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Abstract
We prove a criterion for Benjamini-Schramm convergence of periodic orbits of Lie groups.
This general observation is then applied to homogeneous spaces and the space of translation
surfaces.
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1 Benjamini-Schramm convergence

Let H ⊂ SLN (R) be a non-compact semisimple group. Even though H ⊂ SLN (R), we will
write e for the identity element in H . The notation I (for the identity matrix) will only be
used when the vector space structure of the space of matrices is relevant.

Let ‖ ‖ denote the maximum norm on MatN (R) with respect to the standard basis, and
put

BH (e, R) = {h ∈ H : ‖h − I‖ < R and ‖h−1 − I‖ < R}.
We also equip H with the right invariant Riemannian metric induced by the Killing form

(and a fixed choice of a maximal compact subgroup of H ), and let BH
Rie(e, r) denote the ball

of radius r centered at the identity with respect to this metric. Then for every R, there exists
r > 0 so that

BH
Rie(e, r) ⊂ BH (e, R).
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Let r(R) denote 1/2 the supremum of all such r , then BH
Rie(e, r(R)) ⊂ BH (e, R) and

r(R) → ∞ as R → ∞; indeed it is not difficult to see that r(R) ≥ C log R where C > 0
depends on the embedding H ⊂ SLN (R).

Let � ⊂ H be a discrete subgroup. The injectivity radius of y ∈ H/� is define as the
supremum over all r > 0 so that the map h �→ hy is injective on BH

Rie(e, r).
Let �n ⊂ H be a sequence of lattices in H . The sequence {H/�n : n ∈ N} Benjamini-

Schramm converges to H if for every r > 0 we have

μn

(
{y ∈ H/�n : injectivity radius of y < r}

)
→ 0 as n → ∞

where μn denote the H -invariant probability measure on H/�n for every n.
Throughout, we assume that H acts continuously on X preserving the measure μ; also

assume that StabH (x) is discrete for every x ∈ X .
An orbit Hx ⊂ X is called periodic if Hx ⊂ X is a closed subset and StabH (x) is a

lattice in H .
For a periodic orbit Hx , let μHx denote the pushforward of the H -invariant probability

measure of H/StabH (x) to Hx .

Proposition 1.1 Let {Hxn : n ∈ N} be a sequence of periodic orbits in X satisfying that

μHxn → μ as n → ∞. (1.1)

Assume further that for every R > 0 there exists a continuous function fR : X → [0,∞)

satisfying the following two properties:

1. fR(x) > 0 for μ-a.e. x ∈ X,
2. if fR(x) > 0 for some x ∈ X, then StabH (x) ∩ BH (e, R) = {e}.
Then H/StabH (xn) Benjamini-Schramm converges to H.

Proof Let R > 0. Let Y = Hx ⊂ X be a periodic orbit, and put � = Stab(x). The map
h� �→ hx is a homeomorphism from H/� onto Y . Let h� ∈ H/�, and write y = hx ∈ Y .
Suppose now that h1h� = h2h� for some h1, h2 ∈ BH (e, R). Then ‖h−1

2 h1 − I‖ < N R2

and

h−1
2 h1 ∈ h�h−1 = StabH (y).

This and the assumption (2) in the proposition imply that

If fN R2(y) > 0, then the injectivity radius of h� is at least r(R); (1.2)

recall that BH
Rie(e, r(R)) ⊂ BH (e, R).

Let now ε > 0. In view of our assumption (1) in the proposition, there exists a compact
subset Kε ⊂ X so that

μ(Kε) > 1 − ε and fN R2(x) > 0 for all x ∈ Kε.

Since f is continuous and Kε is compact, there exists some δ > 0 so that fN R2(x) > 0
for all x ∈ Nδ(Kε), whereNδ(Kε) denotes a finite open covering of the set Kε with balls of
radius δ centered at points in Kε.

Since Nδ(Kε) is an open set and μHxn → μ, we conclude that

lim inf
n

μHxn

(
Nδ(Kε)

) ≥ μ
(
Nδ/2(Kε)

) ≥ 1 − ε.
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This and the fact that Nδ(Kε) ⊂ {y ∈ Hxn : fN R2(y) > 0} imply: there exists some n0 so
that

μHxn

(
{y ∈ Hxn : fN R2(y) > 0}

)
> 1 − 2ε for all n > n0.

