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COMPARISON BETWEEN TEICHMÜLLER AND LIPSCHITZ METRICS

YOUNG-EUN CHOI and KASRA RAFI

Abstract

We study the Lipschitz metric on a Teichmüller space (defined by Thurston) and compare it with the Teichmüller
metric. We show that in the thin part of the Teichmüller space the Lipschitz metric is approximated up to
a bounded additive distortion by the sup-metric on a product of lower-dimensional spaces (similar to the
Teichmüller metric as shown by Minsky). In the thick part, we show that the two metrics are equal up to
a bounded additive error. However, these metrics are not comparable in general; we construct a sequence of
pairs of points in the Teichmüller space, with distances that approach zero in the Lipschitz metric while they
approach infinity in the Teichmüller metric.

1. Introduction

The Teichmüller distance between two points σ and τ in Teichmüller space T (S) is defined
in terms of the minimal quasiconformal constant K(σ, τ) between σ and τ . Thurston [12]
introduced an analogous metric on T (S) by considering the least possible value of the global
Lipschitz constant Λ(σ, τ) from σ to τ . On the one hand, Kerckhoff [3] showed that K(σ, τ)
can be formulated in terms of the ratio of extremal lengths of simple closed curves

K(σ, τ) = sup
α

Extτ (α)
Extσ(α)

(1)

and on the other, it was shown by Thurston [12] that the minimal Lipschitz constant Λ(σ, τ)
is given by the ratio of lengths in the hyperbolic metric

Λ(σ, τ) = sup
α

$τ (α)
$σ(α)

. (2)

A comparison of K(σ, τ) and the ratio of lengths in equation (2) was first given by
Wolpert [13], who proved that for any K-quasiconformal map f from σ to τ and for any
simple closed curve α,

$τ (f(α))
$σ(α)

! K.

This implies, in particular, that
Λ(σ, τ) ! K(σ, τ). (3)

In this paper, we compare the Teichmüller and Lipschitz metrics by comparing the two
ratios in equations (1) and (2). Our method is to analyse the ratio of hyperbolic lengths in
much the same way as the ratio of extremal lengths was analysed by Minsky [7] to show that
certain regions in the thin part of the Teichmüller space have product structures. However,
since K(σ, τ) is symmetric and Λ(σ, τ) is not [12], it is necessary to choose some symmetric
version of Λ to make the comparison more meaningful. Thus, we take

L(σ, τ) = max{Λ(σ, τ),Λ(τ,σ)}
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and define the Teichmüller and Lipschitz metrics, respectively, as

dT (σ, τ) = 1
2 log K(σ, τ),

dL(σ, τ) = log L(σ, τ).

Note that the factor 1/2 has been left out in the Lipschitz metric. This is because we can
compare the two metrics up to an additive error on the thick part of the Teichmüller space, as
we shall shortly see.

Although Λ(σ, τ) is not symmetric, it is easy to check that it satisfies the following ordered
triangle inequality:

log(Λ(ρ, τ)) ! log(Λ(ρ,σ)) + log(Λ(σ, τ))

and further satisfies the property that log(Λ(σ, τ)) = 0 if and only if σ = τ . Thus dL(σ, τ)
defines a genuine metric in that it is symmetric, takes the value zero if and only if σ = τ , and
satisfies the triangle inequality. In [11], it was shown that on the Teichmüller space of the torus,
the Teichmüller metric and a similarly defined Lipschitz metric are, in fact, equal (see also [1]).
In contrast, we show that for a hyperbolic surface S, the two metrics are not comparable.

Theorem A. There are sequences σn, τn ∈ T (S) such that, as n → ∞,

dL(σn, τn) → 0, dT (σn, τn) → ∞.

We have recently been made aware that the fact that the two metrics are not metrically
equivalent was first shown by Li [4].

As is often the case, however, no incongruities occur on the thick part of the Teichmüller
space, and the two metrics are quasi-isometric to one another. In fact, they are equal up to a
bounded additive error. This is a consequence of the following theorem, proved in Section 2.

Theorem B. For ρ ∈ T (S), let µρ be a short marking for ρ. For every ε > 0, there is a
constant c depending on the surface S and on ε such that, for any σ, τ in the ε-thick part of
T (S), the following quantities differ from one another by at most c:

(1) dT (σ, τ);
(2) dL(σ, τ);
(3) log maxα∈µσ ($τ (α)/$σ(α));
(4) log maxα∈µτ ($σ(α)/$τ (α)).

In particular, in order to estimate the Teichmüller distance between two points in the thick
part, one need only compare the lengths of a finite number of curves (that is, those in the short
marking) with respect to the two metrics.

To compare the metrics on the thin part of the Teichmüller space, we prove in Section 3 an
analog of Minsky’s product region theorem [7]. Let Γ be a collection of k disjoint, homotopically
distinct, simple closed curves on S and let Thinε(S,Γ) be the set of σ ∈ T (S) such that
$σ(γ) ! ε for all γ ∈ Γ. Let TΓ = T (S \ Γ) × U1 × . . . × Uk, where S \ Γ is the analytically
finite surface obtained from S by pinching all the curves in Γ and where Ui is the subset
{(x, y) : y " 1/ε} of the upper half-plane. The Fenchel–Nielsen coordinates on T (S) give rise
to a natural homeomorphism Π : Thinε(S,Γ) → TΓ. Then Minsky’s product region theorem
states the following.

Theorem 1.1 (Minsky [7]). Let dTΓ be the sup metric

dTΓ = sup
{
dT (S\Γ),

1
2dH1 , . . . ,

1
2dHk

}

on TΓ, where dT (S\Γ) is the Teichmüller metric on T (S \ Γ) and dHi the restriction of the
hyperbolic metric on the upper half-plane to Ui. Then, for ε sufficiently small, there is a
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constant c depending on ε such that for any σ, τ ∈ Thinε(S,Γ)

|dT (σ, τ) − dTΓ(Π(σ),Π(τ))| < c.

In the analog for the Lipschitz metric, we define the sup-metric

dLΓ = sup{dL(S\Γ), dL(γ1), . . . , dL(γk)}

on TΓ, where dL(S\Γ) is the Lipschitz metric on T (S \ Γ) and dL(γi) is a modification of the
hyperbolic metric on Ui (see Section 3 for details).

Theorem C. For ε sufficiently small, there is a constant c depending on ε such that for
any σ, τ ∈ Thinε(S,Γ),

|dL(σ, τ) − dLΓ(Π(σ),Π(τ))| < c.

A more precise statement is given in Theorem 3.5. Our proof is parallel to Minsky’s, but
requires only elementary hyperbolic geometry, since we need not deal with extremal lengths.

