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Abstract

In this note, we give very simple constructions of unique neighbor expander graphs starting from
spectral or combinatorial expander graphs of mild expansion. These constructions and their analysis are
simple variants of the constructions of LDPC error-correcting codes from expanders, given by Sipser-
Spielman [SS96] (and Tanner [Tan81]), and their analysis. We also show how to obtain expanders with
many unique neighbors using similar ideas.

There were many exciting results on this topic recently, starting with Asherov-Dinur [AD23] and
Hsieh-McKenzie-Mohanty-Paredes [HMMP23], who gave a similar construction of unique neighbor
expander graphs, but usingmore sophisticated ingredients (such as almost-Ramanujan graphs) and amore
involved analysis. Subsequent beautiful works of Cohen-Roth-TaShma [CRT23] and Golowich [Gol23]
gave even stronger objects (lossless expanders), but also using sophisticated ingredients.

The main contribution of this work is that we get much more elementary constructions of unique
neighbor expanders and with a simpler analysis.

1 Introduction

This paper is about bipartite expander graphs, and we begin by introducing some relevant notions of
expansions.

Let G be a bipartite graph with left set L, right set R, and where all vertices in L have degree d. G is
called a (δ, α)-(combinatorial) expander for δ, α > 0 if for any subset S ⊆ L of size at most δ|L|, the set
Γ(S) of neighbors of S has size at least αd|S| (this is a constant fraction of the maximum possible: d|S|).
G is called a lossless expander if α = 1− ε for a small ε > 0. Since for a small ε > 0, Γ(S) is almost as big
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as d|S| (which is the number of edges incident on S), almost every vertex in Γ(S) has a unique neighbor in
S. This brings us to the definition of unique neighbor expanders.

A bipartite graph G as above is called a δ-unique neighbor expander if for any subset S ⊆ L of size at
most δ|L|, there is some vertex in R which is adjacent to exactly one element of S. A stronger variant of
this definition is a (δ, α)-unique neighbor expander, which asks for the existence of αd|S| vertices in R that
are each adjacent to exactly one element of |S|. As mentioned above, lossless expanders are (strong) unique
neighbor expanders. In particular, the following fact is well-known.

Fact 1.1. Suppose that G is a (δ, 1 − ε)-combinatorial expander. Then G is also a (δ, 1 − 2ε)-unique
neighbor expander.

Note that the above fact is only meaningful when ε < 1
2 .

1.1 History: Unique Neighbor Expanders and Codes

Unique neighbor expanders are of significant interest in coding theory because they immediately lead to nice
error-correcting codes [SS96] (we will shortly elaborate on this connection). They also have applications in
the construction of locally testable codes [DSW06, BV09]. In addition to coding theory, unique neighbor
expanders have found applications for routing problems in online settings and for load balancing problems
[PU89, ALM96, Pip96, AC02]. See [AD23] for a discussion of several nice applications of unique neighbor
expanders. For now we will focus on the application of unique neighbor expanders to codes, since it is
precisely the connection to the construction of codes using expanders that inspired our construction of
unique neighbor expanders.

In their fundamental paper [SS96], Sipser and Spielman proposed several constructions of Low Density
Parity Check (LDPC) codes based on sufficiently good expanders. We start by describing the simplest such
construction from that paper, which we call SS1.

SS1: Take an unbalanced bipartite graphGwith n vertices on the left and βn vertices on the right for some
β ∈ (0, 1). The left vertices u will index codeword coordinates; we will write bits xu on these vertices. The
right vertices v will represent constraints on these coordinates; each right vertex v will ask that the parity of
all the bits xu written on the neighbors u of v should equal 0. The resulting codewords x ∈ {0, 1}n form a
linear code C[G], and we call G the parity-check graph of the resulting code C[G].

Now if G is a unique neighbor expander, then we get that for any x of low weight, there is some right
vertex v that is adjacent to exactly one nonzero coordinate of x, and thus the constraint of v is violated.
This implies that low weight strings x cannot be codewords, and thus the code has good distance. Since
β < 1, the code also has Ω(n) dimension, and thus also has good rate. Furthermore, if G has bounded
right degree, then the obtained codes are Low Density Parity Check (LDPC) codes, since they are defined
by parity constraints involving few variables.
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At that time, there were no explicit constructions of unique neighbor expanders, and thus the SS1
expander-to-code transformation of Sipser and Spielman did not lead to explicit error-correcting codes.
The construction of explicit unique neighbor expanders was an important open question left by their work.
Nevertheless, Sipser and Spielman gave a different construction (related to a construction of Tanner [Tan81])
of codes from expander graphs, and it turned out that this construction required just moderate expansion,
and could thus be made explicit from what was known then. We describe this construction, which we will
call SS2, below.