In consequence, using (1.2) we deduce that

μH/Stab(xn)

(
{y ∈ H/Stab(xn) : injectivity radius of y is < r(R)}

)
< 2ε

for all n > n0. Since r(R) → ∞ as R → ∞, the claim follows. 
�
In subsequent sections, we discuss two settings where Proposition 1.1 is applicable: the

homogeneous setting is discussed in §2 and the space of Abelian differentials in §3; see in
particular Theorems 2.2 and 3.1.

2 Homogeneous spaces

LetG be a connencted algebraic group defined over R, and let G = G(R)◦ be the connected
component of the identity in the Lie group G(R).

Let � ⊂ G be a lattice. Throughout this section, we assume that � is torsion free. Let
X = G/�, and let μX denote the G-invariant probability measure on X .

Theorem 2.1 Let the notation be as above. Let H ⊂ G be a connected semisimple Lie group.
Assume that ⋂

g∈G
gHg−1 is a finite group. (2.1)

Let {Hxn : n ∈ N} be a sequence of periodic H-orbits in X so that

1. There exists a compact subset K ⊂ X with Hxn ∩ K 
= ∅ for all n.
2. For every H ⊂ L ⊂ G and any closed orbit Lx, at most finitely many of the orbits Hxn

are contained in Lx.

Then H/StabH (xn) Benjamini-Schramm converges to H.

Note that the condition∩g∈GgHg−1 is a finite group in the theorem is satisfied for instance
if G semisimple and H does not contain any of the simple factors of G.

Theorem 2.2 Let M be a real or complex hyperbolic d-manifold with d ≥ 3. Assume that
M contains infinitely many properly immersed totally geodesic hypersurfaces {Vn : n ∈ N}.
Then {Vn} Benjamini-Schramm converges to H

d−1 in the real hyperbolic case and to CH
d−1

in the complex case.

Proof We prove the result for the case real hyperbolic manifold, the complex case is similar.
Let G = SO(d, 1)◦, � = π1(M), and H = SO(d − 1, 1)◦. Then Vn lifts to a closed orbit

Hxn in X = G/� for every n.
Note that H ⊂ G is a maximal connected subgroup which is not a parabolic subgroup

of G. Therefore, the assumptions in Theorem 2.1 are satisfied for G, H , and the orbits
{Hxn : n ∈ N}. The claim thus follows from Theorem 2.1. 
�

We note that when � is arithmetic Theorem 2.1 can be proved using the results in [1,
§5]. This condition holds if � is an irreducible lattice and the real rank of G is at least two
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by Margulis’ arithmeticity theorem [9]. Moreover, it was proved by Corlette and Gromov-
Shoen [4, 8] that lattices in SP(n, 1) and F−20

4 are arithmetic.While non-arithmetic lattices in
SO(n, 1), for all n, and SU(n, 1), for n = 2, 3, exist, recent developments, [2, 3, 10], show that
the presence of infinitely many totally geodesic hyperplanes1 in real and complex hyperbolic
manifolds of finite volume imply arithmeticity of their fundamental group. Therefore, in all
of the interesting cases, the assertion of Theorem 2.1 can be obtained by combining rather
deep existing results in the literature. However, the proof we provide here is different and
is arguably simpler. In particular, our proof does not rely on the arithmeticity of � and
further property of congruences lattices; instead, our proof relies only on a special case of an
equidistribution theorem of Mozes and Shah [14].

Lemma 2.3 Let the notation and the assumptions be as in Theorem 2.1. Then for μX -a.e.
x ∈ X we have

StabH (x){e}.
Proof Let H denote the Zariski closure of H in G. Since H is a connected semisimple Lie
group, it has finite index in the group H ′ := H(R) ∩ G.

By Chevalley’s theorem, there exists a finite dimensional (real) representation (ρ,W ) of
G and a vector w ∈ W so that H = {g ∈ G : gw = w}. In particular, we conclude that

H ′ = G ∩ H = {g ∈ G : gw = w}. (2.2)

Let now x = g0�. Then Stab(x) = g0�g
−1
0 , and H ∩ g0�g

−1
0 is nontrivial if and only

if there exists some e 
= γ ∈ � so that γ ∈ g−1
0 Hg0. Since H ⊂ H ′, we conclude that

γ g−1
0 w = g−1

0 w. Hence,

g−1
0 ∈ Fγ = {g ∈ G : γ gw = gw}.

