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Abstract

In this paper, we prove new relations between the bias of multilinear forms, the correlation
between multilinear forms and lower degree polynomials, and the rank of tensors over F2 =
{0, 1}. We show the following results for multilinear forms and tensors.

Correlation bounds. We show that a random d-linear form has exponentially low corre-
lation with low-degree polynomials. More precisely, for d � 2o(k), we show that a random

d-linear form f (X1, X2, . . . , Xd) :
(

Fk
2

)d
→ F2 has correlation 2−k(1−o(1)) with any polynomial

of degree at most d/2.
This result is proved by giving near-optimal bounds on the bias of a random d-linear form,

which is in turn proved by giving near-optimal bounds on the probability that a sum of t
random d-dimensional rank-1 tensors is identically zero.

Tensor-rank vs Bias. We show that if a d-dimensional tensor has small rank, then the bias
of the associated d-linear form is large. More precisely, given any d-dimensional tensor

T : [k]× . . . [k]︸ ︷︷ ︸
d times

→ F2

of rank at most t, the bias of the associated d-linear form

fT(X1, . . . , Xd) := ∑
(i1,...,id)∈[k]d

T(i1, i2, . . . , id)X1,i1 · X1,i2 · · ·Xd,id

is at least
(

1− 1
2d−1

)t
.

The above bias vs tensor-rank connection suggests a natural approach to proving nontrivial
tensor-rank lower bounds for d = 3. In particular, we use this approach to give a new proof
that the finite field multiplication tensor has tensor rank at least 3.52k, which is the best known
rank lower bound for any explicit tensor in three dimensions over F2.
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1 Introduction

This work is motivated by two fundamental questions regarding “explicit constructions” in com-
plexity theory: finding functions uncorrelated with low degree polynomials, and finding tensors
with high tensor rank.

Functions uncorrelated with low degree polynomials. The first question is that of finding an
explicit function uncorrelated with low degree polynomials. More concretely, we seek functions
f : Fn

2 → F2 such that for every polynomial P(X1, . . . , Xn) ∈ F2[X1, . . . , Xn] of degree at most `
(assume ` ≈ n0.1 say),

Pr
x∈Fn

2

[ f (x) = P(x)] ≤ 1
2
+ εn.

It is well known (and easy to prove) that a random function f has this property with εn super-
polynomially small (and even exponentially small); the challenge is to find an explicit function
f .

A solution to this problem will have immediate applications in Boolean circuit complexity. It
will give hard-on-average problems for AC0(⊕), and via the Nisan-Wigderson hardness vs. ran-
domness technique [NW94], it will give pseudorandom generators against AC0(⊕) (improving
upon analogous results for AC0 from the late 1980s). The original motivation for an explicit func-
tion with small εn came from the seminal work of Razborov [Raz87] and Smolensky [Smo87] who
showed that any function computable by a sub-exponential sized AC0(⊕) circuit satisfies εn =
Ω(1) and furthermore that the MOD3 has εn = O(1). The Nisan-Wigderson paradigm [NW94]
of pseudorandom generator construction requires explicit functions with exponentially small εn.
The current best known constructions of explicit functions [Raz87, Smo87, BK12, VW08] that can-
not be approximated by low-degree polynomials come in two flavors, (a) polynomially small εn
(in fact, O(1/

√
n)) for large degree bounds (d as large as n0.1) or (b) exponentially small εn for

small degree bounds (d << log n). However, we do not know of any explicit function f that
exhibits exponentially small εn against low-degree polynomials of polynomially large (or even
super-logarithmically large) degree polynomials. For a nice survey on correlation with low de-
gree polynomials, see [Vio09].

Tensors with high rank. The second question is that of finding an explicit tensor of high tensor
rank. Tensors are a high-dimensional generalization of (2-dimensional) matrices. Just as a matrix
of size k over a field F is given by a map M : [k]2 → F, a tensor T of dimension d and size
k is given by a map T : [k]d → F. A tensor T is said to be of rank one if there exist vectors
u1, u2, . . . , ud ∈ Fk

2 such that T = u1 ⊗ u2 ⊗ · · · ⊗ ud or equivalently, for all (i1, . . . , id) ∈ [k]d, we
have T(i1, . . . , id) = u1,i1 · u2,i2 · · · ud,id . A tensor T is said to be of tensor-rank at most t if it can be
written as the sum of t rank one tensors. We seek tensors with tensor-rank as high as possible.

It is well known (and easy to prove) that a random tensor T has tensor rank t as large as
Ω(kd−1/d). The challenge is to find an explicit such T with tensor rank larger than kb

d
2 c. A

substantial improvement on this lower bound for any explicit tensor will have immediate ap-
plications in arithmetic circuit complexity; for d = 3, it will give improved arithmetic circuit
lower bounds [Str73], and for large d it will give superpolynomial arithmetic formula lower
bounds [Raz13, CKSV16]. For general odd d, a lower bound of 2kbd/2c + k−O(d log k) was shown
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for an explicit tensor by Alexeev et al. [AFT11], while for even d, no lower bounds better than the
trivial bound kb

d
2 c are known for any explicit tensor.

Unlike matrix rank, we do not have a good understanding of tensor-rank even for 3-
dimensional tensors. For instance, it is known that for a given 3-dimensional tensor T over the
rationals, the problem of deciding if the rank of T is at most k is NP-hard [Hås90]. In the case
of dimension three, the tensor-rank of very specific tensors like the matrix multiplication ten-
sor [Blä99, Shp03], the finite field multiplication tensor [CC88, STV92] and the polynomial mul-
tiplication tensor [BD80, Kam05] has been studied in prior works. For this case, the current best
lower bound known for any explicit tensor over F2 is a lower bound of 3.52k for the finite field
multiplication tensor due to Chudnovsky and Chudnovsky [CC88, STV92], which builds on the
lower bound result of Brown and Dobkin [BD80] for the polynomial multiplication tensor. For
general fields, the best known lower bound for any explicit tensor is 2.5k − o(k) for the matrix
multiplication tensor due to Bläser [Blä99].

Also relevant to this discussion is a recent result of Effremenko et al. [EGOW18], who showed
that a fairly general class of lower bound techniques called rank methods are not strong enough to
give lower bounds on tensor rank stronger than 2d · kbd/2c. In a nutshell, not only can we not prove
good tensor rank lower bounds, we do not even have techniques, which ‘in principle’ could be
useful for such lower bounds!

1.1 Our results

We make contributions to both the above questions by studying multilinear forms and their bias.
A d-linear form is a map f : (Fk

2)
d → F2 which is linear in each of its arguments. The bias of a

d-linear form is defined as follows.

bias( f ) :=
∣∣∣Ex1,...,xd∈Fk

2
[(−1) f (x1,...,xk)]

∣∣∣ .

This measures the difference between the probability of output 1 and output 0. Similarly, the
correlation of a d-linear form f with another function g is defined as Corr( f , g) := bias( f − g),
which measures the difference between the probabilities (on a random input) that f and g agree
and disagree.

A d-linear form f can naturally be viewed as a polynomial of degree d in n = kd variables. We
can then ask, for some ` � d, is there a d-linear form f such that the correlation of f with every
degree ` polynomial in F2[X1, . . . , Xn] is small? Knowing the existence of a d-linear f that achieves
this small correlation property gives a significantly reduced search space for finding an explicit f
with small correlation with lower degree polynomials. Our first result gives a positive answer to
this question for a large range of ` and d.

Theorem A (informal). Let d � o(n/logn) and let k = n
d . Let ` < d/2. Then with high probability,

for a uniformly random d-linear form f : (Fk
2)

d → F2, we have that for all polynomial P(X1, . . . , Xn) ∈
F2[X1, . . . , Xn] of degree at most `:

Corr( f , P) ≤ 2−k(1−o(1)) = 2−
n
d (1−o(1)).

Moreover, for every d-linear form, there is a degree 0 polynomial P (namely the constant 0 polynomial)
such that

Corr( f , P) ≥ Ω(2−k).
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For d small enough (Õ(log n)), the above theorem actually holds with ` = d− 1.
An important step towards proving Theorem A is a precise understanding of the distribution

of the bias of a random d-linear form. Along the way, we give tight upper bounds on the probabil-
ity that the sum of t random rank-1 d-dimensional tensors equals 0.

Previously, a beautiful result of Ben-Eliezer, Lovett and Hod [BHL12] showed that for all d <
αn, there are polynomials f (X1, . . . , Xn) of degree d whose correlation with polynomials of degree
` = d − 1 is 2−Ω(n/d). The results are incomparable; the f in [BHL12] need not come from a d-
linear form, and for this more general setting the bound 2−Ω(n/d) might not be tight, but on the
positive side [BHL12] can handle larger d while proving correlation bounds against polynomials
with degree as large as d− 1.

