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Abstract

We show that computing the minimum rank of a sign pattern matrix is NP hard. Our proof
is based on a simple but useful connection between minimum ranks of sign pattern matrices
and the stretchability problem for pseudolines arrangements. In fact, our hardness result shows
that it is already hard to determine if the minimum rank of a sign pattern matrix is < 3. We
complement this by giving a polynomial time algorithm for determining if a given sign pattern
matrix has minimum rank < 2.

Our result answers one of the open problems from [LMSS07] [Combinatorica, 27(4):439-463,
2007].

1 Introduction

We study the complexity of computing the minimum rank of a sign pattern matrix. The minimum
rank of a sign pattern matrix is a basic quantity that arises naturally in a number of settings, and
has been extensively studied. Our main result shows that it is NP hard to compute the minimum
rank of a sign pattern matrix. In fact, we show that it is even NP hard to distinguish between
sign pattern matrices with minimum rank = 3 from sign pattern matrices with minimum rank > 3.
Our proof proceeds via a simple but powerful connection between the rank of a sign pattern matrix
and a classical problem in oriented matroid theory and computational geometry: the stretchability
problem for pseudoline arrangements. We complement our hardness results by giving a polynomial
time algorithm to detect if a given sign pattern matrix has minimum rank < 2.

We begin by setting up some notation. A sign pattern matrix is a matrix whose entries come
from the set {+,—}. If the entries come from {+,—,0}, we call the matrix a generalized sign
pattern matrix. Given a real matrix A, one can consider its associated generalized sign pattern
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matrix sign(A) (obtained by taking the sign of each entry). The minimum rank of a generalized
sign pattern matrix S, denoted minrank(.S), is defined to be the minimum, over all real matrices A
with sign(A4) = S, of rank(A).

The minimum rank of a sign pattern matrix has been widely studied in the discrete mathematics
and theoretical computer science communities. On the discrete mathematics side, there has been
much recent work on the relationship between the minimum rank of a sign pattern matrix and
the combinatorial structure of associated bipartite graph. The recent workshop at the American
Institute for Mathematics [AIM] provides and excellent overview of some of the facets of this line of
work. On the theoretical computer science side, the minimum rank of a sign pattern matrix gives
an exact characterization of the randomized unbounded-error communication complexity (i.e., the
communication complexity analogue of PP). This has motivated a number of interesting problems
and results on minimum ranks of sign pattern matrices. Rank minimization of other classes of
matrices has also been studied in the context of machine learning and computational linear algebra.

We now list some of the basic results and problems on sign pattern matrices arising from these
two communities.

1. As observed by Berman et al [BFH"08], computing the minimum rank of a sign pattern
matrix easily reduces to checking satisfiability a system of real polynomial equalities and
inequalities. This problem is known as “the existential first order theory of the reals”, and
its complexity is known to lie somewhere between NP and PSPACE [Ren92].

2. For a subfield F <€ R and a sign pattern matrix S, denote by minrankp(.S) the minimum rank
over all matrices A with entries in F such that sign(A) = S. Arav et all[AHK"05] showed that
if S is a generalized sign pattern matrix such that minrankg(S) € {1, 2}, then minrankp(S) =
minrankg(S). Berman et al [BFH'08] and Kopparty and Rao [KB07] showed that in gen-
eral, the minimum rank depends on the field: there exist S with minrankg(S) = 3 but
minrankg(S) > 3. In fact, the behavior of minrankg(S) depends intricately on F (see [KBOT]).

For sign pattern matrices S, we always have minrankg(S) = minrankg(S) [AHK™05].

3. A basic result of Alon et al, [AFR85] shows that the minimum rank of every n x n sign pattern
matrix is at most §(1 + o(1)). [AFR85] also show that there are n x n sign pattern matrices
with minimum rank at least g5. For generalized sign pattern n x n matrices, the minimum
rank can be an arbitrary integer in [0, n].

4. The closely related problem of computing the maximum rank of a generalized sign pattern
matrix has a simple polynomial time algorithm; the maximum rank of a generalized sign
pattern matrix S simply equals the size of the largest matching (r1,c¢1), (r2,c2), ... between
rows and columns, such that for each ¢, the entry S, is nonzero. This immediately reduces
to finding a maximum matching in a bipartite graph.

5. Buss, Frandsen and Shallit [BFS99] studied the complexity of a number of linear algebraic
problems on matrices. Given a matrix with each entry being either a variable or a constant,
and a field IF, they considered the complexity of computing the minimum rank and maximum
rank (and some variants) as we vary over all substitutions of the variables with values from F.
Over the field R, [BFS99] show that the problem of computing maximum rank lies in RP (see
also Lovasz [Lov79]), and the problem of computing minimum rank is equivalent to deciding
the first order theory of the reals (and is thus NP-hard).