For every γ ∈ �, the set Fγ is an algebraic variety defined over R. Moreover, G = G(R)◦
is Zariski dense in G. These and the fact that � is countable imply that unless there exists
some e 
= δ ∈ � so that

δgw = gw for all g ∈ G,

the lemma holds — indeed in that case G \
(
∪γ∈�Fγ

)
is a conull subset of G, and for every

g in this set we have StabH (g�) = {e}.
Assume now to the contrary that G = {g ∈ G : δgw = gw} for some nontrivial δ ∈ �.

Then by (2.2) we have δ ∈ gH ′g−1 for all g ∈ G, hence,

δ ∈
⋂
g∈G

gH ′g−1.

Since [H ′ : H ] < ∞, there exists some n so that δn ∈ gHg−1 for all g ∈ G. That
is, δn ∈ ∩g∈G gHg−1. However, � is torsion free and ∩g∈G gHg−1 is a finite group. This
contradiction completes the proof. 
�
Proof of Theorem 2.1 Wemay and will assume that G ⊂ SLN (R) for some N . As before, for
all subgroups L ⊂ G and all R > 0, let

BL(e, R) = {g ∈ L : ‖g − I‖ < R and ‖g−1 − I‖ < R}
1 The works [2, 3] are indeed more general and allow for properly immersed maximal totally geodesic
submanifolds of dimension at least 2.

123



Geometriae Dedicata (2022) 216 :57 Page 5 of 11 57

where ‖ ‖ denotes the maximum norm on SLN (R) with respect to the standard basis.
Recall that μX denotes the G-invariant probability measure on X . First note that by a

theorem of Mozes and Shah [14] and our assumptions (1) and (2) in the theorem, we have

μHxn → μX as n → ∞. (2.3)

Let dist denote the right invariant Riemannian metric on G induced using the killing
form. Let R > 1, and put Stab(x)R = StabG(x) ∩ BG(e, R); this is a finite set. Define
fR : X → [0,∞) by

fR(x) = inf
{
d(h, g) : h ∈ BH (e, R), g ∈ Stab(x)R \ {e}}.

Since StabG(g�) = g�g−1 and R is fixed, fR is continuous. Furthermore, fR(x) > 0
for some x ∈ X if and only if BH (e, R) ∩ StabG(x) = {e}. In particular, by Lemma 2.3 we
have

fR(x) > 0 for μX − a.e. x ∈ X .

Altogether, we deduce that fR satisfies the conditions in Proposition 1.1.
The theorem thus follows from Proposition 1.1 in view of (2.3). 
�

3 The space of Abelian differentials

Let g ≥ 2, and let Tg denote the Teichmüller space of complex structure on a compact
Riemann surface of genus g. We denote by Mg the corresponding moduli space, i.e., the
quotient of Tg by the mapping class group, Modg .

As it is well-known, Modg is not torsion free, however, it has subgroups of finite index
which are torsion free — indeed the kernel of the natural map from Modg to Sp2g(Z/3Z) is
torsion free.

We fix, once and for all, a covering map

M̂g → Mg

which corresponds to a torsion free finite index subgroup of Modg .
Let f : H

2 → Mg be an isometric immersion for the Teichmüller metric. Typically,
f (H2) is dense in Mg , however, there are situations where f (H2) is an algebraic curve
in Mg . In the latter case, the stabilizer � of f is a lattice in Isom(H2), and we obtain a
Teichmüller curve

f : V = H
2/� → Mg.

For every g ≥ 2, the moduli space Mg contains a dense family of Teichmüller curves
which arise as branched cover of flat tori. There are also examples of infinite families of
primitive Teichmüller curves, i.e., Teichmüller curves which do not arise as a branched cover
of flat tori, in Mg when g = 2, 3, 4, [12, 13].

Theorem 3.1 Let {Vn : n ∈ N} be an infinite family of Techimüller curves in Mg. For every
n, let V̂n → Vn be a lift of Vn to M̂g. Then {V̂n : n ∈ N} Benjamini-Schramm converges to
H

2.