As a consequence of Theorem B, one can deduce the following purely combinatorial result.
For a subsurface Z, let dZ(µ1, µ2) be the distance between the projections of µ1 and µ2 to Z,
measured in the arc complex of Z (see [5, 9] for details); see below for notation.

Corollary D. There is a constant k such that for any markings µ1 and µ2 on S,

log i(µ1, µ2) &
∑

Y

[dY (µ1, µ2)]k +
∑

A

log [dA(µ1, µ2)]k , (4)

where Y ranges over all subsurfaces of S that are not annuli, A ranges over all annuli, and
where [x]k = 0 if x < k and [x]k = x if x " k.

Masur and Minsky [5] provide an estimate, similar to the right-hand side of (4), for the
number of elementary moves needed to change µ1 to µ2. Using their result and examining how
the intersection number between the two markings changes as a result of applying a sequence
of elementary moves to one of them, one can show that the right-hand side of (4) is an upper
bound for log i(µ1, µ2) (there is no clear combinatorial argument for proving the inequality
in the other direction). In this context, Corollary D states that along an efficient path in the
marking space, the intersection number increases at the fastest possible rate.

1.1. Notation

Often, we shall compare two functions f and g on T (S) and use the notation f ≺ g and f & g
to mean, respectively, that there are positive constants k and c such that f ! kg + c and such
that g/k − c ! f ! kg + c. We also use f

∗≺ g, f
+& g to mean, respectively, that there is only

a multiplicative constant, or only an additive constant, involved. In particular, f
∗& 1 means

that the function f is bounded both above and below by positive constants. The constants k
and c usually depend on the topological type of S, which will not be subsequently mentioned.
Other dependencies will be explicitly noted.

2. The thick part

Let S be a surface of finite topological type. Given ε > 0, the ε-thick part of the Teichmüller
space is the set of σ ∈ T (S) such that the infimum of the injectivity radius measured in σ,
taken over all points in S, is greater than ε. When we simply say ‘the thick part’, we mean
that it is the ε-thick part for some ε which has already been chosen.
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A marking on S is a collection of homotopically distinct, simple closed curves in S obtained
by first choosing a pants curves system, that is, a collection of mutually disjoint curves that
cut S into pairs of pants (where a hole may be a puncture of S), and then by choosing an
additional collection of curves that together with the pants system cuts the surface into disks
and punctured disks. To make the choice of a marking less arbitrary, additional conditions on
the choice of curves are often specified.

For σ ∈ T (S), we define a short marking µσ as follows. First choose a pants system by taking
the shortest curve in S, then the next shortest curve disjoint from the first, and so on until
a complete pants system α is formed. Throughout this paper, when we say the ‘length of a
curve’, we always mean the length of its geodesic representative. Next, choose a ‘dual’ curve
δα for each α ∈ α that is disjoint from α \ α, and that is the shortest among all such curves.
There may be a finite number of possible short markings for σ.

A lemma of Bers states that there is a uniform constant N such that every σ ∈ T (S) has a
pants curves system α with the property that $σ(α) < N for all α ∈ α. Hence, if σ is in the
ε-thick part of T (S) so that all the curves in a short marking µ have length bounded below
as well, then the lengths of the dual curves are bounded above, and so $σ(µ) =

∑
α∈µ $σ(α)

is bounded above by some quantity depending only on ε. Conversely, given a marking µ and
a number B > 0, the set of metrics σ ∈ T (S) such that $σ(µ) ! B has a bounded diameter
in T (S), where the bound depends only on B (see, for example, [6]). Thus there is a coarse
correspondence between the thick part of the Teichmüller space and the set of markings. This
idea is implicit in the theorems that follow.

2.1. Proof of Theorem B

First we need the following lemma. Let g : R → T (S) be the Teichmüller geodesic that passes
through σ and τ and let qt be the family of quadratic differentials representing g. We assume
that all quadratic differential metrics have been normalized to have area 1.

Lemma 2.1. Let µ be a marking on S that has the same number of curves as any short
marking (that is, 6g(S) − 6 + 2p, where g(S) is the genus of S and p is the number of punctures).
Then there exist $0 and t0 such that

$qt(µ) ∗& $0 e|t−t0|.

Proof. Recall that a quadratic differential qt defines a pair of measured foliations on the
surface S, called the horizontal and the vertical foliations. For every curve α the horizontal
length ht(α) of α is the intersection number of α with the vertical foliation, and the vertical
length vt(α) of α is the intersection number of α with the horizontal foliation. Then we have
(see, for example, [8])

$qt(α) ∗& ht(α) + vt(α).

Let tα be the time when α is balanced, that is, the time when the horizontal length and the
vertical length of α are equal. Let $α = $qtα

(α). Along a Teichmüller geodesic, the horizontal
length of α increases and the vertical length of α decreases exponentially fast. Therefore

$qt(α) ∗& $α cosh(t − tα).

Thus, for every marking µ,

$qt(µ) =
∑

α∈µ

$qt(α) ∗&
∑

α∈µ

$α cosh(t − tα). (5)
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Denote the right-hand side of (5) by f(t). Let t0 be the time when f(t) is minimised and let
$0 = f(t0). Since

cosh(t − tα) ! cosh(t0 − tα) e|t−t0|,

we have ∑

α∈µ

$α cosh(t − tα) !
∑

α∈µ

$α cosh(t0 − tα) e|t−t0| = $0 e|t−t0|. (6)

To prove the inequality in the other direction, we observe that the derivative of f(t) with
respect to t at t = t0 is

∑
α $α sinh(t0 − tα) = 0, which implies that

∑

α∈µ

$α et0−tα =
∑

α∈µ

$α etα−t0 = $0.

If n is the number of curves in µ, then the above equation implies that there exist β, γ ∈ µ
such that

$β et0−tβ " $0
n

and $γ etγ−t0 " $0
n

.

Thus we have

f(t) =
∑

α∈µ

$α cosh(t − tα) " $β cosh(t − tβ) + $γ cosh(t − tγ)

" 1
2

[
$β et−t0 et0−tβ + $γ etγ−t0 et0−t

]

" $0
2n

e|t−t0|. (7)

Equations (6) and (7) show that f(t) ∗& $0 e|t−t0|. This along with Equation (5) prove the
lemma.

Proof of Theorem B. We show that the first three quantities are comparable, and the proof
for the remaining term is obtained by reversing the orientation of g. Suppose that for a < b,
we have g(a) = σ, g(b) = τ so that dT (σ, τ) = b − a. Since the moduli space of the thick part
is compact, we know that the hyperbolic lengths of curves in σ and τ are proportional to their
quadratic differential lengths in qa and qb, respectively (see [10] for a more general discussion).
Therefore, there are multiplicative constants depending only on ε such that for any simple
closed curve α,

$τ (α)
$σ(α)

∗& $qb(α)
$qa(α)

. (8)

Moreover, since

$qb(α) ∗& $α cosh(b − tα) ! eb−a$α cosh(a − tα) ∗& eb−a$qa(α),

it follows from equation (8) that

dL(σ, τ)
+
≺ dT (σ, τ).

