
Some Remarks on Multiplicity Codes

Swastik Kopparty∗

October 20, 2013

To Ilya Dumer, on the occasion of his 60th birthday

Abstract

Multiplicity codes are algebraic error-correcting codes generalizing classical polynomial evaluation
codes, and are based on evaluating polynomials and their derivatives. This small augmentation confers
upon them better local decoding, list-decoding and local list-decoding algorithms than their classical coun-
terparts. We survey what is known about these codes, present some variations and improvements, and
finally list some interesting open problems.

∗Department of Mathematics & Department of Computer Science, Rutgers University. swastik.kopparty@rutgers.edu.
Research supported in part by a Sloan Fellowship and NSF CCF-1253886.

1

1 Introduction

Reed-Solomon codes and Reed-Muller codes are classical families of error-correcting codes which have been
widely influential in coding theory, combinatorics and theoretical computer science. These codes are based
on evaluations of polynomials: a codeword of one of these codes is obtained by evaluating a polynomial over
a finite field Fq of degree at most d at all points in Fmq .

Multiplicity codes are a family of recently-introduced algebraic error-correcting codes based on evaluations
of polynomials and their derivatives. Specifically, a codeword of a multiplicity code is obtained by evaluating
a polynomial of degree at most d, along with all its derivatives of order < s, at all points in Fmq .

The s = 1 versions of multiplicity codes are thus the classical Reed-Solomon (m = 1) and Reed-Muller
(m ≥ 1) codes. We will see that by allowing s to be larger than 1, in many senses general multiplicity codes
go beyond their s = 1 counterparts.

Multiplicity codes with m = 1 (i.e., based on univariate polynomials) were first considered by Rosenbloom
and Tsfasman [RT97], who studied them for the purposes of producing optimal codes for the “M metric”
(now known as the Rosenbloom-Tsfasman metric). They were also studied by Nielsen [Nie01], who showed
that they admit list-decoding algorithms upto the Johnson bound, similar to the Reed-Solomon codes.

Multiplicity codes with general m, s were defined by Kopparty, Saraf and Yekhanin [KSY11]. The main result
of [KSY11] was that for every ε, α > 0, for all k, there are multiplicity codes of dimension k, rate 1−α, and
which are locally decodable from a constant fraction of errors with in just Oε,α(kε) time. Prior to [KSY11],
codes with nontrivial local decoding algorithms were known only at rate R < 1/2, and achieving local
decoding complexity O (kε) required the code to have rather small rate R = ε(1/ε) (the codes that were known
to achieve these parameters were the Reed-Muller codes). It should be noted that more recent results have
shown how to construct codes achieving parameters similar to those of multiplicity codes using significantly
different ideas: Guo-Kopparty-Sudan [GKS13], Guo [Guo13] and Hemenway-Ostrovsky-Wooters [HOW13].

Subsequently, Guruswami-Wang [GW11] and Kopparty [Kop12] studied the list-decoding of univariate mul-
tiplicity codes, and showed that there are sequences of univariate multiplicity codes of rate R, list-decodable
from 1−R− ε fraction errors in polynomial time (achieving the so-called list-decoding capacity, thus provid-
ing another route to such codes after the breakthrough results of Parvaresh-Vardy [PV05] and Guruswami-
Rudra [GR08]).

Global decoding of multivariate multiplicity codes was also considered in [Kop12]. There it was shown that
multivariate multiplicity codes can be decoded upto half their minimum distance in polynomial time, and
can be list-decoded from the Johnson bound in polynomial time.

The primary purpose of this paper is to survey the state of the art algorithms for dealing with multiplicity
codes. Along the way we note some variations and improvements. Specifically:

1. We give an improved local decoding algorithm for multiplicity codes. The original local decoding
algorithm of [KSY11] for multiplicity codes worked as follows: in order to recover the correct value
of the multiplicity codeword at a point a ∈ Fmq , one would take sO(m) random lines in Fmq passing
through a, query the codeword on all those lines, and use the answer to decode the correct value at a.
Our improved local decoding algorithm is based on queries only exp(m) random lines through a.

This new algorithm is based on two new ideas. First, we show that one can extract much more infor-
mation from each line about the correct value at a than what the previous algorithm took advantage
of. Second, we use a more sophisticated way of combining information from the different lines. For the
previous algorithm, the problem of combining information from the various lines through a to recover
the correct value of the codeword at a amounted to the problem of decoding a Reed-Muller code. In
the new algorithm, this problem turns out to be a case of decoding a multiplicity code!

2

2. The above framework admits a number of variations that could potentially be interesting for their own
sake.

One variation leads to a “polynomial rate” constant-query error-correction scheme as follows: a message
σ ∈ Σn0 , where |Σ0| = exp(n), gets encoded into a codeword c ∈ Σn, where log |Σ| = nε · log |Σ0|, such
that even if a constant fraction of the coordinates of c are corrupted, for any given1 i ∈ [n] one can
recover σi with high probability using only O(1) queries into c. Such large alphabet error-correction
schemes were considered by Beimel and Ishai [BI01].

Another variation allows local correction for some low rate multiplicity codes using only m lines, with
a much simpler local correction algorithm.

3. Using ideas from the above improvements, we give a new algorithm for (global) decoding of multivariate
multiplicity codes. The original approach of [Kop12] was based on a family of sO(m) space filling
curves that passed through all the points of Fmq . The new algorithm uses only exp(m) many curves.

The property of the sO(m) curves used in [Kop12] was “algebraic repulsion”: no nonzero polynomial
P (X1, . . . , Xm) of moderate degree can vanish on all these curves. The family of curves that we use in
this paper can be smaller because we require a weaker property: no nonzero polynomial P (X1, . . . , Xm)
of moderate degree can vanish on all these curves with high multiplicity.

4. We observe that encoding and unique decoding algorithms for multiplicity codes can be implemented
in near-linear time (i.e., they run in time O(n · (log n)O(1))) . For m = 1, this follows from algorithms
nearly identical to the ones from the classical univariate (s = m = 1) case, and for general m it follows
by refining a reduction to the m = 1 case given in [Kop12].

5. We gather a number of open questions and possible future research directions for the study of multi-
plicity codes.

Organization of this paper: In the next section we formally define multiplicity codes and state their basic
properties. In Section 3 we discuss decoding algorithms for univariate multiplicity codes. In Section 4 we
discuss decoding algorithms for multivariate multiplicity codes. In Section 5 we discuss encoding algorithms.
We conclude with some discussion and open questions.

2 Multiplicity Codes

We begin with some general preliminaries on codes, polynomials and derivatives, and then move on to state
the basic definitions and results about multiplicity codes.

2.1 Codes

Let Σ be a finite set and let n be an integer. We will work with Σn equipped with the (normalized) Hamming
metric ∆, defined by:

∆(x, y) = Pr
i∈[n]

[xi 6= yi].

A code of length n over the alphabet Σ is a subset C of Σn. The rate of the code is defined to be:

R =
log|Σ| |C|

n
.

The minimum distance of the code C is defined to be the smallest value δ of ∆(c, c′) for distinct elements
c, c′ of C.

1We use [n] to denote the set {1, 2, . . . , n}.