C. Leininger and A. Wright (independently) have supplied an alternative (and arguably
softer) proof of Theorem 3.1. This argument relies on the fact that the length of shortest
geodesic on Teichmüller curves tends to infinity, see Proposition 3.2, and is independent
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of measure classification theorems. We also thank T. Gelander for helpful communications
regarding IRSs.

Here, we present a proof based on Proposition 1.1 and [6] to highlight a unifying theme
between the homogeneous setting and the setting at hand.

For every M ∈ Tg , let 	(M) be the g-dimensional space of holomorphic 1-forms on M .
By integrating a non-zero form ω ∈ 	(M) we obtain, away from the zeros of ω, a flat metric
|ω| on M and local charts whose transition functions are translations.

Form a vector bundle over the Teichmüller space Tg where the fiber over each point is
	(M). Let 	Tg → Tg be the complement of the zero section of this vector bundle.

There is a natural action of GL+
2 (R) (and hence of SL2(R)) on 	Tg: given a holomorphic

1-form ω = R(ω) + iI(ω) and h =
(
a b
c d

)
∈ GL+

2 (R),

h · ω =
(
i
i

) (
a b
c d

) (
R(ω)

I(ω)

)
. (3.1)

We let 	Mg → Mg denote the quotient of 	Tg by action of the mapping class group of
Sg .

For every α = (α1, . . . , αm) with
∑

αi = 2g − 2, let H(α) denote the set of (M, ω) ∈
	Mg where ω has zeros of type α. Then 	Mg = ⊔

H(α).
Let (M, ω) ∈ H(α) and let � ⊂ M denote the set of zeroes of ω. Let {γ1, . . . , γk}

denote a Z-basis for the relative homology group H1(M, �, Z). (It is convenient to assume
that the basis is obtained by extending a symplectic basis for the absolute homology group
H1(M, Z).) We can define a map 
 : H(α) → C

k by


(M, ω) =
(∫

γ1

ω, . . . ,

∫

γk

w

)

Themap
 (which depends on a choice of the basis {γ1, . . . , γk}) is a local coordinate system
on (M, ω). Alternatively, we may think of the cohomology class [ω] ∈ H1(M, �, C) as a
local coordinate on the stratum H(α). We will call these coordinates period coordinates.

The area of a translation surface is given by

a(M, ω) = i

2

∫

M
ω ∧ ω̄.

We let 	1Mg and H1(α) denote the locus of unit area 1-forms in 	Mg and H(α),
respecitively.

The SL2(R)-action and the Kontsevich-Zorich cocycle

The action in (3.1) descends to an action of SL2(R) on H1(α). Indeed, write 
(M, ω) as a
2 × d matrix x . The action of SL2(R) in these coordinates is linear.

Let Mod(M, �) be the mapping class group of M fixing each zero of ω. We choose
a fundamental domain for the action of Mod(M, �), and think of the dynamics on the
fundamental domain. Then, the SL2(R) action becomes

x =
(
R(ω)

I(ω)

)
�→ hx =

(
a b
c d

) (
R(ω)

I(ω)

)
A(h, x), (3.2)

where A(h, x) ∈ Sp2g(Z) � Z
m−1 is the Kontsevich-Zorich cocycle.

123



Geometriae Dedicata (2022) 216 :57 Page 7 of 11 57

Thus, A(h, x) is the change of basis one needs to perform to return the point hx to the
fundamental domain. It can be interpreted as the monodromy of the Gauss-Manin connection
(restricted to the orbit of SL2(R)).

3.1 Affinemeasures andmanifolds

For a subset E ⊂ H1(α) we write

RE = {(M, tω) : (M, ω) ∈ E, t ∈ R} ⊂ H(α).

An ergodic SL2(R)-invariant probability measure ν on H1(α) is called affine if the fol-
lowing hold:

(i) The supportM of ν is an immersed submanifold ofH1(α), i.e., there exists a manifoldN
and a proper continuous map f : N → H1(α) so thatM = f (N ). The self-intersection
set of M, i.e., the set of points of M which do not have a unique preimage under f , is
a closed subset ofM of ν-measure 0. Furthermore, each point inN has a neighborhood
U such that locally R f (U ) is given by a complex linear subspace defined over R in the
period coordinates.