SS2: For this construction, we start with a bipartite graph G with n vertices on the left and βn vertices
on the right (for some β ∈ (0, 1)), with left and right degrees d and d/β, respectively, as well as a constant
size linear code C0 ⊆ {0, 1}d/β . The codewords of the new code C[G,C0] are again formed out of bits xu
written on the left vertices, but this time they have to obey the constraint that for every right vertex v, the
string (xu)u∈Γ(v) should be a codeword of C0. Note that the SS1 construction is just the special case where
C0 is the parity code (i.e., the codewords are all strings of even parity).

It was shown by Sipser and Spielman that if G is a combinatorial expander with only a moderate (non-
lossless) expansion, and C0 has sufficient distance in terms of this expansion, then the code C[G,C0] has a
good distance. The analysis is a generalization of the simple argument given above for the special case where
C0 is the parity code. Specifically, it can be shown that if G is a combinatorial expander with moderate
expansion, then for any x of low weight, there is some right vertex v that is adjacent to a small number of
nonzero coordinates of x, and thus the constraint of v is violated, assuming that C0 has a sufficiently large
distance.

In their paper, Sipser and Spielman also gave an alternate construction, in which G is the edge-vertex
incidence graph1 of a spectral expander of mild expansion (i.e., a (non-bipartite) regular graph of bounded
second normalized eigenvalue). In this case, the above analysis follows using the expander mixing lemma.

Several years later, the first explicit unique neighbor expanders that allowed an instantiation of the SS1
construction were discovered. This was first done by Capalbo, Reingold, Vadhan andWigderson [CRVW02],
who constructed lossless expanders (which are also unique neighbor expanders by Fact 1.1), with any constant
imbalance β = |R|/|L| > 0, via a variant of the zig-zag product of [RVW00]. At around the same time, Alon
and Capalbo [AC02] gave a much cleaner construction of unique neighbor expanders2, by composing a 44-
regular Ramanujan graph3 with a certain special (43, 21)-vertex bipartite graph. Because of the specialized
nature of this construction, it could only give unique neighbor expanders with imbalance β = 21/22.

Recently, interest in this topic was revived in a beautiful work of Asherov and Dinur [AD23], who
abstracted out the essential features of the Alon-Capalbo construction. Specifically, they showed how to
compose an "outer" large bipartite Ramanujan graph Gout, together with an "inner" constant sized unique

1The edge-vertex incidence graph of a graph G = (V,E) is the bipartite graph G′ = (L ∪R,E′), where L = E, R = V , and
(e, v) ∈ E′ if v is one of the endpoints of e in G.

2They also gave explicit constructions of the more difficult non-bipartite unique neighbor expanders.
3Ramanujan graphs are extremal graphs with the best possible spectral expansion.
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neighbor expander Gin (which can be found via brute force search), to get a large unique neighbor expander
Gout ◦ Gin, with any constant imbalance β > 0. The composition was made via the routed product, that
was already implicit in [AC02], and formally defined in [AD23]. As pointed out in [AD23], the routed
productGout ◦Gin is simply the parity-check graph of the SS2 construction C[G,C0], whereG = Gout and
C0 = C[Gin]. However, as opposed to SS2, the analysis of [AD23] was surprisingly subtle, and required the
full Ramanujan property (i.e, the smallest possible second normalized eigenvalue) of the outer graph.

An independent beautiful work of Hsieh-McKenzie-Mohanty-Paredes [HMMP23] gave strong unique
neighbor expanders (where small sets have many unique neighbors), with expansion from both the left and
the right. Further, their construction just used nearly Ramanjuan graphs (which are also Cayley graphs) as an
ingredient, and did not need the full Ramanujan property. Subsequent work of Cohen-Roth-TaShma [CRT23]
and Golowich [Gol23] gave much stronger objects (lossless expanders), with a very elegant construction
and analysis, while also using significantly more powerful pseudorandom objects as ingredients such as
high-dimensional expanders.

1.2 Our result: Unique Neighbor Expanders from Codes

The main focus of this paper is to give simple and elementary constructions of unique neighbor expanders.
The very high level inspiration for our construction comes from considering how we can construct an

LDPC code with good distance. One approach is to use the SS1 construction C[G] with a unique neighbor
expanderG – but these are hard to construct. Another approach is to take the SS2 code constructionC[G,C0]

with an easier to construct expander G and some constant size code C0. We show that this second approach
can help us instantiate the first approach.

In the SS2 construction, let us choose the constant sized inner code C0 to be the SS1 construction code
C[G0] coming from a constant sized unique neighbor expanderG0. The resulting SS2 code C∗ = C[G,C0]

is an LDPC codewith good distance. Asmentioned above,C∗ can also be obtained from the SS1 construction
directly; namely by applying the SS1 construction to the routed product graph G ◦ G0. If for some reason
G◦G0 happened to be a unique neighbor expander, this would give another explanation why C∗ is an LDPC
code with good distance. Following this trail of clues, we show that indeed, G ◦ G0 is a unique neighbor
expander. The analysis is very similar to that of SS2, showing that C∗ = C[G,C0] is an LDPC code with
good distance.