3

Encoding If C ⊆ Σn is a code, an encoding map for C is a bijection E : Σk0 → C for some integer k. Often
Σ0 = Σ, but it need not be. It will be important that this map E is efficiently computable and efficiently
invertible.

Unique Decoding In the problem of unique decoding the code C from η-fraction errors, where η ≤ δ/2,
we are given as input r ∈ Σn, and we wish to compute the unique c ∈ C (if any) such that ∆(r, c) < η. The
uniqueness follows from our condition relating η and δ.

List-Decoding In the problem of list-decoding the code C from η-fraction errors, we are given as input
r ∈ Σn, and we wish to compute the set

L = {c ∈ C | ∆(r, c) < η}.

The maximum possible value of |L| as r varies over all elements of Σn is called the list-size for list-decoding
C from η fraction errors.

Local Correction and Local Decoding In the problem of locally correcting the code C from η-fraction
errors, where η ≤ δ/2, we are given oracle access to a string r ∈ Σn, and given as input i ∈ [n], and we
wish to compute ci for the unique c ∈ C (if any) such that ∆(r, c) < η. The query complexity of such a local
correction algorithm is the number of queries made to r; both the query complexity and time complexity
could potentially be sublinear in n (and indeed this is the interesting case).

For local decoding, we deal with a code C along with an encoding map E : Σk0 → C. In the problem of
local decoding (C, E) from η-fraction errors, where η ≤ δ/2, we are given oracle access to r ∈ Σn, and input
i ∈ [k], and we wish to compute xi for the unique x ∈ Σk0 (if any) such that ∆(r, E(x)) < η. The query
complexity of such a local decoding algorithm is the number of queries made to r; again, both the query
complexity and time complexity could potentially be sublinear in n (and indeed this is the interesting case).

The difference between local decoding and local correction is that in local decoding, we are trying to recover
symbols of the original message, while in local correction, we are trying to recover symbols of the codeword.

2.2 Polynomials and Derivatives

For a vector i = 〈i1, . . . , im〉 of non-negative integers, its weight, denoted wt(i), equals
∑m
j=1 ij .

For a field F, let F[X1, . . . , Xm] = F[X] be the ring of polynomials in the variablesX1, . . . , Xm with coefficients

in F. For a vector of non-negative integers i = 〈i1, . . . , im〉, let Xi denote the monomial
∏m
j=1X

ij
j ∈ F[X].

We now define derivatives and the multiplicity of vanishing at a point.

Definition 1 ((Hasse) Derivative) For P (X) ∈ F[X] and non-negative vector i, the ith (Hasse) derivative

of P , denoted P (i)(X), is the coefficient of Zi in the polynomial P̃ (X,Z)
def
=P (X + Z) ∈ F[X,Z].

Thus,

P (X + Z) =
∑
i

P (i)(X)Zi. (1)

We will need some basic properties of the Hasse derivative (see [HKT08]).

Proposition 2 (Basic properties of Hasse derivatives) Let P (X), Q(X) ∈ F[X]m and let i, j be vec-
tors of nonnegative integers. Then:

4

1. P (i)(X) +Q(i)(X) = (P +Q)(i)(X).

2. (P ·Q)(i)(X) =
∑

0≤e≤i P
(e)(X) ·Q(i−e)(X).

3.
(
P (i)

)(j)
(X) =

(
i+j
i

)
P (i+j)(X).

Definition 3 (Multiplicity) For P (X) ∈ F[X] and a ∈ Fm, the multiplicity of P at a ∈ Fm, denoted
mult(P,a), is the largest integer M such that for every non-negative vector i with wt(i) < M , we have
P (i)(a) = 0 (if M may be taken arbitrarily large, we set mult(P,a) =∞).

Next, we state a basic bound on the total number of zeroes (counting multiplicity) that a polynomial can
have on a product set Sm. An elementary proof of this lemma can be found in [DKSS09].

Lemma 4 Let P ∈ F[X] be a nonzero polynomial of total degree at most d. Then for any finite S ⊆ F,∑
a∈Sm

mult(P,a) ≤ d · |S|m−1.

In particular, for any integer s > 0,

Pr
a∈Sm

[mult(P,a) ≥ s] ≤ d

s|S|
.

2.3 Multiplicity Codes

Finally, we come to the definition of multiplicity codes.

Definition 5 (Multiplicity code [KSY11]) Let s, d,m be nonnegative integers and let q be a prime power.

Let Σ = F(m+s−1
m)

q = F{i:wt(i)<s}
q . For P (X1, . . . , Xm) ∈ Fq[X1, . . . , Xm], we define the order s evaluation of

P at a, denoted P (<s)(a), to be the vector 〈P (i)(a)〉wt(i)<s ∈ Σ.

The multiplicity code of order-s evaluations of degree-d polynomials in m variables over Fq is defined as fol-

lows. The code is over the alphabet Σ, and has length qm (where the coordinates are indexed by elements of
Fmq). For each polynomial P (X) ∈ Fq[X1, . . . , Xm] with deg(P) ≤ d, there is a codeword in C given by:

Encs,d,m,q(P) = 〈P (<s)(a)〉a∈Fm
q
∈ (Σ)q

m

.

Technically speaking, we have only defined the multiplicity code as a subset of ΣFm
q , without specifying an

encoding map. We postpone the choice of a good encoding map to a later section.

Lemma 6 (Rate and distance of multiplicity codes [KSY11]) Let C be the multiplicity code of order
s evaluations of degree d polynomials in m variables over Fq. Then C has minimum distance at least δ = 1− d

sq

and rate
(d+m

m)
(s+m−1

m)qm
, which is at least(

s

m+ s

)m
·
(
d

sq

)m
≥
(

1− m2

s

)
(1− δ)m .

We usually think of m and s as large constants (significantly smaller than q), and in light of the above
parameters, having s � m2 is particularly interesting. For the rest of this paper, when we speak of near-
linear time algorithms, this assumes that m and s are constants, and that q and the blocklength qm tend to
∞.

One can easily convert such codes into codes over a constant sized (and even binary) alphabet via concate-
nation, while preserving the local decoding/correction properties. For details, see [KSY11].

5

3 Decoding Univariate Multiplicity Codes

We begin by discussing decoding of univariate multiplicity codes.

3.1 Unique Decoding

The classic Berlekamp-Welch algorithm for decoding Reed-Solomon codes up to half the minimum distance
has a simple generalization to the case of univariate multiplicity codes. This generalization was first discov-
ered by Nielsen [Nie01]2. In fact, Nielsen showed how to do list-decoding of univariate multiplicity codes,
discussed next.

Let us set the problem up. Recall that the alphabet for this code is Fsq. Thus the received word is a function

r : Fq → Fsq. Abusing notation, we view this as a tuple of s functions r(i) : Fq → Fq for 0 ≤ i < s. We wish
to find the unique P (X) such that ∆(Encs,d,1,q(P), r) < δ/2.

The algorithm tries to find an error-locator polynomial E(X) and another polynomial N(X), such that
N(X) = E(X) · P (X).

