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A COMBINATORIAL MODEL FOR THE
TEICHMÜLLER METRIC

Kasra Rafi

Abstract. We study how the length and the twisting parameter of a curve
change along a Teichmüller geodesic. We then use our results to provide
a formula for the Teichmüller distance between two hyperbolic metrics on
a surface, in terms of the combinatorial complexity of curves of bounded
lengths in these two metrics.

1 Introduction

This paper should be considered a sequel to [R]. We continue here to study
the geometry of Teichmüller space using combinatorial properties of curves
on surfaces. The main result is a formula for the Teichmüller distance
between two points in Teichmüller space, in terms of the combinatorial
information extracted from short curves of these two points. Let S be a
surface of finite type with negative Euler characteristic and let σ1 and σ2

be two points in the thick part of Teichmüller space T (S) of S. Let µ1 and
µ2 be short markings on σ1 and σ2, respectively.

Theorem 1.1. There exists k > 0 such that

dT (σ1, σ2) �
∑

Y

[
dY (µ1, µ2)

]
k

+
∑

α

log
[
dα(µ1, µ2)

]
k
. (1)

In the above theorem, the first sum is over all subsurfaces of S that
are not annuli and the second sum is over all simple closed curves on S;
dY (µ1, µ2) measures the relative complexity of the restrictions of µ1 and µ2

to a subsurface Y , and dα(µ1, µ2) measures the relative twisting of µ1 and
µ2 around a curve α; the function [x]k is equal to zero when x < k and
is equal to x when x ≥ k, that is, we take into account only terms that
are large enough; and the function log is a modified logarithm so that, for
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x ∈ [0, 1], log x = 0. A general version of this theorem, where σ1 and σ2

are not necessarily in the thick part, is stated in §6 (Theorem 6.1).
Other recent results relate the geometry of Teichmüller space to com-

binatorial spaces. In [MaM1] Masur and Minsky show that the electrified
Teichmüller space is quasi-isometric to the complex of curves and there-
fore is also δ-hyperbolic. Brock has shown ([Br]) that Teichmüller space
equipped with the Weil–Petersson metric is quasi-isometric to the pants
complex. Most recent developments in studying the Weil–Petersson metric
have resulted from this analogy.

To drive our formula, we need to acquire an understanding of how the
length and the twisting parameter of a curve change along a Teichmüller
geodesic. [R] provides a description of short curves. In this paper, we
prove the following convexity property for the length of a curve along a
Teichmüller geodesic. Let g : R → T (S) be a geodesic in the Teichmüller
space of S. For a curve α on S, denote the hyperbolic length of the geodesic
representative of α at g(t) by lt.
Theorem 1.2. Assume α is balanced at tα and s ≥ tα (respectively,
s ≤ tα). Then, for any t ≥ s (t ≤ s), we have

1
ls
� 1

lt
.

We also give the following estimate for the twisting parameter along a
Teichmüller geodesic. Let ν+ be the stable foliation of the geodesic g. The
twisting parameter around a curve α at g(t) is (roughly) the number of
times that ν+ twists around α relative to a curve perpendicular to α in the
hyperbolic metric of g(t), and is denoted by tw+

t .
Theorem 1.3. There exists a constant dα > 0 such that

tw+
t (α) =

dα e−2 (t−tα)

e2 (t−tα) + e−2 (t−tα)
± O(1/lt) .

Some notation. To simplify our presentation, we avoid keeping track of
constants that depend on the topology of the surface only. Instead, we use
the following notation: When two functions f and g are equal up to additive
constants, that is, when there exists a C depending on the topology of S,
such that g(x) − C ≤ f(x) ≤ g(x) + C, we write f(x)

+� g(x). Similarly,

f(x)
+
� g(x) and f(x)

+
≺ g(x) mean that the inequalities are true up to

an additive constant. When an inequality is true up to a multiplicative
constant, we use symbols

.�,
.
� and

.
≺; and, when it is true up to an additive

constant and a multiplicative constant, we use symbols �, ≺ and �. For
example, f(x) � g(x) means that there are constants c and C, depending
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on the topology of the surface only, such that
1
c g(x) − C ≤ f(x) ≤ c g(x) + C .

Acknowledgments. I would like to thank Yair Minsky for suggesting
the statement of Theorem 1.1 and Jason Behrstock for persuading me to
prove a more general version and suggesting the statement of Theorem 6.1.
I would also like to thank Yair Minsky and Young-Eun Choi for several
helpful conversations, as well as the referee for many useful comments.

2 Preliminaries

2.1 Curves and markings. By a curve in S we mean a non-trivial,
non-peripheral, simple closed curve in S. The free homotopy class of a
curve α is denoted by [α]. By an essential arc ω we mean a simple arc, with
endpoints on the boundary of S, that cannot be pushed to the boundary
of S. In case S is not an annulus, [ω] represents the homotopy class of ω
relative to the boundary of S. When S is an annulus, [ω] is defined to be
the homotopy class of ω relative to the endpoints of ω.

Define C(S) to be the set of all homotopy classes of curves and essential
arcs on the surface S. To simplify notation, we often write α ∈ C(S) instead
of [α] ∈ C(S). Define a distance on C(S) as follows: For α, β ∈ C(S), define
dS(α, β) to be equal to one if α �= β and if α and β can be represented
by disjoint curves or arcs. Let the metric on C(S) be the maximal metric
having the above property, i.e. dS(α, β) = n if α = γ0, γ1, . . . , γn = β is the
shortest sequence of curves or arcs on S such that, for i = 1, . . . , n, γi−1 is
distance one from γi. (See [MaM1].)

Let {α1, . . . , αm} be a pants decomposition of S. A marking on S is a
set µ = {(α1, β1), . . . , (αm, βm)} such that the curve βi is disjoint from αj ,
for i �= j, and intersects αi once (twice) if the surface filled by αi and βi is a
once-punctured torus (four-times-punctured sphere). The αi are called the
base curves of µ. For every i, βi is called the transverse curve to αi in µ.
When the distinction between the base curves and the transverse curves
is not important, we represent a marking as a set of curves {β1, . . . , βn}
including all the base curves and the transverse curves. Denote the space
of all markings on S by M(S) (see [MaM2].)