Therefore, since we clearly have

log max
α∈µσ

$τ (α)
$σ(α)

! dL(σ, τ),

it remains to be shown that there is a curve α ∈ µσ such that

b − a
+
≺ log

$qb(α)
$qa(α)

.
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Let $qt(µσ) ∗& $0 e|t−t0| as in Lemma 2.1. Then

$0 e|b−a|−|a−t0| ∗≺ $qb(µσ)
∗≺ $0 e|b−a|+|a−t0|. (9)

First we show that |a − t0| is bounded above. Since σ is in the thick part, the qa-length and
the σ-length of µσ are comparable to one another. Moreover, since µσ is a short marking in σ,
its σ-length is bounded both above and below. Therefore, we have

$0 e|a−t0| ∗& $qa(µσ) ∗& $σ(µσ) ∗& 1. (10)

Furthermore, we can see that $0 is bounded below as follows. A marking divides the surface into
disks and punctured disks. For any quadratic differential q, the q-area of a disk or a punctured
disk is less than the square of its perimeter. Therefore, we have for all t that

1 = areaqt(S)
∗≺

∑

α∈µσ

$qt(α)2. (11)

By applying the above equation to t = t0, we obtain $0
∗( 1. It then follows from equation (10)

that |a − t0|
∗≺ 1, as desired. Thus, it follows from equation (9) that

$qb(µσ) ∗& eb−a. (12)

As we saw in equation (10), the qa-lengths of curves in µσ are bounded above and below.
Combining this with equation (12) and the fact that the qb-length of µσ is the sum of the
qb-lengths of its curves, we see that there is a curve α ∈ µσ such that

$qb(α) ∗& $qb(µσ) ∗& eb−a ∗& $qa(α)eb−a,

which is what we wanted.

Theorem 2.2. Let σ and τ be points in the ε-thick part of the Teichmüller space and let
µσ and µτ be their short markings, respectively. Then there is an additive constant depending
only on ε such that

dT (σ, τ)
+& log i(µσ, µτ ),

where i(µσ, µτ ) is the total number of intersections between the curves in µσ and the curves
in µτ .

Proof. The τ -length of a curve is proportional to its intersection number with µτ (see, for
example, [6, Lemma 4.7]). Therefore,

i(µσ, µτ ) ∗&
∑

α∈µσ

$τ (α) ∗& max
α∈µσ

$τ (α). (13)

Since σ is in the thick part of T (S), we have $σ(α) ∗& 1 for every curve α ∈ µσ. Thus, it follows
from Theorem B that

log max
α∈µσ

$τ (α)
+& log max

α∈µσ

$τ (α)
$σ(α)

+& dT (σ, τ). (14)

The theorem follows from equations (13) and (14).

Remark 2.3. The above theorem implies that the logarithm of the intersection number
is almost a distance function on the marking space. In particular, it satisfies a quasi-triangle
inequality. That is, for markings µ1, µ2, and µ3 we have

log i(µ1, µ3)
+
≺ log i(µ1, µ2) + log i(µ2, µ3).

This ‘distance function’ is similar, but not comparable, to the distance defined on the space of
markings in [5].
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Proof of Corollary D. For markings µ1 and µ2, one can find the points σ1 and σ2 in the
thick part of the Teichmüller space such that µ1 and µ2 are short markings in σ1 and σ2,
respectively. In [9], a combinatorial formula is given for the Teichmüller distance between any
two points in the thick part of the Teichmüller space. It states that dT (σ1,σ2) is comparable
to the right-hand side of equation (4). Also, Theorem 2.2 states that log i(µ1, µ2)

+& dT (σ1,σ2).
These two results together prove the corollary.

3. Product regions in the Lipschitz metric

In this section, we prove the analog of Minsky’s product region theorem for the Lipschitz
metric.

3.1. An (ε0, ε1)-decomposition

First, we need to recall the notion of an (ε0, ε1)-decomposition defined in [7]. Let 0 < ε1 < ε0
be two numbers less than the Margulis constant c0 = 0.2629 . . .; see [14]. Let σ be a hyperbolic
metric on S and suppose γ1, . . . , γk are geodesics with lengths $σ(γi) ! ε1. Let A1, . . . , Ak be
the collection of annular neighborhoods of γ1, . . . , γk, respectively, such that the boundary
components of Ai each have length ε0. A component Q of S \

⋃
Ai is called a hyperbolic

component and the entire collection P of hyperbolic components and annular components
is called an (ε0, ε1)-decomposition. We assume that ε0 and ε1 are chosen so that any simple
geodesic that intersects an annular component A is either the core of A or is made up of arcs
that run from one boundary component of A to another. We remark that in [7], what we have
described is called a partial (ε0, ε1)-decomposition. There, the term (ε0, ε1)-decomposition is
reserved for the case where {γ1, . . . , γk} is the full set of curves, the lengths of which satisfy
$σ(γi) ! ε1.

In the course of arguments to follow, we shall further require that ε0/ε1 > 2 so that certain
desired estimates hold (see, for example, Lemma 3.6). We therefore assume that ε0 and ε1 have
been chosen once and for all to satisfy all the conditions stated above and henceforth use the
notation f

∗& g, f
+& g, and so on, to mean that the multiplicative or additive constants that

appear depend only on this choice of ε0 and ε1 (and on the topological type of S).

3.2. Decomposing the length of a curve

Consider the intersection of a simple closed curve ζ with the components of an (ε0, ε1)-
decomposition. For a hyperbolic component Q, let C(Q, ∂Q) denote the homotopy classes of
simple closed curves in Q and of essential arcs in Q with endpoints on ∂Q, under homotopies
that keep any endpoints of arcs on ∂Q. Define the orthogonal projection ζQ of ζ to be the
geodesic representative of ζ ∩ Q in C(Q, ∂Q) that has the shortest length (see [7, § 2.3]). In
particular, every arc in ζQ is perpendicular to ∂Q. It is not hard to show the following.