• Search for nonzero polynomials E(X), N(X) of degrees at most (sq − d)/2, (sq + d)/2 respectively
such that for each x ∈ Fq, we have the following equations:

N(x) = E(x)r(0)(x)

N (1)(x) = E(x)r(1)(x) + E(1)(x)r(0)(x)

· · · (2)

N (s−1)(x) =

s−1∑
i=0

E(i)(x)r(s−1−i)(x)

This is a collection of sq homogeneous linear equations in (sq−d)/2+1+(sq+d)/2+1 > sq unknowns
(the coefficients of E and N). Thus a nonzero solution E(X), N(X) exists. Take any such nonzero
solution.

• Given E(X), N(X) as above, output N(X)
E(X) .

The analysis proceeds by showing that N(X) − P (X)E(X), which is a degree (sq + d)/2 polynomial, has
> (sq + d)/2s zeroes of multiplicity ≥ s, and is thus the zero polynomial. This implies that P (X) =
N(X)/E(X), and so P (X) is the output of the algorithm, as desired.

3.1.1 Unique decoding in near-linear time

In this subsection we describe how to implement the above algorithm in near-linear time. The presentation
follows the description of a near-linear time implementation of the Berlekamp-Welch algorithm in Sudan’s
lecture notes [Sud01].

Let R(X) be the unique polynomial of degree at most sq − 1 such that for each α ∈ Fq and i < s,

R(<s)(α) = r(<s)(α).

2Nielsen’s theorem analyzes the decoding radius in terms of the m-metric, and implies the decoding algorithms for the
Hamming metric considered here.

6

Such anR(X) can be found in near-linear time by the classical Hermite interpolation algorithm of Chin [Chi76].
If E(X) and N(X) satisfy the equations (2), then we have that N(X)−E(X)R(X) vanishes at each x ∈ Fq
with multiplicity at least s. Thus:

N(X) = E(X)R(X)− C(X) · (Xq −X)s,

for some C(X) ∈ Fq[X]. Equivalently,

N(X)

E(X)(Xq −X)s
=

R(X)

(Xq −X)s
− C(X)

E(X)
.

Thus we are looking for C(X), E(X) such that:

1. deg(E(X)) ≤ (sq − d)/2,

2. the rational function C(X)
E(X) approximates the rational function R(X)

(Xq−X)s , in the sense that the numerator

of their difference N(X) = R(X)E(X)− C(X)(Xq −X)s has degree at most (sq + d)/2.

This problem can be solved in near-linear time via Strassen’s continued fraction algorithm [Str81]. In fact,
one can minimize the degree of N(X) subject to the constraint that deg(E(X)) ≤ (sq − d)/2.

Finally, the division step can also be performed in near-linear time. This completes the description of the
near-linear time implementation of the unique decoder for univariate multiplicity codes.

3.2 List-Decoding

We now discuss the list-decoding of univariate multiplicity codes. Here we consider the problem of decoding
from a fraction of errors which may be larger than half the minimum distance δ.

By the Johnson bound, we know that for list-decoding univariate multiplicity codes from (1 −
√

1− δ)-
fraction errors, the list-size is at most poly(q) (this only uses the fact that the distance of the code is ≥ δ). It
is thus reasonable to ask whether there is a polynomial time algorithm to list-decode univariate multiplicity
codes from (1−

√
1− δ)-fraction error.

In [Nie01], Nielsen gave such an algorithm. His algorithm generalizes the Guruswami-Sudan algorithm for
list-decoding Reed-Solomon codes, and is also based on interpolation and root-finding.

Given a received word r : Fq → Fsq, one first interpolates a low-degree bivariate polynomial Q(X,Y) ∈
Fq[X,Y] such that for each α ∈ Fq, the polynomial Q(X,

∑s−1
j=0 r

(j)(α)(X − α)j) vanishes with high multi-
plicity at X = α. One then shows that every P (X) ∈ Fq[X] of degree at most d with ∆(Encs,d,1,q(P), r) ≤
1 −
√

1− δ, we have Q(X,P (X)) = 0. Finally, one can find all polynomials P (X) satisfying this latter
equation.

Recently Guruswami-Wang [GW11] and Kopparty [Kop12] independently found improved results for list-
decoding univariate multiplicity codes over prime fields.

The main result of [GW11] is that order s univariate multiplicity codes of distance δ over prime fields can,
for every integer 0 ≤ t < s, be list-decoded from ηt fraction errors with list-size at most qO(s), where:

ηt =
t+ 1

t+ 2

(
δ − t

s− t

)
.

For t = 0, the algorithm boils down to Nielsen’s version of the Berlekamp-Welch algorithm for unique-
decoding multiplicity codes.

7

The main result of [Kop12] is that order s univariate multiplicity codes of distance δ over prime fields can,
for every integer 0 ≤ t < s be list-decoded from η′t fraction errors with list-size at most qO(ts), where:

η′t = 1−
((

1− t

s− t

)
· (1− δ)

) t+1
t+2

.

For t = 0, the algorithm boils down to Nielsen’s version of the Guruswami-Sudan algorithm for list-decoding
univariate multiplicity codes.

Both these algorithms are based on deriving an order t differential equation of the form:

Q(X,P (X), P (1)(X), . . . , P (t−1)(X)) = 0

from the received word r, such that every P whose encoding is close to r must satisfy this differential
equation. In the algorithm of [GW11] this differential equation is a linear differential equation, and in the
algorithm of [Kop12] this equation is a polynomial differential equation. These differential equations are
then solved using Hensel-lifting / power series. See [GW11] and [Kop12] for the details. The decoding radius
η′r is always greater than ηr, but the algorithm and analysis of [Kop12] are also more involved than that
of [GW11].

It is well known that the maximimum fraction of errors η from which a code of rate R and block-length n
can be list-decoded from while still having poly(n) list-size is 1−R− ε (for arbitrarily small ε > 0). A code
which achieves this is said to achieve list-decoding capacity. The first constructions of codes which achieved
list-decoding capacity came from the breakthrough results of Parvaresh-Vardy [PV05] and Guruswami-
Rudra [GR08]. The above-mentioned results of [GW11] and [Kop12] show that univariate multiplicity codes
over prime fields achieve list-decoding capacity for every R ∈ (0, 1). This follows by noting that for univariate
multiplicity codes, R = 1 − δ, and that for every δ, if we take r to be a very large constant, and s to be a
much larger constant, then the above decoding radii ηr and ηr′ approach δ = 1−R.

4 Decoding Multivariate Multiplicity Codes

4.1 Local Correction

We begin by discussing local correction algorithms for multiplicity codes. When coupled with a systematic
encoding map (which we discuss in the next section), this also gives local decoding algorithms for multiplicity
codes.

4.1.1 Preliminaries on Restrictions and derivatives

We first consider the relationship between the derivatives of a multivariate polynomial P and its restrictions
to a line. Fix a,b ∈ Fmq , and consider the polynomial Q(T) = P (a + bT).

• The relationship of Q(T) with the derivatives of P at a: By the definition of Hasse derivatives,

Q(T) =
∑
i

P (i)(a)biTwt(i).

Grouping terms, we see that: ∑
i|wt(i)=j

P (i)(a)bi = coefficient of T j in Q(T). (3)

8

• The relationship of the derivatives of Q at t with the derivatives of P at a + tb: Let t ∈ Fq.
By the definition of Hasse derivatives, we get the following two identities:

P (a + b(t+R)) = Q(t+R) =
∑
j

Q(j)(t)Rj .