(ii) Let ν̄ be the measure supported on RM so that d ν̄ = dνda. Then each point in N has
a neighborhood U such that the restriction of ν̄ to R f (U ) is an affine linear measure in
the period coordinates on R f (U ), i.e., it is (up to normalization) the restriction of the
Lebesgue measure to the subspace R f (U ).

A suborbifoldM for which there exists a measure ν such that the pair (M, ν) satisfies (i)
and (ii) is said to be affine invariant submanifold.

We sometimes write νM to indicate the affine invariant measure ν on affine invariant
submanifold M.

Note that in particular, any affine invariant submanifold is a closed subset ofH1(α)which
is invariant under the action of SL2(R), and which in period coordinates is an affine subspace.
We also consider the entire stratumH1(α) to be an (improper) affine invariant submanifold.

3.2 Typical affine stabilizer is trivial

In this section, we prove the following statement:

Proposition 3.2 Let (M, ν) ⊂ H1(α) ⊂ 	M̂g,n be an affine invariant submanifold. Assume
that M is not a Teichmüller curve. Then for ν-a.e. x ∈ M,

StabSL2(R)(x)

is trivial.

Recall that the set of self-intersectionsM′ ofM is a proper closed invariant submanifold
of M, hence, dimM′ < dimM, see [6]; in particular, ν(M′) = 0. Therefore, it suffices to
prove the proposition for ν-a.e. x ∈ M \ M′. Let M̃ denote the lift of M \ M′ to 	Tg .

Fix φ ∈ M̂od(Sg) (that is, φ is not torsion). Define

P(φ) =
{
x ∈ M̃ : A · x = φ(x), for some A ∈ SL2(R)

}
.

We will show, for every φ ∈ M̂od(S), P(φ) is a ν–measure zero subset of M̃. Note that, by
assumption, dim(M̃) > 3.
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Consider x ∈ P(φ) and let Ex be the GL+(2, R) orbit or x . Then Ex can be considered
as (an open subset of) the tangent space of the Teichmüller disk Hx associated to x (the
projection of Ex to Teichmüller space). The restriction of Teichmüller metric to Hx equips
Hx with the hyperbolic metric (up to a factor 2). We observe that φ stabilizes Hx acting on
Hx by an isometry. In fact, we have either (see, for example, [11, Lemma 5.6])

• φ acts loxodromically on Hx and φ a pseudo-Anosov element.
• φ acts parabolically on Hx and φ is a multi-curve.
• φ acts elliptically on Hx and φ has finite order in Mod(S).

Note that the third case is excluded since we are assuming φ is not torsion. We argue each
case separately showing that P(φ) ∩ M̃ is a ν-measure zero subset of M̃.

Remark 3.3 We are in fact proving more that what is stated in Proposition 3.2. Recall that,
for x ∈ M̃, the Veech group of x is the subgroup of PSL2(R) which stabilizes Hx setwise.
Hence, the proof actually gives that for ν-a.e. x ∈ M̃, the Veech group of x is finite.

� is pseudo-Anosov element

A pseudo-Anosov map φ stabilizes only one Teichmüller disk, the one where ∂Hx contains
F+(φ) and F−(φ); the stable and the unstable foliation associated to φ. Therefore, P(φ) =
T1Hx , the unit tangent bundle over Hx . Since M is a not a Teichmüller curve, it has a
dimension larger than 3. Hence P(φ) ∩ M̃ is a ν-measure zero subset of M̃.

� is a multi-twist

Let φ be a multi-twist around γ , namely

φ =
∏

Dpi
γi

.

Let RP(φ) be the subset of H(α) obtained from points in P(φ) after scaling. Then, for any
x ∈ RP(φ), a measured foliation that is topologically equivalent to γ = {γ1, . . . , γk) has to
appear in the boundary of Hx . That is, after a rotation, we can assume x = (F−, F+) and
F+ = ∑

ckγk . Furthermore, x has a cylinder decomposition where the modulus of these
cylinders are rationally multiples of each other ([11, Lemma 5.6]). That is, there are ri ∈ Q

such that

ri · i(F−, γi )

ci
= r j · i(F−, γ j )

c j
,

for 1 ≤ i, j ≤ k. We also have
∑

ci · i(F−, γi ) = area(x).

