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Abstract

In this note, we give a short proof of a result of Muratović-Ribić and Wang on
the relation between the the coefficients of a polynomial over a finite field Fq and
the number of fixed points of the mapping on Fq induced by that polynomial.

Keywords: finite fields, polynomials, coefficients
MSC: 11T06

Our main theorem relates the roots of a univariate polynomial over Fq and
zero-nonzero pattern of its coefficients. We give a short proof of this theorem
using an idea from [1] (see Lemma 3.10 there, which talks about the zero-nonzero
patterns of the coefficients of subspace polynomials). The main theorem then
easily implies Theorem 1 of [2].

Theorem 1. Let P (X) ∈ Fq[X] be a nonzero polynomial with deg(P ) < q − 1.

Suppose P (X) =
∑q−2
i=0 biX

i. Let m be the number of x ∈ F∗q with P (x) 6= 0.
Then there does not exist any k ∈ {0, 1, . . . , q−1−m} where all the m coefficients
bk, bk+1, . . . , bk+m−1 are zero.

Proof. Suppose that for some k ∈ {0, 1, . . . , q − 1−m} we have

bk = bk+1 = . . . = bk+m−1 = 0.

Consider the polynomial

Q(X) = Xq−1−(m+k) · P (X) mod (Xq−1 − 1),

Observe that the number of roots of Q(X) in F∗q equals the number of roots
of P (X) in F∗q , which equals q − 1−m.
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On the other hand, observe that the coefficient vector of Q is obtained by
a cyclic rotation of the coefficient vector of P . In fact, this cyclic rotation
moves the interval of zero coefficients of P to the highest degree monomials:
Xq−1−m, Xq−m, . . . , Xq−1. Therefore Q(X) is a nonzero polynomial of degree
at most q − 2−m.

But Q(X) has exactly q − 1 −m roots in F∗q . This is a contradiction, and
the theorem follows.

Corollary 1 ([2]). Let F (X) =
∑q−1
i=0 aiX

i be a polynomial over Fq of degree
≤ q − 1. Let T = {x ∈ F∗q | F (x) 6= x} be the set of nonzero moved elements.
Suppose | T |= m. Then for every k, 1 ≤ k ≤ q − 2−m, at least one of the m
consecutive coefficients ak+1, ak+2, . . . , ak+m is nonzero.

Moreover, if F (0) = 0 then it is also true for k = 0 and k = q − 1−m.

Proof. If F (X) = X mod (Xq−1 − 1), then the result is trivial, and so we
assume that this is not the case.

Let P (X) = (F (X)−X) mod (Xq−1− 1) (thus P (X) is a nonzero polyno-
mial of degree < q − 1). Note that for x ∈ F∗q , we have P (x) 6= 0 if and only if
F (x) 6= x. Thus T = {x ∈ F∗q | P (x) 6= 0}.

If we write P (X) =
∑q−2
i=0 biX

i, then we have b0 = aq−1 + a0, b1 = a1 − 1,
and bi = ai for each i ∈ {2, 3, . . . , q − 2}.

By Theorem 1, for every k with 1 ≤ k ≤ q − 1−m, we have that one of the
coefficients bk, bk+1, . . . , bk+m−1 is nonzero. This implies that for every k, 1 ≤
k ≤ q−2−m, at least one of the m consecutive coefficients ak+1, ak+2, . . . , ak+m
is nonzero.

Moreover, If F (0) = 0 then F (X) = XF ′(X) where F ′(X) =
∑q−1
i=1 aiX

i−1

is a nonzero polynomial of degree at most q− 2. Let P ′(X) = F ′(X)− 1. Then
the number of nonzero X ∈ F∗q such that P ′(X) 6= 0 is equal to m = |T |. By
Theorem 1, for every k ∈ {1, . . . , q−m}, one of the m coefficients ak, . . . , ak+m−1
is nonzero. In particular, at least one of m coefficients a1, . . . , am is nonzero, as
well as one of m coefficients aq−m, aq−m+1, . . . , aq−1.