Computing the minimum rank of a generalized sign pattern matrix can be posed in this
framework by considering a matrix whose entries are variables and 0’s, with two further
restrictions:

(i) to each variable we associate a sign which forces that variable to be either strictly positive
or strictly negative,

(ii) more importantly, each variable appears at most once in the matrix.

Indeed, [BFS99] also studied condition (ii), and were able to show some improved upper
bounds for some linear algebraic problems with this condition. However, as they noted, their
NP-hardness results did not apply with condition (ii).

6. A fundamental result of Paturi et al [PS86] exactly characterizes the randomized unbounded-
error two-party communication complexity of a function in terms of the minimum rank of an
associated sign pattern matrix. This motivated some beautiful work in complexity theory on
lower bounds for the minimum rank of a sign pattern matrix (a.k.a. “sign rank”) [AFRS5,
RS10, For01, LMSS07].

7. The best known lower bound on the minimum rank of an explicit n x n sign pattern matrix
is Q(4/n). This result is due to Forster [For0O1], who proved this by means of a new general
lower bound on the minimum rank of a sign pattern matrix in terms of the spectrum of its
associated {+1, —1} matrix.

8. Forster’s lower bound was generalized by Linial, Mendelson, Shraibman and Shechtman [LMSS07].
They studied various complexity measures of sign matrices, and proved relationships between
them. In particular, they proved an upper bound on the minimum rank of a sign pattern
matrix in terms of its margin complexity, a notion that arises in machine learning.

9. A recent new approach to matrix multiplication, due to Cohn and Umans [CU13], is based on
finding tensors with low support rank. The support rank of a zero-nonzero pattern tensor is
the minimum rank amongst all tensors with the given zero-nonzero pattern. Via an example,
they noted that the concept of support rank is already quite intricate for two-dimensional
tensors (i.e., matrices) by giving an example of a zero-nonzero pattern matrix whose minimum
rank differs wildly from the rank of its associated 0-1 matrix.

Our techniques can also be used to show that computing the support rank of a zero-nonzero
matrix is NP hard. This answers a question raised by Umans in a recent talk. In fact, the
NP hardness already appears at support rank 3.

10. The complexity of a similarly themed problem, that of computing the nonnegative rank of a
matrix, was recently studied by Arora, Ge and Moitra [AGKM12, Moil3]. There it was shown
that for any constant r, matrices of non-negative rank < r can be recognized in polynomial
time. This is in sharp contrast to our result for minimum rank of a sign pattern matrix,
where the NP hardness appears already at minimum rank 3.

1.1 Results

We now state our main results on the hardness of computing the minimum rank of a sign pattern
matrix.



Our first (and simpler) main theorem deals with generalized sign pattern matrices.

Theorem 1.1 The following problem is equivalent to the existential first order theory of the reals:
Given a generalized sign pattern matriz S, decide whether minrank(S) < 3. In particular, this
problem is NP hard.

This has the following immediate corollary, which rules out additive O(1) approximations to
the minimum rank of a generalized sign pattern matrix, unless P = NP.

Corollary 1 For every integer k = 1, following problem is equivalent to the existential first order
theory of the reals: Given a generalized sign pattern matriz S and an integer r, distinguish between
the case that minrank(S) < r and the case that minrank(S) > r + k.

In particular, this problem is NP hard.

Our second main theorem concerns sign pattern matrices.

Theorem 1.2 The following problem is NP hard: Given a sign pattern matrix S, decide whether
minrank(S) < 3.

Here we can only show NP hardness. We also do not get the analogous corollary: we do not
even know how to rule out (conditional on P # NP) the existence of a polynomial time algorithm
that computes the minimum rank of a sign pattern matrix within an additive 2.

Finally, we show that computing the minimum rank of a generalized sign pattern matrix is easy
when the minimum rank is < 2.

Theorem 1.3 For every r € {0,1,2}, the following problem can be solved in polynomial time:
Given a generalized sign pattern matriz S, decide whether minrank(S) < r.

Some remarks:

1. Our NP hardness results use a beautiful and highly nontrivial hardness result for a basic prob-
lem in computational geometry: the stretchability of pseudoline arrangements. This problem
(to be defined later) was shown to be NP hard by Shor [Sho91], based on some ingenious pro-
jective geometry constructions. Shor also noted that hardness for the stretchability problem
for pseudoline arrangements could be derived from Mnev’s universality theorem for oriented
matroids [Mne88], by observing that the steps of Mnev’s proof can be executed in polynomial
time.