Proposition 3.1. Let P be an (ε0, ε1)-decomposition for σ and let Q, A ∈ P be, respec-
tively, a hyperbolic and an annular component. Then, for any simple closed curve ζ, the
following estimates hold:

i(ζ, ∂Q)
∗(

∣∣$σ(ζ ∩ Q) − $σ(ζQ)
∣∣, (15)

i(ζ, γ)
∗(

∣∣∣∣$σ(ζ ∩ A) −
[
2 log

ε0
$σ(γ)

+ $σ(γ) · |twσ(ζ, γ)|
]
i(ζ, γ)

∣∣∣∣, (16)

where γ is the core geodesic of A and twσ(ζ, γ) is the twist of ζ around γ defined in [7, § 3];
see also Section 3.3.
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In equation (16), the quantity 2 log[ε0/$σ(γ)] is approximately the width of A; the right-most
term of the right-hand side describes the sum of lengths of piecewise geodesic arcs homotopic
to ζ ∩ A, relative to endpoints, each of which goes perpendicularly from one component of A
to γ, wraps around γ a number of |twσ(ζ, γ)| times (up to an error of 1), then goes out of the
other end of A orthogonally. The idea is that most of the twisting that ζ does around γ takes
place in A; see [7]. This is also the reason that equation (15) is true (for a proof, see [2]).

Since each component of ∂Q has a collar of some definite width, $σ(ζ ∩ Q)
∗( i(ζ, ∂Q) and

$σ(ζQ)
∗( i(ζ, ∂Q). Similarly, since γ has a collar of definite width, terms in the right-hand side

of equation (16) are larger than a multiple of i(ζ, γ). Therefore, Proposition 3.1 implies the
following.

Corollary 3.2. Let Q, A and γ be as in Proposition 3.1. Then for any simple closed curve
ζ on S, we have

$σ(ζ ∩ Q) ∗& $σ(ζQ), (17)

$σ(ζ ∩ A) ∗&
[
2 log

ε0
$σ(γ)

+ $σ(γ) · |twσ(ζ, γ)|
]
i(ζ, γ). (18)

3.3. Metrics on annuli

Let γ be a simple closed curve on S and let S̃ be the annular cover of S corresponding to γ.
Since S admits a hyperbolic metric, S̃ has a well-defined boundary ∂S̃ at infinity. Let γ̃ be the
lift of γ that is homotopic to the core curve of S̃. For ε > 0, let Uε(γ) be the space (equivalence
classes) of hyperbolic metrics on S̃ such that the geodesic representative of γ̃ has length at
most ε. Two metrics are considered equivalent in Uε(γ) if they differ by an isotopy of (S̃, ∂S̃)
that fixes ∂S̃ pointwise.

Let C(S̃, ∂S̃) be the set of isotopy classes of non-trivial simple loops or arcs in S̃ with end-
points in ∂S̃, under isotopies that fix the endpoints. Here a loop is non-trivial if it is not homo-
topic to a point, and an arc is non-trivial if it is not homotopic into ∂S̃ by a homotopy fixing
endpoints. For ρ ∈ Uε(γ), let N(ρ) be the annular neighborhood of the ρ-geodesic representative
of γ̃ such that each component of ∂N(ρ) has length ε0. Although the length of the ρ-geodesic
representative of an arc β ∈ C(S̃, ∂S̃) is obviously infinite, we abuse terminology and define the
ρ-length $ρ(β) of β to be the length of the arc of intersection between the ρ-geodesic represen-
tative of β and N(ρ). Observe that this definition extends consistently to the ρ-length of γ̃.

Define the distance between ρ1, ρ2 ∈ Uε(γ) to be

dL(γ)(ρ1, ρ2) = sup
β∈C(S̃,∂S̃)

∣∣∣∣∣ log
$ρ1(β)
$ρ2(β)

∣∣∣∣∣.

Clearly dL(γ)(ρ1, ρ2) is symmetric and is zero if and only if ρ1 = ρ2. To see that the triangle
inequality holds, observe that

∣∣∣∣ log
$ρ1(β)
$ρ2(β)

∣∣∣∣ +
∣∣∣∣ log

$ρ2(β)
$ρ3(β)

∣∣∣∣ " log
$ρ1(β)
$ρ2(β)

+ log
$ρ2(β)
$ρ3(β)

= log
$ρ1(β)
$ρ3(β)

,

∣∣∣∣ log
$ρ1(β)
$ρ2(β)

∣∣∣∣ +
∣∣∣∣ log

$ρ2(β)
$ρ3(β)

∣∣∣∣ " log
$ρ2(β)
$ρ1(β)

+ log
$ρ3(β)
$ρ2(β)

= log
$ρ3(β)
$ρ1(β)

.

Define the twist twρ(β, γ̃) of β around γ̃ as follows (see also [7, § 3]). First, it is necessary to
fix an orientation of γ̃. Consider the universal cover of (S̃, ρ) in H2 and the lifts γ̂, β̂ of γ̃,β,
respectively (see Figure 1). Let βL and βR be the endpoints of β̂ that lie on the left and right
of γ̂, respectively. Let pL and pR be, respectively, the orthogonal projections of βL and βR to γ̂.
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Figure 1. Defining the twist twρ(β, γ̃).

Then the twist is defined as

twρ(β, γ̃) = ±dH2(pL, pR)
$ρ(γ̃)

,

where the sign is + if the direction from pL to pR coincides with the orientation of γ̂ and − if it
is opposite. This is basically the same definition as the definition given for twσ(ζ, γ) in [7, § 3],
where σ is a hyperbolic metric on S, γ is a simple closed curve, and ζ is a transverse curve.

After fixing a simple arc ω ∈ C(S̃, ∂S̃), we can define the twist parameter twρ(S̃) of (S̃, ρ)
by setting twρ(S̃) = twρ(ω, γ̃). We have the following.

Lemma 3.3. Let ρ, ρ1, ρ2 ∈ Uε(γ) and let β ∈ C(S̃, ∂S̃) be any arc. Then
∣∣∣[twρ2(β, γ̃) − twρ1(β, γ̃)] − [twρ2(S̃) − twρ1(S̃)]

∣∣∣
+& 0

and

$ρ(β) ∗& 2 log
[

1
$ρ(γ̃)

]
+ |twρ(β, γ̃)|$ρ(γ̃). (19)

Note that log[1/$ρ(γ̃)] > 1 since $ρ(γ̃) < 0.263 < 1/e. The proof of the first statement is
similar to the proof of [7, Lemma 3.5] and the second is similar to equation (18). Details are
omitted.

Then Uε(γ) can be parametrized by the length of γ̃ and the twist parameter. The map ρ *→
(twρ(S̃), 1/$ρ(γ̃)) is a homeomorphism identifying Uε(γ) with a subset of the upper half-plane

Uε(γ) =
{

(x, y) ∈ R2 | y " 1
ε

}
.

We can formulate the distance dL(γ) on Uε(γ) in terms of these coordinates as follows. Let
ρ1, ρ2 ∈ Uε(γ) and let ti = twρi(S̃), $i = $ρi(γ̃) for i = 1, 2.

Lemma 3.4. Assume that $1 ! $2. Then the following hold.
(i) If |t1 − t2| $1 ! log[1/$1], then

dL(γ)(ρ1, ρ2)
+& log

$2
$1

.