Opening this up (and staying away from too much coding jargon), it amounts to the following. As in
[AD23], we use the routed product, with the inner graph being a constant sized unique neighbor expander
(which can be found via brute-force search). However, following the SS2 construction, we choose the
outer graph to be either the edge-vertex incidence graph of a spectral expander with mild expansion, or a
combinatorial expander with moderate expansion.

In more detail, in our first construction, given in Section 3, we use as an outer graph the edge-vertex
incidence graph of a spectral expander with a sufficiently small constant second normalized eigenvalue.
Such graphs can be explicitly constructed for example by taking graph powers of an infinite family of regular
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spectral expanders of some constant second normalized eigenvalue (for example those of Gabber and Galil
[GG81]), or, alternatively, using (a simple version of) the zig-zag product [RVW00] (see also the survey
[Vad12], Section 4.3). We show that this choice of an outer graph gives the following explicit construction
of arbitrarily unbalanced strong unique neighbor expanders.

Theorem 1.2. For any constant β ∈ (0, 1], there exist δ, α > 0 and a non-negative integer c, so that there
exists an explicit construction of an infinite family {Hn}n of graphs, where Hn is a c-left regular bipartite
graph with at least n left vertices and βn right vertices that is a (δ, α)-unique neighbor expander.

In our second construction, given in Section 4, we use as an outer graph a biregular (δ, α)-combinatorial
expander for some constant δ, α > 0, and of sufficiently small imbalance |R|/|L|. We show that this choice
leads to an explicit construction of arbitrarily unbalanced unique neighbor expanders with roughly the same
expansion.

Theorem 1.3. For any constant ε, α > 0, β ∈ (0, 1], and non-negative integer d, there exist µ > 0 and a
non-negative integer c so that the following holds. Suppose that there exists an explicit construction of an
infinite family of graphs {Gn}n, where each Gn is a (d, d/µ)-regular bipartite graph with n left vertices
that is a (δ, α)-combinatorial expander. Then there exists an explicit construction of an infinite family of
graphs {Hn}n, where each Hn is a c-left regular graph with n left vertices and βn right vertices that is a
(δ, (1− ε)α)-unique neighbor expander.

The above theorem can be viewed as an extension of the simple transformation from combinatorial to
unique neighbor expanders, given by Fact 1.1, to the regime of α < 1

2 .
As pointed out already bySipser and Spielman, one can explicitly construct biregular (δ, α)-combinatorial

expanders for some constant δ, α > 0, and an arbitrarily small imbalance |R|/|L|, by taking the edge-vertex
incidence graph of a spectral expander of mild expansion, in which case our second construction reduces to
our first one (though the analysis is a bit different). Beyond that, we are only aware of more sophisticated
constructions of lossless combinatorial expanders [CRVW02, CRT23, Gol23], which to the best of our
knowledge, are not biregular. Theorem 1.3 above motivates the search for other simple constructions
of biregular combinatorial expanders, as these will also lead to simple constructions of unique neighbor
expanders of roughly the same expansion.

2 Preliminaries

In this section, we first provide the formal definitions of the types of expanders that will shall consider in this
work: spectral, combinatorial, and unique neighbor expanders, and state known constructions of such graphs
that we shall use in our constructions. Then we formally define the routed product that will be used for
composing these expanders. See [HLW06] for an extensive survey of expander graphs and their applications
in theoretical computer science.
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2.1 Spectral expander

We start with the definition of a spectral expander, which is a (non-bipartite) regular graph with bounded
second eigenvalue.

Definition 2.1 (Spectral expander). We say that a d-regular graphG on n vertices is a λ-(spectral) expander
if max{|λi|, λi 6= ±d} ≤ λ, where d = λ1 ≥ λ2 ≥ . . . ≥ λn are the eigenvalues of the adjacency matrix of
G.

For a graphG = (V,E), and subsets S, T ⊆ V , we letE(S, T ) denote the set of edges with one endpoint
in S and another endpoint in T , and we let |E(S, T )| denote the number of these edges, with the edges in
(S ∩ T )× (S ∩ T ) counted twice. A commonly used property of spectral expanders (and the only property
of spectral expanders we shall use) is given by the expander mixing lemma of Alon and Chung [AC06].
This lemma says that for a d-regular graph G = (V,E), and for any pair of subsets S, T ⊆ V , |E(S, T )| is
roughly equal the expected number of edges between S and T in a random d-regular graph.