That is, given γ , ri , F− and area(x), we can calculate the values of ci . Hence, F+ and
subsequently x are uniquely determined by γ , ri , F− and area(x). There are countably many
choices for the values ri and the multi-curve γ . We now show that the dimension of the space
of possible measured foliations F− is half the dimension of RM̃ where RM̃ is the subset of
H(α) obtained from point in M̃ after scaling.

For a filling bi-recurrent train-track τ (see [15] for definition and discussion) any admis-
sible weight on τ defines a measured foliation. We then say this measured foliation is carried
by τ . The complementary regions of a filling train tracks are n–gons or punctured n–gons. A
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foliation carried by τ has a singular point associated to each complementary region of τ . We
say τ is of type α = (α1, . . . , αm) if τ has m complementary components that are punctured
αi–gons, i = 1 . . .m. We denote the space of admissible weights in τ by W (τ ).

Lemma 3.4 For every x ∈ H(α) there are train tracks τ+ and τ− of type α such that a
neighborhood of H(α) around x is homeomorphic to U × V where U , V are open subsets
of W (τ+) and W (τ−) respectively. In fact, the real part of the period coordinates for H(α)

give coordinates for U and the imaginary part of the period coordinates, give coordinates
for V .

Proof Let � be a triangulation of x by saddle connections (for example, L∞-Delanay trian-
gulations see [7, §3]). Pick a subset B of the edges of � that give a basis for the homology of
x relative to the zeros � of x . Then the complex numbers {∫

ω
x}ω∈B give local coordinates

for H(α). For every edge ω of �, we have

i(ω, F−) = R

(∫

ω

x

)
.

In fact, F− can be constructed, triangle by triangle, from the set of real numbers
{i(ω, F−)}ω∈�. That is there is a train-track τ− dual to the triangulation � (again, see [7, §3]
for the construction of such train-tracks) such that {R(

∫
ω
x)}ω∈B form an admissible weights

on τ−. At any point y ∈ H(α) near x , the triangulation � can still be represented by saddle
connections and the set {R(

∫
ω
y)}ω∈B form an admissible weights on τ− that is associated

to the vertical foliation at y. That is, {R(
∫
ω
y)}ω∈B, thought of as admissible weights on τ−

give local cooridinates for the set of measured foliation that appear as a horizontal foliation
of an element of H1(α) near x . The same also holds for τ+ and the vertical foliations. 
�

Since RM̃ is an affine sub-manifold of H(α), it is locally defined by a set of affine
equations on period coordinates, see e.g. §3.1 and [5]. That is, there are subspaces U ′ ⊂ U
and V ′ ⊂ V , defined by the same set of affine equations, such that a neighborhood of x in
RM̃ is naturally homeomorphic to U ′ × V ′. In particular, where U ′ and V ′ have half the
dimension of RM̃.

LetW be the intersection of RP(φ) with this neighborhood. Recall that, fixing the multi-
curve γ , rational numbers ri and the area, every point in W is determined, up to rotation, by
a point in U ′. Therefore, W is a countable union of set of dimension dim(U ′) + 2. But

dim(U ′) + 2 = 1

2
dim(RM̃) + 2 < dim(RM̃),

where the last inequality follows from the assumption that dim(RM̃) > 4. That is, RP(φ)∩
RM̃ is a countable union of lower dimensional subset of RM̃ and therefore, has ν̄-measure
zero, see §3.1 for the definition of ν̄. Since, StabSL2(R)(x) does not change after scaling, we
have, P(φ) ∩ M̃ has ν–measure zero in M̃.

3.3 Proof of Theorem 3.1

In this section we prove Theorem 3.1. The proof is based on the following proposition.

Proposition 3.5 Let {Ek : k ∈ N} ⊂ H1(α) ⊂ 	M̂g,n be a sequence of closed SL2(R)

orbits each equipped with the SL2(R)-invariant probability measureμk . Assume further that
there exists an affine invariant submanifold (M, ν) ⊂ H1(α) so that

μk → ν as k → ∞. (3.3)
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Let Vk denote the Teichmüller curve associated to Ek for all k. Then {Vk}Benjamini-Schramm
converges to H.