2.2 Subsurface intersection and subsurface distance. Let ν be a
subset of C(S) (e.g. curves appearing in a marking) or a singular foliation
on S, and let Y be a subsurface of S. We define the projection of ν to the
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subsurface Y as follows: Let

f : S̄ → S

be a regular covering of S such that f∗(π1(S̄)) is conjugate to π1(Y ) (the
Y -cover of S). Since S admits a hyperbolic metric, S̄ has a well-defined
boundary at infinity. Let ν̄ be the lift of ν to S̄. Components of ν̄ that
are essential arcs or curves on S̄, if any, form a subset of C(S̄). The surface
S̄ is homeomorphic to Y . We call the corresponding subset of C(Y ) the
projection of ν to Y and will denote it by νY . If there are no essential arcs
or curves in ν̄, νY is the empty set; otherwise we say that ν intersects Y
essentially. This projection depends on the homotopy class of elements of
ν only.

Let ν and ν ′ be subsets of C(S) or singular foliations on S that inter-
sect a subsurface Y essentially. We define the Y -intersection (Y -distance)
between ν and ν ′ to be the maximum geometric intersection number in Y
(maximum distance in C(Y )) between the elements of projections νY and
ν ′

Y and denote it by

iY (ν, ν ′) (respectively, dY (ν, ν ′)) .

If Y is an annulus whose core is the curve α, then we also denote iY (ν, ν ′)
and dY (ν, ν ′) by iα(ν, ν ′) and dα(ν, ν ′), respectively.

Lemma 2.1 [B, Lem. 1.2]. Let Y , ν and ν ′ be as above.

1. If Y is not an annulus, then

dY (ν, ν ′) ≺ log iY (ν, ν ′) .

2. For a curve α,
dα(ν, ν ′) � iα(ν, ν ′) .

2.3 Quadratic differentials. Let q be a meromorphic quadratic dif-
ferential of area one on S. (See [GL] for definition and details.) We assume
that q has a discrete set of finite critical points (i.e. critical points of q are
either zeroes or poles of order 1). Corresponding to q, there are two singular
measured foliations called the horizontal and the vertical foliations, which
we denote by ν− and ν+. We call the singular Euclidean metric |q| the
q-metric on S. For a curve α in S, the q-geodesic representative of α exists
and is unique except for the case where it is one of the continuous family
of closed geodesics in a flat annulus, which we refer to as the flat annulus
corresponding to α. (Some difficulties arise when q has poles of order 1.
See [R] for precise definitions and discussion.) We denote the q-length of α
by lq(α), the horizontal length of α by hq(α) and the vertical length of α by
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vq(α). We also denote the q-length, the horizontal length and the vertical
length of the q-geodesic representative of α, by lq([α]), hq([α]) and vq([α]),
respectively. In general, for any metric τ , lτ (α) represents the τ -length of
α and lτ ([α]) represents the τ -length of the τ -geodesic representative of α.

The following theorem, which is an analogue of the collar lemma, com-
pares the lengths, in quadratic differential metric, of intersecting curves,
assuming one of them has bounded hyperbolic length. Let σ be the hyper-
bolic metric in conformal class of q.

Theorem 2.2 [R, Th. 1.3]. For every L > 0, there exists DL, log DL � eL,
such that, if α and β are two simple closed curves in S intersecting non-
trivially with lσ(β) ≤ L, then

DLlq(α) ≥ lq(β) .

2.4 Regular and primitive annuli in q. Let Y be a subsurface of S
and γ be a boundary component of Y . (We always assume that curves are
piecewise smooth.) The curvature of γ with respect to Y , κY (γ), is well
defined as a measure with atoms at the corners. We choose the sign to be
positive when the acceleration vector points into Y . If γ is curved non-
negatively (or non-positively) with respect to Y at every point, we say it is
monotonically curved with respect to Y . Let A be an open annulus in S with
boundaries γ0 and γ1. Suppose both boundaries are monotonically curved
with respect to A and κA(γ0) ≤ 0. Further, suppose that the boundaries
are equidistant from each other, and the interior of A contains no zeroes.
We call A a primitive annulus and write κ(A) = −κA(γ0). If κ(A) > 0, we
call A expanding and say that γ0 is the inner boundary and γ1 is the outer
boundary. When κ(A) = 0, A is a flat annulus and is foliated by closed
Euclidean geodesics homotopic to the boundaries. The following lemma is
useful for computing the modulus of a primitive annulus.

Lemma 2.3 [R, Lem. 3.6]. Let A and γ0 be as above, and let d be the
distance between the boundaries of A. Then

{
κ Mod(A) � log

(
d

lq(γ0)

)
if κ(A) > 0 ,

Mod(A)lq(γ0) = d if κ(A) = 0 .

Every annulus of large modulus contains a primitive annulus with com-
parable modulus. This is a consequence of Corollary 5.5 in [MaS], and was
proven again in the following form in [Mi1, Th. 4.6].

Theorem 2.4 (Masur–Smillie, Minsky). There exists an ε0 > 0 such that,
for a curve α in S, if lσ([α]) ≤ ε0, then there exists a primitive annulus A
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such that 1
lσ([α])

� Mod(A) .

Throughout this paper, ε0 is a fixed constant smaller than the Margulis
constant, such that the above theorem and Theorem 2.5 are true.

2.5 Product regions in Teichmüller space. The Teichmüller space
of S, T (S), is the space of conformal structures on S up to isotopy. The
Teichmüller distance between two points σ1 and σ2 is defined as

dT (σ1, σ2) = 1
2K(σ1, σ2) ,

where K(σ1, σ2) is the smallest quasi-conformal dilatation of a homeo-
morphism from σ1 to σ2. Let Γ be a system of disjoint curves on S, and let
Thinε(Γ) denote the set of all σ ∈ T (S) such that, for all γ ∈ Γ, the length
of γ in σ, lσ(γ), is less than or equal to ε. Let TΓ denote the product space

T (S \ Γ) ×
∏

γ∈Γ

Hγ ,

where S \ Γ is considered as a punctured space and each Hγ is a copy of
the hyperbolic plane. Endow TΓ with the sup metric. Minsky has shown,
for small enough ε, that Thinε(Γ) has a product structure.

Theorem 2.5 (Minsky [Mi3]). The Fenchel–Nielsen coordinates on T (S)
give rise to a natural homeomorphism π : T (S) → TΓ. There exists an
ε0 > 0 sufficiently small that this homeomorphism restricted to Thinε0(Γ)
distorts distances by a bounded additive amount.

Note that T (S \Γ) =
∏

Y T (Y ), where the product is over all connected
components Y of S \ Γ. Let π0 denote the component of π mapping to
T (S \ Γ), let πY denote the component mapping to T (Y ), and, for γ ∈ Γ,
let πγ denote the component mapping to Hγ . For the rest of the paper, we
fix L0 > 0 such that, for a hyperbolic metric σ on S, if lσ(α) ≥ ε0, then
there exists a curve β intersecting α with lσ(β) ≤ L0.

