,

Applying Theorem 19, Equation (13), Corollary 6, and Equation (12)
in that order, we obtain:

Hypb(γ)
.≻ [twα(b, γ) Extb(α)] i(α, γ)

.≍ Extb(α)

ℓb(α)
ℓb(ω)i(α, γ)

.≻ eb−a

eb−a

Exta(α)

ℓa(α)
ℓa(ω)i(α, γ)

.≻ [twα(a, γ) Exta(α)] i(α, γ).

Case 3. There is a curve α ∈ A with expanding annulus Eα such that
γ|Eα is mostly horizontal with

Hypa(γ)
.≍ logModa(Eα)i(α, γ),

Following the proof for the corresponding case for extremal length, we
have

H(ω)
.≻ eb−ada(α)

λω
+ logmax

{
log

λω

eb−aℓa(α)
, 1

}

.≻ log log
da(α)

ℓa(α)

.≍ logModa(Eα).

One can verify the second inequality as follows. If λω

eb−a ≤
√

da(α)ℓa(α),
then

eb−ada(α)

λω
≥
√

da(α)

ℓa(α)

.≻ log log
da(α)

ℓa(α)
.

Otherwise,

log log
λω

eb−aℓa(α)
≥ log log

√
da(α)

ℓa(α)

.≻ log log
da(α)

ℓa(α)
,

and applying Lemma 22, we have

Hypb(γ)
.≻ |Ω|min

ω∈Ω
H(ω)

.≻ i(α, γ) log Moda(Eα)
.≍ Hypa(γ).

This finishes the proof. q.e.d.
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7. Examples

This section contains two examples. In the first example we describe a
Teichmüller geodesic and a curve whose length is not convex along this
geodesic. The second example is of a very long geodesic that spends its
entire length near the boundary of a round ball.

Example 24 (Extremal length and hyperbolic length are not con-
vex). To prove that the extremal and the hyperbolic lengths are not con-
vex, we construct a quadratic differential and analyze these two lengths
for a specific curve along the geodesic associated to this quadratic differ-
ential. We show that on some interval the average slope (in both cases)
is some positive number and on some later interval the average slope
is near zero. This shows that the two length functions are not convex.
Note that scaling the weight of a curve by a factor k increases the hy-
perbolic and the extremal length of that curve by factors of k and k2,
respectively. Thus, after scaling, one can produce examples where the
average slope is very large on some interval and near zero on some later
interval.

Let 0 < a ≪ 1. Let T be a rectangular torus obtained from identifying
the opposite sides of the rectangle [0, a]×[0, 1

a
]. Also, let C be a euclidean

cylinder obtained by identifying vertical sides of [0, a]× [0, a]. Take two
copies T1 and T2 of T , each cut along a horizontal segment of length
a/2 (call it a slit), and join them by gluing C to the slits. This defines
a quadratic differential q on a genus two surface x0. The horizontal and
the vertical trajectories of q are those obtained from the horizontal and
the vertical foliation of R2 by lines parallel to the x–axis and y–axis
respectively. We now consider the Teichmüller geodesic based at x0 in
the direction of q. Let α be a core curve of cylinder C. We will show
that, for small enough a, Extxt(α) and Hypxt

(α) are not convex along
xt.

Let ρ be the metric which coincides with the flat metric of q on C and
on the two horizontal bands in Ti of width and height a with the slit
in the middle, and is 0 otherwise. The shortest curve in the homotopy
class of α has length a in this metric. Then we have

(14) Extx0
(α) ≥ a2

3a2
=

1

3
.

Also, at time t < 0, we have Modxt(C) = ae−t

aet
= e−2t and, therefore,

(15) Extxt(α) ≤ e2t.

Hence we see that the extremal length of α grows exponentially on
(−∞, 0). In particular, the average slope on the interval J = (−2, 0) is
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more than 1
8 . By proposition 1 and corollary 3 in [Mas85],

(16) 2e−
1

2
Hypx(α) ≤ Hypx(α)

Extx(α)
≤ π,

and it is easy to see that the slope of Hypxt
(α) on this interval is also

greater than 1
8 .

vertical vertical

T1 T2

C1 C2

B1 B2

A1 A2

α

horizontal horizontal

C

aet

Figure 3. Metric ρt on xt when t > 0.