We remark that Corollary 1 is stated in terms of the number of nonzero
moved elements, which is equivalent to Theorem 1 in [2] that was first stated in
terms of number of moved elements.

We now point out a variation of the argument of Theorem 1 which shows that
the zero-nonzero pattern of the coefficients of splitting polynomials is sensitive
to the presence of multiplicative subgroups in F∗q . This is analogous to Lemma
3.10 of [1], which shows that the zero-nonzero pattern of the coefficients of
subspace polynomials is sensitive to the presence of subfields of Fpn .

Theorem 1 states that polynomials with q−1−m roots in F∗q cannot have m
consecutive 0 coefficients. Theorem 2 states that a polynomial of degree q−1−m
with q−1−m roots in F∗q cannot have m−1 consecutive 0 coefficients unless the
set of roots has a special property (it should contain the complement of some
coset of a multiplicative subgroup).
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Theorem 2. Let S be a subset of F∗q with size q − 1−m with m ≥ 2 and

P (X) =
∏
a∈S

(X − a) =

q−1−m∑
i=0

biX
i.

Then P (X) has an interval of at least1 m − 1 consecutive zero coefficients
(i.e., exists 1 ≤ k ≤ q − 2m such that bk = · · · = bk+m−2 = 0) if and only
if F∗q \ S is contained in γH, for some γ ∈ F∗q and some proper multiplicative
subgroup H of F∗q .

Proof. Suppose there exists an interval of m − 1 successive zero coefficients
bk = · · · = bk+m−2 = 0. Define Q(X) = Xq−k−m · P (X) mod (Xq−1 − 1).
Using our hypothesis, it is easy to see that Q(X) is a nonzero polynomial of
degree at most q − 1−m.

Observe that {x ∈ F∗q | Q(x) = 0} = {x ∈ F∗q | P (x) = 0} = S, which has
size q − 1−m. Thus the degree of Q(X) must exactly equal q − 1−m, and so
Q(X) = α ·

∏
a∈S(X − a) = α · P (X) for some α ∈ F∗q .

This implies that α · P (X) = Q(X). Going back to the definitions, this
means that P (X) · (Xq−k−m − α) = 0 mod (Xq−1 − 1).

We know that P (X) vanishes only on the set S; thus every element of F∗q \S
is a root of (Xq−k−m−α). Let γ ∈ F∗q \S. Let H equal the subgroup {x ∈ F∗q |
xq−k−m = 1}, and note that it is a proper subset of F∗q (since q−k−m < q−1).
Then F∗q \ S is contained in γH, as required.

For the reverse direction, suppose |H| = d. Then d | (q− 1) and γH = {x ∈
F∗q | xd = γd}.

We first consider the case S = F∗q \ γH. Then we have
∏
a∈S(X − a) =

Xq−1−1
Xd−γd , which is of the form

∑(q−1)/d
j=1 bjX

·(q−1)−jd. This proves the result for

S = F∗q \ γH.
For general S ⊇ F∗q \γH, write S = (F∗q \γH)tT . In this case, d = m+ | T |.

Then ∏
a∈S

(X − a) =
∏

a∈F∗
q\S

(X − a) ·
∏
a∈T

(X − a)

=

(q−1)/d∑
j=1

bjX
(q−1)−jd

 · U(X),

where U(X) is a polynomial of degree |T |. This implies the result for general
S ⊇ F∗q \ γH.

We note that the nonzero coefficients of P (x) satisfying Theorem 2 must
meet the condition bi+q−k−m (mod q−1) = αbi for some α ∈ F∗q .

1Note that by Theorem 1, P (X) has an interval of at least m−1 consecutive zero coefficients
if and only if it has an interval of exactly m− 1 consecutive zero coefficients.
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[2] A. Muratović-Ribić and Q. Wang, On coefficients of polynomials over finite
fields, Finite Fields Appl. 17 (2011), no. 6, 575-599.

4