3 Behavior of a Geodesic in the Thin Part of Teichmüller
Space

In this section, we prove Theorem 1.2, restated as Theorem 3.1, and study
how the combinatorics of short markings change along a Teichmüller geode-
sic. We show that, for every curve α in S, there exists a connected interval
where α is short (Corollary 3.3), and the projections of the short markings
to a subsurface can only change while all the boundaries of that subsurface
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are short (Proposition 3.7). This is an essential component of the proof of
the main theorem.

3.1 Teichmüller geodesics. For t ∈ R, let qt be the quadratic differ-
ential obtained from q by scaling its vertical foliation by a factor of et, and
its horizontal foliation by a factor of e−t. Define g(t) to be the conformal
structure corresponding to qt. Then g : R → T (S) is a geodesic in T (S)
parametrized by arc length. For a curve α in S, the horizontal and vertical
lengths of α vary with time as follows:

hqt(α) = hq(α)et and vqt(α) = vq(α)e−t. (2)

We say α is balanced, mostly horizontal or mostly vertical at time t if,
respectively, vt([α]) = ht([α]), vt([α]) ≤ ht([α]) or vt([α]) ≥ ht([α]).

3.2 Hyperbolic length along a geodesic. The behavior of the hy-
perbolic length of a curve along a Teichmüller geodesic is somewhat mys-
terious. For the Weil–Petersson metric on T (S), the hyperbolic length of
a curve along a geodesic is a convex function of time. In the Teichmüller
metric, the quadratic differential length of a curve is also convex. The fol-
lowing result is a weaker but analogous statement. It roughly states that
a curve assumes its shortest length when it is balanced and the length is
non-decreasing as one moves away in either direction. Let σt denote the
hyperbolic metric on g(t).
Theorem 3.1. Let g be a geodesic in T (S) and α be a curve in S.
Assume α is balanced at tα and s ≥ tα (respectively, s ≤ tα). Then, for
any t ≥ s (t ≤ s), we have

1
lσs([α])

� 1
lσt([α])

. (3)

Remark 3.2. The reader should be mindful of the additive error in (3).
When lσs([α]) and lσt([α]) are both large, 1/lσs([α]) and 1/lσt([α]) are small
and within additive error of each other, so (3) is automatically true and
provide no new information. However, if we only know that lσs([α]) is large,
then (3) implies that lσt([α]) is bounded below for all t ≥ s.

Proof. Let Ft be the flat annulus corresponding to α in qt. (Note that
when the qt-geodesic representative of α is unique, Ft is degenerate and
Mod(Ft) = 0.) The modulus of Ft is maximum at tα, and, for t ∈ R,

Mod(Ft) � Mod(Ft0) e−2 |t−tα|. (4)

Let At be as in Theorem 2.4 for hyperbolic metric σt, quadratic differen-
tial qt, and curve α (if lt(α) ≥ ε0, there is nothing to prove). If At is flat,
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then
1

lσs([α])
� 1

Extσs([α])
([M])

� Mod(Fs) (by definition of Extσs(α))
� Mod(Ft) (Equation (4))
≥ Mod(At) (At ⊂ Ft)

� 1
lσt([α])

. (Theorem 2.4)

Assume At is not flat. Let d be the distance between the boundary
components of At and l be the length of the inner boundary of At. Let β
be a curve intersecting α whose hyperbolic length at s is less than L, for
some L such that eL � 1/lσs([α]). Using the collar lemma (Theorem 2.2),
we have 1

lσs([α])
� log

lqs([β])
lqs([α])

. (5)

But α is mostly vertical at s; therefore, for t ≥ s,
lqt([α]) � lqts

([α]) et−s.

The quadratic differential length of any curve grows at most exponentially;
that is, for t ≥ s,

lqt([β]) ≺ lqts
([β]) et−s.

Therefore,
lqt([β])
lqt([α])

≤ lqs([β])
lqs([α])

. (6)

We also have lqt([β]) ≥ d (β has to cross At) and lqt([α]) ≤ l (α and the
inner boundary of At are homotopic). Therefore,

1
lσs([α])

� log
lqs([β])
lqs([α])

(Equation (5))

≥ log
lqt([β])
lqt([α])

(Equation (6))

≥ log d
l

� Mod(At) (Lemma 2.3)

� 1
lσt([α])

. (Theorem 2.4)

�

Corollary 3.3. There exists ε1 ≤ ε0 such that, for any geodesic in the
Teichmüller space and any curve α in S, there exists a connected (perhaps
empty) interval Iα such that
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1. For t ∈ Iα, lσt([α]) ≤ ε0; and
2. For t �∈ Iα, lσt([α]) ≥ ε1.

The intersection of connected intervals is a connected interval (or an
empty set). Therefore, a similar statement is also true for subsurfaces.
Corollary 3.4. Let ε0, ε1 and g be as above. For every subsurface Y ,
there exists a connected interval IY such that

1. For t ∈ IY , the hyperbolic lengths of all boundary components of Y
at σt are less than or equal to ε0, and

2. For t �∈ IY , there exists a boundary component of Y whose hyperbolic
length at σt is greater than or equal to ε1.

3.3 A lower bound for distance in the Teichmüller space. Our
main theorem describes how the distance between two points in Teichmüller
space can be estimated by measuring the combinatorial complexity of curves
of bounded size. Here we show that, if two curves of bounded length in σ1

and σ2 intersect each other a large number of times, then σ1 and σ2 are far
apart in T (S).

First we recall some properties of the extremal length. Let Extσ(α)
denote the extremal length of α in σ. Minsky has shown (see [Mi2]) that,
for curves α and β in S, and σ ∈ T (S),

Extσ(α) Extσ(β) ≥ iS(α, β)2. (7)

Kerckhoff’s theorem (see [K]) states that, for points σ1 and σ2 in T (S),

K(σ1, σ2) = e2 dT (σ1,σ2) = sup
α

Extσ1(α)
Extσ2(α)

, (8)

where the sup is over all curves on S. We also know (see [M]) that, if the
hyperbolic length of α is short (say, lσ(α) ≤ L0), then

lσ(α) � Extσ(α) . (9)

Proposition 3.5. Assume, for some σ1, σ2 ∈ T (S) and curves α and β
in S, that lσ1(α) ≤ L0 and lσ2(β) ≤ L0. Then

dT (σ1, σ2) � log iS(α, β) .

