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Problem 1. In a very condensed form, the definition of integration is as follows: For
f bounded on [a, b] and P : a = t0 < t1 < · · · < tn = b a partition of [a, b] set mi =
inf [ti−1,ti] f(x), Mi = sup[ti−1,ti]

f(x), L(f, P ) =
∑n

i=1 mi(ti−ti−1) and U(f, P ) =
∑n

i=1 Mi(ti−
ti−1). Then set L(f) = supP L(f, P ) and U(f) = infP U(f, P ). Finally, if U(f) = L(f) we

say that “f is integrable on [a, b]” and set
∫ b

a
f =

∫ b

a
f(x)dx = U(f) = L(f).

From this definition alone, without using anything proven in class about integration,
prove that the function f given below is integrable on [−1, 1] and compute its integral

∫ 1

−1
f :

f(x) =

{
0 x 6= 0

1 x = 0.

Solution. (Graded by Cristian Ivanescu) Let P : −1 = t0 < t1 < · · · < tn = 1 be an
arbitrary partition of [−1, 1]. Then for any i the infimum mi = inf [ti−1,ti] f(x) is 0 and so
L(f, P ) =

∑n
i=1 mi(ti− ti−1) = 0. Thus L(f) = supP L(f, P ) = 0. At the same time, for any

i the supremum Mi = sup[ti−1,ti]
f(x) is ≥ 0, and hence U(f, P ) =

∑n
i=1 Mi(ti − ti−1) ≥ 0

and so U(f) = infP U(f, P ) ≥ 0. Now let 0 < ε < 1 be given and let Pε be the partition
−1 = t0 < t1 = − ε

2
< ε

2
= t2 < 1 = t3. Then M1 = M3 = 0 while M2 = 1 and so

U(f, Pε) = 0(1 − ε
2
) + 1( ε

2
+ ε

2
) + 0(1 − ε

2
) = ε. Thus U(f) = infP U(f, P ) ≤ ε. But

this is true for any 0 < ε < 1 and we already know that U(f) ≥ 0. So it must be that
U(f) = 0. Thus U(f) = L(f) = 0 and hence f is integrable on [−1, 1] and its integral is∫ 1

−1
f = U(f) = L(f) = 0.

Problem 2. Prove that the function

g(x) :=

∫ x

0

dt

1 + t2
+

∫ 1/x

0

dt

1 + t2

is a constant function.
Solution. (Graded by Julian C.-N. Hung) Differentiate g using the first fundamental
theorem of calculus. The first summand yields 1

1+x2 . The second summand is the first
summand pre-composed with the function x 7→ 1/x. So by the chain rule, the derivative of
the second summand is 1

1+(1/x)2
(1/x)′ = − 1

1+(1/x)2
(1/x2) = − 1

1+x2 . g′ is the sum of these two

terms, g′ = 1
1+x2 − 1

1+x2 = 0. Hence g is a constant.

Problem 3. In class we have proven that a twice-differentiable function f satisfying the
equation f ′′ = −f is determined by f(0) and f ′(0). Use this fact and the known formulas
for the derivatives of cos x and sin x to derive a formula for cos(α + β) in terms of cos α,
cos β, sin α and sin β.
Solution. (Graded by Julian C.-N. Hung) Let β be a constant and consider the functions
f1(α) = cos(α + β) and f2(α) = cos α cos β − sin α sin β. Then f ′′1 = (cos(α + β))′′ =
(− sin(α + β))′ = − cos(α + β) = −f1 and f ′′2 = (cos α cos β − sin α sin β)′′ = (− sin α cos β −

1



cos α sin β)′ = − cos α cos β + sin α sin β = −f2 so both f1 and f2 satisfy f ′′ = −f . We also
have f1(0) = cos β = cos 0 cos β − sin 0 sin β = f2(0) and f ′1(0) = − sin β = (− sin 0) cos β −
cos 0 sin β = f ′2(0). So by what we have proven in class f1 = f2 or cos(α + β) = cos α cos β−
sin α sin β.

Problem 4. The function F is defined by F (x) := xx.

1. Compute F ′(x) for all x > 0.

2. Explain why F (x) has a differentiable inverse for x > 1
e
.

3. Let S be the inverse function of F (with the domain of F considered to be (1
e
,∞)).

Compute S ′(x) and simplify your result as much as you can. Your end result may still
contain S(x) in it, but not S ′, F or F ′.

Solution. (Graded by Vicentiu Tipu)

1. F ′(x) =
(
ex log x

)′
= ex log x

(
log x + x

1

x

)
= xx(1 + log x) = F (x)(1 + log x).

2. For x > 1
e

we have that log x > log 1
e

= −1 and hence 1 + log x > 0 and F ′(x) > 0.
So F is increasing on (1

e
,∞). It is also differentiable on that interval, so by a theorem

proven in class, it has a differentiable inverse.

3. S ′(x) =
1

F ′(S(x))
=

1

F (S(x))(1 + log S(x))
=

1

x(1 + log S(x))
.

The results. 82 students took the exam; the average grade was 69.3, the median was 78
and the standard deviation was 26.76.
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