Dror Bar-Natan: Classes: 2003-04: Math 157 - Analysis I:

Math 157 Analysis I - Solution of Term Exam 3

web version: http://www.math.toronto.edu/~drorbn/classes/0304/157AnalysisI/TE3/Solution.html
Problem 1. In a very condensed form, the definition of integration is as follows: For f bounded on $[a, b]$ and $P: a=t_{0}<t_{1}<\cdots<t_{n}=b$ a partition of $[a, b]$ set $m_{i}=$ $\inf _{\left[t_{i-1}, t_{i}\right]} f(x), M_{i}=\sup _{\left[t_{i-1}, t_{i}\right]} f(x), L(f, P)=\sum_{i=1}^{n} m_{i}\left(t_{i}-t_{i-1}\right)$ and $U(f, P)=\sum_{i=1}^{n} M_{i}\left(t_{i}-\right.$ $\left.t_{i-1}\right)$. Then set $L(f)=\sup _{P} L(f, P)$ and $U(f)=\inf _{P} U(f, P)$. Finally, if $U(f)=L(f)$ we say that " f is integrable on $[a, b]$ " and set $\int_{a}^{b} f=\int_{a}^{b} f(x) d x=U(f)=L(f)$.

From this definition alone, without using anything proven in class about integration, prove that the function f given below is integrable on $[-1,1]$ and compute its integral $\int_{-1}^{1} f$:

$$
f(x)= \begin{cases}0 & x \neq 0 \\ 1 & x=0\end{cases}
$$

Solution. (Graded by Cristian Ivanescu) Let P : $-1=t_{0}<t_{1}<\cdots<t_{n}=1$ be an arbitrary partition of $[-1,1]$. Then for any i the infimum $m_{i}=\inf _{\left[t_{i-1}, t_{i}\right]} f(x)$ is 0 and so $L(f, P)=\sum_{i=1}^{n} m_{i}\left(t_{i}-t_{i-1}\right)=0$. Thus $L(f)=\sup _{P} L(f, P)=0$. At the same time, for any i the supremum $M_{i}=\sup _{\left[t_{i-1}, t_{i}\right]} f(x)$ is ≥ 0, and hence $U(f, P)=\sum_{i=1}^{n} M_{i}\left(t_{i}-t_{i-1}\right) \geq 0$ and so $U(f)=\inf _{P} U(f, P) \geq 0$. Now let $0<\epsilon<1$ be given and let P_{ϵ} be the partition $-1=t_{0}<t_{1}=-\frac{\epsilon}{2}<\frac{\epsilon}{2}=t_{2}<1=t_{3}$. Then $M_{1}=M_{3}=0$ while $M_{2}=1$ and so $U\left(f, P_{\epsilon}\right)=0\left(1-\frac{\epsilon}{2}\right)+1\left(\frac{\epsilon}{2}+\frac{\epsilon}{2}\right)+0\left(1-\frac{\epsilon}{2}\right)=\epsilon$. Thus $U(f)=\inf _{P} U(f, P) \leq \epsilon$. But this is true for any $0<\epsilon<1$ and we already know that $U(f) \geq 0$. So it must be that $U(f)=0$. Thus $U(f)=L(f)=0$ and hence f is integrable on $[-1,1]$ and its integral is $\int_{-1}^{1} f=U(f)=L(f)=0$.
Problem 2. Prove that the function

$$
g(x):=\int_{0}^{x} \frac{d t}{1+t^{2}}+\int_{0}^{1 / x} \frac{d t}{1+t^{2}}
$$

is a constant function.
Solution. (Graded by Julian C.-N. Hung) Differentiate g using the first fundamental theorem of calculus. The first summand yields $\frac{1}{1+x^{2}}$. The second summand is the first summand pre-composed with the function $x \mapsto 1 / x$. So by the chain rule, the derivative of the second summand is $\frac{1}{1+(1 / x)^{2}}(1 / x)^{\prime}=-\frac{1}{1+(1 / x)^{2}}\left(1 / x^{2}\right)=-\frac{1}{1+x^{2}} \cdot g^{\prime}$ is the sum of these two terms, $g^{\prime}=\frac{1}{1+x^{2}}-\frac{1}{1+x^{2}}=0$. Hence g is a constant.
Problem 3. In class we have proven that a twice-differentiable function f satisfying the equation $f^{\prime \prime}=-f$ is determined by $f(0)$ and $f^{\prime}(0)$. Use this fact and the known formulas for the derivatives of $\cos x$ and $\sin x$ to derive a formula for $\cos (\alpha+\beta)$ in terms of $\cos \alpha$, $\cos \beta, \sin \alpha$ and $\sin \beta$.
Solution. (Graded by Julian C.-N. Hung) Let β be a constant and consider the functions $f_{1}(\alpha)=\cos (\alpha+\beta)$ and $f_{2}(\alpha)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$. Then $f_{1}^{\prime \prime}=(\cos (\alpha+\beta))^{\prime \prime}=$ $(-\sin (\alpha+\beta))^{\prime}=-\cos (\alpha+\beta)=-f_{1}$ and $f_{2}^{\prime \prime}=(\cos \alpha \cos \beta-\sin \alpha \sin \beta)^{\prime \prime}=(-\sin \alpha \cos \beta-$
$\cos \alpha \sin \beta)^{\prime}=-\cos \alpha \cos \beta+\sin \alpha \sin \beta=-f_{2}$ so both f_{1} and f_{2} satisfy $f^{\prime \prime}=-f$. We also have $f_{1}(0)=\cos \beta=\cos 0 \cos \beta-\sin 0 \sin \beta=f_{2}(0)$ and $f_{1}^{\prime}(0)=-\sin \beta=(-\sin 0) \cos \beta-$ $\cos 0 \sin \beta=f_{2}^{\prime}(0)$. So by what we have proven in class $f_{1}=f_{2}$ or $\cos (\alpha+\beta)=\cos \alpha \cos \beta-$ $\sin \alpha \sin \beta$.
Problem 4. The function F is defined by $F(x):=x^{x}$.

1. Compute $F^{\prime}(x)$ for all $x>0$.
2. Explain why $F(x)$ has a differentiable inverse for $x>\frac{1}{e}$.
3. Let S be the inverse function of F (with the domain of F considered to be $\left(\frac{1}{e}, \infty\right)$). Compute $S^{\prime}(x)$ and simplify your result as much as you can. Your end result may still contain $S(x)$ in it, but not S^{\prime}, F or F^{\prime}.

Solution. (Graded by Vicentiu Tipu)

1. $F^{\prime}(x)=\left(e^{x \log x}\right)^{\prime}=e^{x \log x}\left(\log x+x \frac{1}{x}\right)=x^{x}(1+\log x)=F(x)(1+\log x)$.
2. For $x>\frac{1}{e}$ we have that $\log x>\log \frac{1}{e}=-1$ and hence $1+\log x>0$ and $F^{\prime}(x)>0$. So F is increasing on $\left(\frac{1}{e}, \infty\right)$. It is also differentiable on that interval, so by a theorem proven in class, it has a differentiable inverse.
3. $S^{\prime}(x)=\frac{1}{F^{\prime}(S(x))}=\frac{1}{F(S(x))(1+\log S(x))}=\frac{1}{x(1+\log S(x))}$.

The results. 82 students took the exam; the average grade was 69.3 , the median was 78 and the standard deviation was 26.76 .