Proof. We have

iS(α, β)2 ≤ Extσ1(α) Extσ1(β) (Equation (7))
≤ Extσ1(α) Extσ2(β)K(σ1, σ2) (Equation (8))

≺ L2
0 K(σ1, σ2) . (Equation (9))

Note that L0 is a fixed constant depending on S only. By taking the
logarithm of both sides, we obtain the desired inequality. �
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3.4 Combinatorics of short markings along a Teichmüller geodesic.
For t ∈ R, let µt be the shortest marking in σt, constructed as follows. Let
α1 be the shortest curve in S and α2 be the shortest curve disjoint from α1,
and so on, to form a pants decomposition of S. Then, let the transverse
curve βi be the shortest curve intersecting αi and disjoint from αj , i �= j.
(There may be finitely many such markings.) Proposition 3.7 states that
the projection of these markings to a subsurface Y stays in a bounded
neighborhood in C(Y ) while the geodesic is outside of the thin part of T (S)
corresponding to Y . The proof makes an essential use of the following
theorem.

Theorem 3.6 [R, Th. 5.5]. Let α be a curve in S, β be a curve intersecting
α non-trivially, and Y be a component of S \ α (Y is allowed to be an
annulus). Assume lσt([β]) ≤ L. We have

1. If α is mostly vertical, then

iY (β, ν−) ≺ DL .

2. If α is mostly horizontal, then

iY (β, ν+) ≺ DL .

Here, DL is a constant depending on L, with log DL � eL.

Proposition 3.7. If [r, s] ∩ IY = ∅, then

dY (µr, µs) = O(1) .

Remark 3.8. Here O(1) depends on the choice of ε1. But ε1 is a universal
constant depending on the topology of S only. Therefore, we consider O(1)
to be a universal constant depending only on the topology of S as well.

Proof. Let L1 be such that every curve of length larger than ε1 in a hyper-
bolic surface with geodesic boundary has a transverse curve of length less
than L1. For t ∈ [r, s], there exists a boundary component γt of Y whose σt-
length is larger than ε1. Therefore, the marking µt contains a curve αt with
lσt(αt) ≤ L1 that intersects Y nontrivially. The projection of µt to Y has
bounded diameter. Therefore it is sufficient to prove dY (αr, αs) = O(1).

The curve γt is either mostly horizontal or mostly vertical at time t.
The set of times at which Y has a boundary component of length larger
than or equal to ε1 which is mostly horizontal (or mostly vertical) is closed.
Therefore, either

1. γr and γs are both mostly horizontal or both mostly vertical; or



946 K. RAFI GAFA

2. for some t ∈ [r, s], there are two curves γt and γ′
t whose lengths at σt

are larger than or equal to ε1, and one is mostly horizontal and the
other is mostly vertical (possibly γt = γ′

t and γt is balanced).

Case 1: If γr and γs are mostly vertical, Theorem 3.6 implies that
iY (αr, ν−) ≺ DL1 and iY (αs, ν−) ≺ DL1 .

Therefore, using Lemma 2.1,

dY (αs, ν−) ≺ log iY (αs, ν−) ≺ log DL1 .

Similarly, dY (αr, ν+) = O(1). This implies that dY (αr, αs) = O(1). The
proof is similar if γr and γs are both mostly horizontal.

Case 2: Assume (without loss of generality) that γt is mostly horizon-
tal and γ′

t is mostly vertical. Let αt and α′
t be the corresponding transverse

curves in µt of length less than L1. By the above argument,

dY (αt, ν+) = O(1) and dY (α′
t, ν−) = O(1) .

But the extremal lengths of αt and α′
t are bounded by a constant depending

on L1. Equation (7) implies that iS(αt, α
′
t) = O(1), and, by Lemma 2.1,

dY (αt, α
′
t) = O(1). Therefore,

dY (ν+, ν−) = O(1) . (10)
Again, as above, the projection of each of αs and αr to Y is close to the
projection of either ν+ or ν− to Y . Thus, (10) and the triangle inequality
for dY imply that

dY (αr, αs) = O(1) . �

Corollary 3.9. If IY = [c, d] ⊂ [a, b], then

dY (µa, µb) � dY (µc, µd) .

4 Twisting in the Hyperbolic Metric vs. Twisting in the
Quadratic Differential Metric

Let α be a curve in S. Having a metric in S enables us to define a twisting
parameter for curves that cross α. This, roughly speaking, is the number
of times that a given curve twists around α in comparison with an arc that
is perpendicular to the geodesic representative of α. In this section we
define a twisting parameter for ν+ and ν− using metrics given by q and σ,
and we study how these two quantities are related. We use this to prove
Theorem 1.3 at the end of this section.

Let S̄ be the annular cover of S with respect to α. Let q̄, ν̄+ and ν̄−
be the lifts of q, ν+ and ν− to S̄, respectively, and β̄q be a geodesic arc
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connecting the boundaries of S̄ that is perpendicular (in q̄) to the geodesic
representative of the core of S̄, ᾱ. We define the twisting parameter of ν+

around α in q to be the maximum intersection number of a leaf of ν̄+ and
an arc β̄q, and we denote it by twq(ν+, α). When it is clear what α is, we
denote this by tw+

q . The twisting parameter tw−
q of ν− around α in q is

defined similarly. Note that the maximum intersection number is at least
one, that is, tw±

q are positive integers.

Let F be the flat annulus in q corresponding to α and let βq be an arc
connecting the boundaries of F that is perpendicular to the boundaries
of F . The intersection number of the lift of a leaf of ν+ with β̄q is (up to
small additive error) equal to the intersection number of the restriction of
this leaf to F with βq. Therefore, to compute tw±

q , it is sufficient to under-
stand the picture in F . Consider an isometric embedding of the universal
cover of F in R

2 such that the leaves of horizontal foliations are parallel to
the x-axis and the leaves of vertical foliations are parallel to the y-axis (see
Figure 1).

θ x

y

proj �W
�H

proj �W
�V

�W

�V

�H

Figure 1: The universal cover of F
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Let �W be the vector representing the translation that generates the
deck translation group. Let �H be the lift of a leaf of ν− passing through
the origin and �V be the same for ν+. From the above discussion, we have

twq(ν−, α)
+�

‖Proj �W
�H‖

‖ �W‖
and twq(ν+, α)

+�
‖Proj �W

�V ‖
‖ �W‖

.

