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Abstract

In this work we explore error-correcting codes derived from the “lifting” of “affine-invariant”
codes. Affine-invariant codes are simply linear codes whose coordinates are a vector space over
a field and which are invariant under affine-transformations of the coordinate space. Lifting
takes codes defined over a vector space of small dimension and lifts them to higher dimensions
by requiring their restriction to every subspace of the original dimension to be a codeword of
the code being lifted. While the operation is of interest on its own, this work focusses on new
ranges of parameters that can be obtained by such codes, in the context of local correction and
testing. In particular we present four interesting ranges of parameters that can be achieved by
such lifts, all of which are new in the context of affine-invariance and some may be new even in
general. The main highlight is a construction of high-rate codes with sublinear time decoding.
The only prior construction of such codes is due to Kopparty, Saraf and Yekhanin [33]. All our
codes are extremely simple, being just lifts of various parity check codes (codes with one symbol
of redundancy), and in the final case, the lift of a Reed-Solomon code.

We also present a simple connection between certain lifted codes and lower bounds on the
size of “Nikodym sets”. Roughly, a Nikodym set in Fm

q
is a set S with the property that every

point has a line passing through it which is almost entirely contained in S. While previous lower
bounds on Nikodym sets were roughly growing as qm/2m, we use our lifted codes to prove a
lower bound of (1− o(1))qm for fields of constant characteristic.
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1 Introduction

In this work we explore the “locality properties” of some highly symmetric codes constructed by
“lifting” “affine-invariant” codes. We describe these terms below.

1.1 Basic terminology and background

We start with some standard coding theory preliminaries. Let Fq denote the finite field of cardinality
q and for any finite set D, let {D → Fq} denote the set of all functions from D to Fq. In this work,
a code on coordinate set D is a set of functions F ⊆ {D → Fq}. A code F is said to be linear if
it forms a vector space over Fq, i.e., if for every f, g ∈ F and α ∈ Fq the function αf + g ∈ F .
We refer to N = |D| as the length of the code. A second parameter of interest is the dimension
of the code which is the dimension of F as a vector space. The dual of a code F , denoted F⊥, is
the set of functions {g : D → Fq|〈f, g〉 = 0 ∀f ∈ F}, where 〈f, g〉 =

∑

x∈D f(x)g(x) denotes the
standard inner product of vectors. Let wt(f) = |{x ∈ D|f(x) 6= 0}| denote the weight of f . Let
δ(f, g) = |{x ∈ D|f(x) 6= g(x)}|/|D| denote the (normalized Hamming) distance between f and g.
(So δ(f, g) = wt(f − g)/|D|.) We say f is δ-close to g if δ(f, g) ≤ δ and δ-far otherwise. We say
f is δ-close to F if there exists g ∈ F that is δ-close to f and δ-far otherwise. We say F is a code
of distance δ if every pair of distinct codewords in F are δ-far from each other. We use δ(F) to
denote the maximum δ such that F is a code of distance δ.

In this work we explore some aspects of affine-invariant codes. In such codes the domain D is a
vector space Fm

qn , i.e., an m-dimensional vector space over the n-dimensional extension field of the
range Fq. Let Q = qn and let FQ denote the field of size Q. We say a function A : Fm

Q → Fm
Q is an

affine function if A(x) = M · x+ b for some matrix M ∈ Fm×m
Q and vector b ∈ Fm

Q . We say A is an
affine permutation if M is invertible. A code F ⊆ {Fm

Q → Fq} is said to be affine-invariant if for
every affine permutation function A : Fm

Q → Fm
Q and for every f ∈ F the function f ◦ A given by

(f ◦ A)(x) = f(A(x)) is also in F .1

Affine-invariant codes are of interest to us because they exhibit, under natural and almost
necessary conditions, very good locality properties: they tend to be locally testable and locally
correctible. We introduce these notions below. We say a code F is (k, δ)-locally correctible ((k, δ)-
LCC) if there exists a probabilistic algorithm Corr that, given x ∈ D and oracle access to a
function f : D → Fq which is δ-close to some g ∈ F , makes at most k queries to f and outputs
g(x) with probability at least 2/3. We say that F is (k, ǫ, δ)-locally testable ((k, ǫ, δ)-LTC) if F is
a code of distance δ and there exists a probabilistic algorithm Test that, given oracle access to
f : D → Fq, makes at most k queries to f and accepts f ∈ F with probability one, while rejecting
f that is τ -far from F with probability at least ǫ · τ .

1.2 This work: Motivation and Results

As noted above affine-invariant lead naturally to locally decodable codes and locally testable codes.
In this work we use a certain lifting operation to exhibit codes with very good locality. We start
by defining the lifting operation. For a function f : Fm

Q → Fq and set S ⊆ Fm
Q let f |S denote the

restriction of f to the domain S.

1In some of the earlier works invariance is defined with respect to all affine functions and not just permutations.
In Section A we show that the two notions are equivalent and so we use invariance with respect to permutations in
this paper.
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Definition 1.1 (Lifting). For a code F ⊆ {Ft
Q → Fq}, and integer m ≥ t its m-dimensional lift

Liftm(F) ⊆ {Fm
Q → Fq} is the code

{f : Fm
Q → Fq | f |V ∈ F for every t-dimensional affine subspace V ⊆ Fm

Q}.

(Note that the definition above assumes some canonical way to equate t-dimensional subspaces
of Fm

Q with Ft
Q. But for affine-invariant families F the exact correspondence does not matter as

long as the map is an isomorphism.)
The lift is a very natural operation on affine-invariant codes, and builds long codes from shorter

ones. Indeed, lifts may be interpreted as the basic operation that leads to the construction of
“(Generalized) Reed-Muller” codes, codes formed by m-variate polynomials over Fq of total degree
at most d: Such codes are the “lifts” of t-variate polynomials of degree at most d, for t = ⌈ d+1

q−q/p⌉
where p is the characteristic of q. (This follows from the “characterization” of polynomials as
proven in [30].) While the locality properties (testability and correctability) of Reed-Muller codes
are well-studied [36, 3, 4, 35, 1, 30, 27, 10, 26], they are essentially the only rich class of symmetric
codes that are well-studied. The only other basic class of symmetric codes that are studied seem
to be sparse ones, i.e., ones with few codewords.

In this work we explore the lifting of codes as a means to building rich new classes of dense
symmetric codes. (In Theorems 1.2 - 1.5 below we describe some of the codes we obtain this way,
and contrast them with known results.) Along the way we also initiate a systematic study of lifts
of codes. Lifts of codes were introduced first in [7], who explored it to prove negative results —
specifically, to build “symmetric LDPC codes” that are not testable. (Their definition was more
restrictive than ours, and also somewhat less clean.) Our work is the first to explore positive use
of lifts.

We remark that all codes constructed by lifting have relative distance of at least Q−t and are
(Qt, Q−t/3)-LCC’s and (Qt,Ω(Q−2t), Q−t)-LTC’s. The local correctability follows directly from
their definition, while the local testability is a consequence of the main result of [31, Theorem 2.9].
(See also Proposition 2.10.) This general feature suffices for three of our code construction, while
in the fourth case we have to analyze the decodability a little more carefully.

An example. Let q be a power of 2, let d = (1 − δ)q and let us consider the lift of the set
of all univariate polynomials over Fq of degree at most d to F2

q. Explicitly, we mean the code F
consisting of all functions f : F2

q → Fq such that the restriction of f to any line of F2
q is a univariate

polynomial of degree at most d. F is an affine-invariant linear space.
By construction, it is clear that F has a lot of local structure; this leads to a simple local-

correction algorithm for F based on picking random lines and performing noisy univariate poly-
nomial interpolation (i.e., Reed-Solomon decoding). We will show that in fact F also has large
dimension (when δ is small). This leads to a high-rate locally correctable code.

