Dror Bar-Natan: Classes: 2003-04: Math 157 - Analysis I:

Homework Assignment 2

Assigned Tuesday September 16; due Friday September 26, 2PM, at SS 1071

Required reading. All of Spivak Chapter 1.
To be handed in. From Spivak Chapter 1: 11 odd parts, 12 odd parts, 14, and also

1. Show that if $a>0$, then $a x^{2}+b x+c \geq 0$ for all values of x if and only if $b^{2}-4 a c \leq 0$.
2. Prove the Cauchy-Schwartz inequality

$$
\left(a_{1} b_{1}+a_{2} b_{2}+\cdots a_{n} b_{n}\right)^{2} \leq\left(a_{1}^{2}+\cdots+a_{n}^{2}\right)\left(b_{1}^{2}+\cdots+b_{n}^{2}\right)
$$

in two different ways:
(a) Use $2 x y \leq x^{2}+y^{2}$ (why is this true?), with

$$
x=\frac{\left|a_{i}\right|}{\sqrt{a_{1}^{2}+\cdots+a_{n}^{2}}} \quad y=\frac{\left|b_{i}\right|}{\sqrt{b_{1}^{2}+\cdots+b_{n}^{2}}}
$$

(b) Consider the expression

$$
\left(a_{1} x+b_{1}\right)^{2}+\left(a_{2} x+b_{2}\right)^{2}+\cdots+\left(a_{n} x+b_{n}\right)^{2},
$$

collect terms, and apply the result of Problem 1.

Recommended for extra practice. Spivak Chapter 1: 7, 15, 18, 20, 21, 22, 23.
Just for fun. Seen on the web, source unknown (though see http://www.mrc-cbu.cam.ac.uk/ ${ }^{\text {matt.davis/Cmabrigde/): }}$

Accdronig to a rscheearch at an Elingsh uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, the olny iprmoatnt tihng is taht frist and lsat ltteer is at the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae we do not raed ervey lteter by it slef but the wrod as a wlohe.