2. The fact that detecting if minrank(S) < 2 is easy and detecting if minrank(S) < 3 is hard
is analogous to the fact that the statement minrankp(S) < 2 does not depend on the field
F, while the statement minrankp(S) < 3 does depend on the field. In fact, there are some
common themes in our proof: the field-dependence of minrank as proved in [KB07], depends
on a projective geometry construction known as the “von Staudt algebra of throws”; this
same construction appears as a crucial tool in the proof of Mnev’s universality theorem, and
thus plays a role in our hardness result.

Note, however, that for sign pattern matrix S, minrankp(S) is independent of the field. Nev-
ertheless, Theorem 1.2 shows that it is still hard to compute the minimum rank of a sign
pattern matrix. The proof of Theorem 1.2 involves some further ideas beyond what goes into
the proof of Theorem 1.1.



1.2 Proof outline

We now give an overview of the proofs.

Let us work on the real projective plane RP2. A pseudoline is a non-self-intersecting continuous
curve in RP? that intersects the line at infinity in exactly 1 point. A pseudoline arrangement is
a collection of pseudolines such that any two pseudolines in the collection intersect in exactly 1
point. Two pseudoline arrangements are called equivalent if there is a homeomorphism of RPP? which
induces a bijection on the pseudolines in the pseudoline arrangements. A pseudoline arrangement
is called stretchable if it is equivalent to a pseudoline arrangement where each pseudoline is in fact
a straight line in R2.

Our hardness results for computing the minimum rank of sign pattern matrix and generalized
sign pattern matrix are based on the following hardness results for determining stretchability of
pseudoline arrangements:

Theorem 1.4 ([Mne88, Sho91]) The following problem is equivalent to the existential first order
theory of the reals: Given a pseudoline arrangement, decide whether it is stretchable.

A uniform pseudoline arrangement is a pseudoline arrangement where no three pseudolines meet
at a point.

Theorem 1.5 ([Sho91]) The following problem is NP hard: Given a uniform pseudoline arrange-
ment, decide whether it is stretchable.

To prove Theorem 1.1, we give a simple reduction of the stretchability problem for pseudoline ar-
rangements to the problem of determining whether the minimum rank of a generalized sign pattern
matrix is < 3. The main idea is the following: given a collection of points (z1, 1), - ., (Zn,Yn) € R,
and a collection of lines Ly = {a1 X + 1Y +¢1 = 0},..., Ly, = {amX + by, Y + ¢, = 0}, consider
the matrices P, x5 whose row i is (z;,;, 1) and L3y, whose j column is (aj, bj, ¢;). Note that the
matrix A = P - L has rank < 3, and its sign pattern matrix sign(A) precisely captures the relative
position information between the points and the lines: it tells us which points lie on which sides
of each line, and which points lie on which lines. The reverse is also true: given a generalized sign
pattern matrix S, it has minimum rank < 3 if and only if one can realize a set of points and a
set of lines with certain prescribed relative positions (depending on S). Finally, we show how the
stretchability problem for pseudoline arrangements (which is a problem of realizing a set of lines
with prescribed incidence-like properties) can be reduced to the problem of realizing point-line
configurations with prescribed relative positions. This is done using some basic oriented matroid
theory.

To prove Theorem 1.2, we need to end up with a sign pattern matrix without any 0’s. Following
the above ideas, we need to reduce some NP-hard problem to the problem of realizing a point-line
configuration with prescribed relative positions of points and lines, where no point of the configura-
tion lies on any line of the configuration. It turns out that the simple reduction described above for
Theorem 1.1 does not produce such point-line configurations. Instead, we give a slightly more in-
volved reduction which starts from the stretchability problem for uniform pseudoline arrangements,
and uses some properties of their associated oriented matroids. This leads to Theorem 1.2.

We now outline our algorithmic results. We first give a polynomial time algorithm to check
if the minimum rank of a sign pattern matrix is at most 2. Given a m x n sign pattern matrix,
we construct a family of O(n) subsets of [m], and show that this family satisfies a “chain” like
property if and only if the given sign pattern matrix has minimum rank at most 2. Checking the



“chain” property turns out to be in polynomial time. We then extend this result to generalized
sign pattern matrix by reducing the problem for generalized sign pattern matrix to the problem for
sign pattern matrix.

2 Hardness results

Our reduction from the problem of stretchability of pseudoline arrangements to the minimum rank
problem will involve the notion of an oriented matroid. We begin with some preliminaries on
pseudoline arrangements and oriented matroids.

2.1 Preliminaries

We will use some basic properties of oriented matroids. Oriented matroids are abstract combina-
torial objects closely related to matroids. Here we will use an axiomatization of oriented matroids
based on “covectors” (this axiomatization is not related to any of the standard axiomatizations of
matroids). See [RGZ97, BAVT99] for an introduction to the area.