A d-linear form f can also be naturally viewed as a d-dimensional tensor. Indeed, f can be
completely specified by the tensor T of values f (ei1 , ei2 , . . . , eid), as the ij vary in [k]. We can then
ask, are there natural properties of the d-linear form f which would imply that the tensor rank of
T is high?

We show that having low bias, which is a simple measure of pseudorandomness for d-linear
forms, already implies something nontrivial about the tensor rank. We prove a lower bound on
the tensor rank in terms of the bias of the form.

Theorem B. Let f : (Fk
2)

d → F2 be a d-linear form. Let T be its associated tensor, and let t be the rank of
T. Then

bias( f ) ≥
(

1− 1
2d−1

)t

.

In particular, if bias( f ) = 2−(1−o(1))k, then

t ≥ k · log2
2d−1

2d−1 − 1
.

Moreover, for every t there is a tensor T with tensor rank t such that the following is true.

bias( f ) ≤
(

1− 1
2d−1

)t

+
d
2k .

This lower bound on tensor rank in terms of bias is almost optimal for any fixed d. It implies
that any explicit d-linear form with low bias (such d-linear forms are easy to construct) automati-
cally must have tensor rank (1 + Ω(1)) · k. Purely from the point of view of proving tensor rank
lower bounds for explicit tensors, these results are only interesting in the case of d = 3 (for larger
d the implied tensor rank lower bounds fail to beat trivial explicit tensor rank lower bounds).

For d = 3, this gives a natural and clean route to proving nontrivial tensor rank lower bounds
for explicit tensors. In particular, trilinear forms with nearly minimal bias of of 2−(1−o(1))k must
have tensor rank at least 2.409k (which happens to be tight). A finer analysis of our arguments
shows that trilinear forms with exactly minimal bias of ≈ 2 · 2−k, such as the finite field multipli-
cation tensor, have tensor rank ≥ 3.52k, thus matching the best known explicit tensor rank lower
bound for 3-dimensional tensors [BD80, CC88, STV92]. It also immediately implies that the matrix
multiplication tensor has tensor rank ≥ 1.8k, which is nontrivial (but still far from the best known
bound of 3k [Shp03, Blä99]).
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1.2 Methods

Underlying our main results, Theorem A and Theorem B, are two related combinatorial bounds
involving rank-t d-linear forms. We now state these bounds for the special case of d = 3. For
i ∈ [t], let xi, yi, zi ∈ Fk

2. Let Pi(u, v, w) be the trilinear form defined as

Pi(u, v, w) = 〈u, xi〉 · 〈v, yi〉 · 〈w, zi〉.

Now, consider the trilinear form P(u, v, w) given by

P(u, v, w) =
t

∑
i=1

Pi(u, v, w).

Then, we have the following.

1. If xi, yi, zi are picked uniformly at random from Fk
2, then the probability that P is identically

0 is very small. Concretely,
Pr

xi ,yi ,zi
[P ≡ 0]

is about 2−kt, provided t� k2. This bound is essentially optimal.

2. For arbitrary xi, yi, zi, the bias of P is large. Concretely,

min
xi ,yi ,zi

[bias(P)] ≥ (3/4)t.

This bound is also essentially optimal.

We now give an outline of the proofs of Theorem A and Theorem B.
The proof of Theorem A follows the high-level outline of [BHL12]. We first use the method of

moments to show that for a fixed n-variate polynomial P of degree `, the correlation of a random
d-linear f with P is small with extremely high probability. Then, by a union bound over all P, we
conclude that a random f is uncorrelated with all P with quite high probability.

Implementing this approach gives rise to some natural and interesting questions about rank-1
tensors. How many rank-1 tensors can lie in a given low dimensional linear space of tensors?
Given a collection of t random rank-1 tensors, what is the probability that the dimension of the
space spanned by them is small? What is the probability that the sum of t random rank-1 tensors
equals 0? We investigate these questions using linear-algebraic ideas, and obtain near-optimal
answers for all of them.

For example, the d = 3 case requires us to study the probability that

t

∑
i=1

xi ⊗ yi ⊗ zi = 0.

By some simple manipulations, this reduces to bounding the probability that the linear space of
matrices

span{xi ⊗ yi : i ∈ [t]}
has dimension ≤ t − r. We bound this by studying the probability that xi ⊗ yi lies in the linear
space

span{xj ⊗ yj : j ∈ [i− 1]}.
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This final probability is bounded using the following general theorem.

Lemma. For any linear space U ⊆ Fk2

2 of dimension u � k2, the probability that x⊗ y ∈ U is at most
Õ
(

2u/k

2k

)
.

The proof of this lemma is hands on, and uses basic linear algebra and some elementary ana-
lytic inequalities. The key is to take an echelon form basis for U. We use this basis to understand
which x̃ ∈ Fk

2 are “important”; i.e., they have the property that x̃⊗ y ∈ U with noticeable proba-
bility for a random y.

The above lemma is essentially tight: with U = V ⊗Fk
2 and Fk

2 ⊗V being tight examples. The
sets of the important x̃ in these two examples look very different. Because of this, our final proof
involves proving tight upper bounds on an analytic maximization problem that has multiple very
different global maxima.

For Theorem B, which gives a relationship between tensor rank and bias, the proof proceeds in
the contrapositive. We show that any d-linear form whose underlying tensor has low rank must
have high bias. Let us illustrate the underlying ideas in the case of d = 3. Here, we are given the
3-linear form P, defined as

P(u, v, w) =
t

∑
i=1
〈xi, u〉 · 〈yi, v〉 · 〈zi, w〉.

We want to show that this has high bias if t is small. The key claim that we show is the following.

Lemma. Let y1, . . . , yt, z1, . . . , zt ∈ Ft
2. For at least (3/4)t fraction of the pairs (v, w) ∈ Ft

2, we have
that for all i ∈ [t]:

〈v, yi〉 · 〈w, zi〉 = 0.

For any fixed i, the set of (v, w) satisfying the above is the union of two codimension 1 hyper-
planes in F2t

2 , and thus a random (v, w) satisfies it with probability 3/4. The above lemma shows
that the probability of all these events happening together is at least as large as it would have been
had they been independent.

2 Preliminaries

Unless otherwise stated, we always work over the field F2. We use capital X, Y, Z etc. to denote
formal variables or sets of formal variables, and small letters x, y, z to denote instantiations of these
formal variables.

For integers n, d ≥ 0, denote by Poly(n, d) the set of all degree ≤ d multilinear polynomi-
als in F2[X], where X = {X1, ..., Xn} is a variable set. Note that every f ∈ Poly(n, d) naturally
corresponds to a unique map f : Fn

2 → F2.

2.1 Bias and Correlation

Two fundamental notions used in this paper are those of bias and correlation, which we now
define.
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Definition 2.1 (Bias). Bias of a function f : Fn
2 → {0, 1} is defined as

bias( f ) :=
∣∣∣Ex∈Fn

2
(−1) f (x)

∣∣∣ .

The bias of an F2-valued function f : Fn
2 → F2 is defined as bias( f ) := bias(ι( f )), where ι is the standard

map from F2 to {0, 1}.

Definition 2.2 (Correlation). We define the correlation between two functions f , g : Fn
2 → F2, by

Corr( f , g) := bias( f − g) .

Given a function f : Fn
2 → F2, we will be interested in its maximum correlation with low

degree polynomials. Towards this we define

Corr( f , d) := max
g∈Poly(n,d)

Corr( f , g) .

More generally, given a class C of functions, we define

Corr( f , C) := max
g∈C

Corr( f , g) .

2.2 Tensors and d-linear forms

Tensors are generalizations of matrices to higher dimensions.

Definition 2.3 (Tensors and Tensor rank). Let k and d be natural numbers. A d dimensional tensor
T of size k over a field F is a map T : [k]d → F. T is said to be of rank one if there exist d vectors
u1, u2, . . . , ud : [k] → F such that for every (i1, i2, . . . , id) ∈ [k]d, T(i1, i2, . . . , id) = ∏d

j=1 uj(ij). The
rank of T is the minimum t such that T can be written as a sum of t rank one tensors.

Every matrix can be naturally associated with a bilinear polynomial, and in some cases, one
can study the properties of this bilinear polynomial as a proxy of studying various properties of
the matrix itself. This paradigm also generalizes to tensors, as the following definition indicates.

Definition 2.4 (Tensors as Multilinear Forms). Let T : [k]d → F be a d dimensional tensor. Then,
the set-multilinear polynomial associated with T is the polynomial fT in variables

{
Xi,j : i ∈ [d], j ∈ [k]

}
over F defined as follows.

fT(X1,1, X1,2, . . . , Xd,k) = ∑
(i1,i2,...,id)∈[k]d

T(i1, i2, . . . , id) ·
d

∏
j=1

Xj,ij .

