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Let P (X) ∈ Fq[X] be a polynomial of degree at most d. What can we say about the distribution of values
of P (x) as x varies in Fq? It is reasonable to expect the values to be spread out all over Fq, landing in any
set S with probability about |S|/q.
One important way of measuring the uniformity of distribution1 is through the character sums:

|
∑
x∈Fq

ψ(P (x))|,

|
∑
x∈Fq

χ(P (x))|.

Over this course, we will see several theorems showing that these sums are all small (unless there is an
obvious reason for them not to be!), and several ways of taking advantage of these theorems.

1 Single Monomials

Suppose P (X) = Xd. Let ψ be a nontrivial additive character. What can we say about the absolute value
of the sum:

S =
∑
x∈Fq

ψ(P (x)).

Without loss of generality, we can assume d divides q−1, otherwise we can replace d with d′ = GCD(d, q−1).
Looking more closely, we see that we have basically already found a bound for this sum. Since the map
x 7→ xd is d-to-1 on F∗

q , we conclude that:

S = 1 + d ·
∑
y∈H

ψ(y),

where H is the multiplicative subgroup of F∗
q consisting of nonzero perfect d’th powers. Thus, from the

bound we derived using Gauss sums:
|S| ≤ 1 + d

√
q.

Again, for small degrees d, this is the kind of cancellation that we would expect from a sum of q random
points on the unit circle.
Looking at the whole argument in totality, what we just did is highly highly dependent on P (X) being a
single monomial. The multiplicativity of the monomial brings the characters of the multiplicative group into
play. For a general polynomial P (X), we have no such option.
We now give a different argument for bounding |S|. This argument will be amenable to generalization to all
polynomials.

1Note that we are not saying that if x is picked uniformly from Fq , the distribution of P (x) is uniform over Fq (or even close
to uniform in, say, the ℓ1 distance).

What we are saying is more like this: for some natural collection T of test functions T : Fq → C, the expected value of
T (P (x)) for x picked uniformly from Fq is approximately equal the the expected value of T (y) for y picked uniformly from Fq .
For example, one could take T to be the set of all indicator functions of arithmetic progressions in Fq , or to be the set of all
additive characters of Fq .
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1.1 P (X) = X2

First let P (X) = X2. Let S =
∑

x∈Fq
ψ(x2). If q is even, then S is easily seen to be 0, so we assume q is

odd.
We proceed by direct expansion:

|S|2 =

∑
x∈Fq

ψ(x2)

 ·

∑
y∈Fq

ψ(y2)


=
∑

x,y∈Fq

ψ(x2 − y2),

=
∑

x,y∈Fq

ψ((x− y)(x+ y)).

Now we note that as (x, y) varies over F2
q, (x−y, x+y) also varies over F2

q (this is where we used the oddness
of q). Thus:

|S|2 =
∑

a,b∈Fq

ψ(ab)

=
∑
a∈Fq

{
q a = 0

0 a ̸= 0

= q.

Thus |S| = √
q.

1.2 P (X) = Xd

Now let us generalize this to general d|(q − 1).
If we proceed as before, we get:

|S|2 =
∑

x,y∈Fq

ψ(xd − yd)

=
∑

x,y∈Fq

ψ

d−1∏
j=0

(x− ωjy)

 ,

where ω is a primitive dth root of 1 in Fq. Now what?
The expression we just encountered has no easy simplification. Instead, we will consider a family of related
expressions (the family includes our expression). We will be able to find the sum of all of these expressions!
Let Sa =

∑
x∈Fq

ψ(axd). Consider the following sum:∑
a∈Fq

|Sa|2 =
∑
a∈Fq

∑
x,y∈Fq

ψ(a(xd − yd))

=
∑

x,y∈Fq

∑
a∈Fq

ψ(a(xd − yd))

=
∑

x,y∈Fq

q · 1xd=yd

≤ q2d.

This is an instructive calculation. Let us pause to see what it means. The average value of |Sa|2 is dq, and
thus:
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1. for some a, |Sa| ≤
√
dq,

2. for some a ̸= 0, |Sa| ≥
√
(d− 1)q (since S0 = q).

On the other hand, it does not say anything directly about our desired sum, S1 (it only says that |S1| ≤
√
d·q,

which is trivial).
The final piece is the observation that many of the Sa are equal to S1. Indeed, if a is a nonzero perfect dth
power, then S1 = Sa. Thus: ∑

a∈F∗
q

|Sa|2 ≥ (q − 1)

d
|S1|2,

and so:

|S1|2 ≤ q2(d− 1)

(q − 1)/d
≤ d2q.

This gives us the desired bound |S1| ≤ d
√
q.

2 Mordell’s bound

We now generalize the above argument to arbitrary polynomials P (X) of degree ≤ d.
Let ψ be a nontrivial additive character. For a given a = (a1, . . . , ad) ∈ Fd

q , let:

Sa =
∑
x∈Fq

ψ(

d∑
i=1

aix
i).

