Roots and coefficients of polynomials over finite fields™
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Abstract

In this note, we give a short proof of a result of Muratovi¢-Ribi¢ and Wang on
the relation between the the coeflicients of a polynomial over a finite field F, and
the number of fixed points of the mapping on F, induced by that polynomial.
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Our main theorem relates the roots of a univariate polynomial over F, and
zero-nonzero pattern of its coefficients. We give a short proof of this theorem
using an idea from [1] (see Lemma 3.10 there, which talks about the zero-nonzero
patterns of the coefficients of subspace polynomials). The main theorem then
easily implies Theorem 1 of [2].

Theorem 1. Let P(X) € F,[X] be a nonzero polynomial with deg(P) < ¢ — 1.
Suppose P(X) = 23:02 biX"'. Let m be the number of x € F} with P(x) # 0.

Then there does not exist any k € {0,1,...,g—1—m} where all the m coefficients
bk, bkt1, - -+, bktm—1 are zero.

Proof. Suppose that for some k € {0,1,...,¢g — 1 —m} we have
b =bkt1=...=bgyrm-1=0.
Consider the polynomial
Q(X) = X1 1=(m+k) . p(X) mod (X97! —1),

Observe that the number of roots of Q(X) in I}, equals the number of roots
of P(X) in Fy, which equals ¢ — 1 —m.
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On the other hand, observe that the coefficient vector of @) is obtained by
a cyclic rotation of the coefficient vector of P. In fact, this cyclic rotation
moves the interval of zero coeflicients of P to the highest degree monomials:
Xa—l=m_xa=m_ X971 Therefore Q(X) is a nonzero polynomial of degree
at most ¢ —2 — m.

But Q(X) has exactly ¢ — 1 — m roots in Fy. This is a contradiction, and
the theorem follows. O

Corollary 1 ([2]). Let F(X) = Zf:_é a; X* be a polynomial over F, of degree
<q—1. Let T={zx € F; | F(z) # x} be the set of nonzero moved elements.
Suppose | T |=m. Then for every k, 1 <k < q—2—m, at least one of the m
consecutive coefficients ax41, @k+2, . .., Ggrm 1S NONZETO.

Moreover, if F'(0) = 0 then it is also true for k=0 and k =q¢—1—m.

Proof. If F(X) = X mod (X! — 1), then the result is trivial, and so we
assume that this is not the case.

Let P(X) = (F(X)—X) mod (X971 —1) (thus P(X) is a nonzero polyno-
mial of degree < ¢ —1). Note that for = € F};, we have P(x) # 0 if and only if
F(z) #x. Thus T' = {x € F} | P(x) # 0}.

If we write P(X) = Zg;g b; X?, then we have by = aq—1 +ag, b = a1 — 1,
and b; = a; for each i € {2,3,...,q — 2}.

By Theorem 1, for every k with 1 < k < g — 1 —m, we have that one of the

coefficients by, bx11, ..., bk+m—1 is nonzero. This implies that for every k, 1 <
k < g—2—m, at least one of the m consecutive coefficients axy1, ak12,- .., CGktm
is nonzero.

Moreover, If F(0) =0 then F(X) = XF'(X) where F/(X) = Zf;ll a; X1
is a nonzero polynomial of degree at most ¢ —2. Let P'(X) = F'(X) — 1. Then
the number of nonzero X € F; such that P'(X) # 0 is equal to m = [T|. By

Theorem 1, for every k € {1,...,g—m}, one of the m coefficients ag, . . . , Ggym—1
is nonzero. In particular, at least one of m coefficients a1, ..., a,, is nonzero, as
well as one of m coefficients ag—m, Gg—m+1,---,aq-1.

O

We remark that Corollary 1 is stated in terms of the number of nonzero
moved elements, which is equivalent to Theorem 1 in [2] that was first stated in
terms of number of moved elements.

We now point out a variation of the argument of Theorem 1 which shows that
the zero-nonzero pattern of the coefficients of splitting polynomials is sensitive
to the presence of multiplicative subgroups in . This is analogous to Lemma
3.10 of [1], which shows that the zero-nonzero pattern of the coefficients of
subspace polynomials is sensitive to the presence of subfields of Fyn.

Theorem 1 states that polynomials with ¢ —1—m roots in Fj cannot have m
consecutive 0 coefficients. Theorem 2 states that a polynomial of degree g—1—m
with ¢ —1—m roots in Fy cannot have m —1 consecutive 0 coefficients unless the
set of roots has a special property (it should contain the complement of some
coset of a multiplicative subgroup).



Theorem 2. Let S be a subset of ¥, with size ¢ — 1 —m with m > 2 and

qg—1—-m

PX) =[x -a)= > bX"
1=0

a€sS

Then P(X) has an interval of at least m — 1 consecutive zero coefficients
(i.e., exists 1 < k < q — 2m such that by = -+ = bgym—2o = 0) if and only
if B3\ S is contained in yH, for some v € F; and some proper multiplicative
subgroup H of .

Proof. Suppose there exists an interval of m — 1 successive zero coefficients
by = -+ = bgym_o = 0. Define Q(X) = X% . P(X) mod (X?! —1).
Using our hypothesis, it is easy to see that Q(X) is a nonzero polynomial of
degree at most ¢ — 1 — m.

Observe that {z € F; | Q(z) = 0} = {z € F; | P(x) = 0} = S, which has
size ¢ — 1 — m. Thus the degree of Q(X) must exactly equal ¢ — 1 —m, and so
Q(X) =a [[,es(X —a) = a- P(X) for some a € F}.

This implies that « - P(X) = Q(X). Going back to the definitions, this
means that P(X)- (X7 k~™ —q) =0 mod (X771 —1).

We know that P(X) vanishes only on the set S; thus every element of F} \ S
is a root of (X77F~™ —a). Let v € F; \ S. Let H equal the subgroup {z € F} |
x97%F=m = 1} and note that it is a proper subset of Fy (since g—k—m < ¢—1).
Then F} \ S is contained in vH, as required.

For the reverse direction, suppose |H| =d. Then d | (¢ —1) and yH = {z €
Fy | rd =y}

We first consider the case S = F; \ yH. Then we have [[,cq(X —a) =

%j;l, which is of the form Zg.q:_ll)/d b; X (@=D=Jd_ This proves the result for
S =TF:\7H.
For general S D F; \vH, write S = (F; \vH)UT. In this case, d = m+ | T'|.

Then

(g-1)/d ‘
= > bXlVT ) UX),
Jj=1

where U(X) is a polynomial of degree |T'|. This implies the result for general

S DF:\ vH. 0

We note that the nonzero coefficients of P(x) satisfying Theorem 2 must
meet the condition b; 4 r—m (mod q—1) = ab; for some o € F.

I'Note that by Theorem 1, P(X) has an interval of at least m—1 consecutive zero coefficients
if and only if it has an interval of exactly m — 1 consecutive zero coefficients.
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