Given the above association between d-dimensional tensors and d-linear forms, we will use
the terms tensor and d-linear form interchangeably.

2.3 Some explicit tensors

We now define some explicit tensors which we use at various places in this paper. We start with
the trace function.
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2.3.1 Trace tensor

Definition 2.5. Trace : F2k → F2 is the F2-linear map defined as follows.

Trace(α) = α + α2 + . . . + α2k−1
.

The Trace map will be useful for us as we define the candidate hard tensor for our lower
bounds.

Definition 2.6. Let Tr : Fk×k×k
2 → F2 be the function defined as follows.

Tr(X, Y, Z) := Trace(XYZ),

where XYZ denotes multiplication over the larger field F2k when X = (X1, X2, . . . , Xk), Y =
(Y1, Y2, . . . , Yk), Z = (Z1, Z2, . . . Zk) are viewed as encodings of elements in F2k .

Since Trace is an F2-linear map, the function Tr(X, Y, Z) can be viewed as a 3-linear polyno-
mial in the variables X = (X1, X2, . . . , Xk), Y = (Y1, Y2, . . . , Yk), Z = (Z1, Z2, . . . Zk). For the rest
of this paper, when we say Tr(X, Y, Z), we refer to this natural 3-linear polynomial and the three
dimensional tensor associated with it. Up to a change of basis, this is the finite field multiplica-
tion tensor, which was analyzed by Chudnovsky-Chudnovsky [CC88] and Shparlinksi-Tsfasman-
Vladut [STV92]. It is also worth noting that these papers also proved a surprising and beautiful
O(k) upper bound on the tensor rank of this tensor.

2.3.2 Matrix multiplication tensor

Definition 2.7. The tensor corresponding to the product of two n× n matrices is defined as

Mn(X, Y, Z) =
n

∑
i=1

n

∑
j=1

n

∑
k=1

Xi,jYj,kZi,k .

Here, X =
{

Xi,j : i, j ∈ [n]
}

, Y =
{

Yi,j : i, j ∈ [n]
}

, Z =
{

Zi,j : i, j ∈ [n]
}

.

Note that Mn(X, Y, Z) is the trace of the matrix product X · Y · ZT. In other words,
Mn(X, Y, ZT) = Trace(X · Y · Z). Note this is the matrix trace and is different from the trace
function considered in the previous section where we viewed X, Y, Z as elements of the large
field.

3 Correlation of random d-linear forms

In this section, we study the correlation of random d-linear forms with lower degree polynomials.
Our main result in this section is the following theorem, which states that a random d-linear form
is uncorrelated with degree ` polynomials under certain conditions.

Theorem 3.1. Let `, d, n be integers such that d | n, d = o( n
log n ) and ` < d/2. Set k = n/d.

Pick a uniformly random d-linear form f : (Fk
2)

d → F2. Then, with probability 1− o(1), f has the
following property. For all polynomials P(X1, . . . , Xn) ∈ F2[X1, . . . , Xn] with degree at most `, we have,

Corr( f , P) < 2−(1−o(1))n/d .
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Along the way, we develop several tools to understand the bias of random d-linear forms. For
example, we show that a random d-linear form is unbiased with extremely high probability.

Theorem 3.2. Let ε > 0 be fixed. Let d, k be integers with d < 2εk/5, and consider a uniformly random
d-linear form f : (Fk

2)
d → F2. Then,

Pr[bias( f ) ≥ 2−(1−ε)k] ≤ 2−Ω(ε2kd) .

Remark 3.3. Note that any d-linear form f (X1, . . . , Xd) vanishes if any one of the block of variables
X1, . . . , Xd is zero. Hence, the bias of any d-linear form (or equivalently its correlation with the
constant 0 polynomial) is at least 2−k = 2−n/d. Theorem 3.2 states that it is extremely unlikely
for a random d-linear form to have even slightly more bias while Theorem 3.1 states that it is
extremely unlikely for a random d-linear form to have slightly better correlation with any degree
` polynomial.

The key ingredient in the proofs of the above theorems is the following theorem on the distri-
bution of the sum of random rank-1 tensors.

Theorem 3.4. Let ε > 0 be a constant. Let d, k, t be integers with d < 2εk/5, and t < ε
5 kd−1. Let

{x(i,j)}i∈[t],j∈[d] be picked independently and uniformly distributed in Fk
2.Then,

Pr

 t

∑
i=1

d⊗
j=1

x(i,j) = 0

 ≤ 2−(1−ε/2)·kt.

Remark 3.5. If any block of vectors (say wlog. {x(i,1)}i∈[t], the first block of vectors) are all 0 (this
happens with probability 2−kt), then the d-dimensional linear form ∑t

i=1
⊗d

j=1 x(i,j) = 0. The above
theorem states that the probability of the d-linear form vanishing is not significantly larger.

In turn, the proof of the above theorem is based on the following lemma, which gives an upper
bound on the probability that a random rank-1 tensor lies in a fixed low dimensional subspace.

Lemma 3.6. Let k, d be integers and U be a subspace of (Fk
2)
⊗d of dimension u. Let x1, . . . , xd ∈ Fk

2 be
picked independently and uniformly at random, and let T = ⊗d

i=1xi. Then,

Pr[T ∈ U] ≤ d
2k +

2u/kd−1

2k .

Remark 3.7. Let U = V ⊗ (Fk
2)
⊗(d−1) where V is a u/kd−1-dimensional subspace of Fk

2. Note,
dim(U) = u. Clearly, Pr[⊗d

i=1xi ∈ U] = Pr[x1 ∈ V] = 2u/kd−1
/2k. The above lemma states that the

probability is not significantly larger than this for any other U.

In the next subsection, we show how Theorem 3.1 and Theorem 3.2 follow from Theorem 3.4.
After that, we prove Theorem 3.4 by studying the distribution of the dimension of a collection of
random rank 1 tensors.
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3.1 Proofs of Theorem 3.1 and Theorem 3.2

We first prove Theorem 3.2.

Proof of Theorem 3.2. We want to bound Pr f [bias( f ) ≥ 2−(1−ε)k]. We shall do so by bounding the
tth moment of bias( f ) for a suitable choice of t and applying Markov’s inequality.

Let T : [k]d → F2 denote the tensor associated with f . Thus T(i1, . . . , id) are all independent
and uniformly distributed in F2.

We now compute the tth moment of f .

E f [(bias( f ))t] = E f

[(
Ex(1),...,x(d)∼Fk

2

[
(−1) f(x(1),...,x(d))

])t
]

= E f

[
∏
i∈[t]

(
Ex(i,1),...,x(i,d)∼Fk

2

[
(−1) f(x(i,1),...,x(i,d))

])]
= E{x(i,j)}i∈[t],j∈[d]

[
E f

[
(−1)∑t

i=1 f(x(i,1),...,x(i,d))
]]

= E{x(i,j)}i∈[t],j∈[d]

 ∏
(`1,...,`d)∈[k]d

(
ET(`1,...,`d)∼F2

[
(−1)

T(`1,...,`d)·
(

∑t
i=1 ∏d

j=1 x(i,j)`j

)])
= E{x(i,j)}i∈[t],j∈[d]

 ∏
(`1,...,`d)∈[k]d

1
∑t

i=1 ∏d
j=1 x(i,j)`j

=0


= E{x(i,j)}i∈[t],j∈[d]

[
1∀(`1,...,`d)∈[k]d, ∑t

i=1 ∏d
j=1 x(i,j)`j

=0

]

= Pr
{x(i,j)}i∈[t],j∈[d]

[
∀(`1, . . . , `d) ∈ [k]d,

t

∑
i=1

d

∏
j=1

x(i,j)`j
= 0

]

= Pr
{x(i,j)}i∈[t],j∈[d]

 t

∑
i=1

d⊗
j=1

x(i,j) = 0

 .

Setting t = ε
10 kd−1, Theorem 3.4 tells us that

E f [(bias( f ))t] = 2−(1−ε/2)kt.

Using Markov’s inequality,

Pr
f

[
bias( f ) ≥ 2−(1−ε)k

]
≤ 2−(1−ε/2))kt

2−(1−ε)kt
≤ 2−εkt/2 ≤ 2−Ω(ε2kd)

as claimed.

We now use a similar argument to prove Theorem 3.1.
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Proof of Theorem 3.1. Fix an arbitrary ε > 0. Let C denote the space of degree ≤ ` polynomials in
F2[X1, . . . , Xn]. We want to show that with high probability over the choice of f , we have that for
every P ∈ C, Corr( f , P) ≤ 2−(1−ε)k.