Theorem 2.2 (Expander Mixing Lemma, [AC06]). Suppose that G = (V,E) is a d-regular graph that is a
λ-spectral expander. Then for any pair of subsets S, T ⊆ V ,∣∣∣∣E(S, T )− d

n
|S||T |

∣∣∣∣ ≤ λ√|S||T |.
For our construction, we shall only need explicit constructions of infinite families of d-regular graphs

which are (δd)-expanders for an arbitrarily small constant δ > 0, and an arbitrarily large degree d. Such
graphs can be obtained for example by taking graph powers of an infinite family of d-regular (δd)-spectral
expanders for some fixed non-negative integer d and fixed δ > 0 (for example those of Gabber and Galil
[GG81]), or, alternatively, using (a simple version of) the zig-zag product [RVW00] (see also the survey
[Vad12], Section 4.3).

Theorem 2.3 (Explicit spectral expanders). For any δ > 0 and non-negative integer d0, there exists a non-
negative integer d ≥ d0 so that there exists an explicit construction of an infinite family {Gn}n of graphs,
where Gn is a d-regular graph on n vertices that is a (δd)-spectral expander.

To turn the above (non-bipartite) spectral expanders into bipartite graphs, we shall consider the edge-
vertex incidence graph, defined as follows.

Definition 2.4 (Edge-vertex incidence graph). The edge-vertex incidence graph of a graph G = (V,E) is
the bipartite graph G′ = (L ∪R,E′), where L = E, R = V , and (e, v) ∈ E′ if v is one of the endpoints of
e in G.

2.2 Combinatorial expander

A combinatorial expander is a graph, where any not too large subset has many neighbors. In this work, we
will only consider the bipartite one-sided version of such expanders, where only left subsets expand.
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We say that a bipartite graph G = (L ∪ R,E) is d-left regular if deg(v) = d for any v ∈ L, and
we say that G is (d1, d2)-regular if deg(v) = d1 for any v ∈ L and deg(v) = d2 for any v ∈ R. We
say that G is β-unbalanced if |R| ≤ β|L|. For a vertex v ∈ L ∪ R, let ΓG(v) denote the set of vertices
adjacent to v, and for a subset S ⊆ L, let ΓG(S) denote the set of vertices adjacent to some vertex in S, i.e.,
ΓG(S) =

⋃
v∈S ΓG(v). We shall sometimes omit the subscript G if the graph G is clear from the context.

Definition 2.5 (Combinatorial expander). We say that a d-left regular bipartite graph G = (L ∪R,E) is a
(δ, α)-(combinatorial) expander if |Γ(S)| ≥ αd|S| for any non-empty subset S ⊆ L with |S| < δ|L|.

For our construction, we shall only need explicit constructions of infinite families of β-unbalanced (δ, α)-
expanders for some fixed constants δ, α > 0, and an arbitrarily small constant β > 0. Such constructions
can be obtained for example by taking the edge-vertex incidence graph of the spectral expanders given in
Theorem 2.3 [SS96].

2.3 Unique neighbor expanders

A unique neighbor expander is a strengthening of a combinatorial expander, where any not too large subset
has many unique neighbors. Once more, we will only consider the bipartite one-sided version of such
expanders.

Let G = (L ∪ R,E) be a bipartite graph. We say that a vertex v ∈ R is a unique neighbor of a subset
S ⊆ L if v is adjacent to exactly one vertex in S, and for a subset S ⊆ L, we let Γuni

G (S) denote the subset
of all vertices v ∈ R which are unique neighbors of S. Once more, we shall sometimes omit the subscript
G if the graph G is clear from the context.

Definition 2.6 (Unique neighbor (UN) expander). We say that a d-left regular bipartite graphG = (L∪R,E)

is a δ-unique neighbor (UN) expander if Γuni(S) 6= ∅ for any non-empty subset S ⊆ L with |S| < δ|L|. We
say thatG is a (δ, α)-unique neighbor (UN) expander if |Γuni(S)| ≥ αd|S| for any non-empty subset S ⊆ L
with |S| < δ|L|.

It follows by definition, that any (δ, α)-UN expander is also a (δ, α)-combinatorial expander. Conversely,
it is not hard to show that any (δ, 1 − ε)-combinatorial expander is also a (δ, 1 − 2ε)-UN expander. Note
however that this latter implication is only meaningful when ε < 1

2 .
For our construction, we shall need (possibly non-explicit) arbitrarily unbalanced unique neighbor

expanders. Such graphs (even with expansion arbitrarily close to 1) can be shown to exist using the
probabilistic method by (see e.g., [GRS], Lemmas 11.2.5).

Lemma 2.7 (Non-explicit unique neighbor expanders). For any ε > 0 and β ∈ (0, 1], there exist δ > 0 and
non-negative integers d and n0, so that for all n ≥ n0, there exists a d-left regular β-unbalanced bipartite
graph Gn with n left vertices that is a (δ, 1− ε)-UN expander.
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2.4 The routed product

In this work, we will obtain explicit constructions of unique neighbor expanders by combining "outer graphs"
which are either the edge-vertex incidence graph of explicit spectral expanders, or explicit combinatorial
expanders, with "inner graphs" which are non-explicit unique neighbor expanders, via the routed product,
defined as follows (this product first appeared implicitly in [AC02], and formally defined later in [AD23]).