P (a + b(t+R)) =
∑
i

P (i)(a + bt)(bR)i.

Thus,

Q(j)(t) =
∑

i|wt(i)=j

P (i)(a + bt)bi. (4)

In particular, Q(j)(t) is simply a linear combination of the various P (i)(a + bt) (over different i).

We now apply these observations to the derivatives of P . For each nonnegative tuple e ∈ Zm, consider the
polynomial Qe(T) = P (e)(a + bT).

• The relationship of Qe(T) with the derivatives of P at a:∑
i|wt(i)=j

(P (e))(i)(a)bi =
∑

i|wt(i)=j

(
e + i

e

)
P (e+i)(a)bi = coefficient of T j in Qe(T). (5)

In particular, knowing Qe(T) gives us several linear relations between the evaluations of the derivatives
of P at a.

• The relationship of the derivatives of Qe at t with the derivatives of P at a + tb: Let t ∈ Fq.
We get

Q(j)
e (t) =

∑
i|wt(i)=j

(P (e))(i)(a + bt)bi =
∑

i|wt(i)=j

(
e + i

e

)
P (e+i)(a + bt)bi. (6)

In particular, Q
(j)
e (t) is simply a linear combination of evaluations, at a + bt, of the various derivatives

of P .

4.1.2 The Local Correction Algorithm

We now give our local correction algorithm which corrects δ0 <
δ
8 fraction errors. The γ = 0, c = 1 case of

this algorithm is the orignal local correction algorithm of [KSY11]. Increasing γ reduces the query complexity
from sO(m) to exp(m), while reducing the fraction of correctable errors by a negligible amount.

Main Local Correction Algorithm:
Input: received word r : Fmq → Σ, point a ∈ Fmq . Abusing notation again, we will write r(i)(a) when we
mean the i coordinate of r(a).

1. Set γ = 1− (1−δ)
1−8δ0

= δ−8δ0
1−8δ0

. Set c = γ · s+ 1.

2. Pick a set B of directions: Pick z,y1,y2, . . .ym ∈ Fmq independently and uniformly at random. Let

S ⊂ Fq be any set of size d 5s
c e. Define

B = {z +

m∑
j=1

αjyj | αj ∈ S}.

9

3. Recover P (e)(a + bT) for directions b ∈ B: For each e with wt(e) < c and each b ∈ B, consider

the function `b,e : Fq → Fs−wt(e)
q given by

(`b,e(t))j =
∑

i|wt(i)=j

(
e + i

e

)
r(e+i)(a + bt)bi, (7)

for each 0 ≤ j < s − wt(e). Via a univariate multiplicity code decoding algorithm, find the unique
polynomial Qb,e(T) ∈ Fq[T] of degree at most d− wt(e) (if any), such that

∆(Encs−wt(e),d−wt(e),1,q(Qb,e), `b,e) < 2δ0.

4. Decode a constant degree multiplicity code to recover P (<s)(a): Denote the coefficient of T j

in Qb,e(T) by vj,b,e ∈ Fq. If j < 0, we define vj,b,e = 0.

For each j′ with 0 ≤ j′ < s, find the unique homogeneous degree j′ polynomial Rj′(X) ∈ Fq[X] such
that for at least 1/3 of the b ∈ B, for all e with wt(e) < c, we have:

R
(e)
j′ (b) = vj′−wt(e),b,e.

Note that this is a constant degree multiplicity code decoding problem.

If such an Rj′ does not exist, or is not unique, the algorithm outputs FAIL.

For each i with wt(i) < s, define ui to equal the coefficient of Xi in Rwt(i)(X).

5. Output the vector 〈ui〉wt(i)<s.

We quickly comment on the running time and query complexity. The running time consists of |S|m instances
of decoding univariate multiplicity codes over Fq, as well as on instance of decoding a degree-s m-variate
order-c multivariate multiplicity code with evaluation points being Sm. Thus, if m, s are constant, the
running time is near-linear in q, which is near-linear in n1/m, where n is the block-length of the code. The
query complexity is |S|m · q, which equals (5

γ)m · n1/m. For δ = Ω(1) and δ0 < δ/10 (say), the query

complexity equals exp(m) · n1/m.

4.1.3 Analysis of the Local Correction Algorithm

We now analyze the above local correction algorithm.

Theorem 7 Let P (X) ∈ Fq[X] be such that ∆(Encs,d,m,q(P), r) < δ0. Let a ∈ Fmq .

With high probability, the local correction algorithm above outputs P (<s)(a).

Proof Let E = {x ∈ Fmq | P (<s)(x) 6= r(<s)(x)} be the error set. We have |E| < δ0 · qm.

Let Lb = {a + tb | t ∈ Fq} be the line through a in direction b. We call b bad if |Lb ∩ E| ≥ 4 · δ0 · q.

Note that at most 1/4 of all the lines are bad.

Claim 8 With high probability, we have:

1. at most 1/3 of the b ∈ B are bad,

2. |B| = |S|m,

10

These basic probability/linear-algebra facts are well known, and we omit the proofs.

Henceforth we assume that both these events happen.

Claim 9 If b is good, then for every e with wt(e) < c, we have:

Qb,e(T) = P (e)(a + bT).

Proof The univariate multiplicity code of order s−wt(e) evaluations of degree d−wt(e) polynomials has
minimum distance at least 1− d

(s−c+1)q = 1− 1−δ
1−γ which, by choice of γ, is ≥ 8 · δ0.

If b is good, then we know that |Lb∩E| < 4 ·δ0 ·q. By Equations (7) and (6), we conclude that P (e)(a+bT)
(which has degree d− wt(e)) satisfies:

∆(Encs−wt(e),d−wt(e),1,q(P
(e)(a + bT)), `b,e) ≤ |Lb ∩ E|

q
< 4 · δ0,

which is less than half the minimum distance of the univariate multiplicity code of order s−wt(e) evaluations
of degree d− wt(e) polynomials.

Thus P (e)(a + bT) is the unique such polynomial found in Step 3, and so Qb,e(T) = P (e)(a + bT).

For each integer 0 ≤ j′ < s, define the polynomial:

R̃j′(X) =
∑

i′|wt(i′)=j′

P (i′)(a)Xi′ .

Claim 10 If b is good, then for all e with wt(e) < c, we have:

R̃
(e)
j′ (b) = vj′−wt(e),b,e,

Proof We have:

R̃
(e)
j′ (X) =

∑
i′|wt(i′)=j′

(
i′

e

)
P (i′)(a)Xi′−e

=
∑

i′|wt(i′)=j′,i′≥e

(
i′

e

)
P (i′)(a)Xi′−e

=
∑

i|wt(i)=j

(
e + i

e

)
P (e+i)(a)Xi,

where j = j′ − wt(e).

Thus,

R̃
(e)
j′ (b) =

∑
i|wt(i)=j

(
e + i

e

)
P (e+i)(a)bi

= coeff. of T j in Qb,e(T) (by Equation (5) and Claim 9, since b is good)

= vj′−wt(e),b,e.