(ii) If |t1 − t2| $1 > log[1/$1], then

dL(γ)(ρ1, ρ2)
+& log

|t1 − t2| $2
log[1/$1]

= log
$2
$1

+ log
|t1 − t2| $1
log[1/$1]

.

We remark that in comparison, the hyperbolic distance between z1 = (t1, 1/$1) and z2 =
(t2, 1/$2) in the upper half-plane can be estimated as follows. Assume that $1 ! $2.
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(i) If |t1 − t2| $1 ! 1, then

dH2(z1, z2)
+& log

$2
$1

.

(ii) If |t1 − t2| $1 > 1, then

dH2(z1, z2)
+& log

$2
$1

+ 2 log[|t1 − t2|$1].

Proof of Lemma 3.4. For any arc β ∈ C(S̃, ∂S̃), the second part of Lemma 3.3 implies that

$ρ2(β)
$ρ1(β)

∗& 2 log[1/$2] + |twρ2(β, γ̃)|$2
2 log[1/$1] + |twρ1(β, γ̃)|$1

∗& log[1/$2] + |twρ2(β, γ̃)|$2
log[1/$1] + |twρ1(β, γ̃)|$1

. (20)

Combined with the first part of Lemma 3.3, we obtain the following:

sup
β∈C(S̃,∂S̃)

$ρ2(β)
$ρ1(β)

∗& max

{
$2
$1

,
log[1/$2] + |t2 − t1|$2

log[1/$1]

}
. (21)

To see this, note that Lemma 3.3 implies that for a sequence of arcs βn with |twρ1(βn, γ̃)| →∞ ,
we have |twρ2(βn, γ̃)/twρ1(βn, γ̃)| → 1, so that the limit of (20) for this sequence of arcs gives
$2/$1. At the other extreme, when twρ1(β, γ̃) = 0, we see that |twρ2(β, γ̃)| +& |t2 − t1|, and so
we get the term on the right in equation (21).

To simplify the notation, let

R1 =
log[1/$2] + |t2 − t1| $2

log[1/$1]
, R2 =

log[1/$1] + |t2 − t1| $1
log[1/$2]

,

and

R =
|t2 − t1| $2
log[1/$1]

.

The assumption that $1 ! $2 implies that R < R1 ! R + 1. Moreover, since $1 ! $2 < ε1 < c0 =
0.2629 . . ., we see that log[1/$1]/ log[1/$2] ! $2/$1, and so R2 < $2/$1 + R. Therefore

dL(γ)(ρ1, ρ2)
+& log max

{
R + 1,

$2
$1

}
.

If |t1 − t2| $1 ! log[1/$1], then R ! $2/$1, and so

dL(γ)(ρ1, ρ2)
+& log [$2/$1] .

If |t1 − t2| $1 > log[1/$1], then R > $2/$1, and hence

dL(γ)(ρ1, ρ2)
+& log(R + 1)

+& log R.

3.4. Product region theorem.

Let Γ = {γ1, . . . , γk} be a collection of disjoint, homotopically distinct simple closed curves
on S. Choose a pants system Γ̄ that contains Γ and define a Fenchel–Nielsen coordinate system
associated to Γ̄, as explained in [7, § 3]. Let sσ(γi) denote the Fenchel–Nielsen twist coordinate
of γi. Let S̃i be the annular cover of S corresponding to γi, let γ̃i be the lift of γi to S̃i,
and let Ui = Uε1(γi). For σ ∈ Thinε1(S,Γ), let Πγi(σ) ∈ Ui be the metric ρ such that the
twist twρ(S̃i) equals sσ(γi) and such that $ρ(γ̃i) = $σ(γi). Each σ ∈ Thinε1(S,Γ) also defines
a metric ΠS\Γ(σ) in T (S \ Γ), obtained by pinching the geodesic representatives of γ1, . . . , γk,
but otherwise leaving the metric unchanged, that is, by retaining the same Fenchel–Nielsen
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Figure 2. Construction of κ̂.

coordinates. Thus we define a homeomorphism

Π : Thinε1(S,Γ) −→ T (S \ Γ) × U1 × . . . × Uk.

Endow T (S \ Γ) × U1 × . . . × Uk with the sup-metric

dLΓ = sup{dL(S\Γ), dL(γ1), . . . , dL(γk)}.

Theorem 3.5 (Product regions for the Lipschitz metric). For any σ, τ ∈ Thinε1(S,Γ),
we have

dL(σ, τ)
+& dLΓ(Π(σ),Π(τ)).

The important step of the proof is Proposition 3.7 below.

3.5. Replacing an arc with a loop

Let Q be a hyperbolic component of an (ε0, ε1)-decomposition which is not homeomorphic
to a pair of pants. Next, we describe a procedure to replace an arc in ζQ with a non-trivial,
non-peripheral simple closed curve in Q that has comparable length.

Let κ be a simple geodesic arc in Q, the endpoints of which lie in ∂Q and which is
perpendicular to ∂Q. If the two endpoints of κ lie in distinct components C, C ′ of ∂Q, then the
boundary of a regular neighborhood of κ ∪ C ∪ C ′ in Q consists of a single curve η. Define κ̂
to be the geodesic representative of η in S. Note that since Q is not a pair of pants, it follows
that η is non-peripheral in Q, and in particular, κ̂ is contained in Q (see Figure 2a).

If both endpoints of κ lie in a single component C of ∂Q, then the boundary of a regular
neighborhood of κ ∪ C has two components (see Figure 2b). In this case, define κ̂ to be the
curve of greater length between the geodesic representatives in S of the two components (if one
of the curves is peripheral, κ̂ is the geodesic representative of the non-peripheral component).
Note that κ̂ is non-peripheral in Q and, in particular, it is contained in Q. Also note that unlike
the preceding case, the choice of κ̂ depends on the geometry of the surface.

Lemma 3.6. Suppose that Q is a hyperbolic component of an (ε0, ε1)-decomposition of σ
which is not homeomorphic to a pair of pants. Let κ be an arc in Q perpendicular to ∂Q and
let κ̂ be the associated simple closed curve constructed above. If $σ(κ̂) > c0 for the Margulis
constant c0, then

$σ(κ) ∗& $σ(κ̂).

Proof. Let C and C ′ denote the components of ∂Q that contain the endpoints of κ, where
we take C = C ′ if the endpoints lie on the same component. Let γ and γ′ denote the geodesic
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Figure 3. Hexagon and pentagon of P .

representatives of C and C ′ in S. By hypothesis, γ and γ′ have embedded collars in S, with
boundary components each having length ε0. Cut the collars in half along γ, γ′ and let Q
be the surface obtained by attaching the half collars around γ and γ′ to Q, along C and C ′,
respectively. (In the case that C ,= C ′ but γ = γ′ in S, we attach a half-collar around γ to each
of C and C ′.) Since κ intersects ∂Q perpendicularly, it has a natural extension to a (smooth)
geodesic arc κ with endpoints in ∂Q and perpendicular to ∂Q, as depicted in Figure 2.