Let θ be the angle between �W and the x-axis. It is easy to see, using
similar triangles, that

‖Proj �W
�H‖

‖Proj �W
�V ‖

=
sin2 θ

cos2 θ
.

We also have hq([α])
vq([α]) = sin θ

cos θ . Therefore,

tw−
q

tw+
q

+� hq([α])2

vq([α])2
. (11)

This is a very useful equation that allows us to compute the q-twisting
parameter of horizontal and vertical foliations around α along a Teichmüller
geodesic (see equation (16)).

We define the twisting parameter for a hyperbolic metric as follows. Let
βσ be the shortest transverse curve to α in the hyperbolic metric σ. Define

tw+
σ = i(ν+, βσ) and tw−

σ = i(ν−, βσ) .

We would like to prove a statement similar to equation (11) for σ-twisting
parameters. However, giving good estimates for tw±

σ is difficult when α is
very short. The errors in our estimates get larger as lσ(α) gets smaller.

Let β̄σ be the lift of βσ to S̄ whose end points are in different boundary
components of S̄. Our strategy is to relate q- and σ-twisting parameters
by providing an upper bound for i(β̄q, β̄σ).
Lemma 4.1. If i(β̄q, β̄σ) = n, then

Extσ(βσ)
.
� n2 lσ(α) .

Proof. By definition of the extremal length, for any metric τ on S in the
conformal class of σ,

Extσ(βσ) ≥ lτ (βσ)2

areaτ (S)
.

To find a lower bound for Extσ(βσ), we need to find an appropriate metric τ .
First we establish some notation. Let R be the largest regular neighborhood
of F that is still an annulus. Denote the boundary components of R by α0

and αc, where c is the q-distance between the boundaries of R. For t ∈ (0, c),
let αt be a curve in R that is equidistant from a q-geodesic representative
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of α and whose q-distance from α0 is t. These curves give a foliation of
R into curves in the homotopy class of α. There is a subinterval [a, b] of
[0, c] such that, for t ∈ [a, b], αt is a q-geodesic representative of α. This
gives a division of R into three pieces, the flat annulus F containing all αt,
t ∈ [a, b], and two expanding annuli R1 and R2 on the sides. Theorem 2.4
implies that Mod(R) � 1/lσ(α). Using Lemma 2.3, we have

1
lσ(α)

.� log
a

lq([α])
+

(b − a)
lq([α])

+ log
(c − b)
lq([α])

. (12)

As t changes in the interval [b, c], the length of αt increases. The rate of
change is equal to the curvature of αt, which is bounded above and below
by constants depending on the topology of S only. A similar statement is
true for R1 as well. Therefore,

lq(αt)
.�






lq([α]) + (a − t) if t ∈ [0, a] ,
lq([α]) if t ∈ [a, b] ,
lq([α]) + (t − b) if t ∈ [b, c] .

(13)

Denote lq(αt) by λt.
Let Z be the union of R; the λ0-neighborhood, N0, of α0; and the λc-

neighborhood, Nc, of αc. Define the metric τ in S in the conformal class
of q as follows: if x lies on a curve αt in R, then we scale the q-metric at
x by a factor of 1/λt; if x is outside of R and in N0, then we scale the
q-metric at x by a factor of 1/λ0; if x is outside of R and in Nc, then we
scale the q-metric at x by a factor of 1/λc (if x is in both N0 and Nc, then
we scale the q-metric by a factor of max(1/λ0, 1/λc)); and, if x is outside
of Z, then we scale the q-metric at x by a small enough factor so that the
τ -area of S is comparable with the τ -area of Z. Note that areaq N0

.
≺ λ2

0

and areaq Nc
.
≺ λ2

c . We have

areaτ (S)
.� areaτ (Z)
≤ areaτ N0 + areaτ Nc + areaτ A

.� 1 + 1 +
∫ c

0
1 .

dt

λt

.� 2 + log
a

lq([α])
+

(b − a)
lq([α])

+ log
(c − b)
lq([α])

(Equation (13))

.� 1
lσ(α)

. (Equation (12))

Let R̄ be the lift of R to S̄ that is an annulus, and let ᾱt be the lift of
αt that is in R̄ (this is to ensure that ᾱt is a closed curves not an infinite
line). Let ω̄ be a sub-arc of β̄σ with end points in β̄q that goes around S̄
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once, that is, if ω̄′ is the sub-arc of β̄q connecting the end points of ω̄, then
γ̄ = ω̄ ∪ ω̄′ is a curve in the homotopy class of the core of S̄. Let γ be the
projection of γ̄ to S. Then γ is in the homotopy class of α and therefore
must intersect R (otherwise, R would not be maximal). Hence, γ̄ must
intersect R̄. But β̄q is perpendicular to ᾱt, and, once it exits R̄, it never
returns. Therefore, ω̄ must intersect R̄ as well.

Let ᾱs be an equidistant curve in R̄ intersecting ω̄ that has the shortest
q̄-length. We claim that

lq̄(ω̄) ≥ lq̄(ᾱt) = λt .

Assume s > b. The curve ᾱs divides S̄ into two annuli. Let B be the
annulus that contains ᾱc. For t ∈ [b, s), the q̄-length of ᾱt is less than
the q̄-length of αs. By assumption ᾱs is the shortest equidistant curve
intersecting ω̄, therefore, ω̄ ⊂ B.

The curvature of ᾱt with respect to B is non-positive at all points.
Therefore, the closest-point projection from B to ᾱt is length-decreasing.
But the end points of ω̄ project to the same point in ᾱt (because β̄q is
perpendicular to ᾱt), and the projection covers ᾱt completely. Therefore,
lq̄(ω̄) ≥ lq̄(ᾱt) in this case.

A similar argument holds if t < a. If t ∈ [a, b], then ω̄ could intersect ᾱt

transversally, but, in this case, ᾱt is a q̄-geodesic and the curvature of ᾱt is
non-positive with respect to both annuli in S̄ \ αt. Therefore, the claim is
true in all cases.

Let ω be the projection of ω̄ to S. If ω exits Z, then its τ -length is larger
than the τ -distance between R and ∂Z, which is equal to 1. Otherwise,
ω ⊂ Z. Then, at each point in ω, τ is obtained from q by scaling by a
factor of at least 1/λt. Therefore,

lτ (ω) ≥ 1
λt

lq(ω) ≥ 1 .

There are (n−1) arcs like ω̄, and they all project down to different sub-arcs
of βσ. Therefore,

lτ (βσ) ≥ n .