Definition 2.8 (The routed product [AC02, AD23]). Let G = (L ∪ R,E) be an outer (d1, d2)-regular
bipartite graph, and let G′ = (L′ ∪ R′, E′) be an inner d′-left regular bipartite graph with L′ = [d2].
Furthermore, for any v ∈ R, assume an ordering on the d2 edges of E incident to v in G.

The routed productG◦G′ is the bipartite graphG◦G′ := (L′′∪R′′, E′′), where L′′ = L,R′′ = R×R′,
and (u, (v, v′)) ∈ E′′ if there exists i ∈ [d2] so that (u, v) is the i-th edge incident to v inG and (i, v′) ∈ E′.

It follows by definition, that G ◦G′ is (d1 · d′)-left regular, and that if G′ is β′-unbalanced, then G ◦G′

is β̃-unbalanced for

β̃ =
|R| · |R′|
|L|

=
|R| · |R′|
d2 · |R|/d1

=
d1 · |R′|
|L′|

= d1 · β′.

3 Unique Neighbor Expanders from Spectral Expanders

In this section, we will show how to obtain a simple explicit construction of unique neighbor expanders
by combining "outer graphs" which are the edge-vertex incidence graph of explicit spectral expanders with
"inner graphs" which are non-explicit unique neighbor expanders via the routed product.

To this end, we first show in Section 3.1, as a warmup, how to obtain explicit unique neighbor expanders
that only guarantee the existence of a single unique neighbor for any not too large left subset, using the analysis
of error-correcting codes that is implicit in [SS96]. Then in Section 3.2, we show a slight strengthening of
the analysis that guarantees a constant fraction of unique neighbors. Finally, in Section 3.3, we instantiate
our transformation with the explicit spectral expanders given by Theorem 2.3, and the non-explicit unique
neighbor expanders given by Lemma 2.7, to obtain explicit unique neighbor expanders.

3.1 One unique neighbor

The following lemma says that the routed product of an outer edge-vertex incidence graph of a spectral
expander with an inner unique neighbor expander yields a unique neighbor expander, where both unique
neighbor expanders guarantee the existence of only a single unique neighbor for any not too large left subset.

Lemma 3.1. Suppose that G = (L ∪ R,E) is the edge-vertex incidence graph of a d-regular graph that
is a λ-spectral expander, and that G′ = (L′ ∪ R′, E′) is a d′-left regular bipartite graph that is a δ′-UN
expander with L′ = [d]. Then G ◦G′ = (L′′ ∪R′′, E′′) is a (δ′(δ′ − λ

d ))-UN expander.
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The following lemma is implicit in the analysis of error-correcting codes of [SS96]. Its proof is an easy
consequence of the expander mixing lemma (Theorem 2.2). For completeness, and since in the next section
we shall need a slight strengthening of this lemma, we provide a full proof of this lemma below.

Lemma 3.2. Let G = (V,E) be a d-regular graph that is a λ-spectral expander, and let S ⊆ E be a subset
of edges in G. Suppose that for any v ∈ V that is incident to some edge in S, it holds that v is incident to at
least δd edges in S. Then |S| ≥ δ(δ − λ

d )|E|.

Proof. Let U ⊆ V be the subset of vertices inG which are incident to some edge in S. Then by assumption,
each vertex ofU is incident to at least δd other vertices ofU , and consequentlywe have that |E(U,U)| ≥ δd|U |
(recall that by definition, each edge with both endpoints in U is counted twice in |E(U,U)|). On the other
hand, by the expander mixing lemma (Theorem 2.2), we have that |E(U,U)| ≤ d

n |U |
2 + λ|U |. Combining

these two inequalities gives that |U | ≥ (δ − λ
d )n. But by assumption that each vertex in U is incident to at

least δd edges in S, this implies in turn that

|S| ≥ 1

2
δd|U | ≥ δ

(
δ − λ

d

)
· dn

2
= δ

(
δ − λ

d

)
|E|.

By the definition of the edge-vertex incidence graph, the above lemma can be equivalently stated as
follows.

Lemma 3.3 (Equivalent statement of Lemma 3.2). Let G = (L ∪R,E) be the edge-vertex incidence graph
of a d-regular graph that is a λ-spectral expander, and let S ⊆ L be a subset of left vertices in G. Suppose
that |Γ(v) ∩ S| ≥ δd for any v ∈ Γ(S). Then |S| ≥ δ(δ − λ

d )|L|.

We now proceed to the proof of Lemma 3.1, based on the above lemma.

Proof of Lemma 3.1. Let S ⊆ L′′ = L be a subset of left vertices in G ◦G′ of size |S| < δ′(δ′ − λ
d )|L′′| =

δ′(δ′ − λ
d )|L|. Then by Lemma 3.3, there must exist a vertex v ∈ ΓG(S) so that |ΓG(v) ∩ S| < δ′d.