Proof The proof if based on Proposition 1.1. Let us write Ek = SL2(R).xk .Wewill show that
SL2(R)/StabSL2(R)(xk) Benjamini-Schramm converges to SL2(R) from which the proposi-
tion follows.

First note that (M, ν) is not a closed SL2(R) orbits, see [6, Thm. 2.3]. Hence, by Propo-
sition 3.2, we have

StabSL2(R)(x) = {e} for ν − a.e. x ∈ M. (3.4)

In the remaining pats of the argument, we write H = SL2(R) and use the notation in §1.
In particular, for all R > 0, let

BH (e, R) = {h ∈ H : ‖h − I‖ < R and ‖h−1 − I‖ < R}
where ‖ ‖ denotes the maximum norm on Mat2(R) with respect to the standard basis.
Similarly, for r > 0, let BH

Rie(e, r) denote the ball of radius r centered at the identity with
respect the bi-SO(2)-invariant Riemannian metric on H induced using the Killing form.

For every x ∈ H1(α), let rx denote 1/2 of the injectivity radius of x inH1(α)with respect
to the Teichmüller metric. Then x �→ rx is continuous on H1(α); moreover, h �→ hx is
injective on BH

Rie(e, rx ).
Let R > 0 and for every x ∈ M, put BH

R (x) := B̄H (e, R) \ BH
Rie(e, rx ); note that this a

compact subset of SL2(R). Define fR : M → [0,∞) by

fR(x) = min
{
distTeich(x, hx) : h ∈ BH

R (x)
}
.

Note that fR is continuous. Indeed, let ym → y, and let hm ∈ BH
R (ym) be so that fR(ym) =

distTeich(y, hm ym). Let { fR(ymi )} be a converging subsequence of { fR(ym)}. Since BH
R (ym)

converges to BH
R (y) (in Hausdorff metric on compact sets), there is a subsequence hmi j

→
h ∈ BH

R (y)which implies: fR(y) ≤ limi fR(ymi ). In consequence, fR(y) ≤ lim inf fR(ym).
To see the opposite direction, let h ∈ BH

R (y) be so that fR(y) = distTeich(y, hy). Let
hm ∈ BH

R (ym) be so that hm → h, then fR(ym) ≤ distTeich(y, hm ym) and for every ε > 0
we have distTeich(y, hm ym) ≤ distTeich(y, hy)+ε = fR(y)+ε so long asm is large enough.
Hence lim sup fR(ym) ≤ fR(y) + ε. The continuity of fR follows.

Moreover, in view of (3.4), we have fR(x) > 0 for ν-a.e. x ∈ M. Finally, since for every
x , the map h �→ hx is injective on BH

Rie(e, rx ), we have StabSL2(R)(x) ∩ BH
Rie(e, rx ) = {e}.

Thus if fR(x) > 0 for some x ∈ M, then StabSL2(R)(x) ∩ BH (e, R) = {e}.
Altogether, we deduce that fR satisfies the conditions in Proposition 1.1. This and (3.3)

imply that Proposition 1.1 applies and yields:

SL2(R)/StabSL2(R)(xk) Benjamini-Schramm converges to SL2(R).

The proof is complete. 
�

Proof of Theorem 3.1 Let {Vk : k ∈ N} ⊂ M̂g,n be a sequence of Teichmüller curves. We
will show that for every subsequence {Vki }, there exists a further subsequence {Vki j } which
Benjamini-Schramm converges to H the theorem follows from this.

Let {Vki } be a subsequence of {Vk}. Passing to a further subsequence, which we continue
to denote by {Vki }, wemay assume that the corresponding SL2(R) orbits {Eki } lie inH1(α) ⊂
	M̂g,n for a fixed α.
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Now by [6, Thm. 2.3], see also [6, Cor. 2.5], there exists a subsequence {Eki j
} of {Eki },

and an affine invariant manifold (M, ν), so that μki j
→ ν where μki j

denotes the SL2(R)-
invariant measure on Eki j

.
By Proposition 3.5, we have Vki j Benjamini-Schramm converges to H; as we wished to

show. 
�
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