11

Thus R̃j′(X) satisfies the conditions required of Step 4 of the algorithm.

Let us now show that no other polynomial can satisfy these conditions. Suppose there was some other
solution Rj′(X). Then the difference (R̃j′ − Rj′)(X) would be a nonzero polynomial of degree < s, that
vanishes with multiplicity at least c, at ≥ 1

3 of the points of B. But this cannot be, since B is an affine
one-to-one image of the set Sm, and the fraction of points of Sm on which a nonzero polynomial of degree
< s can vanish with multiplicity ≥ c is at most s

c|S| = 1
5 <

1
3 . Thus R̃j′ is the unique solution found in Step

4.

Finally, we notice that our definition of Rj′ implies that for every i, we have ui = P (i)(a), as desired.

4.1.4 Variations

The above algorithm allows a number of variations that may be useful in different contexts.

Let a ∈ Fmq . Suppose r : Fmq → Σ is a received word, and suppose P (X) ∈ Fq[X] is a polynomial of degree

at most d such that ∆(Encs,d,m,q(P), r) < δ0. Let γ = δ−8δ0
1−8δ0

, and let c = γs+ 1.

Let a ∈ Fmq . For each integer 0 ≤ j′ < s, define the polynomial:

R̃j′(X) =
∑

i′|wt(i′)=j′

P (i′)(a)Xi′ .

Suppose b ∈ Fmq is good (meaning that the line La,b has < 4δ0q errors on it). As we saw in the above

analysis, by querying all the points of the line La,b, we can compute R̃
(e)
j′ (b), for every j′ < s and every e

such that wt(e) < c.

1. Suppose we are only interested in recovering P (<c)(a). Then this can be recovered by querying the
points of just one line! Indeed, if we pick b at random, then with high probability b is good, and then

by querying La,b we can compute R̃
(e)
j′ (b) for every j′ < s and every e such that wt(e) < c. Note that

for every e with wt(e) < c, we have R̃
(e)
wt(e)(b) = P (e)(b). Thus we can compute P (<c)(a) with high

probability.

We now describe a coding scheme taking advantage of this. Specializing parameters, if we take δ = 1/2,

δ0 = 1/100, s = Ω(m2), d = (1− δ) · s · q, n = qm, γ = 1
5 , and so c > s

5 . Let Σ0 = F{i|wt(i)<c}
q , and let

our space of messages be the space of all functions f : Fmq → Σ0.

Define the encoding of the message f as follows: find any polynomial P (X) ∈ Fq[X] of degree at most
(c + m) · q such that for each a ∈ Fmq , we have P (<c)(a) = f(a) (that such a polynomial P exists is
an interpolatability statement; it follows from the arguments in Appendix A of [Kop12]). By choice of
parameters, (c + m) · q < d. The encoding of f is then defined to be Encs,d,m,q(P) ∈ Σn. Note that
log |Σ| =

(
m+s−1
m

)
· log q, and log |Σ0| =

(
m+c−1
m

)
· log q ≈ γm · log |Σ|. Thus this encoding blows up the

bit-length of an alphabet symbol by a factor of 5m, which is at most a sublinear polynomial in n for
q > 5.

By the earlier discussion on local correction, this coding scheme has the following interesting property:
given any a ∈ Fmq , given oracle access to some r ∈ Σm which is δ0-close to the encoding of f , one can
recover the value of f(a) with high probability using only q queries into r. This scheme can be used
even for q as small as O(1)!

2. We now describe another local correction algorithm for multiplicity codes. This algorithm queries only
m lines, but it only works for multiplicity codes of low rate.

12

To locally correct the value of P (<s)(a) for a ∈ Fmq , given oracle access to r : Fmq → Σ, the algorithm
works as follows. First pick a set B of m uniformly random directions from Fmq . With high probability,
we will have that B will be a set of m linearly independent vectors, and if the fraction of errors δ0 is

sufficiently small, then all the b ∈ B will be good. This means that we can compute R̃
(e)
j′ (b) for each

b ∈ B, j′ < s and e with wt(e) < c.

The following lemma implies that this data uniquely determines the polynomial R̃j′(X) for each j′ <
c′ = c · m

m−1 .

Lemma 11 Let c′ = c · m
m−1 . Let R(X1, . . . , Xm) be a homogeneous polynomial of degree j′ < c′.

Suppose B is a set of m linearly independent vectors in Fmq , such that mult(R,b) ≥ c for each b ∈ B.

Then R(X1, . . . , Xm) = 0.

Proof Without loss of generality, we may assumeB = {u1, . . . ,um}, where ui ∈ Fmq is 1 in coordinate
i and 0 in every other coordinate. The hypothesis mult(R,ui) ≥ c implies that for every i with wt(i) = j′

and ii > j′ − c, the coefficient of Xi in R(X) is 0.

Finally, notice that for every i with wt(i) = j′, there always exists some i ∈ [m] for which ii >
j′

m > j′−c.
Thus R(X) = 0.

Once we have computed R̃j′(X) for each j′ < c′ = c · m
m−1 , this immediately gives us P (<c′)(a). If

c′ ≥ s, then this is proper local correction algorithm, but even if c′ < s this algorithm could be of
interest.

For completeness, we record the basic multiplicity amplification fact underlying the above decoding
algorithm. This can also be proved using Lemma 11.

Lemma 12 Let c′ = c · m
m−1 .

Let a ∈ Fm. Let P (X1, . . . , Xn) ∈ F[X1, . . . , Xm], and let B ⊆ Fmq be a basis for Fmq over Fq. For each

b ∈ B and each m-tuple e of nonnegative integers, define Qb,e(T) = P (e)(a + bT) ∈ F[T].

Suppose Qb,e(T) = 0 for each b ∈ B and each e with wt(e) < c. Then mult(P,a) ≥ c′.

4.2 Global Decoding

We now consider decoding of multivariate multiplicity codes in the global sense. In the case of standard
polynomial codes (the s = 1 case), the best known algorithm (due to Pellikaan-Wu [PW04]) for decoding
m-variate codes over Fq works via a reduction to the decoding of 1-variate codes over the bigger field Fqm .

For multiplicity codes with general s, Kopparty [Kop12] gave a reduction from m-variate codes over Fq to
several instances of decoding a 1-variate code over the big field Fqm . Using the algorithms for decoding
univariate multiplicity codes discussed earlier, this gives polynomial time algorithms for unique decoding
multivariate multiplicity codes upto half the minimum distance, and list-decoding multivariate multiplicity
codes upto the Johnson bound.

Below we describe a variation of the reduction of [Kop12]. The key ingredient of that reduction is the
construction of a certain special family of “algebraically-repelling” curves.

Abusing notation, we call a ∈ Fmqm a basis if its m coordinates form a basis for Fqm over Fq. To every basis
a = (a1, . . . , am), we associate a curve γa(T) ∈ Fqm [T]m, given by:

γa(T) = (Tr(a1T),Tr(a2T), . . . ,Tr(amT)).

13

The most interesting feature of this curve is that γa is a bijection between Fqm and Fmq . See [Kop12] for
more properties of these curves γa.

A collection a1, . . . , aM ∈ Fmqm of bases is said to be in (s, c)-general position if there does not exist a nonzero
polynomial R(X) ∈ Fqm [X] of degree at most s which vanishes at each ai with multiplicity at least c.