Let I ⊆ [d] be the subset which contains all indices of edges in ΓG(v) which are contained in S. Then
I is a non-empty subset satisfying that |I| < δ′d = δ′|L′|, and since G′ is a δ′-UN expander, there exists a
vertex v′ ∈ R′ which is a unique neighbor of I in G′. By the definition of the routed product, this implies in
turn that (v, v′) is a unique neighbor of S in G ◦G′.

3.2 Constant fraction of unique neighbors

The following lemma says that the routed product of an outer edge-vertex incidence graph of a spectral
expander with an inner unique neighbor expander yields a unique neighbor expander, where now both unique
neighbor expanders guarantee the existence of a constant fraction of unique neighbors for any not too large
left subset.
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Lemma 3.4. Suppose that G = (L ∪ R,E) is the edge-vertex incidence graph of a d-regular graph that is
a λ-spectral expander, and that G′ = (L′ ∪ R′, E′) is a d′-left regular bipartite graph that is a (δ′, α′)-UN
expander with L′ = [d]. Then for any γ ∈ (0, 1), G ◦G′ = (L′′ ∪R′′, E′′) is a (γδ′(γδ′ − λ

d ), (1−γ)α′

d )-UN
expander.

To prove the above lemma we shall need the following quantitative version of Lemma 3.2.

Lemma 3.5. Let G = (V,E) be a d-regular graph that is a λ-spectral expander, let S ⊆ E be a subset of
edges inG, and let U ⊆ V be the subset of vertices inG which are incident to some edge in S. Suppose that
at least a γ-fraction of the vertices of U are incident to at least δd edges in S. Then |S| ≥ γδ(γδ − λ

d )|E|.

Proof. By assumption, at least a γ-fraction of the vertices of U are incident to at least δd other vertices
in U , and consequently we have that |E(U,U)| ≥ γδd|U |. On the other hand, by the expander mixing
lemma (Theorem 2.2), we have that |E(U,U)| ≤ d

n |U |
2 + λ|U |. Combining these two inequalities gives

that |U | ≥ (γδ − λ
d )n. But by assumption that at least a γ-fraction of the vertices of U are incident to at

least δd edges in S, this implies in turn that

|S| ≥ 1

2
γδd|U | ≥ γδ

(
γδ − λ

d

)
dn

2
= γδ

(
γδ − λ

d

)
|E|.

As before, by the definition of the edge-vertex incidence graph, the above lemma can be equivalently
stated as follows.

Lemma 3.6 (Equivalent statement of Lemma 3.5). Let G = (L ∪R,E) be the edge-vertex incidence graph
of a d-regular graph that is a λ-spectral expander, and let S ⊆ L be a subset of left vertices in G. Suppose
that |Γ(v) ∩ S| ≥ δd for at least a γ-fraction of the vertices in Γ(S). Then |S| ≥ γδ(γδ − λ

d )|L|.

We now proceed to the proof of Lemma 3.4, based on the above lemma.

Proof of Lemma 3.4. Let S ⊆ L′′ = L be a subset of left vertices inG◦G′ of size |S| < γδ′(γδ′− λ
d )|L′′| =

γδ′(γδ′ − λ
d )|L|. Then by Lemma 3.6, |ΓG(v) ∩ S| < δ′d for at least a (1 − γ)-fraction of the vertices in

ΓG(S).
Let v ∈ ΓG(S) be a vertex which satisfies that |ΓG(v) ∩ S| < δ′d. As in the proof of Lemma 3.1, let

I ⊆ [d] be the subset which contains all indices of edges in ΓG(v) which are contained in S. Then I is a
non-empty subset satisfying that |I| < δ′d = δ′|L′|, and since G′ is a (δ′, α′)-UN expander, at least α′d′

vertices v′ ∈ R′ are unique neighbors of I inG′. By the definition of the routed product, this implies in turn
that (v, v′) is a unique neighbor of S in G ◦G′ for at least α′d′ vertices v′ ∈ R′.

Overall, we get that the number of unique neighbors of S in G ◦G′ is at least

|Γuni
G◦G′(S)| ≥ α′d′(1− γ)|ΓG(S)| ≥ α′d′(1− γ)

2|S|
d

=
(1− γ)α′

d
· (2d′)|S|,

10



where the bound |ΓG(S)| ≥ 2|S|
d follows since G is (2, d)-regular. The conclusion follows by recalling that

by the definition of the routed product, G ◦G′ is (2d′)-left regular.

3.3 Instantiation

Applying Lemma 3.4 with the outer graph being the explicit spectral expander given by Theorem 2.3, and
the inner graph being the non-explicit unique neighbor expander given by Lemma 2.7, gives Theorem 1.2,
restated below, which gives an explicit construction of a unique neighbor expander.

