Dror Bar-Natan: Classes: 2003-04: Math 157 - Analysis I:

Integration

web version:

http://www.math.toronto.edu/~drorbn/classes/0304/157 AnalysisI/Integration/Integration.html and the statement of the statem

The setting: f bounded on [a, b], $P : a = t_0 < t_1 < \cdots < t_n = b$ a partition of [a, b], $m_i = \inf_{[t_{i-1}, t_i]} f(x)$, $M_i = \sup_{[t_{i-1}, t_i]} f(x)$, $L(f, P) = \sum_{i=1}^n m_i(t_i - t_{i-1})$, $U(f, P) = \sum_{i=1}^n M_i(t_i - t_{i-1})$, $L(f) = \sup_P L(f, P)$, $U(f) = \inf_P U(f, P)$. Finally, if U(f) = L(f) we say that "f is integrable on [a, b]" and set $\int_a^b f = \int_a^b f(x) dx = U(f) = L(f)$.

Theorem 1. For any two partitions $P_{1,2}$, $L(f, P_1) \leq U(f, P_2)$.

Theorem 2. f is integrable iff for every $\epsilon > 0$ there is a partition P such that $U(f, P) - L(f, P) < \epsilon$.

Theorem 3. If f is continuous on [a, b] then f is integrable on [a, b].

Theorem 4. If a < c < b then $\int_a^b f = \int_a^c f + \int_c^b f$ (in particular, the rhs makes sense iff the lhs does).

Theorem 5. If f and g are integrable on [a, b] then so is f + g, and $\int_a^b f + g = \int_a^b f + \int_a^b g$. **Theorem 6.** If f is integrable on [a, b] and c is a constant, then cf is integrable on [a, b]and $\int_a^b cf = c \int_a^b f$.

Theorem 7^a. If $f \leq g$ on [a, b] and both are integrable on [a, b], then $\int_a^b f \leq \int_a^b g$. **Theorem 7.** If $m \leq f(x) \leq M$ on [a, b] and f is integrable on [a, b] then $m(b - a) \leq \int_a^b f \leq M(b - a)$.

Theorem 8. If f is integrable on [a, b] and F is defined on [a, b] by $F(x) = \int_a^x f$, then F is continuous on [a, b].

This class' fundamental existential dilemma / schizophrenia:

- We want to develop a mathematical world view in which *everything* is intuitive.
- At the same time, we want to *prove* everything with no appeal whatsoever to the bad word "intuition".

White unicorns roam the earth.