Dror Bar-Natan: Classes: 2003-04: Math 157 - Analysis I:

The 13 Postulates

Everything you ever wanted to know about the real numbers is summarized as follows. There is a set \mathbb{R} "of real numbers" with two binary operations defined on it, + and . ("addition" and "multiplication"), two different distinct elements 0 and 1 and a subset \mathbb{P} "of positive numbers" so that the following 13 postulates hold:

P1 Addition is associative: $\forall a, b, c \quad a+(b+c)=(a+b)+c$ (" \forall " means "for every").
P2 The number 0 is an additive identity: $\forall a \quad a+0=0+a=a$.
P3 Additive inverses exist: $\forall a \exists(-a)$ s.t. $a+(-a)=(-a)+a=0$ (" \exists " means "there is" or "there exists").

P4 Addition is commutative: $\forall a, b \quad a+b=b+a$.
P5 Multiplication is associative: $\forall a, b, c \quad a \cdot(b \cdot c)=(a \cdot b) \cdot c$.
P6 The number 1 is a multiplicative identity: $\forall a \quad a \cdot 1=1 \cdot a=a$.
P7 Multiplicative inverses exist: $\forall a \neq 0 \exists a^{-1}$ s.t. $a \cdot a^{-1}=a^{-1} \cdot a=1$.
P8 Multiplication is commutative: $\forall a, b \quad a \cdot b=b \cdot a$.
P9 The distributive law: $\forall a, b, c \quad a \cdot(b+c)=a \cdot b+a \cdot c$.
P10 The trichotomy for \mathbb{P} : for every a, exactly one of the following holds: $a=0, a \in \mathbb{P}$ or $(-a) \in \mathbb{P}$.

P11 Closure under addition: if a and b are in P, then so is $a+b$.
P12 Closure under multiplication: if a and b are in P, then so is $a \cdot b$.
P13 The thirteenth postulate is the most subtle and interesting of all. It will await a few weeks.

Here are a few corollaries and extra points:

1. Sums such as $a_{1}+a_{2}+a_{3}+\cdots+a_{n}$ are well defined.
2. The additive identity is unique. (Also multiplicative).
3. Additive inverses are unique. (Also multiplicative).
4. Subtraction can be defined.
5. $a \cdot b=a \cdot c$ iff (if and only if) $a=0$ or $b=c$.
6. $a \cdot b=0$ iff $a=0$ or $b=0$.
7. $x^{2}-3 x+2=0$ iff $x=1$ or $x=2$.
8. $a-b=b-a$ iff $a=b$.
9. A "well behaved" order relation can be defined (i.e., the booloean operations $<, \leq,>$ and $<$ can be defined and they have some expected properties).
10. The "absolute value" function $a \mapsto|a|$ can be defined and for all numbers a and b we have

$$
|a+b| \leq|a|+|b| .
$$