Let ℓ be an integer to be determined later. We expand and simplify:

∑
a∈Fd

q

|Sa|2ℓ =
∑
a∈Fd

q

ℓ∏
j=1

 ∑
xj∈Fq

ψ(

d∑
i=1

aix
i
j)

 ·
ℓ∏

k=1

 ∑
yk∈Fq

ψ(

d∑
i=1

aiy
i
k)


=
∑
a∈Fd

q

∑
x1,...,xℓ

∑
y1,...,yℓ

ψ

 d∑
i=1

ai(

ℓ∑
j=1

xij −
ℓ∑

k=1

yik)


=

∑
x1,...,xℓ

∑
y1,...,yℓ

∑
a∈Fd

q

d∏
i=1

ψ

ai( ℓ∑
j=1

xij −
ℓ∑

k=1

yik)


=

∑
x1,...,xℓ

∑
y1,...,yℓ

d∏
i=1

∑
ai∈Fq

ψ

ai( ℓ∑
j=1

xij −
ℓ∑

k=1

yik)


=

∑
x1,...,xℓ

∑
y1,...,yℓ

qdCd(x1, . . . , xℓ, y1, . . . , yℓ),

where

Cd(x1, . . . , xℓ, y1, . . . , yℓ) =

{
1 for each i ≤ d,

∑ℓ
j=1 x

i
j =

∑ℓ
k=1 y

i
k,

0 otherwise.

The following argument works only if char(Fq) > d. In the homework, you will be asked to generalize this
argument to all q.
Let pi(z1, . . . , zd) =

∑d
j=1 z

i
j . By the Newton identities, the sequence (pi(z1, . . . , zd))

d
i=1 determines all the

d elementary symmetric functions σ1, . . . , σd of z1, . . . , zd (this is where the characteristic of Fq gets used).
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This in turn determines the multiset R = {z1, . . . , zd}, since R is the multiset of roots of the polynomial:

Xc +

d∑
j=1

(−1)j · σj ·Xj .

Thus, as long as ℓ ≥ d, ∑
a∈Fd

q

|Sa|2ℓ =
∑

x1,...,xℓ

∑
y1,...,yℓ

qdCd(x1, . . . , xℓ, y1, . . . , yℓ)

≤
∑

x1,...,xℓ

∑
y1,...,yℓ−d

qd · d!

= q2ℓ · d!

Again, this tells us that the average value of |Sa|2ℓ equals q2ℓ−d · d!, which suggests that the typical |Sa| is
at most around q1−

d
2ℓ · (d!)1/2ℓ. But for any particular |Sa| we get nothing nontrivial directly from this.

The key is to note that for every y ∈ F∗
q , if we let ay = (a1y, a2y

2, . . . , ady
d), then Say = Sa. Furthermore,

if a ̸= 0, then there are at most d choices of y ∈ Fq for which ay = a.
Thus, for every particular nonzero a ∈ Fd

q , we have

q − 1

d
|Sa|2ℓ ≤ q2ℓ · d!,

and so
|Sa| ≤ (d! · d) 1

2ℓ · q1− 1
2ℓ .

Taking ℓ = d, we get the following bound.

Theorem 1 (Mordell Bound). Let ψ be a nontrivial additive character of Fq, and let P (X) be a nonzero
polynomial of degree d, where d < char(Fq). Then:

|
∑
x∈Fq

ψ(P (x))| ≤ O(d · q1− 1
2d ).

Note that once we allow d ≥ char(Fq), it is possible that the above sum equals q. For example, if P (X) =
Xchar(Fq) −X, then ψ1(P (x)) = 0 for all x ∈ Fq.

3 Kloosterman sums

For a, b ∈ Fq, and ψ and additive character of Fq, the Kloosterman sums are defined by:

Ka,b =
∑
x∈F∗

q

ψa(x)ψb(x
−1).

We will now give Kloosterman’s elementary bound on his sums. The argument will be analogous to Mordell’s
method:

∑
a,b∈Fq

|Ka,b|4 =
∑
a,b

∑
x1,x2,y1,y2∈F∗

q

ψa(x1 + x2 − y1 − y2)ψb(x
−1
1 + x−1

2 − y−1
1 − y−1

2 )

=
∑

x1,x2,y1,y2∈F∗
q

(∑
a

ψa(x1 + x2 − y1 − y2)

)(
ψb(x

−1
1 + x−1

2 − y−1
1 − y−1

2 )
)

=
∑

x1,x2,y1,y2

q2C(x1, x2, y1, y2)
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where C(x1, x2, y1, y2) = 1 if x1 + x2 = y1 + y2 and x−1
1 + x−1

2 = y−1
1 + y−1

2 , and C(x1, x2, y1, y2) = 0
otherwise. Observe that C(x1, x2, y1, y2) = 1 if and only if {x1, x2} = {y1, y2}. Thus:∑

a,b∈Fq

|Ka,b|4 =
∑

x1,x2,y1,y2

q2C(x1, x2, y1, y2)

≤
∑
x1,x2

q2 · 2

= 2q4.