Which functions f : F2
q → Fq lie in F? We will give an answer to this question later in the

paper, in terms of the polynomial representation f(X,Y ) =
∑

0≤i,j<q aijX
iY j. Here since we are

interested in showing that dimF is large, it will suffice for us to show that there are many linearly
independent elements in F . To do this, we will study when a monomial g(X,Y ) = XiY j is in F .
Note that if we restrict g to a line ℓ(T ) = (α1T + α0, β1T + β0), we get the function

g|ℓ(T ) = (α1T + α0)
i(β1T + β0)

j =
∑

r≤i

∑

s≤j

αr
1α

i−r
0 βs

1β
j−s
0

(

i

r

)(

j

s

)

T r+s.
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This function will equal a univariate polynomial of degree at most d at all points of Fq if, when we
reduce it mod T q − T , we see no monomials of degree > d. Reducing the above polynomial mod
T q−T amounts to replacing T r+s in the above expression with T r+s (mod∗ q) (where a (mod∗ q) = 0
if a = 0 and a (mod∗ q) = b ∈ {1, . . . , q−1} if a 6= 0 and a = b (mod q−1)). This will happen if i, j
satisfy the following criterion: for every r ≤ i, s ≤ j, if

(

i
r

)

6= 0 mod 2 and
(

j
s

)

6= 0 mod 2, then
r + s (mod∗ q) ≤ d. Via Lucas’ theorem (which gives a characterization of when

(

a
b

)

= 0 mod 2,
we deduce that the monomial XiY j is in F if (i, j) lies in the set:

S = {(i, j) | ∀r ≤2 i, j ≤2 s, r + s (mod∗ q) ≤ d},

where a ≤2 b means that set of coordinates that equal 1 in the binary representation of a is a subset
of the set of coordinates that equal 1 in the binary representation of b. Finally, an analysis of the
set S shows that its size is ≥ (1 − ǫδ) · q2, where ǫδ → 0 as δ → 0. Thus the dimension of F is at
least (1− ǫδ) · q2.

We will formally treat this example in greater generality in a later section. Before that, we will
build up the theory of lifts of multivariate codes. In Proposition 2.2 we will see that affine-invariant
codes are completely characterized by (and in fact spanned by) the monomials in the code; thus
the dimension of the code above exactly equals |S|.

The constructions. For simplicity most codes are described for the case of fields of characteristic
two, while the construction does generalize to other fields. (The main exception is in Theorem 1.3
where the code is later applied in other cases, so we describe the more general result.) The codes
in the first three theorems below are obtained by the lifting of the parity-check code. By making
appropriate choices of Q and t we get codes with different locality (and distance). The fourth code
works over large fields only and is obtained by lifting the Reed-Solomon code.

Our first code has constant locality k, for k being a power of 2. If the length of the code is N
(in our setting N = Qm), then the code has dimension Ωk((logN)k).

Theorem 1.2. For every positive integer t and k = 2t, there exists a constant ck > 0 such that for
every positive integer m and N = 2m, there exists a binary code of length N , dimension at least
ck(logN)k−2 which is a (k − 1, k−1/3)-LCC, and a (k,Ω(k−2), k−1)-LTC.

To contrast this with other known codes, essentially the only symmetric binary code known
in this regime is the Reed-Muller code, which has dimension Ω((logN)log k) for locality k. Thus
our code has significantly greater dimension in this regime. Our results are also asymptotically
optimal for affine-invariant codes, by a result of Ben-Sasson and Sudan [9] which shows that any
affine-invariant code with such local correctability or testability must have dimension (logN)k+O(1).

For local correctability, these codes asymptotically match the performance of best-known codes,
which would be obtained by taking Generalized Reed-Muller codes over a field of size roughly k
and then composing it with some binary code. Our codes are simpler to describe and the symmetry
comes without any loss of parameters. Furthermore, for really small constants, say k = 4 or k = 8,
these codes seem to be better than previously known locally correctible codes.

Our next two codes consider relatively large locality (growing with N). The advantage with
these codes is that the redundancy (the difference between the length and the dimension) grows
exceedingly slowly. The first of these two codes considers the setting where the locality is N ǫ for
some positive (but tiny) ǫ. In such cases, we get codes of dimension N − N1−ǫ′ where ǫ′ > 0 if
ǫ > 0. Thus the dimension is extremely close to the length.

4



Theorem 1.3. For every ǫ > 0 and prime p, there exists ǫ′ > 0 such that for infinitely many
N , there is a p-ary code of length N , dimension N − N1−ǫ′ which is a (N ǫ, N−ǫ/3)-LCC and a
(N ǫ,Ω(N−2ǫ), N−ǫ)-LTC.

The codes from Theorem 1.3 are not new. These codes, and in particular their exact dimen-
sion are well-known in the literature in combinatorics [11, 38]. Their locality was first noted by
Yekhanin [39] who noticed in particular that they are LCCs. Our main contribution is to note
that these are (naturally) obtained from lifts. In the process we get that these are affine-invariant
codes and so are also LTCs, a fact that was not known before. Finally, our bounds while cruder,
give better asymptotic sense of the redundancy of these codes (and in particular note that the
redundancy is sublinear in the code length).

We remark that these codes have very poor distance and very poor error-correcting capability.
However, in the context of applications such as constructions of PCPs (probabilistically checkable
proofs, see e.g., [2]) one does not need distance or error-correction capability per se. All one seems
to need is the local correction and decoding capability. So the theorem above motivates the search
for extremely efficient PCPs, where the difference between the length of the PCP and the length
of the classical proof is sublinear, while allowing for sublinear query complexity. Such a result, if
at all possible, would really be transformative in the use of PCPs as a positive concept. We also
note that these codes play a useful role in giving lower bounds on the size of Nikodym sets — we
will elaborate on this shortly.

Next, we consider codes of locality Ω(N), so linear in the length of the code. This range
of parameters was motivated by the recent result of Barak et al. [5] who used such codes (with
additional properties that we are not yet able to prove) to build “small-set expanders” with many
“large eigenvalues”. We won’t describe the application here, but instead turn to the parameters
they sought. They wanted codes of length N with locality ǫN and dimension N−poly(logN). The
codes they used were Reed-Muller codes. By exploring lifts we are able to suggest some alternate
codes. These codes do have slightly better dimension, though unfortunately, the improvement is
not asymptotically significant (and certainly not close to any known limits). Nevertheless we report
the codes below.

Theorem 1.4. For every ǫ > 0 and for infinitely many N , there is a binary code of length N ,
dimension N − Oǫ((logN)log 1/ǫ), which is a (ǫN, 13(ǫN)−1)-LCC and a (ǫN,Ω((ǫN)−2), (ǫN)−1)-
LTC.

We note that Barak et al. also require the codes to be “absolutely testable”, a strong notion
of testability that we do not achieve in this work. Indeed, it is unclear if the codes as described
above will turn out to be absolutely testable. In followup work to ours, Haramaty et al. [25], do
show that some codes constructed by the above principle (but not all) are absolutely testable. The
dimensions of their codes are somewhere between those of Barak et al. and those from the above
theorem (so are still of no asymptotic significance).

Finally, we describe the most interesting choice of parameters. Our final code has locality N δ

for arbitrarily small δ > 0, while achieving dimension (1 − ǫ)N for arbitrarily small ǫ > 0. While
the dimension of this code is smaller than that of the codes of Theorem 1.4, it corrects a constant
positive fraction of errors.

Theorem 1.5. For every ǫ, δ > 0 there exists τ > 0 such that for infinitely many N , there is a
q-code of length N over FQ, for Q ≈ N δ, of dimension (1− ǫ)N which is a (N δ , τ)-LCC, for some
q ≈ N δ.
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Till 2010, no codes achieving such a range of parameters were known. In particular no code was
known that achieved dimension greater than N/2 while achieving o(N) locality to correct constant
fraction of errors. In 2010, Kopparty et al. [33] introduced what they called the “multiplicity codes”
which manage to overcome the rate 1/2 barrier. Other than their codes, no other constructions
were known that achieved the parameters of Theorem 1.5 and our construction provides the first
alternate. We remark that while qualitatively our theorem matches theirs, the behavior of τ as a
function of ǫ and δ is much worse in our construction. Nevertheless for concrete values of N , ǫ and
δ our construction actually seems to perform quite well. Also, whereas in the basic codes of [33]
are over larger alphabets than N , our codes are naturally over much smaller alphabets. (Of course,
one can always use concatenation to reduce alphabet sizes, but such operations do result in a loss
in concrete settings of parameters.)

Theorems 1.2-1.5 are proved in Section 3. While each of the codes above may be of interest
on their own, the underlying phenomenon, of constructing codes with interesting parameters by
lifting shorter codes is an important one. Given our belief that lifting is an important operation
that deserves study, we also do some systematic analysis of lifts. In particular in this work we show
that lifting of a base code essentially preserves distance. This preservation is not exact and we give
examples proving this fact.

Bounds on the size of Nikodym sets. One of the applications of our results is to bounding,
from below, the size of “Nikodym sets” over finite fields (of small characteristic). We define this
concept before describing our results.