First, consider the case when C ,= C ′. Let P be the pair of pants with boundary components
γ, γ′, κ̂ and consider one of the right-angled hexagons of P , as in Figure 3a.

Let a = l(γ)/2, a′ = l(γ′)/2 and let d and d′ be the widths of the half-collars around γ and
γ′, respectively. Let b = l(κ) and c = l(κ̂)/2. By the formula for right-angled hexagons, we have

cosh c + cosh a cosh a′ = sinh a sinh a′ cosh(b + d + d′). (22)

Since a, a′ < ε1/2 and since ε1 is smaller than the Margulis constant, we see that sinh a < 2a and
sinh a′ < 2a′. Also, by a straightforward calculation in H2, we have ε0/2 = a cosh d = a′ cosh d′.
Therefore, the right-hand side of equation (22) satisfies

sinh a sinh a′ cosh(b + d + d′) > a · a′ eb+d+d′

2
> a · a′ cosh d cosh d′

2
eb =

ε20 eb

8
,

sinh a sinh a′ cosh(b + d + d′) < 4 a · a′ · eb+d+d′
< 16 a · a′ · cosh d cosh d′ eb = 4ε20 eb.

On the other hand, since a, a′ < ε1/2 < ε0/4 < c0/4 and c > c0/2, we have

cosh a cosh a′ < cosh(a + a′) < cosh
c0

2
< cosh c.

Therefore, equation (22) combined with the three equations above gives

ε20e
b

16
< cosh c < 4ε20 eb.

Hence

| c − b | =
∣∣∣
l(κ̂)
2

− l(κ)
∣∣∣ < 2 log

1
ε0

+ k

for some universal constant k(= log 8). Thus, if l(κ) is sufficiently large, then the additive
error can be absorbed into multiplicative constants to conclude that l(κ̂) ∗& l(κ). If l(κ) is not
sufficiently large, then l(κ̂) ∗& l(κ) holds almost tautologically, because l(κ̂) is bounded above
by 2l(κ) + 2ε0 and is bounded below, by assumption.

Next consider the case where C = C ′. Let P be the geodesic pair of pants in S filled by
κ ∪ γ. The arc κ divides the two right-angled hexagons of P into four right-angled pentagons.
It is easy to see that the two pentagons that have edges originally contained in κ̂ are isometric
to each other. Let X be either one of them, as in Figure 3b. Let b = l(κ)/2, c = l(κ̂)/2 and let
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d be the width of the half-collar around γ. Let a be the length of the edge of X coming from
γ. Now, by the formula for right-angled pentagons, we have

cosh c = sinh(b + d) sinh a.

It is clear that a ! l(γ)/2, and by applying the pentagon formula to the pentagon which
together with X makes up a hexagon of P , we see that our choice of κ̂ implies that a " l(γ)/4.
Furthermore, as before we have l(γ) · cosh d = ε0 and since l(γ) ! ε1, the assumption that
ε0/ε1 > 2 is sufficient to guarantee that d is large enough that eb+d/4 < sinh(b + d) holds.
And, as above, ε1 is small enough that a < sinh a < 2a. Therefore, we have

cosh c = sinh(b + d) sinh a >
eb ed

4
a > eb cosh d

4
· l(γ)

4
=

ebε0
16

,

cosh c = sinh(b + d) sinh a < eb eda < eb · 2 cosh d · l(γ)/2 = ebε0.

Hence

| c − b | =
∣∣∣
l(κ̂)
2

− l(κ)
2

∣∣∣ < log
1
ε0

+ k

for some universal constant k(= log 16). Thus we conclude as before that l(κ̂) ∗& l(κ).

We remark that in the second case above, had we not chosen κ̂ to be the longer of the
two components of ∂P − γ, then the lemma would not be true. This can easily be seen by
considering the construction in reverse as follows. Take a closed curve α in Q of moderate
length and a very long arc β with one endpoint on α and the other on a component C of ∂Q.
Construct a new arc κ with both endpoints on C by replacing β with two copies of itself very
close together, and by connecting their two endpoints on α by the longer arc along α. It is easy
to see that the pair of pants filled by κ ∪ C has α as a boundary component, yet l(α)/l(κ) can
be made arbitrarily small.

3.6. Proof of the product region theorem for the Lipschitz metric

For any surface Σ, let C(Σ) be the set of homotopy classes of non-peripheral, non-trivial
simple closed curves in Σ. Suppose that A is an annulus in an (ε0, ε1)-decomposition of σ ∈
T (S). Let γ be the core curve of A and let σ̃ be the lift of σ to S̃, where as before, S̃ is the
cover of S corresponding to γ. The σ̃-length of an arc β ∈ C(S̃, ∂S̃) is as defined in Section 3.3.
Note that if ζ ∈ C(S) and ζ̃ ⊂ C(S̃, ∂S̃) are the lifts of ζ to S̃, then

$σ̃(ζ̃) = $σ(ζ ∩ A),

where $σ(ζ ∩ A) is the σ-length of the intersection of the σ-geodesic representative of
ζ with A.

To keep track of the dependence of S̃ on A, we will write C(A, ∂A) instead of C(S̃, ∂S̃) and
for convenience, write $σ(β) instead of $σ̃(β). We are now ready to prove Proposition 3.7.

Proposition 3.7. Suppose that P is an (ε0, ε1)-decomposition for both σ, τ ∈ T (S). Then

sup
ζ∈C(S)

$τ (ζ)
$σ(ζ)

∗& max
Q,A∈P

{
sup

α∈ C(Q)

$τ (α)
$σ(α)

, sup
β∈ C(A, ∂A)

$τ (β)
$σ(β)

}
. (23)

Moreover, when taking the maximum, we may assume that Q is never a pair of pants.

Proof. By Corollary 3.2, for any curve ζ ∈ C(S) and any ρ ∈ T (S) which has P as a partial
(ε0, ε1)-decomposition, we have

$ρ(ζ)
∗&

∑

Q,A∈P
[ $ρ(ζQ) + $ρ(ζ ∩ A) ].
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Applying this to σ, τ gives

$τ (ζ)
$σ(ζ)

∗&
∑

Q,A∈P [ $τ (ζQ) + $τ (ζ ∩ A) ]
∑

Q,A∈P [ $σ(ζQ) + $σ(ζ ∩ A) ]

! max
Q,A∈P

{
$τ (ζQ)
$σ(ζQ)

,
$τ (ζ ∩ A)
$σ(ζ ∩ A)

}
.