Further along the ray, when t > 0, the modulus of C is decreasing
exponentially. We estimate Extxt(α) for t ∈ I = (0, 12 log

1
a2
). For the

lower bound, consider the cylinder A which is the union of C and the
maximal annuli in Ti whose boundary is a round circle centered at the
middle of the slit. Then A contains two disjoint copies of annuli of inner
radius (aet/4) and outer radius (aet/2) (the condition on t guarantees
that these annuli do not touch the top or the bottom edges of T1 and T2).
Both of these annuli have modulus of 1

2π log 2, and therefore Modxt(A) ≥
1
π
log 2. Hence

(17) Extxt(α) ≤
1

Modxt(A)
≤ π

log 2
.

For the upper bound, we use the metric ρt defined as follows (see
Fig. 3): Let Ai be the annuli in Ti centered at the midpoints of the

corresponding slits with inner radius aet+δ
4 and outer radius aet−δ

2 for
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a very small δ. Let ρt be 1
|z| |dz| on Ai, and the flat metric |dz| on C

scaled so that the circumference is 2π. The complement of Ai and C
consists of two annuli B1, B2 and two once-holed tori C1 and C2 with
Bi, Ci ∈ Ti. On each of these components, we will define ρt so that
the shortest representative of α has length at least 2π and the area is
bounded above. More precisely, let ρt =

2π
aet

|dz| on Bi. On Ci, let ρt be
2

aet−δ
|dz| if |Imz| < 1

2 (π + 1)(aet − δ), and zero otherwise.

The area of C in this metric is (2πaet)(̇2πae−t) = O(1). The pieces
Bi and Ci have diameters of order O(aet) in ρt and hence have area of
order O(1). The annuli Ai in this metric are isometric to flat cylinders
of circumference 2π and width less than log 2, which also has area one.
Thus,

Areaρt(S) = O(1).

Also, the ρt-length of any curve α′ homotopic to α is ℓρt(α
′) ≥ 2π.

Indeed, any curve contained in one of the annuli has ρt-length at least 2π.
Morever, any sub-arc of α′ with end points on a boundary component of
an annulus can be homotoped relative to the end points to the boundary
without increasing the length.

Since the area of ρt is uniformly bounded above (independent of a
and t) and the length of α in ρt is larger than 2π, the extremal length

(18) Extxt(α) ≥
inf
α′∼α

ℓρt(α
′)2

Areaρt(S)
is bounded below on I by a constant independent of t and a. Combining
this with (18), we see that, as a → 0 (and hence the size of I goes to
∞), the average slope of Extxt(α) on I is near zero. In particular, the
average slope on I can be made smaller than 1

8 , which implies that
the function Extxt(α) is not convex. Combining (16) and the estimates
of the extremal length above, we come to the same conclusion about
Hypxt

(α).

Example 25 (Geodesics near the boundary). Here we describe how,
for any R > 0, a geodesic segment of length comparable to R can stay
near the boundary of a ball of radius R. This example suggests that
metric balls in T (S) might not be convex.

Remark 26. In [MW95], Masur and Wolf used a very similar ex-
ample to show that the Teichmüller space is not Gromov hyperbolic.

Let x be a point in the thick part of T (S) and µx be the short
marking of x. Pick any two disjoint curves α, β in µx. Let y = Dn

(α)x,

and z = Dn
(α,β)x, where D(∗) is the Dehn twist around a multicurve (∗).

The intersection numbers between the short markings of x, y, z satisfy

i(µx, µy)
.≍ i(µx, µz)

.≍ i(µy, µz)
.≍ n.
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Hence, by theorem 2.2 in [CR07], we have

dT (x, y)
+≍ dT (x, z)

+≍ dT (y, z)
+≍ log n.

That is, [y, z] is a segment of length log n whose end points are near
the boundary of the ball B(x, log n). We will show, for w ∈ [y, z], that

dT (x,w)
+≍ log n, which means the entire geodesic [y, z] stays near the

boundary of the ball B(x, log n). Let α′ be a curve that intersects α, is
disjoint from β, and Exty(α

′) = O(1). Since α′ intersects α,

Extx(α
′)

.≍ n2,

and since α′ is disjoint from β,

Extz(α
′) = O(1).

By Theorem 15,

Extw(α
′) ≤ Kmax

{
Exty(α

′),Extz(α
′)
}
= O(1).

We now have

dT (S)(w, x) ≥
1

2
log

Extx(α
′)

Extw(α′)

+≍ log n.
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