Roots and coefficients of polynomials over finite fields^{\ddagger}

Swastik Kopparty^a, Qiang Wang^{b,*}

^aDepartment of Mathematics & Department of Computer Science, Rutgers University. ^bSchool of Mathematics and Statistics, Carleton University, Ottawa, ON K1S 5B6, Canada

Abstract

In this note, we give a short proof of a result of Muratović-Ribić and Wang on the relation between the the coefficients of a polynomial over a finite field \mathbb{F}_q and the number of fixed points of the mapping on \mathbb{F}_q induced by that polynomial.

Keywords: finite fields, polynomials, coefficients MSC: 11T06

Our main theorem relates the roots of a univariate polynomial over \mathbb{F}_q and zero-nonzero pattern of its coefficients. We give a short proof of this theorem using an idea from [1] (see Lemma 3.10 there, which talks about the zero-nonzero patterns of the coefficients of subspace polynomials). The main theorem then easily implies Theorem 1 of [2].

Theorem 1. Let $P(X) \in \mathbb{F}_q[X]$ be a nonzero polynomial with $\deg(P) < q - 1$. Suppose $P(X) = \sum_{i=0}^{q-2} b_i X^i$. Let m be the number of $x \in \mathbb{F}_q^*$ with $P(x) \neq 0$. Then there does not exist any $k \in \{0, 1, \ldots, q-1-m\}$ where all the m coefficients $b_k, b_{k+1}, \ldots, b_{k+m-1}$ are zero.

Proof. Suppose that for some $k \in \{0, 1, \dots, q - 1 - m\}$ we have

$$b_k = b_{k+1} = \ldots = b_{k+m-1} = 0.$$

Consider the polynomial

$$Q(X) = X^{q-1-(m+k)} \cdot P(X) \mod (X^{q-1}-1)$$

Observe that the number of roots of Q(X) in \mathbb{F}_q^* equals the number of roots of P(X) in \mathbb{F}_q^* , which equals q - 1 - m.

 $^{^{\}diamond}$ Swastik Kopparty's research is partially supported by a Sloan Fellowship and NSF CCF-1253886. Qiang Wang's research is partially supported by NSERC of Canada. We would like to thank RICAM, in particular, Arne Winterhof and Annette Weihs, for the warm hospitality and help.

^{*}Corresponding author.

Email addresses: swastik.kopparty@rutgers.edu (Swastik Kopparty), wang@math.carleton.ca (Qiang Wang)

On the other hand, observe that the coefficient vector of Q is obtained by a cyclic rotation of the coefficient vector of P. In fact, this cyclic rotation moves the interval of zero coefficients of P to the highest degree monomials: $X^{q-1-m}, X^{q-m}, \ldots, X^{q-1}$. Therefore Q(X) is a nonzero polynomial of degree at most q - 2 - m.

But Q(X) has exactly q-1-m roots in \mathbb{F}_q^* . This is a contradiction, and the theorem follows.

Corollary 1 ([2]). Let $F(X) = \sum_{i=0}^{q-1} a_i X^i$ be a polynomial over \mathbb{F}_q of degree $\leq q-1$. Let $T = \{x \in \mathbb{F}_q^* \mid F(x) \neq x\}$ be the set of nonzero moved elements. Suppose |T| = m. Then for every $k, 1 \le k \le q - 2 - m$, at least one of the m consecutive coefficients $a_{k+1}, a_{k+2}, \ldots, a_{k+m}$ is nonzero.

Moreover, if F(0) = 0 then it is also true for k = 0 and k = q - 1 - m.

Proof. If $F(X) = X \mod (X^{q-1} - 1)$, then the result is trivial, and so we assume that this is not the case.

Let $P(X) = (F(X) - X) \mod (X^{q-1} - 1)$ (thus P(X) is a nonzero polynomial of degree q = q - 1). Note that for $x \in \mathbb{F}_q^*$, we have $P(x) \neq 0$ if and only if $F(x) \neq x$. Thus $T = \{x \in \mathbb{F}_q^* \mid P(x) \neq 0\}$. If we write $P(X) = \sum_{i=0}^{q-2} b_i X^i$, then we have $b_0 = a_{q-1} + a_0, b_1 = a_1 - 1$,

and $b_i = a_i$ for each $i \in \{2, 3, ..., q - 2\}$.

By Theorem 1, for every k with $1 \le k \le q - 1 - m$, we have that one of the coefficients $b_k, b_{k+1}, \ldots, b_{k+m-1}$ is nonzero. This implies that for every $k, 1 \leq k$ $k \leq q-2-m$, at least one of the *m* consecutive coefficients $a_{k+1}, a_{k+2}, \ldots, a_{k+m}$ is nonzero.

Moreover, If F(0) = 0 then F(X) = XF'(X) where $F'(X) = \sum_{i=1}^{q-1} a_i X^{i-1}$ is a nonzero polynomial of degree at most q-2. Let P'(X) = F'(X) - 1. Then the number of nonzero $X \in \mathbb{F}_q^*$ such that $P'(X) \neq 0$ is equal to m = |T|. By Theorem 1, for every $k \in \{1, \ldots, q-m\}$, one of the *m* coefficients a_k, \ldots, a_{k+m-1} is nonzero. In particular, at least one of m coefficients a_1, \ldots, a_m is nonzero, as well as one of m coefficients $a_{q-m}, a_{q-m+1}, \ldots, a_{q-1}$.