(24)

Fix Q and write ζQ =
∑

i miκi +
∑

j njλj , where κi are arcs with endpoints on ∂Q and λj are
non-peripheral simple closed curves contained in Q. Then

$τ (ζQ)
$σ(ζQ)

∗&
∑

i mi $τ (κi) +
∑

j nj $τ (λj)∑
i mi $σ(κi) +

∑
j nj $σ(λj)

! max
i,j

{
$τ (κi)
$σ(κi)

,
$τ (λj)
$σ(λj)

}
.

(25)

The idea is to show that for every i,
$τ (κi)
$σ(κi)

∗≺ sup
α∈C(Q)

$τ (α)
$σ(α)

(26)

by replacing κ = κi with the associated simple closed curve κ̂ = κ̂i in Q, as described above. In
the case that Q is a pair of pants, it is not hard to see that there are multiplicative constants
depending only on ε0 such that $(κ) ∗& i(κ, ∂Q) and so

$τ (κ)
$σ(κ)

∗& i(κ, ∂Q)
i(κ, ∂Q)

∗& 1.

Therefore, it is sufficient to prove equation (26) on assuming that Q is not a pair of pants, so
that we may apply Lemma 3.6.

Recall that when the two endpoints of κ lie in the same component of ∂Q, the choice of κ̂
depends on the geometry of the surface. Let κ̂(τ) and κ̂(σ) denote the curves associated to κ
for the two metrics τ and σ, respectively. Note that by definition of κ̂,

$σ(κ̂(τ)) ! $σ(κ̂(σ)).

Now, if $τ (κ̂(τ)) > c0, then applying Lemma 3.6 and using the fact that $(κ̂) ! 2$(κ) + 2ε0
always holds, we have

$τ (κ)
$σ(κ)

∗& $τ (κ̂(τ))
$σ(κ)

∗≺ $τ (κ̂(τ))
$σ(κ̂(σ))

! $τ (κ̂(τ))
$σ(κ̂(τ))

! sup
α∈C(Q)

$τ (α)
$σ(α)

.

If $τ (κ̂(τ)) ! c0, then in the τ -metric, the three boundary curves of the geodesic pair of pants P
spanned by κ and the two components of ∂Q that contain the endpoints of κ (see Lemma 3.6)
all have length shorter than c0. Using the formulae for right-angled pentagons and hexagons
as in the proof of Lemma 3.6, it is easy to show that this implies that $τ (κ) is bounded above.
Furthermore, since κ meets ∂Q, and ∂Q has an embedded regular neighborhood of some definite
width depending on ε0, it follows that $σ(κ) is bounded below. Hence

$τ (κ)
$σ(κ)

∗≺ 1
$σ(κ)

∗≺ 1.

Since the ratio $τ (κ)/$σ(κ) is bounded above, equation (26) is tautologically satisfied in this
case. Thus equation (26) is proved.

Combining this with equations (24) and (25), we now have

$τ (ζ)
$σ(ζ)

∗≺ max
Q,A∈P

{
sup

α∈C(Q)

$τ (α)
$σ(α)

, sup
β∈ C(A, ∂A)

$τ (β)
$σ(β)

}
.
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Therefore, the supremum of the left-hand side, taken over all ζ ∈ C(S), is bounded by the
quantity on the right-hand side.

Finally, since C(Q) ⊂ C(S), it is clear that for every Q ∈ P,

sup
ζ∈C(S)

$τ (ζ)
$σ(ζ)

" max
Q∈P

{
sup

α∈ C(Q)

$τ (α)
$σ(α)

}
.

To complete the proof, we will show that there is a simple closed curve ζ such that

$τ (ζ)
$σ(ζ)

∗( sup
β∈ C(A, ∂A)

$τ (β)
$σ(β)

. (27)

If the supremum on the right is realized by the core curve γ of A, the statement is obviously
true. Hence, assume that the supremum is realized by an arc β. It follows from [7, Lemmas 3.2
and 3.3] that given any t ∈ R, there is a simple closed curve δ on S, the twist twσ(δ, γ) of which
equals t, up to an additive error that is uniformly bounded. Moreover, it was shown that δ
consists of one or two arcs traversing A, together with one or two arcs in S \ A, the lengths of
which are uniformly bounded above with respect to σ. Applying this to our situation where t =
twσ̃(β, γ̃), we obtain a simple closed curve ζ, the twist of which satisfies twσ(ζ, γ)

+& twσ̃(β, γ̃).
Thus, combined with equations (18) and (19), its length satisfies

$σ(ζ) = $σ(ζ ∩ S \ A) + $σ(ζ ∩ A) ∗& $σ(ζ ∩ A)
∗& log

1
$σ(γ)

+ |twσ(ζ, γ)|$σ(γ)

∗& log
1

$σ(γ)
+ |twσ̃(β, γ̃)|$σ(γ) ∗& $σ(β). (28)

On the other hand, with respect to τ , we obtain

$τ (ζ) > $τ (ζ ∩ A) ∗& log
1

$τ (γ)
+ |twτ (ζ, γ)|$τ (γ).

Now, for any two arcs β1 and β2 in C(A, ∂A), it is not hard to see that the difference twρ̃(β1, γ̃) −
twρ̃(β2, γ̃) is, up to an additive error that is uniformly bounded, a topological quantity that is
independent of ρ̃ = σ̃, τ̃ (namely, the algebraic intersection number of β1,β2; see proofs of [7,
Lemmas 3.2 and 3.5]). Observe also that if ζ̃ is a lift of ζ that intersects γ̃, then twρ̃(ζ̃, γ̃)

+&
twρ(ζ, γ). It follows that

twτ (ζ, γ) − twτ̃ (β, γ̃)
+& twσ(ζ, γ) − twσ̃(β, γ̃)

+& 0.

Therefore, we obtain

$τ (ζ)
∗( log

1
$τ (γ)

+ |twτ (ζ, γ)|$τ (γ)

∗& log
1

$τ (γ)
+ |twτ̃ (β, γ̃)|$τ (γ) ∗& $τ (β). (29)

Inequality (27) now follows from equations (28) and (29), thus completing the proof.

We conclude this section with the proof of Theorem 3.5.

Proof of Theorem 3.5. By Proposition 3.7, we have

dL(σ, τ)
+& log max

Q,A∈P

{
sup

α∈ C(Q)

$τ (α)
$σ(α)

, sup
α∈ C(Q)

$σ(α)
$τ (α)

, sup
β∈C(A,∂A)

$τ (β)
$σ(β)

, sup
β∈C(A,∂A)

$σ(β)
$τ (β)

}
.
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Therefore, to complete the proof, it would be sufficient to show that

sup
α∈ C(Q)

$τ (α)
$σ(α)

∗& sup
α∈ C(Q)

$ΠS\Γ(τ)(α)
$ΠS\Γ(σ)(α)

and that

sup
β∈C(A,∂A)

$τ (β)
$σ(β)

∗& sup
β∈C(A,∂A)

$Πγ(τ)(β)
$Πγ(σ)(β)

.