Definition 1 Oriented matroid: An oriented matroid is a pair M = (E, L) where E is a ground
set, and £ < {0, —, +}F, such that L satisfies the axioms (CV0)-(CV4) given in [RGZI7, p. 118].
L is called the set of covectors of M.

Definition 2 Reorientation of a Matroid: Let M = (E,L) be an oriented matroid. The
reorientation of M with respect to set A< E is M’ = (E, L"), such that for each v € L, we have a
corresponding v' € L' with the property that v, = —v; if i € A and v} = v; otherwise.

Definition 3 Isomorphism of Oriented Matroids: Two oriented matroids (E1, L1) and (E2, L2)
are called isomorphic if By = E5 and there is a reorientation (E1, L}) of (Ev, L1) such that £ = Ls.

To every pseudoline arrangement P, we can associate an oriented matroid OM(P) as follows:

(+0+=) (+000)

(= = =)

Figure 1: Pseudoline arrangement and the associated sign patterns of some points. The + side in
the orientation is denoted by blue arrow.

Consider the cell complex obtained by the subdivision of R? by the pseudoline arrangement P.
Each pseudoline partitions R? into two regions; we arbitrarily choose one side to be the + side of



that pseudoline and the other side to be — side of that pseudoline. Let E be the set of pseudolines
in P. For a point p in R?, we now get a sign vector s, € {0, —, +}¥: the fth coordinate of Sp
equals +/ — /0 depending on whether p is on the + side/— side/on the pseudoline /. s, is called
the covector of p (see figure 2.1). We take £ to equal the set of all covectors s, as p varies in R?,
along with the all Os vector. Then M = (E, L) is an oriented matroid, and is called the oriented
matroid associated with P, and is denoted OM(P).

Note the oriented matroid depends on the arbitrary choice of + and — sides of the pseudolines.
The oriented matroid OM (P) is only uniquely defined up to isomorphism.

The covectors s, obtained above can be classified into 3 categories: Co(P), Ci(P) and C2(P),
depending on whether p is in a 0-cell (point), 1-cell (curve segment) or 2-cell (open 2-dimensional
region) of the cell complex cut out by P (note that all p in the same cell have the same covector s,).
Furthermore, given a covector s,, it is easy to determine which C;(P) it belongs to: if the number
of Os in s, is > 2, then it belongs to Cy(P), if the number of 0s in s, equals 1, then it belongs to
Ci(P), and otherwise it belongs to C2(P).

The equivalence between two pseudoline arrangements can be viewed as a purely combinatorial
condition in terms of their oriented matroids. This is given by the easy direction of Folkman-
Lawrence Topological Representation Theorem.

Theorem 2.1 ([BMS99], Topological Representation Theorem) Two pseudoline arrange-
ments are equivalent if and only if their oriented matroids are isomorphic.

Thus, a given pseudoline arrangement P is stretchable if and only if there is a line arrangement
whose oriented matroid can be reoriented to equal the oriented matroid of P.

Representation: One may wonder in what format pseudoline arrangements are represented.
Since we only care about pseudoline arrangements up to equivalence, we need not precisely describe
the pseudolines appearing in the arrangement, but can work with some coarser representation. One
natural candidate is to work with “wiring diagrams” given by polygonal curves. For us, it will be
sufficient to represent a pseudoline arrangement by the oriented matroid associated with it; note
that Theorem 2.1 implies that this data is sufficient to capture equivalence.

For our purposes, it suffices to note that the oriented matroid of the pseudoline arrangement
produced by the Shor’s reductions [Sho91] can be computed in polynomial time. This can be seen
by inspecting the proof.

2.2 Proof of Theorem 1.1

We now give our hardness reduction. Given a pseudoline arrangement, we construct a generalized
sign pattern matrix such that minimum rank of the constructed generalized sign pattern matrix is
at most 3 if and only if the pseudoline arrangement we started with was stretchable.

For any £ < {0,—,+}", let Mat(£) be the generalized sign pattern matrix whose rows corre-
spond to the sign vectors in £ in arbitrary order.

Lemma 2.2 Let P be a pseudoline arrangement. Let OM(P) = (E, L) be its oriented matroid.
Let S be a generalized sign pattern matriz obtained by augmenting a column of all +s to Mat(L).
Then P is stretchable if and only if minrank(S) < 3.



Proof: Let m = |Co(P)| + |C1(P)| +|C2(P)| (the total number of covectors of P), and let n = |E|.
Note that S is a m x (n + 1) generalized sign pattern matrix.

Let us first prove that if the given pseudoline arrangement is stretchable, then minrank(S) < 3.
If the given pseudoline arrangement is stretchable then there is a line arrangement £ such that a
suitable reorientation of the oriented matroid associated with this line arrangement equals OM(P).
Suppose the lines in £ are given by the equations a; X + b;Y +¢; = 0, for j € [n + 1]. Let
(x1,91), - - -, (Zm,Ym) be points in R? whose covectors w.r.t. £ equal all the possible covectors of L.