Fix P ∈ C and consider the tth moment of bias( f − P). Imitating the proof of Theorem 3.2, we
get

E f [(bias( f − P))t] = E{x(i,j)}i∈[t],j∈[d]

[
(−1)∑t

i=1 P(x(i,1),...,x(i,d)) · 1∀(`1,...,`d)∈[k]d, ∑t
i=1 ∏d

j=1 x(i,j)`j
=0

]

≤ E{x(i,j)}i∈[t],j∈[d]

[
1∀(`1,...,`d)∈[k]d, ∑t

i=1 ∏d
j=1 x(i,j)`j

=0

]

= Pr

 t

∑
i=1

d⊗
j=1

x(i,j) = 0

 .

Now we will apply Theorem 3.4. Observe that since d = o(n/ log n), we have,

d < 2εk/5.

As in the proof of Theorem 3.2, we set t = ε
10 kd−1, invoke Theorem 3.4 and apply Markov’s in-

equality to get,
Pr

f

[
bias( f − P) ≥ 2−(1−ε)k

]
≤ 2−ε2kd/20.

Now bias( f − P) = Corr( f , P). Thus, by a union bound over all P ∈ C, we have the following.

Pr
f

[
Corr( f , C) ≥ 2−(1−ε)k

]
≤ |C| · 2−ε2kd/20. (1)

It remains to estimate |C|. We show below that |C| = o(kd). The proof of this lemma works for
any other C as long as C satisfies |C| = o(kd). Note that |C| = 2(

n
≤`). Let δ denote d/n.(

n
≤ `

)
≤
(

n
≤ d/2

)
≤
(

2en
d

)d/2

≤
(

2e
δ

)δn/2

= o

((
1
δ

)δn
)

[Since δ = o(1)]

= o(kd).

Combining this with Equation (1), we get,

Pr
f

[
Corr( f , C) ≥ 2−(1−ε)k

]
≤ 2o(kd) · 2−ε2kd/20.

Since this holds for every ε > 0, we get the desired result.
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3.2 Random rank-1 tensors

In this subsection, we first prove Lemma 3.6 on the probability that a random rank-1 tensor lies
in a fixed low-dimensional subspace. We then give a corollary of this lemma which bounds the
probability that a collection of random rank-1 tensors spans a very low dimensional subspace.
This corollary will be used in the proof of Theorem 3.4.

Proof of Lemma 3.6. Define

fd,k(u) =
(

1− (1− 1
2k )

d−1
)
+ (1− 1

2k )
d−1 · 2u/kd−1

2k .

We will prove, by induction on d, the following stronger bound.

Pr[T ∈ U] ≤ fd,k(u).

The fact that this implies the lemma, follows from the observations that 1− d−1
2k ≤ (1− 1

2k )
d−1 and

that (1− 1
2k )

d−1 ≤ 1.

Base case. The d = 1 case is trivial (using the observation that f1,k(u) = 2u

2k ). We now show the
statement holds for larger d.

Induction step. Let k′ = kd−1. We will view (Fk
2)
⊗d as Fk

2 ⊗ Fk′
2 . Every element v of (Fk

2)
⊗d can

thus be written as a tuple (v1, . . . , vk), where each vi is an element of Fk′
2 (thus the kd coordinates

are partitioned into k blocks of coordinates, with each block having k′ coordinates). We let πi :
(Fk

2)
⊗d → Fk′

2 be the ith projection map, mapping v to vi.
With this convention, we take a basis for U in row echelon form. Concretely, this gives us a basis

B for U, such that B is a disjoint union of B1, . . . ,Bk (Bj is the set of basis vectors pivoted in the
j’th block of coordinates), such that,

• for all v ∈ Bj and i < j, πi(v) = 0,

• the vectors πj(v) ∈ Fk′
2 , as v varies in Bj, are linearly independent.

Define Uj = span{πj(v) | v ∈ Bj)}. Thus we have dim(Uj) = |Bj| and

k

∑
j=1

dim(Uj) = dim(U).

For i > j, we define a linear map ψij : Uj → Fk′
2 by defining ψij on a basis for Uj:

ψij(πj(v)) = πi(v), ∀v ∈ Bj.

Then we have the following basic claim (which follows immediately from the above echelon form
representation of U).

Claim 3.8. Let v ∈ (Fk
2)
⊗d. Then v ∈ U only if there exists (u1, . . . , uk) ∈ ∏k

i=1 Ui such that for each
i ∈ [k] we have

πi(v) = ui + ∑
j<i

ψij(uj).

12



To simplify notation, we will denote x1 by y and ⊗d
i=2xi by z. We want to find an upper bound

on Pr[y⊗ z ∈ U].

Claim 3.9. Let z̃ ∈ (Fk
2)
⊗(d−1) and S = {i | z̃ ∈ Ui}, then,

Pr
y∈Fk

2

[y⊗ z̃ ∈ U] ≤ 2|S|

2k .

Proof. For fixed z̃, given the random variable v = y⊗ z̃, we define random variables u1, u2, ..., uk
by: ui := πi(v) − ∑j<i ψij(uj). Note that πi(v) = πi(y ⊗ z̃) = yi z̃. Also note that ui is only a
function of y1, . . . , yi. By Claim 3.8, v ∈ U only if for all i, ui ∈ Ui.

Pr
y∈Fk

2

[y⊗ z̃ ∈ U] ≤ Pr
y
[∀i ≤ k, ui ∈ Ui]

=
k

∏
i=1

Pr [ui ∈ Ui | u1 ∈ U1, . . . , ui−1 ∈ Ui−1]

=
k

∏
i=1

Eu1∈U1,...,ui−1∈Ui−1

[
Pr
ui
[ui ∈ Ui | u1, . . . , ui−1]

]

=
k

∏
i=1

Eu1∈U1,...,ui−1∈Ui−1

[
Prui

[
πi(v)−∑

j<i
ψij(uj) ∈ Ui

∣∣∣∣∣ u1, . . . , ui−1

]]

=
k

∏
i=1

Eu1∈U1,...,ui−1∈Ui−1

[
Pryi

[
yi z̃−∑

j<i
ψij(uj) ∈ Ui

∣∣∣∣∣ u1, . . . , ui−1

]]

≤∏
i 6∈S

(
1
2

)
=

(
1
2

)k−|S|
,

where the last inequality follows since for every i /∈ S and every vector w, at most one of w and
w + z̃ can lie in Ui (as z̃ /∈ Ui).

For S ⊆ [k], let
US =

⋂
i∈S

Ui .

13



Then,

Pr
y,z
[y⊗ z ∈ U] ≤ Ez

[
2∑k

i=1 1Ui (z)

2k

]
[Follows from the above claim]

=
1
2k Ez

[
k

∏
i=1

21Ui (z)

]

=
1
2k Ez

[
k

∏
i=1

(1 + 1Ui(z))

]

=
1
2k Ez

[
∑

S⊆[k]
1US(z)

]

=
1
2k ∑

S⊆[k]
Pr
z
[z ∈ US].

Now, observe that for each i ∈ S, we have Pr[z ∈ US] ≤ Pr[z ∈ Ui]. Thus if we sort the Ui so that
dim(U1) ≥ dim(U2) ≥ . . . ≥ dim(Uk), then we have the following sequence of inequalities.

Pr
y,z
[y⊗ z ∈ U] ≤ 1

2k

(
1 + ∑

i∈[k]
∑

S⊆[i],i∈S
Pr
z
[z ∈ US]

)

≤ 1
2k

(
1 + ∑

i∈[k]
2i−1 Pr

z
[z ∈ Ui]

)

≤ 1
2k

(
1 + ∑

i∈[k]
2i−1 fd−1,k(dim(Ui))

)
,

where the last step follows from the induction hypothesis. To find an upper bound for this last
expression, we let ai = dim(Ui). We have the constraints

∑
i

ai = u,

k′ ≥ a1 ≥ a2 ≥ . . . ≥ ak ≥ 0,

where k′ = kd−1, and we want to maximize an expression of the form

k

∑
i=1

2i−1(α + β2ai/kd−2
) = α · (2k − 1) + β ·

(
k

∑
i=1

2i−1+ai/kd−2

)
.

where α, β > 0.
It is worth noting what happens in the two examples U = V ⊗ Fk′

2 and U = Fk
2 ⊗W, where

V ⊆ Fk
2 and W ⊆ Fk′

2 are subspaces of the appropriate dimension. In the first case, a1 = a2 = . . . =
au/k′ = k′ and the remaining ai are 0. In the second case, all the ai = u/k. Both are global maxima
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of the expression we want to maximize! The existence of these very different maxima makes this
maximization problem somewhat tricky.