A set N ⊆ Fm
q is said to be a Nikodym set if every point x has a line passing through it such

that all points of the line, except possibly the point x itself, are elements of N . More precisely, N
is a Nikodym set if for every x ∈ Fm

q there exists y ∈ Fm
q \ {0} such that {x+ ty|t ∈ F∗

q} ⊆ N .
Nikodym sets are closely related to “Kakeya sets” — the latter contain a line in every direction,

while the former contain almost all of a line through every point. A lower bound for Kakeya sets
was proved by Dvir [12] using the polynomial method and further improved by using “method of
multiplicities ” by Saraf and Sudan [37] and Dvir et al. [13]. Kakeya sets have seen applications
connecting its study to the study of randomness extractors, esp. [14, 15]. Arguably Nikodym sets
are about as natural in this connection as Kakeya sets.

Previous lower bounds on Kakeya sets were typically also applicable to Nikodym sets and led
to bounds of the form |N | ≥ (1 − o(1))qm/2m where the o(1) term goes to zero as q → ∞2. In
particular previous lower bounds failed to separate the growth of Nikodym sets from those of Kakeya
sets. In this work we present a simple connection (see Proposition 4.1) that shows that existence
of (high-rate) affine-invariant codes that are lifts of non-trivial univariate codes yield (large) lower
bounds on the size of Nikodym sets. Using this connection we significantly improve the known
lower bound on the size of Nikodym sets over fields of constant characteristic.

Theorem 1.6. For every prime p, and every integer m, there exists ǫ = ǫ(p,m) > 0 such that for
every finite field Fq of characteristic p, if N ⊆ Fm

q is a Nikodym set, then |N | ≥ qm − q(1−ǫ)m. In
particular if q → ∞, then |N | ≥ (1 − o(1)) · qm.

Thus whereas previous lower bounds on the size of Nikodym sets allowed for the possibility that
the density of the Nikodym sets vanishes as m grows, ours show that Nikodym sets occupy almost

2In the m = 2 case, better bounds are known for Nikodym sets [16, 34].
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all the space. One way to view our results is that they abstract the polynomial method in a more
general way, and thus lead to stronger lower bounds (in some cases).

Previous work on affine-invariance. The study of invariance, and in particular affine-invariance,
in property testing was initiated by Kaufman and Sudan [31] and there have been many subsequent
works [9, 21, 22, 20, 32, 29, 6, 7, 28, 8, 24]. Most of the works, with the exceptions of [32, 29],
study the broad class with the aim of characterizing all the testable properties. The exceptions,
Kaufman and Wigderson [32] and Kaufman and Lubotzky [29], are the few that attempt to find
new codes using invariance. While the performance of their codes is very good, unfortunately they
do not seem to lead to local testability and the performance is too good to be locally decodable
(or locally correctible). Our work seems to be the first in this context to explore new codes that
do guarantee some locality properties.

A second, more technical, point of departure is that our work refocusses attention on invariance
of “multivariate properties”. Since the work of [31] most subsequent works focussed on univariate
properties. While this study seemed to be without loss of generality, for the purpose of constructions
it seems necessary to go back to the multivariate setting. One specific contribution in this direction
is that we show that invariance under general affine-transformations and under affine-permutations
lead to the same set of properties (see Section A).

Organization. In Section 2 we present some of the background material on affine-invariant codes
and present some extensions in the multivariate setting. In Section 3 we describe our codes and
analyze them. In Section 4 we describe our application to lower bounding Nikodym sets. In
Section 5 we describe how distance of lifted codes behave. Some of the technical proofs are deferred
to the appendix.

Version. A previous version of this paper appeared, as [23]. The main difference in the results
is the addition, in this version, of lower bounds on the size of Nikodym sets (Theorem 1.6).

2 Preliminaries

In this section we describe some basic aspects of affine-invariant properties, specifically their degree
sets. We mention in particular the fact that the size of degree sets determines the dimension of a
given affine-invariant code. Finally we conclude by relating the degree set of a base code to the
degree set of a lifted code. In later sections we will use this relationship to lower bound the size of
the degree set of lifted codes, and thus lower bound their dimension. We note that the results of
this section are described for general q (and not for the special case of q = 2).

For a function f : Fm
Q → Fq, we associate with it the unique polynomial in FQ[x1, . . . , xm] of

degree at most Q− 1 in each variable that evaluates to f . (We abuse notation by using the same
notation to refer to a function and the associated polynomial.) For d = 〈d1, . . . , dm〉 and x =
〈x1, . . . , xm〉, let xd denote the monomial

∏m
i=1 x

di
i . For a function f =

∑

d
cdx

d, let its support,
denoted supp(f), be the set of degrees with non-zero coefficients in f , i.e., supp(f) = {d | cd 6= 0}.

Definition 2.1 (Degree set). For a code F ⊆ {Fm
Q → Fq}, its degree set, denoted Deg(F), is the

set Deg(F) = ∪f∈F supp(f). For a set D ⊆ {0, . . . , Q − 1}m, let its code, denoted Fam(F) be the
set Fam(F) = {f : Fm

Q → Fq | supp(f) ⊆ D}.

7



For an affine-invariant code, its degree set uniquely determines the code and in particular the
following proposition holds.

Proposition 2.2. For linear affine-invariant codes F ⊆ {Fm
Q → Fq}, we have Fam(Deg(F)) = F .

We prove the proposition below. The proof uses some basic facts about linear affine-invariant
codes that are proved in Section A. (We note that this would be the logical place to read/verify
the contents.)

Proof. Trivially F ⊆ Fam(Deg(F)). For the other direction, consider f ∈ Fam(Deg(F)). Express
f = Tr ◦g (see, e.g., Proof of Lemma A.7), where g ∈ FQ[x] is chosen among all such to be
minimal in its support. We have supp(g) ⊆ supp(f) ⊆ Deg(F). Suppose g =

∑

d∈Deg(F) cdx
d,

then by Lemma A.7 we have Tr(cdx
d) ∈ F for every d. Now by linearity of F it follows that

∑

d
Tr(cdx

d) ∈ F , but by the linearity of the Trace function we have that this function is f .

Our reason to study the degree sets is that the size of the degree set gives the dimension of a
code exactly.

Proposition 2.3. For a linear affine-invariant code F ⊆ {Fm
Q → Fq}, we have the dimension of

F equals |Deg(F)|.

Proof. We generalize the proof of [6, Lemma 2.14] to the multivariate setting. For degree d ∈
{0, . . . , Q−1}m, define S(d) = {qid | i ∈ Z}. For every d, e, either S(d) = S(e) or S(d)∩S(e) = ∅.
Write f ∈ F as f(x) =

∑

d∈Deg(F) fdx
d. Since f q = f , it follows that fq·d = f q

d
for all d and hence

fd ∈ Fq|S(q)|. From each S(d) pick a representative, and let S be the set of these representatives, so

that Deg(F) = ∪d∈SS(d) is a partition. Then we may write f(x) =
∑

d∈S TrF
q|S(d)| ,Fq(fdx

d). For

each d ∈ S there are q|S(d)| choices for fd, so the total number of choices for f is
∏

d∈S q|S(d)| =

q
∑

d∈S |S(d)| = q|Deg(F)|

Next we attempt to describe how the degree set of a lifted code can be determined from the
degree set of a base code. We start by mentioning a simple property of degree sets that will be
quite useful in our analysis.

Let (mod∗ Q) denote the operation that maps non-negative integers to the set {0, . . . , Q − 1}
as given by a (mod∗ Q) = 0 if a = 0 and a (mod∗ Q) = b ∈ {1, . . . , Q − 1} if a 6= 0 and a = b
(mod Q− 1). (Note that if a (mod∗Q) = b, then xa = xb (mod xQ − x).)

For Q = qn and e,d ∈ {0, . . . , Q− 1}n, we say that e is a q-shift of d if there exists j such that
for every i, we have ei = qj · di (mod∗Q). Note that e is a q-shift of d if and only if d is a q-shift
of e.

Proposition 2.4. Let F ⊆ {Fm
Q → Fq} be a linear affine-invariant code and let D = Deg(F) be

its degree set. Then D is q-shift closed, i.e., if d ∈ D and e is a q-shift of d then e ∈ D.

Proof. Follows immediately from the fact that for every function f : Fm
Q → Fq, we have d ∈ supp(f)

if and only if e ∈ supp(f), which follows from the fact that f(x)q
j
= f(x) mod (xQ − x) for every

j.
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We now turn to identifying the degree sets of lifted codes. We start with the case of lifts of
univariate codes, which are somewhat simpler to describe. The lifts of multivariate codes come
from the same principles, but are messier to describe.