Now construct matrices Lyx3 and Rsy (,41) as follows. The ith row of L equals (z;,y;,1). The
jth column of R equals (a;, bj,c;). Now consider A = L - R, and note that rank(A) < 3. Note that
sign(A;;) equals +/ — /0 depending on whether (x;,y;) lies on the + side/— side/on the jth line.
Thus the signs of the rows of A equal the covectors of £. We know that there is a reorientation of
OM(P) which equals OM(P); this means that flipping the signs of some rows of A will give us a
matrix A" with sign(A’) = S. Thus S has minimum rank at most 3.

In the other direction, suppose that minrank(S) < 3. Then there exists some matrix A €
R™*(+1) having rank at most 3 and sign(4) = S. By dividing row i of A with Afin1) for all @
can make the last column the all 1s vector. Since the column rank of A is at most 3, there exist
at most three linearly independent vectors such that every column vector of A can be represented
as a linear combination of these vectors. Pick vg = [1,1,1,...1] as one of the vectors and two other
column vectors vy, vo such that all column vectors of A are in the span of vy, v and v3. Now, A can
be written as product of two matrices A = Ly,x3R3y (n+1), Where the columns of L are vy, vz, v3.
Each column (a, b, c) of R gives us the equation of a line aX + bY + ¢ = 0; then the arrangement of
lines given by the first n columns of R has the same set of covectors as P. Hence by Theorem 2.1,
this line arrangement is equivalent to the pseudoline arrangement P, and thus P is stretchable. ®

Proof of Theorem 1.1: Since stretchability of a pseudoline arrangement is equivalent to
existential theory of reals [Sho91], the proof of this theorem follows directly from Lemma 2.2.

2.3 Proof of Theorem 1.2

We now prove hardness for computing the minimum rank of sign pattern matrices, a special case
of generalized sign pattern matrices.

To do this, we will study the covectors of uniform pseudoline arrangements in some more detail.
If the pseudoline arrangement is uniform then |Co(P)| = (2), [C1(P)| = [C2(P)| = 1 + ("31). By
Theorem 2.1, the problem of stretchability of a pseudoline arrangement P can be translated into
finding a line arrangement whose set of covectors equals the set of covectors of P (up to some
sign flipping). But for uniform pseudoline arrangements, we will see that we only need to find a
line arrangement whose set of covectors corresponding to 2-cells equals the set of covectors of P
corresponding to 2-cells (up to some sign flipping).

Lemma 2.3 For uniform pseudoline arrangements Py and Pa, P1 and Py are equivalent if Co(P1) =
Co(P2) (up to reorientation).

Proof: To prove this lemma, we will show - given the covectors in Co of an uniform pseudoline
arrangement, we can uniquely determine the set of covectors Cy and C; associated with the arrange-
ment. Hence by Theorem 2.1, the set of covectors Cs is enough to determine the equivalence class
of a uniform pseudoline arrangement.



Let P be any uniform pseudoline arrangement with n pseudolines. Note that every sign pattern
in C2(’P) has full support.

The idea to construct Co(P) and C;(P) given C2(P) is simple (See figure 2.3): Suppose two sign
patterns differ in only one position then the sign pattern with 0 at that position, keeping other
signs same as one of the sign vector, is in C;(P). Similarly, if there are four sign vectors such that
for a fixed two positions, every pair differs in those two positions, then the sign vector which has 0
at these two positions, keeping other signs same as one of the sign vectors, is in Co(P).

(+++—++)
I3

(+00—++)

(++——++)
(+—+—++)

la

(+———++)

Figure 2: An example of deciding the sign pattern of the 1 (left) and 0 (right) cell complex given
sign patterns of 2 cell complexes.

More formally,

C(’):{ SE{_707+}

Ji, js.t. i #j,8; =s; =0and
Jv,we Cy s.t. v; # wj and vj # w; and vy = wy, = s, Vk # 4, ]

Ci={se{—0,+}"Fist. s;e{—, +}and IveCys.t. v; =0and vj = s5,V] # i}

It is easy to show that Cé and C,1 contain exactly those sign vectors which are present in Cy(P) and
C1(P) respectively. Hence, the set of covectors Ca(P) is enough to determine the oriented matroid
associated with uniform pseudoline arrangement. [ |

Lemma 2.4 Let P be a uniform pseudoline arrangement. Then P is stretchable if and only if
minrank(S) < 3, where S = Mat(C2(P))). Furthermore S is a sign pattern matriz.

Proof: The proof is along the same line as the proof of lemma 2.2. Let n be the number of lines
inP,m=1+ (";1) Note that S is an m x n sign pattern matrix with no 0 (which follows from
the fact that covectors in C3(P) have no 0s).