This implies that

Extσ(βσ) ≥ lτ (βσ)2

areaτ S

.
� n2

1/lσ(α)
= n2 lσ(α) . �

Corollary 4.2. For β̄σ and β̄q as before, we have

i(β̄σ , β̄q) ≺
1

lσ(α)
.
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Proof. The curve βσ is the shortest (in σ) transverse curve to α. Therefore,
Extσ(βσ) � 1/lσ(α). Applying Lemma 4.1 we get

1
lσ(α)

� i(β̄σ , β̄q)2 lσ(α) ,

Taking the square root of both side we obtain the desired inequality. �

The following theorem is an immediate consequence of the definitions
of the twisting parameters and of Corollary 4.2.
Theorem 4.3. The two twisting parameters are the same up to an
additive error comparable to 1/lσ(α). That is,

tw±
σ = tw±

q ± O

(
1

lσ(α)

)
.

4.1 The twisting parameter along a Teichmüller geodesic. In
this section, we give estimates for the twisting parameters of ν± around a
curve α in σt. Let dα = dα(ν+, ν−) (which is equal to iα(ν+, ν−)). Note
that ν+ and ν− twist around α in different directions. Therefore,

dα
+� tw+

q + tw−
q . (14)

If α is not very short in σt, say lσt(α) ≥ ε0, then there exists a curve inter-
secting α non-trivially whose σt-length is not greater than L0. Theorem 3.6
and (14) imply that

{
if α is mostly horizontal, tw−

σt

+� dα and tw+
σt

+� 0 ,

if α is mostly vertical, tw−
σt

+� 0 and tw+
σt

+� dα .
(15)

Assume α is balanced at tα. Using equations (11) and (2), we get

tw−
qt

tw+
qt

=
e2(t−tα) hqtα

(α)2

e−2(t−tα) vqtα
(α)2

.

But hqtα
(α) = vqtα

(α). Therefore,

tw−
qt

+� dαe2(t−tα)

e2(t−tα) + e−2(t−tα)
and tw+

qt

+� dαe−2(t−t−α)

e2(t−t−α) + e−2(t−tα)
. (16)

This and Theorem 4.3 prove Theorem 1.3. The following proposition is a
different statement for the same basic fact.
Proposition 4.4. Let σt ∈ T (S) and α be a curve in S with lσt(α) ≤ ε0.
Let σ′

t be the point in T (S) obtained from σt by twisting along α such that

tw−
σ′

t
=

dαe−2(t−tα)

e2(t−tα) + e−2(t−tα)
.

Then dT (σt, σ
′
t) = O(1).
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Proof. Consider π : T (S) → T (S \ α) × Hα. Recall that the map π is
defined by Fenchel–Nielsen coordinates and Hα parametrizes the length
and the twisting around α. In fact, considering Hα as the upper half plane,
the y-coordinate of πα(σ) equals 1/lσ(α) and its x-coordinate is the twisting
parameter of σ around α compared with some fixed marking. (See [Mi3]
for the precise definition). Since π0(σt) = π0(σ′

t), Theorem 2.5 implies that

dT (σt, σ
′
t)

+� dHα

(
πα(σt)πα(σ′

t)
)
,

and from the geometry of the hyperbolic plane we have

dHα

(
πα(σt), πα(σ′

t)
) +� log

(
lσt(α)(tw−

σt
− tw−

σ′
t
)
)
.

Theorem 4.3 states that the σt-twisting and the qt-twisting parameters of
ν− are equal up to an additive error that is comparable with 1/lσt(α).
Therefore, the right-hand side of the above equation is uniformly bounded.
Thus

dT (σt, σ
′
t) = O(1) . �

5 Proof of the Main Theorem

In this section we prove Theorem 1.1. In §5.1, we show how a lower bound
for the Teichmüller distance between two points in T (S) can be obtained
by the combinatorial complexity between their short markings. In §5.2,
we give an upper bound for the distance between two points in the Teich-
müller space by constructing a path in T (S) of length comparable with the
estimate given in Theorem 1.1.

5.1 Lower estimate. Let g : [a, b] → T (S) be the geodesic segment in
the Teichmüller space connecting σa to σb. Recall that σt is the hyperbolic
metric of g(t), and µt is the short-marking on S corresponding to σt.

Lemma 5.1. Let Y be a subsurface that is not an annulus and I =
IY ∩ [a, b]. Then

|I| � dY (µa, µb) .

Proof. Let I = [c, d], τc = πY (σc) and τd = πY (σd) (see Theorem 2.5).
Let ηc and ηd be the short-markings on Y corresponding to τc and τd,
respectively. In fact, ηc ⊂ µc and ηd ⊂ µd. We have

|I| � dT (Y )(τc, τd) , (Theorem 2.5)

� log iY (ηc, ηd) , (Proposition 3.5)
� dY (ηc, ηd) . (Lemma 2.1)



Vol. 17, 2007 COMBINATORIAL MODEL FOR TEICHMÜLLER METRIC 953

But dY (ηc, ηd) � dY (µc, µd) (because they have the same projections
to Y ). Also, by Proposition 3.7, we have

dY (µa, µc) = O(1) and dY (µd, µb) = O(1) .

This proves the lemma. �

A similar lemma is true when the subsurface is an annulus. The dif-
ference is that, in Lemma 5.1, there is no restriction on the lengths of the
boundaries of Y ; but, for the next lemma to be true, we have to assume
that α is not very short in σa and σb. the proofs are almost identical.

Lemma 5.2. Let α be a curve in S such that lσa(α) ≥ ε0 and lσb
(α) ≥ ε0,

and let I = Iα ∩ [a, b]. Then

|I| � log dα(µa, µb) .

Proof. Since α is not short at either end, either Iα is disjoint from [a, b] or
it is a subset of [a, b]. If Iα ∩ [a, b] = ∅, then Proposition 3.7 implies the
lemma. If Iα = [c, d] ⊂ [a, b], then, by Corollary 3.9,

dα(µa, µb) � dα(µc, µd) .

Let βc and βd be curves transverse to α in markings µc and µd, respectively.
We have

i(βc, βd) = dα(µc, µd) .

As in the previous lemma, using Theorem 2.5 and Proposition 3.5, we have

|Iα| � log i(βc, βd) .

The combination of the last three equations proves the lemma. �

The following proposition provides a lower bound for the Teichmüller
distance between two points in the thick part of T (S).

