
Dror Bar-Natan: Classes: 2003-04: Math 157 - Analysis I:

Math 157 Analysis I — Solution of Term Exam 4

web version: http://www.math.toronto.edu/˜drorbn/classes/0304/157AnalysisI/TE4/Solution.html

Problem and Solution 1. (Graded by Vicentiu Tipu) Compute the following definite
and indefinite integrals in elementary terms:

1.

∫
du

u(1− u)
=

∫ (
1

u
+

1

1− u

)
du = log u− log(1− u) = log

u

1− u
.

2. With u = ex we have du = exdx and hence dx = du/ex = du/u. Thus

∫
dx

1− ex
=

∫
du

u(1− u)
= log

u

1− u
= log

ex

1− ex
.

3. With u = x2 we have du = 2xdx and and when x = 0, 1, also u = 0, 1. Thus

∫ 1

0

2x(1 + x2)7dx =

∫ 1

0

(1 + u)7du =
(1 + u)8

8

∣∣∣∣
1

0

=
28 − 18

8
=

255

8
.

4. Using integration by parts with f = x (thus f ′ = 1) and g′ = ex (thus say g = ex as
well), we get

∫ 1

0

xexdx = xex|10 −
∫ 1

0

1exdx = (xex − ex)|10 = 1e1 − e1 − (0e0 − e0) = e0 = 1.

Problem 2. The “unit ball” B in R3 is the result of revolving the domain 0 ≤ y ≤ √
1− x2

(for −1 ≤ x ≤ 1) around the x axis.

1. State the general “Cosmopolitan Integral” formula for the volume of a body obtained
by revolving a domain bounded under the graph of a function f around the x axis.

2. Compute the volume of B.

3. State the general “Cosmopolitan Integral” formula for the surface area of a body
obtained by revolving a domain bounded under the graph of a function f around the
x axis.

4. Compute the surface area of B.

Solution. (Graded by Cristian Ivanescu)

1. The volume V of a body obtained by revolving a domain bounded under the graph
of a function f around the x axis, between the vertical lines x = a and x = b, is

V = π

∫ b

a

f 2(x)dx.
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2. Taking f(x) =
√

1− x2 in the above formula we get

V = π

∫ 1

−1

√
1− x2

2
dx = π

∫ 1

−1

(1− x2)dx = π

(
x− x3

3

)∣∣∣∣
1

−1

=
4

3
π.

3. The area S of the surface obtained by revolving the graph of a function f around the

x axis, between x = a and x = b, is S = 2π

∫ b

a

f(x)
√

1 + (f ′(x))2.

4. Taking f(x) =
√

1− x2 and thus f ′ = − x√
1−x2 in the above formula we get

S = 2π

∫ 1

−1

√
1− x2

√
1 +

x2

1− x2
dx = 2π

∫ 1

−1

dx = 4π.

Problem 3. Let α be a real number which is not a positive integer or 0, let f(x) = (1+x)α

and let n be a positive integer.

1. Compute the Taylor polynomial Pn,0,f of degree n for f around 0.

2. Write the corresponding remainder term using one of the formulas discussed in class.

3. Determine (with proof) if there is an interval around 0 on which f(x) = lim
n→∞

Pn,0,f (x).

Solution. (Graded by Julian C.-N. Hung)

1. f ′ = α(1 + x)α−1, f ′′ = α(α − 1)(1 + x)α−2, f ′′′ = α(α − 1)(α − 2)(1 + x)α−3 and in
general, f (k) = α(α − 1) · · · (α − k + 1)(1 + x)α−k. Thus the Taylor coefficients are

ak = f (k)(0)
k!

= α(α−1)···(α−k+1)
k!

and so

Pn,0,f (x) =
n∑

k=0

akx
k =

n∑

k=0

α(α− 1) · · · (α− k + 1)xk

k!
.

2. Our first remainder formula says that there is some t between 0 and x so that (with
a = 0)

Rn,0,f (x) := f(x)− Pn,0,f (x) =
f (n+1)(t)

(n + 1)!
(x− a)n+1

=
α(α− 1) · · · (α− n)(1 + t)α−n−1

(n + 1)!
xn+1 =

α(α− 1) · · · (α− n)

(n + 1)!
(1 + t)α

(
x

1 + t

)n+1

.