We first prove that if the given pseudoline arrangement is stretchable, then minrank(Mat(S)) <
3. If the given pseudoline arrangement is stretchable then there is a line arrangement £ such that
up to reorientation, Co(L) = C2(P) (this is where we use Lemma 2.3). From this line arrangement,
we can construct a matrix L,,x3 and R3x, as before, where the rows of L now correspond to points
in the 2-cells of the cell complex given by £. Consider A = L - R, and note that rank(A) < 3. Since



Co(L) equals C2(P) up to reorientation, and the signs of the rows of A precisely equals Co(L), we
can flip the sign of some rows of A to get a matrix A" with sign(A’) = S and rank(A4’) < 3. Thus
minrank(S) < 3.

In the other direction, suppose minrank(Mat(S)) < 3. Without loss of generality, assume that
the first column of S is all +’s (by flipping the signs of some rows). Now if minrank(Mat(5)) < 3
then there exists some matrix A € R™*" having rank at most 3 and sign(4) = Mat(S). By
dividing every row i of A with A(; ) we get the first column to equal the [1,1,1,...1] vector (since
all entries in A are non-zero). Since the column rank of A is at most 3, there exists 3 vectors such
that every column vector of A can be represented as a linear combination of these vectors. Pick
vy = [1,1,1,...1] as one of the vector and two other column vectors vi,vs such that all column
vectors of A are in the span of v1,v9 and v3. Write A as A = L,,x3R3xn, where columns of L are
v1, V2, v3. If we consider each column (a, b, ¢) of R as an equation of line ax + by + ¢ = 0 then the set
of covectors of 2-cell complexes formed by the n lines exactly equals C2(P). Hence by Lemma 2.3,
this lines arrangement is equivalent to the pseudoline arrangement P. Thus P is stretchable. ®

Proof of Theorem 1.2: Proof of this theorem follows from the NP hardness of stretchability
of uniform pseudoline arrangement and Lemma 2.4.

3 A polynomial time algorithm for deciding if minrank < 2

In this section, we give a polynomial time algorithm to detect if the minimum rank of a given sign
pattern matrix is < 2.

We first give a simple combinatorial condition characterizing the sign pattern matricess with
minimum rank < 2. It turns out that this combinatorial condition can be easily checked in poly-
nomial time. Next, we show how to reduce the problem for general sign pattern matrices to
the problem for sign pattern matrices (this reduction only works for deciding minrank < 2, not
minrank < r for a general ).

3.1 Sign pattern matrices

We say a sign vector s is contained in subspace V' if there exists a vector v € V such that sign(v) = s.
We say the subspace V € R™ realizes a sign pattern matrix .S if all the columns of S are contained
in V. Note that minrank(S) equals the smallest dimension of a subspace V' < R™ that realizes S.

Our algorithm will be based on looking at certain set systems associated with sign pattern
matrices. For sign vector s of length m, let T (s) denotes the set of i € [m] such that s; = —.
Given an m x nsign pattern matrix S, define T'(S) := {T7(¢;) : 1 < i < n}, where ¢; is the ith
column of matrix S.

As a warmup, we start with a bound on the maximum number of distinct columns that a sign
pattern matrix of small minrank can have. This follows from the next lemma, which gives an upper
bound on the number of distinct sign patterns that are contained in a subspace of dimension d in
R™ (we will eventually only use the d = 2 case of this).

Observation 1 Let V' be any subspace of dimension d in R™. Then number s(m,d) of different
sign patterns (with no 0) occurring in V is at most

sma<2[("5) - (77 (7)o (G2))]
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Proof: Suppose not. Let § be the set of all sign patterns contained in V; we have |§| > s(m, d).
Let § be the subset of § whose last coordinate equals +; note that |§F'| = |§|/2. Let T be the
family of sets {T~(c) | ¢ € §'}, and note that |T| = |§F|.

By the Sauer-Shelah Lemma [Sau72, She72], there exists a subset of coordinates U < [m —
1],|U| = d such that T|y = 2Y. Let U’ = U U {m}. Then §|p» = {+, —}9*!. But this cannot be,
since there is some vector w € R™ supported on coordinates in U’ which is orthogonal to all vectors
in V, and therefore sign(w)|y ¢ §|v-. [

Corollary 2 A 2-dimensional subspace in R™ can have at most 2m distinct sign patterns with no
0.

We now come to the combinatorial property that will characterize when minrank < 2.