Regarding the first estimate, it has already been shown in [7] that for ρ ∈ Thinε(S,Γ), the space
(Q, ρ) embeds K-quasiconformally (in fact, bi-Lipschitz), with uniform K, in (Q,πS\Γ(ρ)).
Thus, the lengths of curves in the two spaces are comparable and the first estimate follows.

Now consider the second estimate. To simplify the notation, let $1 = $Πγ(σ)(γ̃), $2 = $Πγ(τ)(γ̃)
and let t1 = twΠγ(σ)(S̃), t2 = twΠγ(τ)(S̃). Then by equation (21) we obtain

sup
β∈C(A,∂A)

$Πγ(τ)(β)
$Πγ(σ)(β)

∗& max

{
$2
$1

,
log[1/$2] + |t2 − t1| $2

log[1/$1]

}
.

On the other hand, for any arc β ∈ C(A, ∂A), analogously to Lemma 3.3, we have

|[twτ̃ (β, γ̃) − twσ̃(β, γ̃)] − [sτ (γ) − sσ(γ)]| +& 0,

where sσ(γ) and sτ (γ) are, respectively, the Fenchel–Nielsen twist coordinates of σ and τ
associated to γ (see [7, Lemma 3.5]). Thus, by the same reasoning used to derive equation (21)
we obtain

sup
β∈C(A,∂A)

$τ (β)
$σ(β)

∗& max

{
$2
$1

,
log[1/$2] + |sτ (γ) − sσ(γ)| $2

log[1/$1]

}
.

By the definition of Πγ we have t1 = sσ(γ) and t2 = sτ (γ) and thus the second estimate is
proved.

4. Comparison on a thin region

We now prove Theorem A of Section 1, which illustrates the discrepancy between the
Lipschitz and Teichmüller distances stated in Section 1.

Proof of Theorem A. Let σn be a hyperbolic metric on S such that there is exactly one
short curve γ of length $σn(γ) = εn and let τn = DTn

γ (σn) be the metric obtained from σn by
Tn Dehn twists around γ. In this case, $σn(γ) = $τn(γ) = εn. Set εn = e−Pn , Tn = ePn+qn and
choose the sequences of positive integers Pn, qn so that

Pn → ∞, qn → ∞, and
eqn

Pn
→ 0 as n → ∞.

On the one hand, it follows from Theorem 1.1 and the discussion following Lemma 3.4 that

dT (σn, τn)
+& log[Tnεn] = qn → ∞.

It follows from Proposition 3.1 that for a simple closed curve ζ in S, we have

$τn(ζ)
$σn(ζ)

=
$τn(ζQ) +

[
2 log[ε0/εn] + εn · |twτn(ζ, γ)| + O(1)

]
· i(ζ, γ)

$σn(ζQ) +
[
2 log[ε0/εn] + εn · |twσn(ζ, γ)| + O(1)

]
· i(ζ, γ)

,

since in this situation, i(ζ, ∂Q) = 2i(ζ, γ), where O(1) represents an error that is independent
of ζ, σn, τn and that is bounded in absolute value by some uniform constant. Since σn, τn
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coincide outside A, we have $τn(ζQ) = $σn(ζQ). Therefore

sup
ζ

$τn(ζ)
$σn(ζ)

! max

{
1, sup

ζ

2 log[ε0/εn] + εn · |twτn(ζ, γ)| + O(1)
2 log[ε0/εn] + εn · |twσn(ζ, γ)| + O(1)

}

and by the same reasoning used to deduce equation (21), the supremum on the right-hand side
is equal to

2 log[1/εn] + εn · Tn + O(1)
2 log[1/εn] + O(1)

=
2Pn + eqn + O(1)

2Pn + O(1)
.

Thus, we have

lim
n→∞

dL(σn, τn) = lim
n→∞

log
2Pn + eqn + O(1)

2Pn + O(1)
= 0.

So far, we have seen that if σ, τ ∈ T (S) are both in the thick part then dL(σ, τ) & dT (σ, τ),
but that if σ, τ have a short curve in common, then the two distances are no longer comparable.
The following proposition shows that, in some sense, this is the only way for the distances to
diverge.

Proposition 4.1. If σ, τ ∈ T (S) have no short curves in common, then dL(σ, τ) &
dT (σ, τ).

Proof. Let Γσ be the set of curves the length of which is less than ε1 at σ, and let σ̄ be
the point in the thick part of T (S) obtained from σ by increasing the length of each curve
in Γσ to ε1, but otherwise leaving the metric unchanged. More precisely, this can be achieved
by choosing a pants system of S that contains Γσ and altering the associated Fenchel–Nielsen
length coordinates as desired. We define τ̄ analogously by increasing the length of every short
curve of τ to ε1. It follows from Theorem 3.5 and Lemma 3.4 that

dL(σ, σ̄) & log max
α∈Γσ

{
$σ̄(α)
$σ(α)

}
, dL(τ, τ̄) & log max

α∈Γτ

{
$τ̄ (α)
$τ (α)

}
.

Since curves that are short in σ are not short in τ and vice versa, the above equation implies
that

dL(σ, σ̄) ≺ dL(σ, τ) and dL(τ, τ̄) ≺ dL(σ, τ). (30)

By the triangle inequality, we also have

dL(σ, τ) " dL(σ̄, τ̄) − dL(σ, σ̄) − dL(τ̄ , τ),
dL(σ, τ) ! dL(σ̄, τ̄) + dL(σ, σ̄) + dL(τ̄ , τ).

(31)

Combining equations (30) and (31), we obtain

dL(σ, τ) & dL(σ̄,σ) + dL(σ̄, τ̄) + dL(τ, τ̄). (32)

Analogously, it follows from Theorem 1.1, the discussion following Lemma 3.4, and
equation (3) that

dT (σ, σ̄) ≺ dT (σ, τ) and dT (τ, τ̄) ≺ dT (σ, τ)

and combining these with the triangle inequality again, we obtain

dT (σ, τ) & dT (σ̄,σ) + dT (σ̄, τ̄) + dT (τ, τ̄). (33)

Now, by Theorems 1.1 and 3.5 and Lemma 3.4, we have

dL(σ, σ̄) & dT (σ, σ̄) and dL(τ, τ̄) & dT (τ, τ̄)
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and by Theorem B we have
dL(σ̄, τ̄) & dT (σ̄, τ̄).

Thus, it follows from equations (32) and (33) that dL(σ, τ) & dT (σ, τ), as claimed.
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