The c = 1 case of the following lemma was shown in [Kop12].

Lemma 13 Suppose c ≤ s < q. Let a1, . . . , aM ∈ Fmqm be bases in (s, c) general position. Let Q(X) ∈ Fqm [X]
have degree < s · q. Suppose that for each i ∈ [M] and each e with wt(e) < c, the univariate polynomial
Q(e) ◦ γai(T) = 0.

Then Q(X) = 0.

The proof of this lemma is postponed to Section 4.2.2.

Explicit collections a1, . . . , aM ∈ Fmqm in (s, c) general position with M =
(
s
c

)m
can be constructed as follows.

Take a to be a basis of Fmqm , and b1, . . . ,bM to be all the elements of a m-dimensional grid of side s
c in Fmq ,

and set ai = a + bi.

Via the lemma, this gives us an explicit collection of
(
s
c

)m
“algebraically-repelling” curves. We now show how

these curves can be used for reducing multivariate decoding to univariate decoding. Again, this generalizes
the γ = 0, c = 1 case, which was done in [Kop12].

The following lemma, relating the derivatives of a multivariate polynomial to the derivatives of its restriction
to the curve γa, will motivate one of the steps of the algorithm.

Lemma 14 Let P (X1, . . . , Xm) ∈ Fq[X1, . . . , Xm] and let Qe(T) ∈ Fqm [T] be given by Qe(T) = P (e)◦γa(T).
Then for every t ∈ Fqm and every j < q:

Q(j)
e (t) =

∑
i:wt(i)=j

(
i + e

i

)
P (i+e)(γa(t))ai.

Algorithm for Reducing Multivariate Decoding to Univariate Decoding

1. Suppose we have an algorithm A that list-decodes univariate multiplicity codes of distance δ from
η(δ)-fraction errors.

2. Let γ = δ−η−1(δ0)
1−η−1(δ0) , and let c = γ · s+ 1.

3. Let M = (sc)m. Pick bases a1, a2, . . . , aM ∈ Fmqm in (s, c)-general position.

4. For each i ∈ [M], for each e with wt(e) < c, define `i,e : Fqm → Fs−c+1
qm as follows. For each j with

0 ≤ j < s− c+ 1, let

(`i,e(t))j =
∑

i:wt(i)=j

(
i + e

e

)
r(i+e)(γai

(t)) · aii.

5. Using algorithm A, compute the set Li,e of all Q(T) ∈ Fqm [T] of degree at most dqm−1 such that
∆(Encs−c+1,dqm−1,1,qm(Q), `i,e) < δ0.

6. For every (Q1(T), Q2(T), . . . , QM (T)) ∈
∏M
i=1 Li, find all P (X1, . . . , Xm) ∈ Fq[X1, . . . , Xm] with

deg(P) ≤ d such that for each i ∈ [M],

P ◦ γai
(T) = Qi(T).

(This is a system of linear equations over Fqm with
(
d+m
m

)
variables and (d+ 1) ·M constraints).

14

7. Output the list of all such P (X1, . . . , Xm).

Before analyzing correctness, let us comment on the running time of this reduction. For constant m, s, we
claim that this reduction can be implemented to run in near-linear time. The running time of this reduction
depends the size Li, and on how quickly we can find P (X1, . . . , Xm) given Q1(T), . . . , QM (T). If we happen
to know that the Li are all of constant size (as it happens whenever the fraction of errors is bounded below
the Johnson radius), then the factor of

∏
|Li| is at most a constant. Thus we only need to show that the

latter step can be implemented in near-linear time. Given Q1(T), . . . , QM (T), we can: (1) evaluate each
Qi(T) and each of its derivatives of order < s at all points of Fmq , (2) via Lemma 14, we know that this

suffices to give us P (<s)(a) for each a ∈ Fmq , (3) to interpolate P (X) given P (<s)(a) for each a ∈ Fmq .

Thus, we get that unique decoding of multivariate multiplicity codes upto half the minimum distance can be
done in near-linear time. Furthermore, if Nielsen’s algorithm for list-decoding univariate multiplicity codes
upto the Johnson bound can be implemented in near-linear time, then one can also list-decode multivariate
multiplicity codes upto (almost) the Johnson bound in near-linear time.

4.2.1 Analysis of the decoding algorithm

Suppose P (X) ∈ Fq[X] is such that ∆(Encs,d,m,q(P), r) < δ0. Let E ⊆ Fmq be the set of a ∈ Fmq where

P (<s)(a) differs from r(<s)(a).

We first show that Qi,e(T) := P (e) ◦ γai
(T) ∈ Li,e. Indeed, by Lemma 14, for every t ∈ Fqm such that

γa(t) 6∈ E, and for every j < s− c+ 1, we have:

Q
(j)
i,e(t) =

∑
i:wt(i)=j

(
i + e

i

)
P (i+e)(γai(t))a

i
i

=
∑

i:wt(i)=j

(
i + e

i

)
r(i+e)(γai(t))a

i
i

=
∑

i:wt(i)=j

(
i + e

i

)
r(i+e)(γai(t))a

i
i

= `i,e(t).

Thus ∆(Encs−c+1,d,1,q(Qi,e), `i,e) ≤ |E|
qm < δ0, and thus Qi,e is indeed included in the list Li. The crucial

points here are (a) the relative distance of the univariate multiplicity code of order s− c+ 1 evaluations of
degree d polynomials has minimum distance 1− 1−δ

1−γ , and (b) our choice of γ ensures that δ0 ≤ η(1− 1−δ
1−γ).

Thus algorithm A is indeed capable of finding Li as required by the reduction.

4.2.2 Algebraically repelling curves

In this section we prove Lemma 14 and Lemma 13.

Proof of Lemma 14: By definition of derivatives, we have:

Qe(t+W) =
∑
j

Q(j)
e (t)W j ,

P (e)(γa(t) + X) =
∑
i

(P (e))(i)(γa(t))Xi =
∑
i

(
e + i

i

)
P (e+i)(γa(t))Xi.

15

By linearity, γa(t+W) = γa(t) + γa(W). So

Qe(t+W) = P (e) ◦ γa(t+W)

= P (e)(γa(t) + γa(W))

=
∑
i

(
e + i

i

)
P (e+i)(γa(t))(γa(W))i

Taking this equation mod W q, we get the following equation:∑
j<q

Q(j)
e (t)W j =

∑
i:wt(i)<q

(
e + i

i

)
P (e+i)(γa(t))(aW)i mod W q

For j < q, note that the coefficient ofW j in the right hand side of this equation equals
∑

i:wt(i)=j

(
e+i
i

)
P (e+i)(γa(t))ai.

On the other hand, the coefficient of W j in the left hand side of the equation equals Q
(j)
e (t). We therefore

conclude that for each j with 0 ≤ j < q, we have

Q(j)
e (t) =

∑
i:wt(i)=j

(
e + i

i

)
P (e+i)(γa(t))ai.

Proof of Lemma 13: We will show that for each a ∈ Fmq , mult(P,a) ≥ s. Then by Lemma 4 (recalling
that deg(P) < sq), we can conclude that P (X1, . . . , Xm) = 0.