We remark that Corollary 1 is stated in terms of the number of nonzero moved elements, which is equivalent to Theorem 1 in [2] that was first stated in terms of number of moved elements.

We now point out a variation of the argument of Theorem 1 which shows that the zero-nonzero pattern of the coefficients of splitting polynomials is sensitive to the presence of multiplicative subgroups in \mathbb{F}_q^* . This is analogous to Lemma 3.10 of [1], which shows that the zero-nonzero pattern of the coefficients of subspace polynomials is sensitive to the presence of subfields of \mathbb{F}_{p^n} .

Theorem 1 states that polynomials with q-1-m roots in \mathbb{F}_q^* cannot have mconsecutive 0 coefficients. Theorem 2 states that a polynomial of degree q-1-mwith q-1-m roots in \mathbb{F}_q^* cannot have m-1 consecutive 0 coefficients unless the set of roots has a special property (it should contain the complement of some coset of a multiplicative subgroup).

Theorem 2. Let S be a subset of \mathbb{F}_{q}^{*} with size q - 1 - m with $m \geq 2$ and

$$P(X) = \prod_{a \in S} (X - a) = \sum_{i=0}^{q-1-m} b_i X^i.$$

Then P(X) has an interval of at least m-1 consecutive zero coefficients (i.e., exists $1 \leq k \leq q-2m$ such that $b_k = \cdots = b_{k+m-2} = 0$) if and only if $\mathbb{F}_q^* \setminus S$ is contained in γH , for some $\gamma \in \mathbb{F}_q^*$ and some proper multiplicative subgroup H of \mathbb{F}_q^* .

Proof. Suppose there exists an interval of m-1 successive zero coefficients $b_k = \cdots = b_{k+m-2} = 0$. Define $Q(X) = X^{q-k-m} \cdot P(X) \mod (X^{q-1}-1)$. Using our hypothesis, it is easy to see that Q(X) is a nonzero polynomial of degree at most q-1-m.

Observe that $\{x \in \mathbb{F}_q^* \mid Q(x) = 0\} = \{x \in \mathbb{F}_q^* \mid P(x) = 0\} = S$, which has size q - 1 - m. Thus the degree of Q(X) must exactly equal q - 1 - m, and so $Q(X) = \alpha \cdot \prod_{a \in S} (X - a) = \alpha \cdot P(X)$ for some $\alpha \in \mathbb{F}_q^*$.

This implies that $\alpha \cdot P(X) = Q(X)$. Going back to the definitions, this means that $P(X) \cdot (X^{q-k-m} - \alpha) = 0 \mod (X^{q-1} - 1)$.

We know that P(X) vanishes only on the set S; thus every element of $\mathbb{F}_q^* \setminus S$ is a root of $(X^{q-k-m} - \alpha)$. Let $\gamma \in \mathbb{F}_q^* \setminus S$. Let H equal the subgroup $\{x \in \mathbb{F}_q^* \mid x^{q-k-m} = 1\}$, and note that it is a proper subset of \mathbb{F}_q^* (since q-k-m < q-1). Then $\mathbb{F}_q^* \setminus S$ is contained in γH , as required.

For the reverse direction, suppose |H| = d. Then $d \mid (q-1)$ and $\gamma H = \{x \in \mathbb{F}_q^* \mid x^d = \gamma^d\}$.

We first consider the case $S = \mathbb{F}_q^* \setminus \gamma H$. Then we have $\prod_{a \in S} (X - a) = \frac{X^{q-1}-1}{X^d - \gamma^d}$, which is of the form $\sum_{j=1}^{(q-1)/d} b_j X^{\cdot (q-1)-jd}$. This proves the result for $S = \mathbb{F}_q^* \setminus \gamma H$.

For general $S \supseteq \mathbb{F}_q^* \setminus \gamma H$, write $S = (\mathbb{F}_q^* \setminus \gamma H) \sqcup T$. In this case, d = m + |T|. Then

$$\prod_{a \in S} (X - a) = \prod_{a \in \mathbb{F}_q^* \setminus S} (X - a) \cdot \prod_{a \in T} (X - a)$$
$$= \left(\sum_{j=1}^{(q-1)/d} b_j X^{(q-1)-jd} \right) \cdot U(X)$$

where U(X) is a polynomial of degree |T|. This implies the result for general $S \supseteq \mathbb{F}_q^* \setminus \gamma H$.

We note that the nonzero coefficients of P(x) satisfying Theorem 2 must meet the condition $b_{i+q-k-m \pmod{q-1}} = \alpha b_i$ for some $\alpha \in \mathbb{F}_q^*$.

¹Note that by Theorem 1, P(X) has an interval of at least m-1 consecutive zero coefficients if and only if it has an interval of exactly m-1 consecutive zero coefficients.

References

- E. Ben-Sasson and S. Kopparty, Affine dispersers from subspace polynomials, SIAM J. Comput. 41 (2012), no. 4, 880-914.
- [2] A. Muratović-Ribić and Q. Wang, On coefficients of polynomials over finite fields, Finite Fields Appl. 17 (2011), no. 6, 575-599.