In Theorem 3.10 we prove a tight upper bound for this function. For every i ∈ [k], let bi =
ai/kd−2, and let ũ = u/kd−2. Then, b1, b2, . . . , bk and ũ satisfy the constraints in the hypothesis
of Theorem 3.10, and Theorem 3.10 tells us that a global maxima is achieved when all the ai are
equal to dim(U)/k. Thus,

Pr
y,z
[y⊗ z ∈ U] ≤ 1

2k

(
1 + ∑

i∈[k]
2i−1 fd−1,k(u/k)

)

=
1
2k

(
1 + (2k − 1) fd−1,k(u/k)

)
=

(
1
2k + (1− 1

2k ) fd−1,k(u/k)
)

= fd,k(u).

This completes the induction step.

Theorem 3.10. Let k be a positive integer, and let ũ ∈ [0, k2] be a real number. Suppose b1, b2, . . . , bk are
real numbers satisfying the following constraints.

k ≥ b1 ≥ b2 . . . ≥ bk ≥ 0, (2)
k

∑
i=1

bi = ũ. (3)

Then,
k

∑
i=1

2i−12bi ≤
k

∑
i=1

2i−12ũ/k = (2k − 1)2ũ/k.

Theorem 3.10 is proved in the appendix.
We now use the previous lemma to prove a corollary about the dimension of the span of several

random rank 1 tensors.

Corollary 3.11. Let d, k, t be integers. For each i ∈ [t] and j ∈ [d], pick x(i,j) ∈ Fk
2 uniformly at random.

For i ∈ [t], let Ti be the rank-1 tensor ⊗d
j=1x(i,j). Then, for every 0 ≤ r ≤ t,

Pr[dim(span({T1, . . . , Tt})) = r] ≤
(

t
r

)(
d + 2t/kd−1

2k

)t−r

.

Proof. Let us reveal T1, . . . , Tt one at a time. For 0 ≤ i ≤ t, let Vi = span({T1, . . . , Ti−1, Ti}).
Thus we have 0 = dim(V0) ≤ dim(V1) ≤ . . . dim(Vt). We want to estimate the probability that
dim(Vt) = r. Let Ei denote the event that Ti ∈ Vi−1. For I ⊆ [t], let EI denote the event

⋂
i∈I Ei. In

terms of these events, we can bound Pr[dim(Vt) = r] as follows.

Pr[dim(Vt) = r] ≤ Pr[∃I ⊆ [t], |I| = t− r such that EI occurs]

≤ ∑
I⊆[t],|I|=t−r

Pr[EI ].
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We conclude the proof by bounding Pr[EI ]. Fix I ⊆ [t] with |I| = t− r. Let I = {i1, . . . , it−r} with
i1 < i2 < . . . < it−r.

Pr[EI ] =
t−r

∏
j=1

Pr[Eij |
⋂
`<j

Ei` ].

Lemma 3.6 implies the following.

Pr[Ei|T1, . . . , Ti−1] ≤
d + 2dim(Vi−1)/kd−1

2k .

For any given j ∈ [t − r], the events Ei1 , . . . , Eij−1 are all determined by T1, . . . , Tij−1 (since Ei`
depends on T1, . . . , Ti` , and ij−1 ≤ ij − 1). Thus, for each j ∈ [t− r], we have,

Pr[Eij |
⋂
`<j

Ei` ] ≤
d + 2t/kd−1

2k .

Here we used the fact that dim(Vij−1) ≤ t. Using this in our previous bound, we conclude that

Pr[EI ] ≤
(

d + 2t/kd−1

2k

)t−r

,

and thus,

Pr[dim(Vt) = r] ≤
(

t
r

)
·
(

d + 2t/kd−1

2k

)t−r

.

3.3 Proof of Theorem 3.4

We now use Corollary 3.11 to prove Theorem 3.4.

Proof of Theorem 3.4. The equation
t

∑
i=1

d⊗
j=1

x(i,j) = 0 (4)

implies that

∀` ∈ [k],
t

∑
i=1

x(i,1)` ·
d⊗

j=2

x(i,j) = 0. (5)

Let Ti denote
⊗d

j=2 x(i,j) for i ∈ [t] and T = span({T1, . . . , Tt}). Then we have,

Pr[{x(i,j)}i∈[t],j∈[d] satisfy (4)] ≤ Pr[{x(i,j)}i∈[t],j∈[d] satisfy (5)]

=
t

∑
r=0

Pr
[
{x(i,j)}i∈[t],j∈[d] satisfy (5)

∣∣dim(T ) = r
]

Pr [dim(T ) = r]

=
t

∑
r=0

(
∏
`∈[k]

Pr

[
t

∑
i=1

x(i,1)` · Ti = 0
∣∣dim(T ) = r

])
· Pr [dim(T ) = r]

≤
t

∑
r=0

(
1
2r

)k

· Pr [dim(T ) = r] . (6)
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Here, the equality in the third step follows from the fact that {x(i,1)` }i∈[t],`∈[k] are independently
and uniformly distributed in F2.
By the given distribution of T1, . . . , Tt in (Fk

2)
⊗(d−1), Corollary 3.11 says that

Pr [dim(T ) = r] ≤
(

t
r

)(
d− 1 + 2

t
kd−2

2k

)t−r

.

Plugging this bound back into (6) gives

Pr[{x(i,j)}i∈[t],j∈[d] satisfy (4)] ≤
t

∑
r=0

(
t
r

)
1

2rk

(
d− 1 + 2

t
kd−2

2k

)t−r

≤
t

∑
r=0

(
t
r

)(
1
2k

)r
(

d− 1 + 2
t

kd−2

2k

)t−r

=

(
1
2k +

d− 1 + 2
t

kd−2

2k

)t

≤
(

d + 2
t

kd−2

2k

)t

.

Now, since d < 2εk/5 and t < εkd−1/5, we have

d + 2
t

kd−2 < 2 · 2εk/5 < 2εk/2,

we conclude that

Pr[
t

∑
i=1

d⊗
j=1

x(i,j) = 0] < 2−(1−ε/2)kt.

This completes the proof.

3.4 Explicit d-linear forms with small correlations with (d− 1)-linear forms

In this section, we dwell a bit on the question of constructing explicit d-linear forms which have
small correlation with lower degree multilinear polynomials. In particular, we present an explicit
d-linear form that has exponentially small correlation with any lower degree multilinear form.
Define f : (Fk

2)
d → F2 as

f (x1, ..., xd) = 〈x1 · x2 · · · xd−1, xd〉,

where · denotes multiplication over the bigger field F2k . It is easy to see that f is a d-linear form.
Ideally, we would like to show that the map f defined above has small correlation with any

polynomial of degree at most d − 1. But, we do not know how to show this. In the rest of this
section, we show that f has small correlation with any polynomial of degree d− 1 which respects
the partition of the inputs to f . We now prove the following lemma.
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Lemma 3.12. The function f = 〈x1 · x2 · · · xd−1, xd〉 has correlation at most (d− 1)2−k with any degree
≤ d− 1 multilinear form.

Proof. Let g be a (d− 1)-linear form over (Fk
2)

d. A similar proof as below works for any d′-linear
form g′ for d′ < d− 1 also. We want to understand

Corr( f , g) = bias( f − g).

Since g is a (d − 1)-form, it is of the form g(x1, ..., xd) = ∑d
i=1 gi(x[d]\{i}). Since gi is a (d − 1)-

linear form in the variables x[d]\{i}, for each i ∈ [d − 1] there exists an Fk
2-valued linear form

vi = vi(x[d−1]\{i}) such that gi(x[d]\{i}) = 〈vi(x[d−1]\{i}), xd〉 = 〈vi, xd〉. In particular

Corr( f , g) = bias( f − g) = bias

(
( f −

d−1

∑
i=1

gi)− gd

)
= Pr

x1,...xd−1

[
x1 · x2 · · · xd−1 −

d−1

∑
i=1

vi = 0

]
. (7)

This is because gd does not depend on xd and for any fixing of x1, ..., xd−1 ∈ Fk
2, f − g is an affine

form in the variable xd that is biased if x1 · x2 · · · xd−1 − ∑d−1
i=1 vi = 0 (in which case the bias is 1)

and is otherwise an unbiased function. We will prove

Pr
x1,...xd−1∈Fk

2

[
x1 · x2 · · · · xd−1 −

d−1

∑
i=1

gi = 0

]
≤ Pr

x1,...,xd−1∈Fk
2

[x1 · x2 · · · · xd−1 = 0], (8)

by repeatedly applying the following fact.

Fact 3.13. Let h : Fk
2 → Fk

2 be a linear map. Then for every a ∈ Fk
2,

Pr
x∈Fk

2

[h(x) = a] ≤ Pr
x∈Fk

2

[h(x) = 0].