Proposition 5.3. Let σ1, σ2 be in the ε0-thick part of T (S) and µ1 and
µ2 be the short-markings in σ1 and σ2, respectively. There exists a k0 > 0
such that

dT (σ1, σ2) �
∑

Y

[
dY (µ1, µ2)

]
k0

+
∑

α

log
[
dα(µ1, µ2)

]
k0

.

Proof. Let g : [a, b] → T (S) be the geodesic segment connecting σ1 and σ2.
Since the end points are in the thick part of T (S), for every subsurface Y ,
IY either is disjoint from [a, b] or is a subset of [a, b]. Let k0 be a con-
stant such that, if dY (µ, η) ≥ k0, then IY ⊂ [a, b] (see Proposition 3.5).
For t ∈ IY , the length of each boundary component of Y is less than ε0.
Therefore, there exists a constant C, depending on the topology of S, such
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that the number of subsurfaces with this property at each given time is at
most C. Therefore,

dT (σ, τ) ≥ 1
C

∑
|IY | .

Lemmas 5.1 and 5.2 imply the desired inequality. �

5.2 Upper estimate. In [MaM2], Masur and Minsky show how to
change one marking to another through elementary moves (described be-
low) efficiently. Their estimate for the number of necessary elementary
moves closely resembles the estimate in Theorem 1.1. We use this sequence
of elementary moves to construct an efficient path connecting two points
in T (S).

There are two types of elementary moves that transform a marking
µ = {(α1, β1), . . . , (αm, βm)} to a new marking.

1. Twist: Replace βi by β′
i, where β′

i is obtained from βi by a Dehn twist
or a half twist around αi.

2. Flip: Replace the pair (αi, βi) with (βi, αi) and, for j �= i, replace βj

with a curve β′
j that does not intersect βi, which is now a base curve,

in such a way that dαj (βj , β
′
j) is as small as possible (see [MaM2] for

details).
In the first move, a twist can be positive or negative. A half twist is possible
when αi and βi intersect twice. The following is a consequence of work done
in [MaM2]) and [Mi4].
Proposition 5.4. There exists a large enough k such that: for markings
µ and µ′, there exists a sequence of markings,

µ = µ1, . . . , µn = µ′,

where µi and µi+1 differ by an elementary move except, for each α where
dα(µ, µ′) ≥ k, there is an index iα so that

µiα+1 = Dp
αµiα , and |p| � dα(µ, µ′) . (17)

Furthermore,
n �

∑

Y ⊂S

[
dY (µ, µ′)

]
k
, (18)

where the sum is over all subsurfaces Y that are not annuli.

Proof. We use the definitions and notation used in [MaM2] and [Mi4].
[MaM2, 4.6 and 4.20] state that there exists a complete hierarchy H whose
initial marking is µ and whose terminal marking is µ′. Any complete mark-
ing has a resolution ([MaM2, 5.4]), that is, there is a sequence of markings

µ = η1, . . . , ηN = µ′
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where ηi and ηi+1 differ by an elementary move. For k large enough, if
dα(µ, µ′) ≥ k, the collar of α appears as a domain in H ([MaM2, 6.2])
exactly once ([Mi4, 5.15]), and the length of the corresponding geodesic
in H is comparable to dα(µ, µ′) ([MaM2, 6.2]). That is, the number of
twist moves around α used in the resolution is comparable to dα(µ, µ′).
The number of the remaining elementary moves is comparable to the sum
of the lengths of geodesics in H whose domains are not annuli, which is
comparable to ([MaM2, Lem. 6.2 and eq. (6.4)])

∑

Y

[
dY (µ, µ′)

]
k
.

Our goal is, for any α where dα(µ, µ′) ≥ k, to rearrange the elementary
moves in the resolution so that all the twist moves around α are applied
consecutively. Then we replace the sequence of consecutive twists around
α with one large step, which is applying Dp

α, for some p � dα(µ, µ′). This
will result in the sequence described in the statement of the theorem and
has the desired length condition.

We know ([Mi4, 5.16]) that for every curve α, the set Jα of indices i
such that α is a base curve in ηi is an interval in Z. Observe that when
α is a base curve of a marking, a twist move around α and a twist move
around any other curve can be rearranged without any complication. The
trouble with the flip moves is that the outcome is not unique. Therefore,
after rearranging a flip move and a twist move, we have to make sure the
outcomes of two flip moves differ by just a twist around α. For example,
assume ηi−1, ηi and ηi+1 all contain α as a base curve, ηi is obtained from
ηi−1 by a flip move and ηi+1 = Dαηi. Then, replacing ηi with η′i = Dα ηi−1

in our sequence will result in a sequence that is still a resolution of H.
Because ηi is obtained from ηi−1 by applying a flip move, Dα ηi is also
obtained from Dα ηi−1 by a flip move (Dα is a homeomorphism). Therefore,
we can rearrange the elementary moves in Jα so that all the twist moves
around α are done consecutively. �

Remark 5.5. The constant k can be chosen as large as necessary, and the
constants involved in (18) depend on k and the topology of S (see [MaM1,
Th. 6.12]). Therefore, we can assume k ≥ k0, where k0 is as chosen in
Proposition 5.3.

For a marking µ, let short(µ) be the set of points in T (S) where all
curves in µ have hyperbolic length less than L0 (L0 as on page 941). This
is a compact subset of T (S). We define f(µ, µ′) to be the maximum distance
between an element in short(µ) and an element in short(µ′).
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Lemma 5.6. If i = iα, where α is a curve with dα(µ, µ′) ≥ k, then

f(µi, µi+1) � log dα(µ, µ′) .

Otherwise,
f(µi, µi+1) = O(1) .

Proof. Since short(µ) is compact, it is enough to bound the minimum
distance between short(µi) and short(µi+1).

Assume i = iα, for α as above, and let σ be a point in short(µi). Then,
for some |p| � dα(µ, η), τ = Dp

α σ is a point in short(µi+1). The lengths
of α in σ and τ are less than L0, therefore, σ and τ are bounded distance
from points σ′ and τ ′ = Dp

α(σ′), where the lengths of α in σ′ and τ ′ are less
than ε0. Taking Γ = {α} and π as in Theorem 2.5, the following holds: the
distance between σ′ and τ ′ equals, up to additive error, the distance in Hα

between πα(σ′) and πα(τ ′), which, up to multiplicative error, equals log |p|.
Therefore, the distance between σ and τ is comparable to log |p|.