It turns out that the structure of the degree set (not every set D is the degree set of an
affine-invariant code) is strongly influenced by the base p representation of its members, where p
is the characteristic of q, the alphabet of our codes. We start with some notions related to such
representations. For non-negative integers a and b, let a(0), a(1), . . . , and b(0), b(1), . . . , be their base
p expansion, i.e., 0 ≤ a(i), b(i) < p, a =

∑

i a
(i)pi and b =

∑

i b
(i)pi. We say a is in the p-shadow of

b, denoted a ≤p b, if a(i) ≤ b(i) for every i. We extend the notion to vectors coordinate-wise. So
for, e,d ∈ Zn, we say e ≤p d if ei ≤p di for all i ∈ [n].

Definition 2.5. For a set D ⊆ {0, . . . , Q− 1}, its mth lift, denoted Liftm(D) is given by

Lift
m

(D) ,

{

d = 〈d1, . . . , dm〉 ∈ {0, . . . , Q− 1}m|∀e ≤p d,

m
∑

i=1

ei (mod∗ Q) ∈ D

}

.

The following proposition makes the implied connection between lifts of codes and their degree
sets explicit. We note that this proposition is implicit in [7].

Proposition 2.6. For every linear affine-invariant code F ⊆ {FQ → Fq}, and for every m ≥ 1,
we have Liftm(Deg(F)) = Deg(Liftm(F)).

Proof. Let F = Fq and K = FQ. In what follows we will use the notation xe to denote
∏n

i=1 x
ei
i .

And we use
(

d

e

)

to denote
∏n

i=1

(di
ei

)

.
Since F is linear, we have that there exist some I ≤ Q linear constraints given by ti,j ∈ K and

λij ∈ F for 1 ≤ i ≤ I and 1 ≤ j ≤ J such that f ∈ F if and only if
∑

j≤J λijf(tij) = 0 for every
i ≤ I.

We now have the following equivalences:

d ∈ Deg(Lift
m

(F)) Lemma A.7
⇐⇒ ∀λ ∈ K Tr(λxd) ∈ Lift

m
(F)

⇐⇒ ∀λ ∈ K ∀a ∈ Km ∀b ∈ Km Tr(λ(t · a+ b)d) ∈ F
⇐⇒ ∀λ,a,b ∀i

∑

j

λij Tr(λ(tija+ b)d) = 0

Lemmas B.2, B.3
⇐⇒ ∀λ,a,b ∀i Tr



λ
∑

e≤pd

(

d

e

)

aebd−e
∑

j

λijtij
∑n

ℓ=1 eℓ



 = 0

⇐⇒ ∀a,b ∀i
∑

e≤pd

(

d

e

)

aebd−e)
∑

j

λijtij
∑

ℓ eℓ = 0

⇐⇒ ∀e ≤p d ∀i
∑

j

λijtij
∑

ℓ eℓ = 0

⇐⇒ ∀e ≤p d Σ(e) (mod∗ Q) ∈ Deg(F).

We now extend the above definition and proposition to the case where the code being lifted is
itself a multivariate one.
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To this end we extend some of the notations from the previous parts to matrices. For matrices
A,B ∈ Zn×ℓ we say A ≤p B if (A)ij ≤p (B)ij for every pair (i, j) ∈ [n]× [ℓ].

Next, we extend the notion to compare vectors to elements and matrices to vectors. For e ∈ Zℓ

and d ∈ Z we say e ≤p d if for every f ≤p e we have
∑

i∈[ℓ] fi ≤p d. (This notion corresponds to

the support of (1+
∑ℓ

i=1 xi)
d: xe appears with a non-zero coefficient only if e ≤p d.) Extending to

matrices and vectors, A ∈ Zn×ℓ with rows (A)j ∈ Zℓ and d = 〈d1, . . . , dn〉 ∈ Zn we say A ≤p d if
(A)j ≤p dj for every j ∈ [n].

Finally, we need one more piece of notation before defining the degree sets of multivariate lifts.
For matrix A ∈ Zn×ℓ, let Σ(A) ∈ Zℓ denote its row sum given by Σ(A)j =

∑n
i=1(A)ij .

We are now ready to define the lifts of multivariate degree sets.

Definition 2.7 (Degree sets of lifts). For a set D ⊆ {0, . . . , Q−1}t, its mth lift, denoted Liftm(D),
is given by

{d ∈ {0, . . . , Q− 1}m | ∀ E ∈ Zm×t ≤p d, we have Σ(E) (mod∗Q) ∈ D}.

The following proposition is the multivariate analog of Proposition 2.6.

Proposition 2.8. For every linear affine-invariant code F ⊆ {Ft
Q → Fq}, and for every m ≥ t,

we have Liftm(Deg(F)) = Deg(Liftm(F)).

Proof. The proof is very similar to the proof of Proposition 2.6, with enriched notation. For a
matrix E, let E⊤ denote the transpose of E, so that (E)ij = (E⊤)ji. For an integer d and vector

e = 〈e1, . . . , et〉, define
(

d
e

)

= d!
e1!···et!(d−e1−···−en)!

, the standard multinomial coefficient and also

the coefficient of xe in the expansion of (1 +
∑t

i=1 xi)
d. Extending this notation, for a vector

d = 〈d1, . . . , dm〉 and a matrix E ∈ Zm×t with rows e1, . . . , em, define
(

d

E

)

=
∏m

i=1

(di
ei

)

. We will use

the fact that
(

d

E

)

6≡ 0 (mod p) if and only if E ≤p d (see Lemma B.2). Finally, for two matrices
A,E ∈ Zm×t, define AE =

∏

i,j a
eij
ij . For convenience, let F = Fq and let K = FQ.

Now, we begin the proof. There exist tij ∈ Kt, λij ∈ F such that f ∈ F ⇐⇒ ∀i ∑j λijf(tij) = 0.
The assertion then follows from the following equivalences:

d ∈ Deg(Lift
m

(F)) Lemma A.7
⇐⇒ ∀λ ∈ K Tr(λxd) ∈ Lift

m
(F)

⇐⇒ ∀λ ∈ K ∀A ∈ Km×t ∀b ∈ Km Tr(λ(Ax+ b)d) ∈ F
⇐⇒ ∀λ,A,b ∀i

∑

j

λij Tr(λ(Atij + b)d) = 0

Lemmas B.2, B.3
⇐⇒ ∀λ,A,b ∀i Tr



λ
∑

E≤pd

(

d

E

)

AEbd−Σ(E⊤)
∑

j

λijtij
Σ(E)





⇐⇒ ∀A,b ∀i
∑

E≤pd

(

d

E

)

AEbd−Σ(E⊤)
∑

j

λijtij
Σ(E) = 0

⇐⇒ ∀E ≤p d ∀i
∑

j

λijtij
Σ(E) = 0

⇐⇒ ∀E ≤p d Σ(E) (mod∗ Q) ∈ Deg(F)
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The definition of Liftm(D) is somewhat cumbersome and not easy to work with. However in
the upcoming sections we will try to gain some combinatorial insights about it to derive bounds on
the dimension of the codes of interest.

Finally, before concluding we mention explicitly the locality properties of lifted codes. We start
with a simple observation.

Proposition 2.9. Let F ( {Fm
Q → Fq} be a linear affine-invariant code. The δ(F) ≥ 2 ·Q−m.

Proof. For a ∈ Fm
Q let ∆a : Fm

Q → Fq be the function satisfying ∆a(a) = 1 and ∆a is zero everywhere
else. For contradiction assume ∆a ∈ F for some a ∈ Fm

Q . But then by affine-invariance we have
∆b ∈ F for every b ∈ Fm

Q and then by linearity we have every function in {Fm
Q → Fq} is contained

in F , contradicting our hypothesis on F .

Proposition 2.10. Let F ( {Ft
Q → Fq} be a linear affine-invariant code. Let L = Liftm(F) be its

m-ary lift. Then L is a (Qt − 1, 13Q
−t)-LCC and a (Qt,Ω(Q−2t), Q−t)-LTC.

Proof. Given f : Fm
Q → Fq that is Q−t/3-close to p ∈ L and a ∈ Fm

Q , the local decoding algorithm

works as follows: Pick random linearly independent b1, . . .bt ∈ Fm
Q and let h : Ft

Q → Fq be given
by h(0) = 0 and h(u1, . . . , ut) = f(a+ u1b1 + · · · + utbt) for all other u1, . . . , ut. Compute g ∈ F
such that g(u) = h(u) for all u ∈ Ft

Q \ {0} and output g(0).