Note that applying this fact we have

Pr
x1,...xd−1

[
x1 · x2 · · · xd−1 −

d−1

∑
i=1

vi = 0

]
= Pr

x1,...xd−1

[
x1 · x2 · · · xd−1 −

d−2

∑
i=1

vi = vd−1

]

≤ Pr
x1,...xd−1

[
x1 · x2 · · · xd−1 −

d−2

∑
i=1

vi = 0

]
,

since for every fixing of x1, ..., xd−2 ∈ Fk
2, x1 · x2 · · · xd−1 − ∑d−2

i=1 vi is a Fk
2-linear form over xd−1.

Applying Fact 3.13 similarly for coordinates i = 1, ..., d − 2, we get Eq. (8). Finally, by a simple
union bound we can bound Prx1,...,xd−1∈Fk

2
[x1 · x2 · · · xd−1 = 0] = 1− (1− 2−k)d−1 ≤ (d− 1) · 2−k.

Combining this with Eq. (8) and Eq. (7) finishes our proof.

4 High-rank tensors from unbiased polynomials

It is well-known that the bias of a bilinear form corresponding to a matrix M ∈ Fk×k
2 is tightly

related to its rank rank(M) (more precisely, bias(M) = 2−rank(M)). In this section, we explore a
similar connection for higher dimensional tensors. We then use this to (re)prove some existing
tensor rank lower bounds (e.g., for the trace tensor and the matrix multiplication tensor)
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4.1 Small Bias implies large tensor rank

We begin with the main theorem of this section which shows tensors with small bias have large
rank.

Theorem 4.1 (Small bias implies large rank). Let P ∈ Fk×k···×k
2 be any d-dimensional tensor of rank

≤ t. Then

bias(P) ≥
(

1− 2
2d

)t

.

An important ingredient of our proof will be the following lemma.

Lemma 4.2. Let d be a natural number. Let M1, M2, . . . , Mt ∈ Fk×k···×k
2 be d-dimensional tensors of rank

at most 1. Then,

Pr
x1,x2,...,xd∈Fk

2

[∀i ∈ [t], Mi(x1, x2, . . . , xd) = 0] ≥
(

1− 1
2d

)t

. (9)

Proof. Our proof is by induction on d.

Base Case. The base case when d = 1 trivially follows since if there are t linear forms u1, u2, . . . , ut
over F2, then the maximum number r of independent linear forms among them is at most t. We
hence have,

Pr
x∈Fk

2

[∀i ∈ [t], ui(x) = 0] = (1/2)r ≥ (1/2)t . (10)

Induction Step. Before proving the general inductive step from d − 1 to d, we first show the
d = 2 case as a warm up as it illustrates the main idea and then do the general case.

For this case, we have k × k matrices M1, M2, . . . , Mt of rank one over F2, and the goal is to
show that

Pr
y,z∈Fk

2

[∀i ∈ [t], 〈y, Miz〉 = 0] ≥ (3/4)t . (11)

The proof involves several steps of manipulation of the probability of interest. For a set S ⊆ [t],
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denote by MS := ∑i∈S Mi.

Pr
y,z∈Fk

2

[∀i ∈ [t], 〈y, Miz〉 = 0] = Ey,z∈Fk
2

[
t

∏
i=1

(
1 + (−1)〈y,Miz〉

2

)]

= Ey,z∈Fk
2

[
1
2t · ∑

S⊆[t]
(−1)〈y,MSz〉

]
= Ey,z∈Fk

2

[
ES⊆[t]

[
(−1)〈y,MSz〉

]]
= ES⊆[t]

[
Ey,z∈Fk

2

[
(−1)〈y,MSz〉

]]
= ES⊆[t]

[
Ez∈Fk

2

[
1MSz=0

]]
= ES⊆[t]

[
Pr

z∈Fk
2

[
MSz = 0

]]
= ES⊆[t]

[
2−rank(MS)

]
≥ ES⊆[t]

[
2−|S|

]
=

1
2t ·

(
1 +

1
2

)t

=

(
3
4

)t

.

Now, for the general inductive step, we assume that the lemma is true up to dimension d− 1, and
prove it for d dimensions. For every i ∈ [t], we denote by ui as the linear form in Fk

2 and M′i as the
d− 1 dimensional tensor of rank 1 in Fk×k×k···×k

2 such that

Mi(x1, x2, . . . , xd) = ui(x1) ·M′i(x2, x3, . . . , xd) .

And, once again, for every S ⊆ [t], MS denotes the tensor ∑j∈S Mj, which has rank at most |S|. We
proceed via a sequence of inequalities as in the case of d = 2 above.

Pr
x1,x2,...,xd∈Fk

2

[∀i ∈ [t], Mi(x1, x2, . . . , xd) = 0] = Ex1,x2,...,xd∈Fk
2

[
t

∏
i=1

(
1 + (−1)Mi(x1,x2,...,xd)

2

)]

= Ex1,x2,...,xd∈Fk
2

[
1
2t · ∑

S⊆[t]
(−1)MS(x1,x2,...,xd)

]
= Ex1,x2,...,xd∈Fk

2

[
ES⊆[t]

[
(−1)MS(x1,x2,...,xd)

]]
= ES⊆[t]

[
Ex1,x2,...,xd∈Fk

2

[
(−1)MS(x1,x2,...,xd)

]]
.

Now, observe that for every S ⊆ [t],

Ex1,x2,...,xd∈Fk
2

[
(−1)MS(x1,x2,...,xd)

]
≥ Pr

x2,x3,...,xd

[
∀j ∈ S, M′j(x2, x3, . . . , xd) = 0

]
.

Moreover, from the induction hypothesis, we get that for all S ⊆ [t],

Pr
x2,x3,...,xd

[
∀j ∈ S, M′j(x2, x3, . . . , xd) = 0

]
≥
(

1− 1
2d−1

)|S|
.
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Plugging this back in the calculations, we get

Pr
x1,x2,...,xd∈Fk

2

[∀i ∈ [t], Mi(x1, x2, . . . , xd) = 0] ≥ ES⊆[t]

[(
1− 1

2d−1

)|S|]

≥ 1
2t ·

(
1 + 1− 1

2d−1

)t

=

(
1− 1

2d

)t

.

We now complete the proof of Theorem 4.1.

Proof of Theorem 4.1. Since P has rank ≤ t, then there is a collection of linear forms u1, u2, . . . , ut
and tensors M1, M2, . . . , Mt of rank at most 1 in d− 1 dimensions such that

P(X1, X2, . . . , Xd) =
t

∑
i=1

ui(X1) ·Mi(X2, X3, . . . , Xd) .

Now, observe that

bias(P) =
∣∣∣Ex1,x2,...,xd∈Fk

2

[
(−1)P(x1,x2,...,xd)

]∣∣∣
= Pr

x2,x3,...,xd∈Fk
2

[P(X1, x2, x3, . . . , xd) ≡ 0]

≥ Pr
x2,x3,...,xd∈Fk

2

[∀i ∈ [t], Mi(x2, x3, . . . , xd) = 0]

≥
(

1− 1
2d−1

)t

[By Lemma 4.2] .

We now accompany the above theorem with an almost matching upper bound on the bias
of random high rank tensors. It is known that a random high rank tensor has low bias. The
following lemma gives a precise quantitative version of this observation (the idea for the proof
was suggested to us by Shubhangi Saraf).

Lemma 4.3. For i ∈ [t] and j ∈ [d], let ui,j ∈ Fk
2 be a uniformly random vector. Consider the random

rank-t d-linear form p : (Fk
2)

d → F2 given by

p(x1, x2, . . . , xd) =
t

∑
i=1

d

∏
j=1

〈
xj, ui,j

〉
.

Then

E[bias(p)] ≤ d · 2−k +

(
1− 2

2d

)t
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Proof. We have

Ep[bias(p)] = Ep Ex1,x2,...,xd∈Fk
2

[
(−1)∑t

i=1 ∏d
j=1〈xj,ui,j〉

]
= Ex1,x2,...,xd∈Fk

2
Ep

[
(−1)∑t

i=1 ∏d
j=1〈xj,ui,j〉

]
= Pr

x1,...,xd

[
∃i, xi = 0

]
+ Pr

x1,...,xd

[
∀i, xi 6= 0

]
·Ex1,x2,...,xd∈Fk

2\{0}

[
t

∏
i=1

(
Eui,1,ui,2,...,ui,d(−1)∏d

j=1〈xj,ui,j〉
)]

= 1−
(

1− 1
2k

)d

+

(
1− 1

2k

)d

·Ex1,x2,...,xd∈Fk
2\{0}

[
t

∏
i=1

(
Pr

ui,1,...,ui,d−1

[
∃j ∈ [d− 1], 〈xj, ui,j〉 = 0

])]

= 1−
(

1− 1
2k

)d

+

(
1− 1

2k

)d

·
(

1− 1
2d−1

)t

≤ d · 2−k +

(
1− 2

2d

)t

.