Definition 4 2-Chain Property : Let T < 2™ with |T| = 2k for some k > 0. We say that T
has the 2-chain property there exist A,B < T with (i) Auv B =T, (i) |A| = |B| = k+ 1, and (iii)
there exist orderings of elements of A and B, A = {A1, Aa, ..., Axs1} and B = {B1,Ba, ..., Bri1},
such that

e Aj=¢

o Api1=[m]

o A, Aipq, foralll1 <i<k
e Bi=A;, foralll<i<k+1

Ex: Consider T < 2B defined as T = {¢,{1,2},{1,2,3},{3}}, then T has a 2-chain property by
setting A1 = ¢, A2 = {1,2} and Az = {1,2,3}.

Definition 5 Complement of a sign vector : Let s be any sign vector in {—,0,+}", comple-
ment of s is § such that 5; = —s;,1 < i < n.

Lemma 3.1 If S is an m x n sign pattern matriz, such that:
1. all columns are distinct,
2. some column of S is the column of all +s,

3. for every i € [n] there exists j € [n] such that ¢; = ¢; (where ¢; and c; are the sign vectors
corresponding to columns i and j respectively).

Then minrank(S) < 2 if and only if T'(S) has the 2-chain property.

Proof:  First suppose minrank(S) < 2. If minrank(S) = 1, then T'(S) = {¢,[m]}, and so T'(S)
trivially has the 2-chain property. If minrank(S) = 2. Then we can assume without loss of generality
that there is a 2-dimensional space V which realizes S of the following special form: V' = span{X, Y},
where X = [1,1,...,1] and Y = [y1,¥2,...,Ym], where 0 < y; < 1 for all i € [m]. The only sign
patterns appearing in the subspace spanned by X and Y are F} = {sign(Y — eX) | e € [0,1]} and
Fy={5|se Fi}. When ¢ =0, T (sign(Y)) = ¢. Also, T~ (sign(¥Y —e1Y)) € T (sign(Y — e2Y"))
for all €1, €9 where e > €;. Finally, T~ (Y — X) = [m]. This shows that the set system F defined
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by F' = {T~(v) | ve V} has the 2-chain property. Since T'(S) is a subset of F' that is closed under
complement (by condition 2), T'(S) also has the 2-chain property.

Now suppose T'(S) has the 2-chain property. We will construct vectors X = [z1,22,...,Zm]
and Y = [y1,92,...,Ym]| in R™ such that V' = span{X,Y} realizes S. Set X = [1,1,...,1]. Since
T'(S) has the 2-chain property, there exist A, B < T'(S) of size § + 1 as required by the definition
of the 2-chain property. Let (A1, Ag, ... ,A% +1) be the ordering of elements in A such that A; = ¢,
Anyq = [m] and A; = Ajyq , forall 1 <i< 3. Set y; = % if j€ A; but j ¢ A;_1. We now show
that V' = span{X, Y} realizes S (and hence minrank(S) = 2). Let ¢ be a sign vector corresponding
to some column of S. Either T~ (c) = A; or T~ (¢) = A; for some i € [§ + 1]. If T~ (c) = A; then
sign(X — (i + 3)Y) = c otherwise sign((i + )Y — X) = c¢. Hence the sign vector c is contained in
V. This completes the proof. [ |

Lemma 3.2 Given S < 2™ we can check in polynomial time if S satisfies the 2-chain property
or not.

Proof: The conditions that ¢, [m] € S, |S| being even, and that for all U € S, [m]\U € S are easy
to check. Suppose S satisfies all these properties. Let |S| = 2k for some k > 0. We will try to find
two chains A = (Aj, Ag, ..., Ag11), B = (B1,Ba,...,Bgy1) of size k + 1 each such that Au B =S
and B; = A;, for all 1 <i < k + 1. Since we assumed that for all s € 9,5 e S, the construction of
chain A will give us a chain B. We start with A; = ¢. For i = 2 to k + 1, we will set A; to be the
unique minimum sized set in S\{41,..., A;_1} that contains A;_;. We repeat this process until we
get (Aq,...,Ags1), and we verify that Ag 1 = [m].

There are two ways this process may fail. Firstly, it could be that during iteration i, there are
two minimum sized subsets in S\{A1,..., 4;,_1}. In this case if we set 4; to any one of them, then
there is no place for the other one in either chain A or chain B, and hence S does not satisfy the
2-chain property. The other case is when the process sets A; = [n] for some j < k+ 1. In this case,
the set (S\{A1,...,4;}) U {Bk+1, Bk, ..., By—j+2} is non empty, and this implies that S does not
have the 2-chain property. [ ]

Theorem 3.3 There is a polynomial time algorithm to check if a given sign pattern matriz S
satisfies minrank(S) < 2.

