

Players continue to query the input oracle and try to compute the value of given Boolean function.

His queries miss the mark!

This function has lower bound $\,\Omega(n)\,$

... so it's unlikely that fake Akagi will win fast.

He's playing by the ideology of computational complexity

these lower bounds.

He needs to have a keen sense for the input bits.

He has to know which bits to query.

Get the real Akagi to play.

Next round.

 $x_1 = 0$

 $x_5 = 0$

 $x_2 = 0$

f(x) = 1 - I win.

He queried only zeros! How ...?

Yes, this feat of Akagi is truly remarkable.

A godly level of gameplay.