It is clear that the decoder makes at most Qt − 1 queries. We show that the decoder succeeds
with high probability. Let p ∈ F satisfy δ(p, f) ≤ Q−t/3. Let A be the t-dimensional subspace
A = {a+ u1b1 + · · ·+ utbt | u ∈ Ft

Q}. For every u ∈ Ft
Q \ {0} we have Prb1,...,bt

[h(u) 6= p|A(u)] ≤
Q−t/3. By a union bound Prb1,...,bt

[∃u ∈ Ft
Q \ {0}|h(u) 6= p|A(u)] ≤ (Qt − 1)/(3Qt) < 1/3. So,

with probability at least 2/3, we have that p|A ∈ F agrees with h on all of Ft
Q − 0. Furthermore,

by the fact that δ(F) ≥ 2Q−t (Proposition 2.9), p|A is the unique such function with this property.
It follows that the decoder outputs p|A(0) = p(a) with probability at least 2/3 as desired.

The local testability follows directly from [31, Theorem 2.9].

3 Constructions

3.1 Codes of constant locality

In this section we prove Theorem 1.2 which promised binary codes of locality k and length N with
dimension Ωk(logN)k−2.

The Code: Fix k = Q = 2ℓ and N = 2mℓ. Let F1 ⊆ {FQ → F2} be the code given by
{f : FQ → F2 |∑α∈FQ

f(α) = 0}. Let L1 = Liftm(F1). In what follows we verify that L1 has the
properties claimed in Theorem 1.2.

We start with some obvious aspects.

Proposition 3.1. L1 is a binary code of length N and a (k−1, k−1/3)-LCC and a (k,Ω(k−2), k−1)-
LTC.

Proof. The length is immediate from the construction. The local correctability and testability
follow from Proposition 2.10.

The main aspect to be verified is the dimension of L1. We first describe the degree set of F1.

11



Claim 3.2. Deg(F1) = {0, . . . , Q− 2}.

Proof. Write f : FQ → F2 as f(x) =
∑Q−1

d=0 fdx
d. Then

∑

α∈FQ
f(α) =

∑

α∈FQ

∑Q−1
d=0 fdα

d =
∑Q−1

d=0 fd

(

∑

α∈FQ
αd
)

= −fQ−1 where we have used the fact that
∑

α∈FQ
αd = −1 if d = Q−1 and

is equal to 1 otherwise. Therefore f ∈ F1 if and only if deg(f) < Q− 1.

Remark: Note that the proof above applies without change to the case of the range being Fq,
for any q, provided FQ extends Fq.

The next claim interprets the definition of Liftm(D) in our setting.

Claim 3.3. d ∈ {0, . . . , Q− 1}m is contained in Liftm(Deg(F1)) if and only if for every e ≤2 d we
have

∑m
i=1 ei (mod∗ Q) 6= Q− 1.

Proof. Follows immediately by applying Proposition 2.6 to Claim 3.2.

Given the claim, it is simple to get a lower bound on the dimension of our code.

Lemma 3.4. The dimension of L1 is at least
( m
Q−2

)

.

Proof. For S ⊆ [m] let dS denote the vector that is one on coordinates from S and zero outside. It
is clear that for |S| ≤ Q− 2, dS ∈ Liftm(Deg(F1)) and there are at least

(

m
Q−2

)

such sets.

Proof of Theorem 1.2. Theorem 1.2 follows Proposition 3.1 and Lemma 3.4 and plugging the values
of m and Q from the construction. Specificalle we have that the dimension of the code is at least
(

m
Q−2

)

≥ 1
kk−2k!

(logN)k−2. So the theorem follows for ck = 1
kk−2k!

.

3.2 Codes of sublinear locality

Next we turn to Theorem 1.3, which asserts the existence of codes of locality N ǫ with dimension
N −N1−ǫ′ .

The Code: Given ǫ > 0 and prime p, let m = ⌈1/ǫ⌉. Let ℓ be an integer such that pmℓ ≥ N . Let
Q = pℓ. Let F2 ⊆ {FQ → Fp} be the code {f : FQ → Fp |

∑

α∈FQ
f(α) = 0}. Let L2 = Liftm(F2).

As usual we get the following proposition.

Proposition 3.5. F2 is a p-ary code of length at least N and locality at most N ǫ. Specifically it
is a (N ǫ,Ω(N−ǫ))-LCC and a (N ǫ,Ω(N−2ǫ), N−ǫ)-LTC.

We now turn to the task of analyzing the dimension of this code. We first describe the degree
sets of F2 and L2.

Claim 3.6. Deg(F2) = {0, . . . , Q− 2} and

Deg(L2) = {d ∈ {0, . . . , Q− 1}m | ∀e ≤p d,
∑

i

ei (mod∗Q) 6= Q− 1}.

Proof. The first part follows from the proof of Claim 3.2 (see the remark following the proof). The
second part follows immediately from Proposition 2.8.

Lemma 3.7. The dimension of L2 is at least N −N1−ǫ′ for some ǫ′ = Ω(2−2/ǫ).
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Proof. Let D = Deg(F2). Let e = 〈e1, . . . , em〉 and e
(0)
i , e

(1)
i , . . . , e

(ℓ−1)
i denote the p-ary expansion

of ei.

Claim 3.8. If there exists integer s ∈ {0, . . . , ℓ − 1} such that for every i ∈ [m] and every j ∈
[1 + ⌈logm⌉] we have e

(s+j (mod ℓ))
i = 0, then e ∈ Liftm(D).

Proof. Recall, by Proposition 2.4 that e ∈ Liftm(D) if and only if e′ ∈ D for every e′ that is a
p-shift of e. Thus without loss of generality we can assume (by shifting e appropriately), that the
block of zeroes are the most significant digits in the ei’s. (i.e., s = ℓ− ⌈logm⌉ − 2.)

With this assumption, we now have ei < pℓ−logm−1 < Q/(pm) < (Q− 1)/m. We thus conclude
that for every f ≤2 e,

∑m
i=1 fi ≤

∑m
i=1 ei < Q− 1 and so (by Claim 3.6) e ∈ Liftm(D).

The lemma follows by an easy counting argument. Let t = 1+ ⌈logm⌉. We partition the set [ℓ]
into ℓ/t blocks of t successive integers each. For each such block the number of possible assignments
of digits that do not make the entire block zero in each ei is pmt − 1. Thus the total number of
vectors e that do not have any of these blocks set to zero is (pmt − 1)ℓ/t = pmℓ(1 − p−mt)ℓ/t ≈
pmℓeℓ/(tp

mt) = pmℓ(1−Ω(1/mtpmt)) = N1−ǫ′ for ǫ′ = 1/(mtpmt). Recalling that ǫ = 1/m, we have
ǫ′ = Ω(p−2/ǫ). The lemma follows by noting that if e 6∈ Liftm(D) then in each of these blocks it
must be non-zero somewhere (by Claim 3.8 above).

Proof of Theorem 1.3. Theorem 1.3 follows immediately from Proposition 3.5 and Lemma 3.7.

3.3 Codes of linear locality

Finally, we prove Theorem 1.4, which claims codes of locality ǫN with dimension N − poly logN .
This construction is different from the previous two in that here we lift a multivariate code, whereas
in both previous constructions we lifted univariate codes.

The Code: Let ℓ = ⌈log 1/ǫ⌉ (so that 2−ℓ ≤ ǫ). Let Q = 2ℓ. For integer m let N = 2mℓ and
let t = m − 1. Let F3 ⊆ {Ft

Q → F2} be given by F3 = {f : Ft
Q → F2 | ∑α∈Ft

Q
f(α) = 0}. Let

L3 = Liftm(F3).

Proposition 3.9. L3 is a code of block length N with locality ǫN . Specifically, it is a (ǫN, 13(ǫN)−1)-
LCC and a (ǫN, (ǫN)−2, (ǫN)−1)-LTC.

The proposition below asserts that every degree except the vector that is Q− 1 in every coor-
dinate is in the degree set of F3. (Here (Q − 1)t denotes the t-tuple all of whose entries is Q− 1,
rather than (Q− 1) exponentiated to the t-th power).

Proposition 3.10. Deg(F3) = {0, . . . , Q− 1}t − {(Q− 1)t}.