Proof: Since the minimum rank is invariant under flipping signs of a row, we can convert
S to a sign pattern matrix S’ whose first columns is all +s. For every column ¢ of S, if the
complement ¢ is not already a column of S’, we include it as a column into S’. It is clear that
minrank(S”) = minrank(S). The theorem follows from Lemma 3.1 and Lemma 3.2. ]

3.2 Generalized sign pattern matrices

We now show how to reduce the problem of detecting if minrank < 2 for generalized sign pattern
matrix to the same problem for sign pattern matrix. This follows immediately from the following
transformation.

Theorem 3.4 There is a polynomial time algorithm, which when given as input a generalized sign
pattern matriz S, either declares that minrank(S) > 2, or else outputs a sign pattern matriz S" such
that minrank(S”) = minrank(S).

12



Proof: The algorithm will work by applying a sequence of transformations to S that will gradually
reduce the number of 0s in S. None of these transformations change minrank(S). However, it may
be that one of the transformations of the algorithm fails, in which case we will be able to certify
that minrank(S) > 2.

Step 1: First remove every all-0 row and all-0 column from S.

Step 2: Now suppose S is an m x n matrices. If S has 0, then we may permute columns and
assume that the first column of S has at least one 0. Now by permuting rows and possibly flipping
signs of rows, we may assume that the first column of S is a sequence of k Os followed by a sequence
of m — k, +s, where 0 < k < m.

Now if minrank(S) < 2, there must be an A such that rank(A) < 2 and sign(A) = S. By scaling
the rows of A, we may assume that the first column of A is the vector X = (0,0,...,0,+1,+1,...,+1),
where there are k Os and m — k +1s.

Since the first row is not identically 0, we can take another column Y of A whose first coordinate
is nonzero. Note that X and Y must be linearly independent. Thus, every column of A is of the
form aX + Y. In particular, since A has no all-0 rows, all the first £ coordinates of ¥ must be
nonzero.

Step 3: Pick a column of S whose first coordinate is nonzero (i.e. either + or —); if all the first
k coordinates of this column are not nonzero, declare that minrank(S) > 2. Otherwise, flip signs of
the first a rows of .S so that the first k coordinates of that column are all +.

Now by scaling the first k rows of A, we may assume that the first k& coordinates of Y equal +1.

Suppose Y = (1,1,..., 1, yg+1,---,Ym). Suppose some column i € [n] of S has at least two Os
(if not, goto Step 5). Let U < [m] be the indices of all the 0 coordinates of that column. Note that
we must have either U = [k] or U < [m]\[k]. In either case, we have that all the coordinates of Y’
indexed by U must be equal. Thus all the rows of A indexed by U are identical to one another.

Step 4: Pick a column of S with at least two Os, and let U < [m] be the indices of the 0
coordinates. If U # [k] and U & [m]\[k], then declare that minrank(S) > 2. Otherwise, if all the
rows with indices in U are not identical, declare that minrank(S) > 2. Otherwise, delete all but one
of these rows from S. Repeat this until S has no column with more than one 0.

Our algorithm therefore may check if all the rows of S indexed by U are identical to one another,
and if so, removes all but one of them. Otherwise it declares that minrank(S) > 2. In the analysis,
we also perform this duplicate removal on A, which clearly preserves the rank.

Step 5: Now, take any column C' of S with exactly one 0. Replace C' with two columns C;
and C_, with C'y being a copy of C' with the 0 replaced by +, and C_ being a copy of C with the
0 replaced by —. Repeat this until S has no Os.

We need to show that this operation does not change minrank(S). In one direction, if V' is a
subspace of R of dimension d such that some two elements p,,p_ of V have sign patterns C,,
C_ respectively, then there must be an element of V' with sign pattern C' (by considering the line
between py and p_). In the other direction, if V' is a subspace of R of dimension d which does not
have any identically 0 coordinates, and p € V' has sign pattern C', then infinitesimal perturbations
of p within V will have sign patterns Cy and C_.

Thus, if we had not already declared that minrank(S) > 2, we get a sign pattern matrix S’ with
minrank(S) = minrank(S5"). ]
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4 Open problems

We conclude with some interesting open problems on minimum ranks of sign pattern matrices.

1. Can we compute the minimum rank of a sign pattern matrices up to an O(1) additive error?
We only rule out such O(1) additive error polynomial time algorithms for computing the
minimum rank of a generalized sign pattern matrix (unless P = NP).

2. Is it possible to approximate the minimum rank of a generalized sign pattern matrix within
some constant factor? We showed that this constant factor must be > 4/3.

Very recently, Alon, Moran and Yehudayoff [AMY14] gave an O(n/logn)-factor approxima-
tion algorithm for the minimum rank of a sign pattern matrix.

3. How large can the minimum rank of a n x n sign pattern matrix be? We know it is O(n),
but the precise constant in front of the n is not known.

4. Can we construct explicit n x n sign pattern matrices whose minimum rank is w(y/n)?
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