The following special cases of Theorem 4.1, for d = 2 and d = 3 will be useful for us, on our
way to proving lower bounds on the rank of three dimensional tensors.

Corollary 4.4. Let P ∈ Fk×k
2 be a matrix of rank ≤ t ≤ k. Then, bias(P) ≥ 2−t.

Corollary 4.5. Let P ∈ Fk×k×k
2 be a 3-dimensional tensor of rank ≤ t. Then, bias(P) ≥

( 3
4

)t.

In the subsequent two sections, we will observe that some well-known explicit tensors in three
dimensions have very low bias, and then use the above corollaries to conclude that these tensors
have large rank.

4.2 A 3.52k Tensor Rank Lower Bound for Trace(XYZ)

In this section, we use the bias-vs-tensor-rank connection explored in the previous section to con-
struct explicit 3-dimensional tensors with large tensor rank. Corollary 4.5 suggests the following
natural approach to construct tensors of large rank: find a 3-linear form with as small a bias as
possible. What is the least bias of a 3-linear form? Let P(X, Y, Z) = ∑k

i=1〈Y, MiZ〉Xi be an arbi-
trary 3-linear form. Clearly, bias(P) ≥ Pry,z[∀i ∈ [k], 〈y, Miz〉 = 0] ≥ Pry,z[y = 0 or z = 0] =
2/2k − 1/22k. The Trace(XYZ) is a function with bias exactly 2/2k − 1/22k (see Lemma 4.6). In
the rest of this section, we prove an upper bound on the bias of this function. To this end, we first
show that the bias of Tr(X, Y, Z) is small. This will immediately via Corollary 4.5 give a very sim-
ple proof that Trace(XYZ) tensor has rank at least 2.409k. We remark that a much stronger rank
lower-bound of 3.52k is known due to Chudnovsky and Chudnovsky [CC88, STV92] and indeed
we do a more careful analysis of our ideas to get a new proof of the 3.52k lower bound (here too
the only property of Tr that is used is that it is of very low bias).

Lemma 4.6.
bias(Tr(X, Y, Z)) = 2 · 2−k − 2−2k.

Proof. The trace function satisfies the simple property that for every non-zero α ∈ F2k , the linear
function Trace(αX) is unbiased. Hence,

bias(Tr(X, Y, Z)) = Pr
x,y∈Fk

2

[x · y = 0] = 2 · 2−k − 2−2k .
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The above lemma coupled with Corollary 4.5 immediately gives the following lower bound
on tensor rank of Tr(X, Y, Z).

Corollary 4.7. rank(Tr(X, Y, Z)) ≥ (log4/3 2) · k ≥ 2.409k.

We now strengthen this bound to show a 3.52k lower bound on the rank of Tr(X, Y, Z). As
we alluded to in earlier discussion, this matches the best known lower bound on the tensor rank
of any explicit tensor in three dimensions. The proof follows from a more careful use of the ideas
already present in the proof of Corollary 4.7. We will need the following well-known rate-distance
MRRW tradeoff for linear codes.

Theorem 4.8 ([MRR+77]). Let S be a subspace of dimension at least k of Ft
2, such that every non-zero

vector in S has weight at least k. Then, t ≥ 3.52k.1

Theorem 4.9. The rank of the tensor Tr(X, Y, Z) is at least 3.52k.

Proof. Let the tensor rank of Tr(X, Y, Z) be t. Then there exists t vectors a1, a2, . . . , at ∈ Fk
2 and t

rank-1 matrices M1, M2, . . . , Mt such that

Tr(X, Y, Z) =
t

∑
i=1
〈ai, X〉 · 〈Y, MiZ〉 . (12)

Let A be the k × t matrix such that for every i ∈ [t], the ith column of A equals ai. Let K be
the kernel of A. Clearly, dim(K) ≥ t − k. In fact, dim(K) = t − k. To see this, observe that if
dim(K) ≥ t− k + 1, then by the rank-nullity theorem, rank(A) ≤ k− 1. Thus, there is a non-zero
x ∈ Fk

2 denoted by x0 such that for every i ∈ [t], 〈ai, x0〉 = 0. Thus, Tr(x0, Y, Z) ≡ 0 for a non-zero
x0, which is a contradiction.

From proof of Corollary 4.5, we know that

bias(Tr(X, Y, Z)) = Pr
y,z∈Fk

2

[Tr(X, y, z) = 0] .

So far we were proving a lower bound on Pry,z∈Fk
2
[Tr(X, y, z) = 0] by proving a lower bound on

Pry,z∈Fk
2
[∀i ∈ [t], 〈y, Miz〉 = 0]. Clearly, this seems to be somewhat lossy since even for a choice of

y and z in Fk
2 such that 〈y, Miz〉 6= 0 for some i ∈ [t], it is conceivable that Tr(X, y, z) is identically

zero. For this proof, we try to be a bit more careful about this. Note that for every u ∈ K ⊂ Ft
2,

t

∑
i=1

ui · 〈ai, X〉 ≡ 0 .

1The MRRW bound for binary codes states that any family of codes with fractional distance δ satisfies R(δ) ≤
h2

(
1
2 −

√
δ(1− δ)

)
where h2(x) = x log2(1/x) + (1 − x) log2(1/1 − x) is the binary entropy function. The above

mentioned bound can be obtained from this (see [BD80] for details).
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Thus, we have,

Pr
y,z∈Fk

2

[Tr(X, y, z) = 0] = ∑
u∈K

Pr
y,z∈Fk

2

[∀i ∈ [t], 〈y, Miz〉 = ui]

= ∑
u∈K

Ey,z

[
∏
i∈[t]

(
1 + (−1)〈y,Miz〉+ui

2

)]
= ∑

u∈K
Ey,z

[
ES⊆[t](−1)〈y,MSz〉 · (−1)〈u,1S〉

]
.

Here, for every S ⊆ [t], 1S is the characteristic vector of S in t dimensions, and MS = ∑i∈S Mi.
Simplifying further, we get,

Pr
y,z∈Fk

2

[Tr(X, y, z) = 0] = ES⊆[t]

[(
Ey,z(−1)〈y,MSz〉

)
·
(

∑
u∈K

(−1)〈u,1S〉

)]
.

Now, we observe that the term
(

∑u∈K(−1)〈u,1S〉
)

= |K| if and only if 1S ∈ K⊥, otherwise it

equals zero. Also, from Corollary 4.4, we know that
(

Ey,z(−1)〈y,MSz〉
)

= 2−rankMS is at at least

max{2−k, 2−|S|}. Plugging these into the inequality above, we have the following inequality.

Pr
y,z∈Fk

2

[Tr(X, y, z) = 0] ≥ |K|
2t · ∑

v∈K⊥
max{2−k, 2−|v|} [Here, |v| is the Hamming weight of v]

≥ Ev∈K⊥ max{2−k, 2−|v|} [ Since |K| ·
∣∣∣K⊥∣∣∣ = 2t]

Recall that the dimension of K⊥ equals k. Now,

Ev∈K⊥ max{2−k, 2−|v|} = 2−k + Ev∈K⊥\{0k}max{2−k, 2−|v|} .

From Lemma 4.6, we know that the bias of Tr(X, Y, Z) is at most 2 · 2−k− 2−2k. Thus, it must be the
case that Ev∈K⊥\{0k}max{2−k, 2−|v|} ≤ (1− 2−k) · 2−k. But this is possible only if all the vectors in
K⊥ \ {0k} have weight at least k. In this case, the space K⊥ is a linear subspace of Ft

2 of dimension
k such that every non-zero vector in it has Hamming weight at least k. From Theorem 4.8, we get
that t ≥ 3.52k. This completes the proof.

4.3 Lower Bound on the Rank of Matrix Multiplication Tensor

In this section, we obtain a lower bound on the rank of the matrix multiplication tensor by proving
an upper bound on its bias. Even though better bounds are known for this tensor, our proof is a
fairly straightforward application of our techniques, and we believe this is instructive.

Our main technical observation in this section is the following lemma which gives an upper
bound on the bias of Mn(X, Y, Z) as each of the variables take values in F2.

Lemma 4.10. The bias of Mn(X, Y, Z) is at most n · 2− 3n2
4 .
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Before proceeding with the proof, we note that Theorem 4.10 and Corollary 4.5 immediately
imply a non-trivial lower bound on the tensor rank of Mn.

Theorem 4.11. The tensor rank of Mn is at least 3n2

4 log2(4/3) ≥ 1.8n2.

We now prove Lemma 4.10.