Fix i ∈ [M] and e with wt(e) < c. We have P (e) ◦ γai
(T) = 0. By Lemma 14, we conclude that for every

t ∈ Fqm and j < q: ∑
i:wt(i)=j

(
e + i

i

)
P (e+i)(γai

(t))aii = 0.

Thus for every a ∈ Fmq , every i ∈ [M], 0 ≤ j < s, and e with wt(e) < c:

∑
i:wt(i)=j

(
e + i

i

)
P (e+i)(a)aii = 0. (8)

For 0 ≤ j′ < q, let Ra,j′(Y) ∈ Fq[Y] be the polynomial

Ra,j′(Y) =
∑

i′:wt(i′)=j′

P (i′)(a)Yi′ .

Then the derivatives of Ra,j′ are given by:

R
(e)
a,j′(Y) =

∑
i′:wt(i′)=j′

(
i′

e

)
P (i′)(a)Yi′−e

=
∑

i:wt(i)=j′−wt(e)

(
i + e

e

)
P (i+e)(a)Yi

16

Equation (8) says that for each a ∈ Fmq , i ∈ [M], e with wt(e) < c, and j′ < q + wt(e), we have

R
(e)
a,j′(ai) = 0.

Thus for every j < q and a, i, e as above:

mult(Ra,j , ai) ≥ c.

By the general position hypothesis on ai, this implies that for each j < s, the polynomial Ra,j(Y) is itself
identically 0.

But the coefficients of Ra,j(Y) are P (i)(a), for i satisfying wt(i) = j. Thus P (i)(a) = 0 for each a and each
i with wt(i) < s.

Therefore mult(P,a) ≥ s for each a ∈ Fmq , which implies that P = 0, as desired.

4.3 Local List-Decoding

The list-decoding algorithm for multivariate multiplicity codes from the Johnson radius can be used to give a
local list-decoding algorithm for multivariate multiplicity codes upto the Johnson radius. Since the definition
of local list-decoding is somewhat involved, we refer the reader to the appendix of [Kop12] for the algorithm
and its analysis.

5 Encoding

In this section we discuss encoding algorithms.

Since multiplicity codes are Fq-linear subspaces of ΣFm
q , it is natural to choose an encoding map which is

Fq-linear. One very natural encoding map to consider is the map:

E : F(d+m
m)

q → C,

which treats its input as a vector of coefficients of monomials for a polynomial P ∈ Fq[X] of degree at most
d, and outputs Encs,d,m,q(P). It is well known that the task of computing E, namely evaluating a given
polynomial and all its derivatives of order at most s at all points of Fmq can be performed in near-linear time

O((dm + qm) ·
(
m+s
m

)
· log(dm + qm)).

However, for the purposes of local decoding, it will be important to choose the encoding map E : Σk0 → C ⊆
Σn a bit more carefully. The goal is to have the encoding be systematic; i.e., to have the symbols of the
message appear as symbols (or parts of symbols) of its encoding. Once we have such an encoding map, a
local correction algorithm immediately gives us a local decoding algorithm.

Such a systematic encoding map can be chosen by giving an interpolating set. Concretely, for a given
s, d,m, q, we want a set S ⊆ Fmq × {i | wt(i) < s} such that for every f : S → Fq, there is exactly one

P (X1, . . . , Xm) ∈ Fq[X1, . . . , Xm] of degree at most d such that for each (a, i) ∈ S, P (i)(a) = f(a, i).

It is easy to see that such sets S exist, and any such set S must have |S| =
(
d+m
m

)
. In order for the so

obtained local decoding algorithm to run in sublinear time (assuming the local correction algorithm runs in
sublinear time), it will be important that this interpolating set be explicit: given message coordinate i ∈ [k],
we should be able to compute, in time poly(log(k)), the codeword coordinate j ∈ [n] which contains the ith
symbol of the codeword. In [Kop12], an explicit such interpolating set was given.

17

Theorem 15 ([Kop12]) There exist explicit interpolating sets S as above.

Thus there exist explicit systematic encoding maps for multiplicity codes.

The interpolating sets for multiplicity codes constructed above are in fact simple combinations of interpolat-
ing sets for Reed-Muller codes. Furthermore, it is known that there exist interpolating sets for Reed-Muller
codes from which polynomial interpolation can be performed in near-linear time. This implies, by inspecting
the proof of Theorem 15, that the encoding map described above can be computed in near-linear time.

6 Discussion

1. The improved local decoding algorithm given in Section 4.1.2 had two main ideas over the original
local decoding algorithm of [KSY11]: getting more information from each line, and robustly combining
this information across different lines by decoding a multiplicity code.

The first idea is naturally motivated by an incongruity between the three papers: [KSY11] (on local
correction of multiplicity codes), [GKS13] (on affine invariant codes, local correction of affine invariant
codes, and their relationship to bounds on Nikodym sets), and [DKSS09] (giving lower bounds on the
size of Nikodym sets via the extended method of multiplicities).

A Nikodym set is a set N ⊆ Fmq such that for every a ∈ Fmq , there is some line L ⊆ Fmq passing through
a, such that L \ {a} ⊆ N (i.e., the entire line, except possibly a, is contained in N). In [GKS13] it
was noted that lower bounds on Nikodym sets follow from the existence of algebraic error-correcting
codes that can be locally corrected at a ∈ Fmq by querying a line through a. In [DKSS09], the extended
method of multiplicities (which in retrospect can be interpreted in the language of multiplicity codes)
was used to show a lower bound of

(
q
2

)m
on the size of Nikodym sets. On the other hand, if one tried

to use the original local correction algorithm of [KSY11] for multiplicity codes to prove a lower bound
on Nikodym sets (via the [GKS13] connection), we would get a significantly weaker bound than the
bound of [DKSS09]. All this suggests that there should be a better algorithm for local correction of
multiplicity codes, and (looking at the details) a way to get more information from each line.

The second idea is motivated by a different incongruity: the local correction algorithm of [KSY11]
combines information from different lines by decoding a Reed-Muller code, but there seems to be no
reason for the s = 1 case of multiplicity codes (i.e., Reed-Muller codes) to receive preferential treatment
amongst all possibilities for s. The new algorithm resolves this incongruity, and lets us use fewer lines
for the local decoding.

2. The decoding algorithm described in Section 4.1.4 based on m linearly independent lines was motivated
by another problem in the combinatorial geometry: the joints problem [GK10, KSS10]. Alex Vardy
and Abdul Basit independently suggested to me that bounds on the joints problem could potentially be
improved using the method of multiplicities. The m-line decoding algorithm for multiplicity codes can
be used to give a multiplicity-enhanced proof of the [KSS10] bound on the joints problem; unfortunately
this variant does not improve on the bounds.

A brief outline of the argument goes as follows. One first interpolates a low degree polynomial van-
ishing with multiplicity at least a at the joints of interest (for some large a). Then one argues that
this polynomial vanishes at each line of the collection with multiplicity at least some c. Then using
Lemma 12, we deduce that this polynomial actually vanishes at each of the joints with multiplicity at
least c′ � a. This leads to a contradiction, unless the number of joints is large.