Proof. Write f : Ft
Q → F2 as f(x) =

∑

d∈{0,...,Q−1}t fdx
d. Then

∑

α∈Ft
Q
f(α) =

∑

α∈Ft
Q

∑

d
fdx

d =
∑

d
fd

(

∑

α∈Ft
Q
αd

)

=
∑

d
fd
∏t

i=1

(

∑

α∈FQ
αdi
)

= (−1)tf(Q−1)t where we have used the fact that
∑

α∈FQ
αd = −1 if d = Q − 1 and is equal to 0 otherwise. Therefore f ∈ F3 if and only if

f(Q−1)t = 0.
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While in general degree sets of lifts of multivariate families are not easy to characterize, in this
particular case we have a clean characterization of the degree set.

Given e = 〈e1, . . . , em〉 let e(j)i denote the jth bit in the binary expansion of ei. Let M(e) denote

the m× ℓ matrix with entries M(e)i,j = e
(j)
i .

Lemma 3.11. e ∈ Liftm(Deg(F3)) if and only if there exists a column in M(e) with at least two
zeroes.

Proof. As in the proof of Lemma 3.7 we have that e ∈ Liftm(Deg(F3)) if and only if 2e (mod∗ Q) ∈
Liftm(Deg(F3)). So without loss of generality we can assume that e is shifted so that the two zeroes
are in the most significant bits. Thus we have that m− 2 of the ei’s, say e1, . . . , em−2, are at most
Q − 1 and the remaining two are at most Q/2 − 1. We thus have that

∑m
i=1 ei < (m − 1)Q − 1.

Using this and applying Proposition 2.8 it is easy to verify that e is not in Liftm(Deg(F3)).

The following lemma now follows by simple counting.

Lemma 3.12. The dimension of L3 is 2mℓ − (m+ 1)ℓ.

Proof of Theorem 1.4. Follows by plugging in the values for the parameters, specifically by setting
ℓ = log 1/ǫ andm = (logN/ log 1/ǫ). We get that the dimension of L3 isN−(1+logN/ log 1/ǫ)log 1/ǫ.

We remark that the construction in [5] is very close in parameters. In their construction (i.e.,
the Reed-Muller codes) the matrix M(e) must have at least ℓ + 1 zeroes. Since any such matrix
must have two zeroes in a single column it follows that every matrix their construction admits is
also admissible in ours, while our allow for other matrices also. However the difference between the
length and dimension is at most a constant factor (depending on ℓ). (More precisely, the dimension
of their code is 2mℓ −∑ℓ

i=0

(mℓ
i

)

≈ 2mℓ − (em)ℓ.) Of course, for their application the code needs to
have much better local testability than given here. But the local testability given here is just what
follows immediately from the definition and previous works, and it is quite possible that better
bounds can be achieved by more careful examination of this code.

3.4 High-rate high-error LCCs

Finally, we prove Theorem 1.5. This construction is a departure from the others in that the code is
not binary, and the code being lifted is not the parity check code. Finally the decoding algorithm
is a bit more complex to explain, though even this algorithm is by now folklore.

The code itself is a generalization of the classical multivariate polynomial code. Here we consider
the set of all functions f : Fm

q → Fq such that the restriction of f to any line has degree d. As is
well known, every multivariate polynomial of degree at most d is such a function. The remarkable
fact is that if q has small characteristic, then there are many more such functions.

The Code: Recall that we are given δ, ǫ and some N0 and we wish a code of length N ≥ N0

of dimension (1 − ǫ)N and locality N δ. Let m = ⌈1/δ⌉ and s be such that Q = 2s ≥ N δ
0 .

Let b = 1 + ⌈logm⌉ and c = ⌈b2bm log 1/ǫ⌉. Let γ = 2−c and τ = γ/6 (so that 6τ ≤ γ ≤
ǫ−(1+⌈logm⌉)2m(1+⌈log m⌉)

and let d = (1 − 2−c)Q. Let F4 = {f : FQ → FQ | deg(f) ≤ d}. Let
L4 = Liftm(F4). In words, it is the set of all degree m-variate functions that have degree at most
d when restricted to a line.
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Decoding: The general idea for decoding L4 is the same as that for multivariate polynomials,
and in particular the algorithm from Gemmell et al. [18].

Given f : Fm
Q → FQ that is τ -close to p ∈ L4 and a ∈ Fm

Q , the decoding algorithm works as
follows: Pick a random b ∈ Fm

Q and let h : FQ → FQ be given by h(t) = f(a+ tb). Compute, using
a Reed-Solomon decoder (see, for instance, [19, Appendix]), a polynomial g ∈ FQ[t] of degree at
most d such that δ(h, g) < γ/2. Output g(0).

Lemma 3.13. L4 is a code of block length N with locality N δ. Specifically, it is a (N δ, γ/6)-LCC.

Proof. Let L = {a + tb | t ∈ FQ − {0}} be the line through a with slope b. We first claim that
with probability at least 2/3, the line L contains fewer that γ/2 fraction errors (i.e., points t 6= 0
such h(t) 6= p|L(t)).
Claim 3.14. For every a, Prb[δ(h, p|L) ≥ γ/2] < 2τ/γ.

The above claim follows easily from an application of Markov’s inequality. Next we note that
if the fraction of errors on L is less than γ/2 then the decoder satisfies g = p|L and so outputs
g(0) = p|L(0) = p(a) as desired.

Next we turn to the analysis of the dimension of L4 which is similar to the analysis of L2. First
we note the obvious fact.

Proposition 3.15. Deg(F4) = {0, . . . , d} and

Deg(L4) =

{

d ∈ {0, . . . , Q− 1}m | ∀ e ≤2 d,

m
∑

i=1

ei (mod∗Q) ∈ {0, . . . , d}
}

.

Lemma 3.16. The dimension of L4 is at least (1− ǫ)N .

Proof. For non-negative integer b, let b(j) denote its binary expansion so that b =
∑

j b
(j)2j . Recall

d = (1 − 2−c)Q. Letting d(j) denoting its binary expansion, we note an integer e ∈ {0, . . . , Q− 1}
is at most d if (and only if) one of the bits e(s−c), . . . , e(s−1) is zero. We use this to reason about
Deg(L4).

Let d = 〈d1, . . . , dm〉 and let d
(j)
i denote the jth bit in the binary expansion of di.

Claim 3.17. Let b = 1 + ⌈logm⌉. If there exists j ∈ {s − c, . . . , s − b} such that for every i ∈ [m]

and every ℓ ∈ {0, . . . , b− 1} we have d
(j+ℓ)
i = 0, then d ∈ Deg(L4).

Proof. Let e = 〈e1, . . . , em〉 ≤2 d and let e =
∑m

i=1 ei (mod∗Q). We claim that e(j+b−1) = 0,
which suffices to show that e ≤ d. Let ei = 2s−(j+b)ei (mod∗ Q) for all i ∈ [m], and let e =
∑m

i=1 ei (mod∗ Q). For every i ∈ [m] and every k ∈ [s], e
(k)
i = e

(k+s−(j+b) (mod s))
i and similarly

e(k) = e(k+s−(j+b) (mod s)). Therefore it suffices to show that e(s−1) = 0 or equivalently e < 2s−1. By

our assumption on d, e
(j+ℓ)
i = 0 for all ℓ ∈ {0, . . . , b−1}, so e

(k)
i = 0 for all k ∈ {s−b, . . . , s−1} and

thus ei < 2s−b for all i ∈ [m]. By our choice of b, m ≤ 2b−1, and thus
∑m

i=1 ei < m2s−b ≤ 2s−1.

We now consider picking d at random. By partitioning the c most significant bits into disjoint
blocks of b bits each, we get that any such block is all zero with probability at least 2−mb. Thus the
probability there exists a block which is all zero is at least 1 − (1 − 2−mb)c/b ≥ 1 − e−c/(b2mb). By

choice of c we have that c/(b2mb) ≥ ln(1/ǫ) and so e−c/(b2mb) ≤ ǫ and thus the dimension is lower
bounded by (1− ǫ)N .
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Proof of Theorem 1.5. Follows immediately from Lemmas 3.13 and 3.16.

We remark that the construction of this section is somewhat contrary to folk belief, which tends
to suggest that generalized Reed-Muller codes (evaluations of m-variate polynomials of degree at
most d) are equivalently defined by requiring that their restriction to lines are Reed-Solomon code-
words (evaluations of univariate degree d polynomials). As pointed out earlier this folk statement is
true only with some restrictions on d and Q, and our construction benefits by violating the restric-
tions. While the fact that there exist functions that are not degree d polynomials, for d ≥ Q−Q/p,
which are degree d polynomials on every line has been known for a while [17], presumably it was
suspected that the effect on the dimension of the lifted family was negligible. Fortunately for this
work, this presumption turned out to be false.

