Dror Bar-Natan: Classes: 2003-04: Math 157 - Analysis I:

Math 157 Analysis I - Solution of Term Exam 4

web version: http://www.math.toronto.edu/~drorbn/classes/0304/157AnalysisI/TE4/Solution.html
Problem and Solution 1. (Graded by Vicentiu Tipu) Compute the following definite and indefinite integrals in elementary terms:

1. $\int \frac{d u}{u(1-u)}=\int\left(\frac{1}{u}+\frac{1}{1-u}\right) d u=\log u-\log (1-u)=\log \frac{u}{1-u}$.
2. With $u=e^{x}$ we have $d u=e^{x} d x$ and hence $d x=d u / e^{x}=d u / u$. Thus

$$
\int \frac{d x}{1-e^{x}}=\int \frac{d u}{u(1-u)}=\log \frac{u}{1-u}=\log \frac{e^{x}}{1-e^{x}}
$$

3. With $u=x^{2}$ we have $d u=2 x d x$ and and when $x=0,1$, also $u=0,1$. Thus

$$
\int_{0}^{1} 2 x\left(1+x^{2}\right)^{7} d x=\int_{0}^{1}(1+u)^{7} d u=\left.\frac{(1+u)^{8}}{8}\right|_{0} ^{1}=\frac{2^{8}-1^{8}}{8}=\frac{255}{8}
$$

4. Using integration by parts with $f=x$ (thus $f^{\prime}=1$) and $g^{\prime}=e^{x}$ (thus say $g=e^{x}$ as well), we get

$$
\int_{0}^{1} x e^{x} d x=\left.x e^{x}\right|_{0} ^{1}-\int_{0}^{1} 1 e^{x} d x=\left.\left(x e^{x}-e^{x}\right)\right|_{0} ^{1}=1 e^{1}-e^{1}-\left(0 e^{0}-e^{0}\right)=e^{0}=1
$$

Problem 2. The "unit ball" B in \mathbb{R}^{3} is the result of revolving the domain $0 \leq y \leq \sqrt{1-x^{2}}$ (for $-1 \leq x \leq 1$) around the x axis.

1. State the general "Cosmopolitan Integral" formula for the volume of a body obtained by revolving a domain bounded under the graph of a function f around the x axis.
2. Compute the volume of B.
3. State the general "Cosmopolitan Integral" formula for the surface area of a body obtained by revolving a domain bounded under the graph of a function f around the x axis.
4. Compute the surface area of B.

Solution. (Graded by Cristian Ivanescu)

1. The volume V of a body obtained by revolving a domain bounded under the graph of a function f around the x axis, between the vertical lines $x=a$ and $x=b$, is $V=\pi \int_{a}^{b} f^{2}(x) d x$.
2. Taking $f(x)=\sqrt{1-x^{2}}$ in the above formula we get

$$
V=\pi \int_{-1}^{1}{\sqrt{1-x^{2}}}^{2} d x=\pi \int_{-1}^{1}\left(1-x^{2}\right) d x=\left.\pi\left(x-\frac{x^{3}}{3}\right)\right|_{-1} ^{1}=\frac{4}{3} \pi
$$

3. The area S of the surface obtained by revolving the graph of a function f around the x axis, between $x=a$ and $x=b$, is $S=2 \pi \int_{a}^{b} f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}}$.
4. Taking $f(x)=\sqrt{1-x^{2}}$ and thus $f^{\prime}=-\frac{x}{\sqrt{1-x^{2}}}$ in the above formula we get

$$
S=2 \pi \int_{-1}^{1} \sqrt{1-x^{2}} \sqrt{1+\frac{x^{2}}{1-x^{2}}} d x=2 \pi \int_{-1}^{1} d x=4 \pi
$$

Problem 3. Let α be a real number which is not a positive integer or 0 , let $f(x)=(1+x)^{\alpha}$ and let n be a positive integer.

1. Compute the Taylor polynomial $P_{n, 0, f}$ of degree n for f around 0 .
2. Write the corresponding remainder term using one of the formulas discussed in class.
3. Determine (with proof) if there is an interval around 0 on which $f(x)=\lim _{n \rightarrow \infty} P_{n, 0, f}(x)$.

Solution. (Graded by Julian C.-N. Hung)

1. $f^{\prime}=\alpha(1+x)^{\alpha-1}$, $f^{\prime \prime}=\alpha(\alpha-1)(1+x)^{\alpha-2}$, $f^{\prime \prime \prime}=\alpha(\alpha-1)(\alpha-2)(1+x)^{\alpha-3}$ and in general, $f^{(k)}=\alpha(\alpha-1) \cdots(\alpha-k+1)(1+x)^{\alpha-k}$. Thus the Taylor coefficients are $a_{k}=\frac{f^{(k)}(0)}{k!}=\frac{\alpha(\alpha-1) \cdots(\alpha-k+1)}{k!}$ and so

$$
P_{n, 0, f}(x)=\sum_{k=0}^{n} a_{k} x^{k}=\sum_{k=0}^{n} \frac{\alpha(\alpha-1) \cdots(\alpha-k+1) x^{k}}{k!} .
$$

2. Our first remainder formula says that there is some t between 0 and x so that (with $a=0$)

$$
\begin{gathered}
R_{n, 0, f}(x):=f(x)-P_{n, 0, f}(x)=\frac{f^{(n+1)}(t)}{(n+1)!}(x-a)^{n+1} \\
=\frac{\alpha(\alpha-1) \cdots(\alpha-n)(1+t)^{\alpha-n-1}}{(n+1)!} x^{n+1}=\frac{\alpha(\alpha-1) \cdots(\alpha-n)}{(n+1)!}(1+t)^{\alpha}\left(\frac{x}{1+t}\right)^{n+1} .
\end{gathered}
$$