3. The Reed-Muller codes over small fields and in many variables have been very influential. The analogous
multiplicity code would be based on order s evaluations of polynomials over Fq of total degree at most
d and individual degree at most sq− 1. It would be very interesting to study properties of these codes,
and to see if they have any coding/combinatorial applications.

18

We note a curious example of how things change when the individual degrees are bounded: a polynomial
P (X1, . . . , Xm) ∈ F2[X1, . . . , Xm] of individual degree at most 1 vanishes at a point a ∈ Fm2 with
multiplicity at least s if and only if P vanishes at all points of Fn2 which are at a Hamming distance at
most s− 1 from a.

4. There are various interesting variations/cousins of Reed-Solomon and Reed-Muller codes which are in-
teresting from the coding perspective. These include algebraic-geometric codes, BCH codes, projective
Reed-Muller codes, Grassman codes, etc. It would be interesting to investigate multiplicity-based gen-
eralizations of these codes. For algebraic-geometric codes, some such investigations were made (in the
1-dimensional case, analogous to Reed-Solomon codes) by Rosenbloom-Tsfasman [RT97], Xing [Xin03]
and Nielsen [Nie01].

7 Open Questions

We conclude with a list of some interesting open questions. Some of these questions are open even in the
classical s = 1 case (Reed-Solomon codes and Reed-Muller codes).

1. What is the list-decoding radius for univariate multiplicity codes? In other words, what is the largest
fraction η of errors from which univariate multiplicity codes of distance δ and block-length n can be
list-decoded with poly(n) list-size? For general univariate multiplicity codes, this is only known to be
true for η ≤ 1 −

√
1− δ, while for univariate multiplicity codes over prime fields with s sufficiently

large, it is known for every η < δ.

This question is even open for Reed-Solomon codes.

Here are some related questions. Does the answer depend on the field? Does the answer depend on
the set of evaluation points? What happens for multivariate multiplicity codes (again, this is open for
multivariate Reed-Muller codes too)?

2. It is an extremely interesting question whether the list-size for list-decoding univariate multiplicity
codes over prime fields (as in [GW11, Kop12]) needs to be poly(q), or if it can be reduced to a constant
independent of q.

It is also extremely interesting to know whether the primality of q is essential for the improved list-
decoding of multiplicity codes in [GW11, Kop12].

3. Can Nielsen’s algorithm for list-decoding univariate multiplicity codes upto the Johnson bound be
implemented to run in near-linear time. It would also immediately imply a near-linear time global
algorithm, and a faster local algorithm, for list-decoding multivariate multiplicity codes upto the John-
son radius. This seems to require some nontrivial adaptation of the ideas of Alekhnovich [Ale05], who
showed how to list-decode Reed-Solomon codes in near-linear time.

4. Are multiplicity codes locally testable?

5. Are there any applications of multiplicity codes to computational complexity theory? Reed-Solomon
codes and Reed-Muller codes have found many celebrated applications, and it would be interesting to
see if multiplicity codes can improve on any of them.

6. Are there any practical applications of multiplicity codes? By combining high rate with sublinear-
time decoding, and also supporting various other efficent operations, multiplicity codes seem to be
theoretically practical. Perhaps they really are practical?

19

Acknowledgements

Thanks to Alexander Barg and Oleg Musin for organizing an excellent workshop to celebrate Ilya Dumer’s
birthday, and for encouraging me to write this article. Many many thanks to Ilya Dumer for being a
wonderful friend and mentor for many years, and for getting me hooked on coding theory in the first place.

References

[Ale05] Michael Alekhnovich. Linear diophantine equations over polynomials and soft decoding of reed-
solomon codes. IEEE Transactions on Information Theory, 51(7):2257–2265, 2005.

[BI01] Amos Beimel and Yuval Ishai. Information-theoretic private information retrieval: A unified
construction. In ICALP, pages 912–926, 2001.

[Chi76] Francis Y. L. Chin. A generalized asymptotic upper bound on fast polynomial evaluation and
interpolation. SICOMP: SIAM Journal on Computing, 5, 1976.

[DKSS09] Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, and Madhu Sudan. Extensions to the method
of multiplicities, with applications to Kakeya sets and mergers. In 50th IEEE Symposium on
Foundations of Computer Science (FOCS), pages 181–190, 2009.

[GK10] Larry Guth and Nets Hawk Katz. Algebraic methods in discrete analogs of the kakeya problem.
Advances in Mathematics, 225(5):2828–2839, 2010.

[GKS13] Alan Guo, Swastik Kopparty, and Madhu Sudan. New affine-invariant codes from lifting. In
ITCS, pages 529–540, 2013.

[GR08] Venkatesan Guruswami and Atri Rudra. Explicit codes achieving list decoding capacity: Error-
correction with optimal redundancy. IEEE Transactions on Information Theory, 54(1):135–150,
2008.

[Guo13] Alan Guo. High rate locally correctable codes via lifting. Electronic Colloquium on Computational
Complexity (ECCC), 20:53, 2013.

[GW11] Venkatesan Guruswami and Carol Wang. Optimal rate list decoding via derivative codes. In
APPROX-RANDOM, pages 593–604, 2011.

[HKT08] J. W. P. Hirschfeld, G. Korchmaros, and F. Torres. Algebraic Curves over a Finite Field (Princeton
Series in Applied Mathematics). Princeton University Press, 2008.

[HOW13] Brett Hemenway, Rafail Ostrovsky, and Mary Wootters. Local correctability of expander codes.
In ICALP (1), pages 540–551, 2013.

[Kop12] Swastik Kopparty. List-decoding multiplicity codes. In Electronic Colloquium on Computational
Complexity (ECCC), TR12-044, 2012.

[KSS10] Haim Kaplan, Micha Sharir, and Eugenii Shustin. On lines and joints. Discrete & Computational
Geometry, 44(4):838–843, 2010.

[KSY11] Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes with sublinear-time
decoding. In STOC, pages 167–176, 2011.

[Nie01] Rasmus R. Nielsen. List decoding of linear block codes. PhD thesis, Technical University of
Denmark, 2001.

20

[PV05] Farzad Parvaresh and Alexander Vardy. Correcting errors beyond the Guruswami-Sudan radius
in polynomial time. In 46th IEEE Symposium on Foundations of Computer Science (FOCS),
pages 285–294, 2005.

[PW04] Ruud Pellikaan and Xin-Wen Wu. List decoding of q-ary Reed-Muller codes. IEEE Transactions
on Information Theory, 50(4):679–682, 2004.

[RT97] M Yu Rosenbloom and Michael Anatol’evich Tsfasman. Codes for the m-metric. Problemy
Peredachi Informatsii, 33(1):55–63, 1997.

[Str81] Volker Strassen. The computational complexity of continued fractions. In Proceedings of the
fourth ACM symposium on Symbolic and algebraic computation, pages 51–67. ACM, 1981.

[Sud01] Madhu Sudan. Notes on rational function interpolation. Lecture notes for Algorithmic Introduction
to Coding Theory, 2001.

[Xin03] Chaoping Xing. Nonlinear codes from algebraic curves improving the Tsfasman-Vladut-Zink
bound. IEEE Transactions on Information Theory, 49(7):1653–1657, 2003.

21