We also give below an example of some concrete setting of parameters for which this construction
works.

Example 3.18. For every N = 22n, for n ≥ 7, there exists a code of length N over the alphabet
F2n of dimension .77N that is decodable from 0.26% fraction errors with

√
N queries

The example is obtained by setting c = 6, m = 2 and Q = 2n in the construction. The fraction
of errors is 2−6/6 ≈ 0.26%. The rate follows from the following claim.

Claim 3.19. The dimension of the code is at least ((4c − (5/4)3c + 1/4)/4c)N .

While the error-correction rate of the code is smaller than that in [33], it does seem to start
working at much smaller lengths and with much smaller alphabet sizes.

4 Nikdoym sets

A Nikodym set N ⊆ Fm
q is a set such that for all x ∈ Fm

q , there exists y ∈ Fm
q such that the

punctured line {x+ ty | t ∈ Fq \ {0}} ⊆ N .
The following proposition strengthens and generalizes the result usually obtained via the poly-

nomial method [12].

Proposition 4.1. If L ⊂ {Fm
q → Fq} is the lift of some univariate linear affine-invariant family

F ( {Fq → Fq}, and N ⊆ Fm
q is a Nikodym set, then |N | ≥ dimL.

Proof. Suppose for sake of contradiction that |N | < dimL. Then there exists nonzero f ∈ L such
that f |N ≡ 0. Let x ∈ Fm

q . Then there is y ∈ Fm
q such that x + ty ∈ N for every t ∈ Fq \ {0}.

Define g(t) = f(x+ ty). By definition of L, we have g ∈ F , and moreover F is a nontrivial code,
so by Proposition 2.9, either g = 0 or wt(g) ≥ 2. But g(t) = 0 for every t 6= 0, hence g = 0,
and in particular f(x) = g(0) = 0. Since x was arbitrary, this shows that f is identically zero, a
contradiction.

We are now ready to prove Theorem 1.6.

Proof of Theorem 1.6. Follows immediately by applying Proposition 4.1 to the code L obtained
from Theorem 1.3, i.e. the family of f taking values in Fp whose restrictions to lines are polynomials
of degree at most q − 2.
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For comparison, the bound obtained by the polynomial method is
(m+q−2

m

)

≈ qm/m!, which
can be improved to qm/2m using the method of multiplicities. Other work on finite field Nikodym
sets by Li [34] as well as Feng, Li, and Shen [16] obtain lower bounds that beat the standard
polynomial method bound for m = 2. In particular, [16] obtains a bound of q2 − q3/2 − q, which is
actually better than our bound for two dimensions, which is q2−O(qlog2 3/4) for characteristic two.
Moreover, their bound applies to q of any characteristic. However, our bounds are the best known
and the only ones achieving qm(1− o(1)) for m ≥ 3.

5 General investigation of lifting

The codes of the previous section simply picked some basic codes and lifted them to derive long
codes of reasonable distance and interesting local testability and decodability. To go beyond this
setting, we feel it is important to pick basic codes of possibly high distance and then lift them, and
this could improve the performance of such codes. As may be observed from the previous section
most of the work needed to analyze lifted codes is devoted to determining their dimension, and this
can be a function of the exact code chosen. Features such as distance, decodability, and testability
seem to follow more generically. In this section, we examine the simplest of these properties, namely
the distance of the lifted code and prove some basic facts.

Theorem 5.1. Let F ⊆ {Ft
Q → Fq} and L = Liftm(F) for some m ≥ t. We have the following:

1. δ(L) ≤ δ(F).

2. δ(L) ≥ δ(F) −Q−t.

3. If Q ∈ {2, 3} and δ(F) > Q−t then δ(L) ≥ δ(F).

5.1 Proof of Theorem 5.1

We divide the proof of Theorem 5.1 into several parts. We start by proving that distance does not
increase under lifting (Theorem 5.1, Part 1).

Lemma 5.2. Let F ⊆ {Ft
Q → Fq} be a linear affine-invariant code with lift L = Liftm(F). Then

δ(L) ≤ δ(F).

Proof. By induction, it suffices to show the assertion for the case m = t + 1. Let f ∈ F and let
δ = δ(f, 0). Let x = 〈x1, . . . , xt〉. Now consider the function g(x, y) = f(x). Clearly we have
δ(g, 0) = δ. We claim that g ∈ L, which completes the proof. To do so we will show that g|H ∈ F
for every t-dimensional affine subspace H ⊆ Fm

Q . Fix such a subspace H and let A : Ft
Q → Fm

Q be
an affine map whose image is H (such a map does exist). Note that g|H (z) = f(A(z)1, . . . , A(z)t).
Thus if we let A′ : Ft

Q → Ft
Q be the affine map given by the projection of A to its first t coordinates,

we have that g|H = f ◦ A′. By Theorem A.1 f ◦ A′ ∈ F and so we have g ∈ F as claimed. (Note
that we need to use Theorem A.1 since A′ need not be an affine permutation but it is an affine
transformation.)

Next we prove Part 3 of Theorem 5.1 which asserts that the distance of non-trivial binary codes
does not decrease with lifting.

Lemma 5.3. If F ⊆ {Ft
2 → F2} has distance δ(F) > 1

2t , then δ(Liftm(F)) ≥ δ(F) for all m ≥ t.
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We prove the above lemma by stating and proving the following stronger lemma first.

Lemma 5.4. For all m ≥ 2, if δ > 1
2m−1 and f : Fm

2 → F2 such that 0 < Prx∈Fm
2
[f(x) 6= 0] < δ, then

there exists an (m− 1)-dimensional affine subspace H ( Fm
2 such that 0 < Prx∈H [f(x) 6= 0] < δ.

Proof. We proceed by induction on m. The base case m = 2 is straightforward to verify.
Now suppose m > 2 and our assertion holds for m−1. Let H0,H1 be the affine subspaces given

by xm = 0 and xm = 1 respectively. Let δ0, δ1 denote δ(f |H0 , 0), δ(f |H1 , 0) respectively. Note that
δ > δ(f, 0) = (δ0 + δ1)/2. If both δ0, δ1 > 0, then by averaging we have 0 < δi < δ and so H = Hi

does the job. Otherwise, suppose w.l.o.g. that δ1 = 0. Note that 0 < δ0 < 2δ and 2δ > 1
2m−2 . Thus,

by the induction hypothesis, there exists an (m−2)-dimensional affine subspace H ′
0 ⊂ H0 such that

0 < δ(f |H′ , 0) < 2δ. Let H ′
1 = {(a1, . . . , am−1, 1) ∈ Fm

2 | (a1, . . . , am−1, 0) ∈ H ′
0} be the translate

of H ′
0 in H1, and note that δ(f |H′

1
, 0) = 0. Let H = H ′

0 ∪H ′
1. Then H is an (m − 1)-dimensional

subspace of Fm
2 such that 0 < δ(f |H , 0) = (δ(f |H′

0
, 0) + δ(f |H′

1
, 0))/2 < δ.

Proof of Lemma 5.3. We prove the lemma by induction on m − t. Indeed the inductive step is
straightforward since Liftm(F) = Liftm(Liftm−1(F)) and by induction both lifts on the RHS have
smaller value of m − t and so the distance does not reduce in either step. The main case is thus
the base case with m = t+ 1.

Suppose f ∈ Liftm(F) ( {Fm
2 → F2} such that 0 < δ(f, 0) < δ(F). By Lemma 5.4, there exists

an (m−1)-dimensional affine subspace H ⊂ Fm
2 such that 0 < δ(f |H , 0) ≤ δ(f, 0) < δ, contradicting

the fact that f |H ∈ F .

A similar approach works for q = 3, thus we have the following.

Lemma 5.5. If F ⊆ {Ft
3 → F3} has distance δ(F) > 1

3t , then δ(Liftm(F)) ≥ δ(F) for all m ≥ t.

Again, we prove this by stating and proving the following analogue of Lemma 5.4.

Lemma 5.6. For all m ≥ 2, if f : Fm
3 → F3 such that δ(f, 0) ≥ 1

3m−1 , then there exists an
(m− 1)-dimensional affine subspace H ⊂ Fm

3 such that 0 < δ(f |H , 0) ≤ δ(f, 0).