3. The remainder formula above is a product of three factors. The first in itself is a product of $n+1$ factors of the form $\frac{\alpha+1-k}{k}$ for $k=1, \ldots, n+1$. If $k>|\alpha+1|$ then $\left|\frac{\alpha+1-k}{k}\right|<2$, so the first factor is bounded by a constant times 2^{n}. For any given x the second factor is bounded by $(1+|x|)^{\alpha}$ which is independent of n, and if $|x|<\frac{1}{4}$ then $|t|<\frac{1}{4}$ and so $\left|\frac{x}{1+t}\right|<\frac{1 / 4}{3 / 4}=\frac{1}{3}$ and so the third factor in the remainder formula is bounded by $1 / 3^{n+1}$. Multiplying the three bounds we find that for $|x|<\frac{1}{4}$ the remainder is bounded by a
constant times $(2 / 3)^{n}$, and this goes to 0 when n goes to ∞. So at least on the interval $\left(-\frac{1}{4}, \frac{1}{4}\right)$ the remainder goes to 0 and hence $f(x)=\lim _{n \rightarrow \infty} P_{n, 0, f}(x)$.
(Further analysis show that convergence occurs for all $x \in(-1,1)$, but this doesn't concern us here).

Problem 4. Let $a_{n, m}$ be a "sequence of sequences" (an assignment of a real number $a_{n, m}$ to every pair (n, m) of positive integers) and assume that l_{n} is a sequence so that for every n we have $\lim _{m \rightarrow \infty} a_{n, m}=l_{n}$. Further assume that $\lim _{n \rightarrow \infty} l_{n}=l$.

1. Show that for every positive integer n there is a positive integer m_{n} so that $\left|a_{n, m_{n}}-l_{n}\right|<\left|l_{n}-l\right|+1 / n$.
2. Show that $\lim _{n \rightarrow \infty} a_{n, m_{n}}=l$.
3. (5 points bonus, no partial credit) Is it always true that also $\lim _{n \rightarrow \infty} a_{n, n}=l$?

Solution. (Graded by Vicentiu Tipu)

1. For any fixed n we have that $\epsilon:=\left|l_{n}-l\right|+1 / n>0$ so by the convergence $\lim _{m \rightarrow \infty} a_{n, m}=$ l_{n} we can find an m for which $\left|a_{n, m}-l_{n}\right|<\epsilon$. Rename m to be m_{n} and you are done.
2. $\left|a_{n, m_{n}}-l\right| \leq\left|a_{n, m_{n}}-l_{n}\right|+\left|l_{n}-l\right|<2\left|l_{n}-l\right|+1 / n \underset{n \rightarrow \infty}{\longrightarrow} 0$.
3. Take $a_{n, m}$ to be the "identity matrix": $a_{n, m}=0$ if $n \neq m$ though $a_{n, n}=1$ for all n. But then for any fixed n the sequence $a_{n, m}$ (regarded with m varying) is eventually the constant 0 , so $l_{n}=\lim _{m \rightarrow \infty} a_{n, m}=0$ and so $l=\lim _{n \rightarrow \infty} l_{n}=0$. But $\lim _{n \rightarrow \infty} a_{n, n}=$ $\lim _{n \rightarrow \infty} 1=1$.

Problem 5.

1. Compute the first 5 partial sums of the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.
2. Prove that $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1$.

Solution. (Graded by Cristian Ivanescu)

1. $s_{1}=\frac{1}{2}, s_{2}=\frac{1}{2}+\frac{1}{6}=\frac{2}{3}, s_{3}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}=\frac{2}{3}+\frac{1}{12}=\frac{3}{4}, s_{4}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}=\frac{3}{4}+\frac{1}{20}=\frac{4}{5}$ and $s_{5}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}=\frac{4}{5}+\frac{1}{30}=\frac{5}{6}$.
2. Following this trend we guess that $s_{N}:=\sum_{n=1}^{N} \frac{1}{n(n+1)}=\frac{N}{N+1}$. This we prove by induction. There is no need to check low N cases - we've already done that. So all that remains is

$$
s_{N}=s_{N-1}+\frac{1}{N(N+1)}=\frac{N-1}{N}+\frac{1}{N(N+1)}=\frac{N}{N+1} .
$$

But now,

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=\lim _{N \rightarrow \infty} s_{N}=\lim _{N \rightarrow \infty} \frac{N}{N+1}=1
$$

Alternative Solution. Note that $\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$. Then use telescopic summation to find that

$$
s_{N}:=\sum_{n=1}^{N} \frac{1}{n(n+1)}=\sum_{n=1}^{N}\left(\frac{1}{n}-\frac{1}{n+1}\right)=1-\frac{1}{N+1} .
$$

Now continue as at the end of the previous solution.
The results. 79 students took the exam; the average grade was 62.99 , the median was 68 and the standard deviation was 23.32 . The average is thus noticeably below the averages for the first three term exams, but still higher than last year's average. I don't know if the same factors from last year applied this time as well; but for what it's worth, see last year's handout "What Went Wrong with Term Exam 4?".

An unrelated computation.

```
drorbn@coxeter:~/classes/157AnalysisI:1 math
Mathematica 4.1 for IBM AIX
Copyright 1988-2000 Wolfram Research, Inc.
    -- Motif graphics initialized --
In[1]:= D[ArcTan[x], {x, 10}]
```