Theorem 1.2. For any constant β ∈ (0, 1], there exist δ, α > 0 and a non-negative integer c, so that there
exists an explicit construction of an infinite family {Hn}n of graphs, where Hn is a c-left regular bipartite
graph with at least n left vertices and βn right vertices that is a (δ, α)-unique neighbor expander.

Proof. Let δ′ > 0 and d′, n′0 be the constant and non-negative integers guaranteed by Lemma 2.7 for ε′ = 1
2

and β′ = β
2 . Let d ≥ d0 be the non-negative integer guaranteed by Theorem 2.3 for δ′4 and d0 = n′0. Let

G′d be the d′-left regular β
2 -unbalanced bipartite graph with d left vertices that is a (δ′, 1

2)-UN expander,
guaranteed by Lemma 2.7. Note thatG′d can be found in constant time via brute force search. Let {Gn}n be
the explicit infinite family of graphs, where eachGn is a d-regular graph on n vertices that is a ( δ

′

4 ·d)-spectral
expander, guaranteed by Theorem 2.3.

LetHn := I(Gn)◦G′d, where I(Gn) is the edge-vertex incidence graph ofGn. Then by the definition of
the routed product, Hn is a (2d′)-left regular β-unbalanced bipartite graph with dn

2 left vertices. Moreover,
applying Lemma 3.4 with γ = 1

2 gives that Hn is a ( (δ′)2

8 , 1
4d)-UN expander. So the theorem holds with

c = 2d′, δ = (δ′)2

8 , and α = 1
4d , which are all constant depending only on β.

4 Unique Neighbor Expanders from Combinatorial Expanders

In this section we show that composing an outer explicit combinatorial expander with an inner non-explicit
unique neighbor expander via the routed product gives an explicit unique neighbor expander with roughly
the same expansion as the outer combinatorial expander.

As in the previous section, we first show in Section 4.1, as a warmup, how to obtain explicit unique
neighbor expanders that only guarantee the existence of a single unique neighbor, using the analysis of
error-correcting codes that is implicit in [SS96]. Then in Section 4.2, we show how to extend the analysis
to obtain a constant fraction of unique neighbors. Finally, in Section 4.3, we instantiate our transformation
with the non-explicit unique neighbor expanders given by Lemma 2.7 to obtain the final transformation.

4.1 One unique neighbor

The following lemma says that the routed product of an outer combinatorial expander with an inner unique
neighbor expander yields a unique neighbor expander, where both unique neighbor expanders guarantee the
existence of only a single unique neighbor for any not too large left subset.

11



Lemma 4.1. Suppose that G = (L ∪ R,E) is a (d1, d2)-regular bipartite graph that is a (δ, α)-expander,
and that G′ = (L′ ∪ R′, E′) is a d′-left regular bipartite graph that is a 1

αd2
-UN expander with L′ = [d2].

Then G ◦G′ = (L′′ ∪R′′, E′′) is a δ-UN expander.

The following simple lemma is implicit in the analysis of error-correcting codes of [SS96]. For com-
pleteness, and since in the next section we shall need a slight strengthening of this lemma, we provide a full
proof of this lemma below.

Lemma 4.2. Let G = (L ∪ R,E) be a (d1, d2)-regular bipartite graph that is a (δ, α)-expander, and let
S ⊆ L be a subset of left vertices in G. Suppose that |Γ(v) ∩ S| > 1

α for any v ∈ Γ(S). Then |S| ≥ δ|L|.

Proof. By assumption that |Γ(v) ∩ S| > 1
α for any v ∈ Γ(S), we have that |E(S,Γ(S))| > 1

α |Γ(S)|.
On the other hand, since G is (d1, d2)-regular, we have that |E(S,Γ(S))| = d1|S|. Combining these two
inequalities gives that |Γ(S)| < αd1|S|. By assumption that G is a (δ, α)-expander, this implies in turn that
|S| ≥ δ|L|.

We now proceed to the proof of Lemma 4.1, based on the above lemma.

Proof of Lemma 4.1. Let S ⊆ L′′ = L be a subset of left vertices in G ◦ G′ of size |S| < δ|L′′| = δ|L|.
Then by Lemma 4.2, there must exist a vertex v ∈ ΓG(S) so that |ΓG(v) ∩ S| ≤ 1

α .
Let I ⊆ [d2] be the subset which contains all indices of edges in ΓG(v) which are contained in S. Then

I is a non-empty subset satisfying that |I| < 1
α = 1

αd2
· |L′|, and since G′ is a ( 1

αd2
)-UN expander, there

exists a vertex v′ ∈ R′ which is a unique neighbor of I in G′. By the definition of the routed product, this
implies in turn that (v, v′) is a unique neighbor of S in G ◦G′.

4.2 Constant fraction of unique neighbors

The following lemma says that the routed product of an outer combinatorial expander with an inner unique
neighbor expander yields a unique neighbor expander, where now both unique neighbor expanders guarantee
the existence of a constant fraction of unique neighbors for any not too large left subset.