3. The remainder formula above is a product of three factors. The first in itself is a product
of n+1 factors of the form α+1−k

k
for k = 1, . . . , n+1. If k > |α +1| then

∣∣α+1−k
k

∣∣ < 2,
so the first factor is bounded by a constant times 2n. For any given x the second factor
is bounded by (1 + |x|)α which is independent of n, and if |x| < 1

4
then |t| < 1

4
and so

| x
1+t
| < 1/4

3/4
= 1

3
and so the third factor in the remainder formula is bounded by 1/3n+1.

Multiplying the three bounds we find that for |x| < 1
4

the remainder is bounded by a
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constant times (2/3)n, and this goes to 0 when n goes to ∞. So at least on the interval
(−1

4
, 1

4
) the remainder goes to 0 and hence f(x) = lim

n→∞
Pn,0,f (x).

(Further analysis show that convergence occurs for all x ∈ (−1, 1), but this doesn’t
concern us here).

a1,1 a1,2 a1,3 . . . −→ l1
a2,1 a2,2 a2,3 . . . −→ l2
a3,1 a3,2 a3,3 . . . −→ l3
...

...
...

. . .
...

...
↓
l

Problem 4. Let an,m be a “sequence of sequences” (an
assignment of a real number an,m to every pair (n,m) of
positive integers) and assume that ln is a sequence so that
for every n we have limm→∞ an,m = ln. Further assume
that limn→∞ ln = l.

1. Show that for every positive integer n there is a positive integer mn

so that |an,mn − ln| < |ln − l|+ 1/n.

2. Show that lim
n→∞

an,mn = l.

3. (5 points bonus, no partial credit) Is it always true that also lim
n→∞

an,n = l?

Solution. (Graded by Vicentiu Tipu)

1. For any fixed n we have that ε := |ln−l|+1/n > 0 so by the convergence limm→∞ an,m =
ln we can find an m for which |an,m − ln| < ε. Rename m to be mn and you are done.

2. |an,mn − l| ≤ |an,mn − ln|+ |ln − l| < 2|ln − l|+ 1/n −→
n→∞

0.

3. Take an,m to be the “identity matrix”: an,m = 0 if n 6= m though an,n = 1 for all n.
But then for any fixed n the sequence an,m (regarded with m varying) is eventually the
constant 0, so ln = limm→∞ an,m = 0 and so l = limn→∞ ln = 0. But limn→∞ an,n =
limn→∞ 1 = 1.

Problem 5.

1. Compute the first 5 partial sums of the series
∞∑

n=1

1

n(n + 1)
.

2. Prove that
∞∑

n=1

1

n(n + 1)
= 1.

Solution. (Graded by Cristian Ivanescu)

1. s1 = 1
2
, s2 = 1

2
+ 1

6
= 2

3
, s3 = 1

2
+ 1

6
+ 1

12
= 2

3
+ 1

12
= 3

4
, s4 = 1

2
+ 1

6
+ 1

12
+ 1

20
= 3

4
+ 1

20
= 4

5

and s5 = 1
2

+ 1
6

+ 1
12

+ 1
20

+ 1
30

= 4
5

+ 1
30

= 5
6
.
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2. Following this trend we guess that sN :=
∑N

n=1
1

n(n+1)
= N

N+1
. This we prove by

induction. There is no need to check low N cases — we’ve already done that. So all
that remains is

sN = sN−1 +
1

N(N + 1)
=

N − 1

N
+

1

N(N + 1)
=

N

N + 1
.

But now,
∞∑

n=1

1

n(n + 1)
= lim

N→∞
sN = lim

N→∞
N

N + 1
= 1.

Alternative Solution. Note that 1
n(n+1)

= 1
n
− 1

n+1
. Then use telescopic summation to

find that

sN :=
N∑

n=1

1

n(n + 1)
=

N∑
n=1

(
1

n
− 1

n + 1

)
= 1− 1

N + 1
.

Now continue as at the end of the previous solution.

The results. 79 students took the exam; the average grade was 62.99, the median was
68 and the standard deviation was 23.32. The average is thus noticeably below the averages
for the first three term exams, but still higher than last year’s average. I don’t know if the
same factors from last year applied this time as well; but for what it’s worth, see last year’s
handout “What Went Wrong with Term Exam 4?”.

An unrelated computation.
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-- Motif graphics initialized --

In[1]:= D[ArcTan[x], {x, 10}]

9 7 5 3

-185794560 x 371589120 x 243855360 x 58060800 x 3628800 x

Out[1]= ------------- + ------------ - ------------ + ----------- - ---------

2 10 2 9 2 8 2 7 2 6

(1 + x ) (1 + x ) (1 + x ) (1 + x ) (1 + x )
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