Proof of Lemma 4.10. We observe that for any two fixed matrices x, y, the 3-linear form Mn reduces
to a linear form in z which is non-zero iff the product of the two matrices x and y is non-zero.
Furthermore, given a matrix y, the probability (over x) that the product matrix x · y is zero is
exactly 2−n·rank(y). Combining these observations, we have

bias(Mn) = Pr
x,y

[x · y = 0n×n]

= Ey

[
2−n·rank(y)

]
=

n

∑
r=0

Pr
y
[rank(y) = r] · 2−nr .

To complete the proof, we rely on the following claim, whose proof we defer to the end of this
section.

Claim 4.12. For every r ∈ {0, 1, . . . , n}, the following inequality is true.

Pr
y
[rank(y) = r] ≤ 2−(n−r)2

.

From the claim above, we get

bias(Mn) ≤
n

∑
r=0

2−(n−r)2−nr

≤
n

∑
r=0

2−n2−r2+nr

≤ 2−n2
n

∑
r=0

2r(n−r)

≤ 2−n2
n · 2n2/4

≤ n · 2−3n2/4 .

For completeness, we now provide a proof of Claim 4.12. We remark that the following tighter
bound is known (see [Kol98, Theorem 3.2.1]).

Pr
y
[rank(y) = r] = 2−(n−r)2 ·

n

∏
i=n−r+1

(
1− 1

2i

)
·
(

∑
0≤i1≤...in−r≤r

1
2i1+...+in−r

)

≤ 2−(n−r)2 ·
n

∏
i=n−r+1

(
1− 1

2i

)
·

n−r

∏
i=1

(
1− 1

2i

)−1

.

However, the weaker bound given in the claim suffices for our purposes.

25



Proof of Claim 4.12. The goal is to upper bound the probability that a uniformly random n × n
matrix y over F2 has rank equal to r. This probability is upper bounded by the probability that
the rows of y are contained within a subspace of dimension r of Fn

2 . For any fixed subspace S
of dimension equal to r, this event happens with a probability equal to 2−n(n−r). The number
of subspaces of Fn

2 of dimension equal to r is given by the Gaussian binomial coefficient [nr ]2 =

∏r−1
i=0

(2n−2i)
(2r−2i)

≤ 2nr

2r2 . Thus, by a union bound, we get the following.

Pr
y
[rank(y) = r] ≤ 2nr

2r2 · 2−n(n−r) = 2−(n−r)2
.

Acknowledgements

We would like to thank Suryateja Gavva for helpful discussions. We would like to thank Shub-
hangi Saraf for suggesting the idea for the proof of Lemma 4.3.

References

[AFT11] BORIS ALEXEEV, MICHAEL A. FORBES, and JACOB TSIMERMAN. Tensor rank: Some lower and
upper bounds. In Proc. 26th IEEE Conf. on Comput. Complexity, pages 283–291. 2011. eccc:2011/
TR11-010, doi:10.1109/CCC.2011.28. 3

[BD80] MARK R. BROWN and DAVID P. DOBKIN. An improved lower bound on polynomial multiplication.
IEEE Trans. Computers, C-29(5):337–340, 1980. doi:10.1109/TC.1980.1675583. 3, 4, 23

[BHL12] IDO BEN-ELIEZER, RANI HOD, and SHACHAR LOVETT. Random low-degree polynomials are hard
to approximate. Comput. Complexity, 21(1):63–81, 2012. (Preliminary version in 13th RANDOM,
2009). eccc:2008/TR08-080, doi:10.1007/s00037-011-0020-6. 4, 5

[BK12] ELI BEN-SASSON and SWASTIK KOPPARTY. Affine dispersers from subspace polynomials. SIAM J.
Comput., 41(4):880–914, 2012. (Preliminary version in 41st STOC, 2009). eccc:2010/TR10-044,
doi:10.1137/110826254. 2
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Theorem A.1 (Restatement of Theorem 3.10). Let k be a positive integer, and let u ∈ [0, k2] be a real
number. Suppose b1, b2, . . . , bk are real numbers satisfying the following constraints.

k ≥ b1 ≥ b2 . . . ≥ bk ≥ 0, (13)
k

∑
i=1

bi = u. (14)

Then,
k

∑
i=1

2i−12bi ≤
k

∑
i=1

2i−12u/k = (2k − 1)2u/k.

Proof. Let P denote the convex polytope defined as follows.

P = {(x1, . . . , xn) ∈ Rn | k ≥ x1 ≥ . . . ≥ xk ≥ 0 and ∑
i

xi = u}.

Let f : Rn → R be the function:
k

∑
i=1

2i−12xi .

Observe that P is bounded and nonempty, and f is a convex function. Thus the maximum M of
f on P is achieved at an extreme point. Since P is defined by k + 1 inequalities and 1 equality,
extreme points satisfy the 1 equality and make at least k − 1 of the inequalties tight. Thus any
extreme point (y1, y2, . . . , yk) of P satisfies, for some integers a, b, c ≥ 0 with a + b + c = k, and
some ` ∈ (0, k), the following equalities.

y1 = y2 = . . . = ya = k,

ya+1 = ya+2 = . . . = ya+b = `,

ya+b+1 = ya+b+2 = . . . = yk = 0.

ak + b` = u.

At such an extreme point (y1, . . . , yk), the value of f can be expressed in terms of a, b, c, ` as

f (y1, . . . , yk) = 2k(2a − 1) + 2`2a(2b − 1) + 202a+b(2c − 1)

= 2a(2k − 2`) + 2a+b(2` − 1).

The following lemma then completes the proof of the theorem.

Lemma A.2. Let k be a positive integer, and let u ∈ [0, k2] be a real number. Let a, b, c, ` ∈ [0, k] be real
numbers with:

a + b + c = k,

ak + b` = u.

Then
2a(2k − 2`) + 2k−c(2` − 1) ≤ (2k − 1)2u/k.

28



Proof. Let α, β, γ, λ, η ∈ [0, 1] be given by

a = αk, b = βk, c = γk, ` = λk, u = ηk2.

Then, we have

α + β + γ = 1, (15)
α + βλ = η. (16)

Let Z = 2k. Then we want to show that whenever α, β, γ, λ, η are as above, we have

Zα(Z− Zλ) + Z1−γ(Zλ − 1) ≤ (Z− 1)Zη .

Eliminating α, γ from Equation (15) and Equation (16), we have γ = (1 − η) − β(1 − λ), and
α = η − βλ. Substituting this in, we want to show that

Zη−βλ(Z− Zλ) + Zη+β(1−λ)(Zλ − 1) ≤ (Z− 1)Zη .

Dividing throughout by Zη , we want to show that

Z−βλ(Z− Zλ) + Zβ(1−λ)(Zλ − 1) ≤ Z− 1.

Rewriting, this is the same as

Z− Zλ + Zβ+λ − Zβ ≤ (Z− 1)Zβλ,

which is equivalent to
(Zβ − 1)(Zλ − 1) ≤ (Zβλ − 1)(Z− 1).

This follows from Lemma B.2.

This completes the proof.

B Numerical Inequalities

In this section we list some numerical inequalites that are used in the previous section.

Lemma B.1. For all real r ≥ 1, the function f : [1, ∞)→ R given by

f (x) =
xr − 1
x− 1

is increasing in x.

Proof. We show that f ′(x) ≥ 0 for all x ≥ 1. Compute

f ′(x) =
(rxr−1) · (x− 1)− (xr − 1) · 1

(x− 1)2

Define
g(x) = r(xr − xr−1)− (xr − 1) = (r− 1)xr − rxr−1 + 1.
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The positivity of f ′(x) would follow if we can show:

g(x) ≥ 0

for all x ≥ 1. We prove this by first observing that g(1) = 0, and then showing that for all x ≥ 1,
we have g′(x) ≥ 0. Indeed,

g′(x) = r(r− 1)xr−1 − r(r− 1)xr−2

= r(r− 1)(xr−2)(x− 1)
≥ 0.

This completes the proof that g(x) ≥ 0 for all x ≥ 1, and thus the proof that f ′(x) ≥ 0 for all
x ≥ 1.

Lemma B.2. For all real z ≥ 1 and all real β, λ ∈ [0, 1], we have:

(zλ − 1)(zβ − 1) ≤ (zβλ − 1)(z− 1).

Proof. If either λ = 0 or z = 1, the inequality trivially holds (with equality). Now suppose λ 6= 0
and y 6= 1. Set r = 1/λ and x = zλ and y = zβλ. Then, 1 ≤ y ≤ x and r ≥ 1. Then, the inequality
we want to prove can be written as follows.

(x− 1)(yr − 1) ≤ (y− 1)(xr − 1),

i.e.,
yr − 1
y− 1

≤ xr − 1
x− 1

.

This follows from Lemma B.1, completing the proof.
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