Lemma 4.3. The following holds for any γ ∈ (0, 1). Suppose that G = (L ∪ R,E) is a (d1, d2)-regular
bipartite graph that is a (δ, α)-expander, and that G′ = (L′ ∪ R′, E′) is a d′-left regular bipartite graph
that is a ( 1

γαd2
, α′)-UN expander with L′ = [d2]. Then G ◦ G′ = (L′′ ∪ R′′, E′′) is a (δ, (1 − γ)α′α)-UN

expander.

To prove the above lemma we shall need the following quantitative version of Lemma 4.2.

Lemma 4.4. Let G = (L ∪ R,E) be a (d1, d2)-regular bipartite graph that is a (δ, α)-expander, and let
S ⊆ L be a subset of left vertices inG. Suppose that |Γ(v)∩S| > 1

γα for at least a γ-fraction of the vertices
in Γ(S). Then |S| ≥ δ|L|.

12



Proof. By assumption that |Γ(v) ∩ S| > 1
γα for at least a γ-fraction of the vertices in Γ(S), we have that

|E(S,Γ(S))| > 1
α |Γ(S)|. On the other hand, sinceG is (d1, d2)-regular, we have that |E(S,Γ(S))| = d1|S|.

Combining these two inequalities gives that |Γ(S)| < αd1|S|. By assumption that G is a (δ, α)-expander,
this implies in turn that |S| ≥ δ|L|.

We now proceed to the proof of Lemma 4.3, based on the above lemma.

Proof of Lemma 4.3. Let S ⊆ L′′ = L be a subset of left vertices in G ◦ G′ of size |S| < δ|L′′| = δ|L|.
Then by Lemma 4.4, |ΓG(v) ∩ S| < 1

γα for at least a (1− γ)-fraction of the vertices in ΓG(S).
Let v ∈ ΓG(S) be a vertex which satisfies that |ΓG(v) ∩ S| < 1

γα . As in the proof of Lemma 4.1, let
I ⊆ [d2] denote the subset which contains all indices of edges in ΓG(v) which are contained in S. Then I is
a non-empty subset satisfying that |I| < 1

γα = 1
γαd2
· |L′|, and sinceG′ is a ( 1

γαd2
, α′)-UN expander, at least

α′d′ vertices v′ ∈ R′ are unique neighbors of I in G′. By the definition of the routed product, this implies
in turn that (v, v′) is a unique neighbor of S in G ◦G′ for at least α′d′ vertices v′ ∈ R′.

Overall, we get that the number of unique neighbors of S in G ◦G′ is at least

|Γuni
G◦G′(S)| ≥ α′d′(1− γ)|ΓG(S)| ≥ α′d′(1− γ) · (αd1|S|) = (1− γ)α′α · (d1 · d′)|S|,

where the bound |ΓG(S)| ≥ αd1|S| follows sinceG is a (δ, α)-expander. The conclusion follows by recalling
that by the definition of the routed product, G ◦G′ is (d1 · d′)-left regular.

4.3 Instantiation

Applying Lemma 4.3 with the inner graph being the non-explicit unique neighbor expander given by Lemma
2.7, gives Theorem 1.3, restated below, which shows how to transform combinatorial expanders into unique
neighbor expanders with roughly the same expansion.

Theorem 1.3. For any constant ε, α > 0, β ∈ (0, 1], and non-negative integer d, there exist µ > 0 and a
non-negative integer c so that the following holds. Suppose that there exists an explicit construction of an
infinite family of graphs {Gn}n, where each Gn is a (d, d/µ)-regular bipartite graph with n left vertices
that is a (δ, α)-combinatorial expander. Then there exists an explicit construction of an infinite family of
graphs {Hn}n, where each Hn is a c-left regular graph with n left vertices and βn right vertices that is a
(δ, (1− ε)α)-unique neighbor expander.

Proof. Let δ′ > 0 and d′, n′0 be the constant and non-negative integers guaranteed by Lemma 2.7 for ε′ := ε
2

and β′ := β
d . Let µ := min{ εαδ′d2 , 1

n′
0
}. Let G′d/µ be the d′-left regular βd -unbalanced bipartite graph with

d/µ left vertices that is a (δ′, 1− ε
2)-UN expander, guaranteed by Lemma 2.7. Note that G′d can be found in

constant time via brute force search.
Let Hn := Gn ◦ G′d/µ. Then by the definition of the routed product, Hn is a (d · d′)-left regular

β-unbalanced bipartite graph with n left vertices. Let γ := ε
2 , and note that by our choice of µ we have that

13



1
γα(d/µ) ≤ δ′. Therefore, applying Lemma 4.3 with this choice of γ gives that Hn is a (δ, (1 − ε)α)-UN
expander.

Acknowledgement We thank Ronen Shaltiel for a discussion about existing constructions of bipartite
expander graphs.
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