Otherwise, µi and µi+1 differ by an elementary move. Note that there
are only finitely many such pairs of markings up to homeomorphism. There-
fore, there exists a uniform upper bound for the minimum distance between
short(µi) and short(µi+1), depending on the topology of S only. �

Proposition 5.7. Let σ1, σ2 be in the εo-thick part of T (S) and µ1 and
µ2 be the short-markings in σ1 and σ2, respectively. Then

dT (σ1, σ2) ≺
∑

Y

[
dY (µ1, µ2)

]
k

+
∑

α

log
[
dα(µ1, µ2)

]
k
.

Proof. Let µ1 = µ̄1, . . . , µ̄n = µ2 be the path in M(S) described in Proposi-
tion 5.4. For each i, let σi be a point in short(µ̄i) and let gi be the geodesic
segment connecting σi to σi+1. The distance in T (S) between σ1 and σ2 is
less than the sum of the lengths of the gi. Lemma 5.6 states that the lengths
of the gi are uniformly bounded except when i = iα and dα(µ1, µ2) ≥ k, in
which case the length of gi is comparable with log dα(µ1, µ2). Therefore,

d(σ, τ) ≺ n O(1) +
∑

α

log
[
dα(µ1, µ2)

]
k
.

Proposition 5.4 finishes the proof. �

Proof of Theorem 1.1. Propositions 5.3 and 5.7 provide a lower estimate
and an upper estimate for the distance between σ and τ . Since k ≥ k0 (see
Remark 5.5), the estimate given in Proposition 5.7 is smaller than the one
given in Proposition 5.3. Therefore dT (σ1, σ2) is comparable to∑

Y

[
dY (µ1, µ2)

]
k

+
∑

α

log
[
dα(µ1, µ2)

]
k
. �
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6 The General Case

In this section we give an estimate for the distance between two arbitrary
points in the Teichmüller space. Let σ1 and σ2 be two points in T (S) and
g : [a, b] → T (S) be the geodesic arc connecting them. If σ1 and σ2 are not
in the thick part of T (S), then the set of short curves in σ1 and σ2 does not
contain enough information to allow us to estimate the distance between
σ1 and σ2; we also need to know how short these curves are. Therefore, our
estimate for the distance contains terms measuring the distance between σ1

and σ2 and the thick part of Teichmüller space. An additional complication
arises from the case where a curve is short in both σ1 and σ2 and remains
short along the geodesic. However, the basic idea behind both Theorem 1.1
and Theorem 6.1 is that efficient paths in the space of markings are closely
related to geodesics in Teichmüller space.

Let ε0 be as before. Define Γ to be the set of curves that are short in
both σ1 and σ2, and, for i = 1, 2, define Γi to be the set of curves that are
short in σi but not in σ3−i. Let µ1 and µ2 be short-markings on σ1 and σ2,
respectively.
Theorem 6.1. The distance in T (S) between σ1 and σ2 is given by the
following formula:

dT (σ1, σ2) �
∑

Y

[
dY (µ1, µ2)

]
k

+
∑

α�∈Γ

log
[
dα(µ1, µ2)

]
k

+ max
α∈Γ

dHα(σ1, σ2) + max
α∈Γi
i=1,2

log
1

lσi(α)
. (19)

Proof. Theorem 2.5 implies that

dT (σ1, σ2) � max
α∈Γ

dHα(σ1, σ2) + dT (S\Γ)

(
π0(σ1), π0(σ2)

)
.

This accounts for the third term on the right-hand side of equation (19).
Therefore, without loss of generality, we can assume Γ = ∅.

Let σ′
1 and σ′

2 be points in the thick part of the Teichmüller space that
have the same short-markings as σ1 and σ2. We have

dT (σ1, σ2) ≤ dT (σ1, σ
′
1) + dT (σ′

1, σ
′
2) + dT (σ′

2, σ2) .

The sum of the first two terms in (19) is comparable with dT (σ′
1, σ

′
2). Also,

dT (σ1, σ
′
1) � max

β∈Γ1

log
1

lσ1(β)
and dT (σ2, σ

′
2) � max

γ∈Γ2

log
1

lσ2(γ)
.

Therefore, the right side of (19) is an upper bound for dT (σ1, σ2) (up to
additive and multiplicative constants).
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To show that the right side of (19) is also a lower bound for dT (σ1, σ2),
we follow the same argument as in §5.1. However, we can not use Lemma 5.2
when α is short in either σ1 or σ2 and using the previous argument we can
conclude only that

dT (σ1, σ2) �
∑

Y

[
dY (µ1, µ2)

]
k

+
∑

α�∈Γ∪Γ1∪Γ2

log
[
dα(µ1, µ2)

]
k
. (20)

For every α ∈ Γ1, we have

dT (σ1, σ2) = log K(σ1, σ2) ≥ log
∣∣∣∣
Extσ2(α)
Extσ1(α)

∣∣∣∣ � log
1

lσ1(α)
.

A similar statement is true for α ∈ Γ2. Hence

dT (σ1, σ2) � max
α∈Γi
i=1,2

log
1

lσi(α)
. (21)

It remains to show, for α ∈ Γ1 ∪ Γ2, that dT (σ1, σ2) � log dα(µ1, µ2). Let
β1 and β2 be the transverse curves to α in µ1 and µ2. We know

|tw+
σ1

− tw+
σ2
| =

∣∣iα(ν+, β1) − iα(ν+, β2)
∣∣ +� iα(β1, β2) = dα(µ1, µ2) .

Therefore, it is sufficient to show that dT (σ1, σ2) � log |tw+
σ1

− tw+
σ2
|. The-

orem 4.3 implies that

|tw+
q1

− tw+
q2
| �

∣∣∣∣tw
+
σ1

− tw+
σ2

− O

(
1

lσ1(α)
+

1
lσ2(α)

)∣∣∣∣ ;

therefore,

|tw+
q1

− tw+
q2
| + 1

lσ1(α)
+

1
lσ2(α)

� |tw+
σ1

− tw+
σ2
| ,

and equation (11) implies that the qt-twisting parameter changes at most
exponentially fast; hence,

dT (σ1, σ2) � log(tw+
q1

− tw+
q2

) .

We also know that

dT (σ1, σ2) � log
1

lσ1(α)
and dT (σ1, σ2) � log

1
lσ2(α)

.

From the last three equations, we can conclude

dT (σ1, σ2) � log |tw+
σ1

− tw+
σ2
| .

Therefore,
∀α ∈ Γ1 ∪ Γ2 , dT (σ1, σ2) � log dα(µ1, µ2) . (22)

The combination of equations (20), (21) and (22) provides the desired lower
bound and finishes the proof. �
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