Finally, we note that Ka,b = Kac,bc−1 for every c ∈ F∗
q .

Thus:

Theorem 2. If a, b are both nonzero, then: |Ka,b| ≤ O(q3/4).

Note that the other Kloosterman sums are easily computed: K(0, 0) = q − 1, K(0, b) = K(a, 0) = −1 if
a, b ̸= 0.

4 Statement of the Weil bounds

The Weil bounds show that additive character sums with polynomial arguments (of the type we saw above)
and multiplicative character sums with polynomial arguments have very high cancellation, except when they
obviously don’t.

Theorem 3. Let ψ be a nontrivial additive character of Fq, and let P (X) be a nonzero polynomial of degree
d, such that P (X) cannot be written as Q(X)char(Fq) −Q(X) + c, where Q(X) ∈ Fq[X], c ∈ Fq. Then:

|
∑
x∈Fq

ψ(P (x))| ≤ (d− 1)
√
q.

Theorem 4. Let χ be a nontrivial multiplicative character of Fq, and let P (X) be a nonzero polynomial
of degree d, such that P (X) cannot be written as cQ(X)e, where Q(X) ∈ Fq[X], c ∈ Fq and e > 0 is the
smallest integer with χe = χ0. Then:

|
∑
x∈Fq

χ(P (x))| ≤ d
√
q.

Finally, we also have the Weil bound on the Kloosterman sums:

Theorem 5. For a, b nonzero, we have:
|Ka,b| ≤ 2

√
q.

To get a flavor of how we will prove these bounds, consider the quadratic residue character χ, and consider
what the statement |

∑
x∈Fq

χ(P (x))| ≤ t means. It means that P (x) is a quadratic residue for between q−t
2

and q+t
2 values of x ∈ Fq. This is equivalent to saying that the number of (x, y) ∈ Fq satisfying equation:

y2 = P (x)

is q ± t. Thus we want to count the number of F2
q solutions of some given bivariate polynomial Q(X,Y ).

This is the language in which Weil proved his bound; every absolutely irreducible Q(X,Y ) ∈ Fq[X,Y ] of
degree d has q ± Od(

√
q) solutions in F2

q. Q(X,Y ) is said to be absolutely irreducible if it is irreducible in

Fq[X,Y ] (i.e., even if the coefficients of the potential factors are allowed to come from the algebraic closure
Fq). For example, X2−αY 2 is not absolutely irreducible, even if α is a quadratic nonresidue, and X2+Y 2−1
is absolutely irreducible.
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5 A quick application

Let q be prime, and let S, T be APs in Fq. (We may also let q be general, and S, T be subspaces; then with
a similar argument we get slightly better bounds, as in the section on Gauss sums).
How many x ∈ S are there such that x−1 ∈ T?
Let us express this analytically, and then simplify using what we know.

|{x ∈ S | x−1 ∈ T}| =
∑
x∈S

1T (x
−1)

=
∑
x∈Fq

1S(x)1T (x
−1)

=
∑
x∈Fq

∑
a,b∈Fq

1̂S(a)ψa(x)1̂T (b)ψb(x
−1)

=
∑

a,b∈Fq

∑
x∈Fq

1̂S(a)ψa(x)1̂T (b)ψb(x
−1)

=
∑

a,b∈Fq

1̂S(a)1̂T (b)

∑
x∈Fq

ψa(x)ψb(x
−1)


= 1̂S(0)1̂T (0) +

∑
a,b∈Fq,(a,b)̸=(0,0)

1̂S(a)1̂T (b)

∑
x∈Fq

ψa(x)ψb(x
−1)


=

|S||T |(q − 1)

q2
±

∑
a∈Fq

|1̂S(a)|

∑
b∈Fq

|1̂S(b)|

 · (2√q)

=
|S||T |
q

±O(
√
q log2 q).

(As usual, if S, T were subspaces, we would save the log2 q factor.
Thus for |S||T | ≫ q3/2 log2 q, the number of x ∈ S with x−1 ∈ T is what we would expect from random sets
S, T .
One weakness of the above result is that it says nothing about very small APs / subspaces. Consider the
following problem: could it be that there are intervals S of length log100 q such that for every x ∈ S, we also
have x−1 ∈ S? This is consistent with the above result.
We will see in a later class (hopefully) that this cannot be: there is an absolute constant C, such that for all
primes q > C and and all intervals S ⊆ Fq with |S| > C, we have:

|{x ∈ S | x−1 ∈ S}| ≤ 0.99|S|.

This will follow from a more general statement: the 3-regular graph G = (V,E), where V = Fq and
E = {(x, y) ∈ F2

q | x− y = ±1 or xy = 1} is an expander graph.
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