Proof. Let δ = δ(f, 0). We proceed by induction on m. For the base case m = 2, δ ≥ 1
3 . Suppose

f = f(x, y) and consider f |y=i for i ∈ F3. If f |y=i is not identically zero for all i ∈ F3, then by
averaging there is some i ∈ F3 for which 0 < Prx∈F3 [f(x, i) 6= 0] ≤ δ. Otherwise, w.l.o.g. suppose
f |y=2 ≡ 0. Further, w.l.o.g. suppose f |y=0 6≡ 0 and f(0, 0) 6= 0. Now, if δ ≥ 2

3 , then the line
H = {(x, y) ∈ F2

3 | x = 0} does the job, since 0 < Pry∈F3 [f(0, y) 6= 0] ≤ 2
3 ≤ δ. If δ < 2

3 , then there
must exist some a, b ∈ F3 and c ∈ {0, 1} such that f(a, c) 6= 0 and f(b, 1 − c) = 0. Then the line
H = {(a, c), (b, 1 − c), (2b − a, 2)} does the job, since 0 < Pr(x,y)∈H [f(x, y) 6= 0] = 1

3 ≤ δ.
Now suppose m > 2 and the assertion holds for m − 1. For i ∈ F3, let Hi be the hyperplane

cut out by xm = i and let δi = δ(f |Hi
, 0). Then δ1 + δ2 + δ3 = 3δ. If δi > 0 for all i ∈ F3, then

by simple averaging for some i ∈ F3 we have 0 < δi ≤ δ, so assume w.l.o.g. δ2 = 0 and δ0 ≥ δ1.
First suppose δ0 ≥ 1

3m−2 . Then, by the inductive hypothesis, there exists an (m − 2)-dimensional

affine subspace H ⊂ H0 such that 0 < δ(f |H , 0) ≤ δ1. Let H(0) be defined by the linear equations
∑m

i=1 aixi − a0 = 0 and xm = 0 for some 〈a0, . . . , am〉 ∈ Fm+1
3 . For each i, j ∈ F3, let H

(i) + j ⊂ H1

denote the affine subspace defined by
∑m

i=1 aixi − a0 = j and xm = i. By averaging, for some
i ∈ F3, δ(f |H(1)+i, 0) ≤ δ2. Take H = H(0) ∪ (H(1) + i) ∪ (H(2) + 2i). Then 0 < δ(f |H , 0) ≤ δ.

Otherwise, suppose 1
3m−2 > δ0, so δ0, δ1 ≤ 2

3m−1 . There exists H
(0) ⊂ H0 be an (m−2)-dimensional
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affine subspace such that δ(f |H(0) , 0) = 1
3m−1 . To see this, let a, b ∈ H0 such that f(a), f(b) are

nonzero, and suppose a and b differ in the k-th coordinate. Then take H(0) defined by xk = ak
and xm = 0. Again, for i, j ∈ F3 let H(j) + i be the (m − 2)-dimensional affine subspace defined
by xk = ak + i and xm = j. Since δ2 ≤ 2

3m−2 , there is i ∈ F3 such that f |H(1)+i ≡ 0. Then, taking

H = H(0) ∪ (H(1) + i) ∪ (H(2) + 2i), we have 0 < δ(f |H , 0) = 1
3m−1 ≤ δ.

Proof of Lemma 5.5. We prove the lemma by induction on m− t. The inductive step is straight-
forward since Liftm(F) = Liftm(Liftm−1(F)) and by induction both lifts on the RHS have smaller
value of m− t and so the distance does not reduce in either step. The main case is thus the base
case with m = t+ 1.

Suppose f ∈ Liftm(F) ( {Fm
3 → F3} such that 0 < δ(f, 0) < δ(F). If δ(f, 0) ≥ 1

3m−1 ,
then, by Lemma 5.6, there exists an (m − 1)-dimensional affine subspace H ⊂ Fm

3 such that
0 < δ(f |H , 0) ≤ δ(f, 0) < δ(F), contradicting the fact that f |H ∈ F . If δ(f, 0) < 1

3m−1 , then
there are at most two points a, b ∈ Fm

3 such that f(a), f(b) are nonzero. Let i ∈ [m] such that
ai 6= bi and let H be the hyperplane defined by xi = ai. Then f |H is nonzero only on a, so
0 < δ(f |H) = 1

3m−1 < δ(F), again contradicting the fact that f |H ∈ F .

For general q > 3, we have the following.

Lemma 5.7. If F ⊆ {Ft
Q → Fq} has distance δ(F) = δ, then δ(Liftm(F)) > δ − 1−δ

Qt−1 .

Proof. Fix a non-zero f ∈ Liftm(F) and let τ = δ(f, 0). Fix a ∈ Fm
Q such that f(a) 6= 0. Now

let A be a t-dimensional affine subspace containing a chosen uniformly at random from all such
subspaces. Let X(A) = |{x ∈ A | f(x) 6= 0}| be the random variable denoting the number of
non-zero points of f on A. Since A samples every point of Fn

Q − {a} uniformly, we have

EA[X(A)] = 1 +
τQm − 1

Qm − 1
(Qt − 1) < 1 + τ(Qt − 1).

Therefore there must exist a t-dimensional subspace A containing a with X(A) < τ(Qt − 1) + 1.
Since f |A is a non-zero function in F , we have τ(Qt − 1) + 1 ≥ δQt and thus we conclude that
τ ≥ δ − 1−δ

Qt−1 . In other words every non-zero function in F is non-zero on δ − 1−δ
Qt−1 fraction of the

points, as asserted.

Finally we mention examples which show that, in some senses the gaps in Theorem 5.1,
Parts 2 and 3 are inherent.

First note that if F = {F t
Q → Fq} then Liftm(F) = {Fm

Q → Fq} whose distance is Q−m, and
so some loss in the distance is inherent in Part 2 of Theorem 5.1. However, one could hope that if
F ( {F t

Q → Fq} then its distance is preserved by lifting (as in Part 3 of Theorem 5.1). Unfortunately
(actually fortunately, since this is where the rate improvement of codes in Theorem 1.2 comes from)
even this hope is not true. If one takes F to be the binary code with degree set being all weight one
integers, then its lift contains all the weight one integers as well as some integers of weight greater
than one. The code consisting of only weight one integers in its degree set has distance exactly 1/2
while codes that have rate greater than these must have distance strictly smaller than 1/2 (by the
Plotkin bound). This suggests that distances can reduce under lifts. A search reveals that the code
F ⊆ {F4 → F2} with degree set Deg(F) = {0, 1, 2} has distance 1/2 while its lift L = Lift2(F) has
distance 3/8.
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A Equivalence of invariance under affine transformations and per-

mutations

In their work initiating the study of the testability of affine-invariant properties (codes), Kauf-
man and Sudan [31] studied properties closed under general affine transformations and not just
permutations. While affine transformations are nicer to work with when available, they are not
mathematical elegant (they don’t form a group under composition). Furthermore in the case of
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codes they also do not preserve the code - they only show that every codeword stays in the code af-
ter the transformation. Among other negative features affine transformations do not even preserve
the weight of non-zero codewords, which can lead to some rude surprises. Here we patch the gap by
showing that families closed under affine permutations are also closed under affine transformations.
So one can assume the latter, without restricting the class of properties under consideration. We
note that such a statement was proved in [6] for the case of univariate functions. Unfortunately
their proof does not extend to the multivariate setting and forces us to rework many steps from
[31].

Theorem A.1. If F ⊆ {Fm
Q → Fq} is an Fq-linear code invariant under affine permutations, then

F is invariant under all affine transformations.

The central lemma (Lemma A.2) that we prove is that every non-trivial function can be split
into more basic ones. This leads to a proof of Theorem A.1 fairly easily.

We first start with the notion of a basic function. For Q = qn, let Tr : FQ → Fq denote the trace

function Tr(x) = x+xq+ · · ·+xq
n−1

. We say that f : Fm
Q → Fq is a basic function if f(x) = Tr(λxd)

for some d ∈ {0, . . . , Q− 1}m. For F ⊆ {Fm
Q → Fq} and f ∈ F we say f can be split (in F) if there

exist functions g and h such that f = g + h and supp(g), supp(h) ( supp(f).

Lemma A.2. If F ⊆ {Fm
Q → Fq} is an Fq-linear code invariant under affine permutations, then

for every function f ∈ F , f is either basic or f can be split.

We first prove Theorem A.1 from Lemma A.2.

Proof of Theorem A.1. First we assert that it suffices to prove that for every function f ∈ F the
function f̃ = f(x1, . . . , xm−1, 0) is also in F . To see this, consider f ∈ F and A : Fm

Q → Fm
Q

which is not a permutation. Then there exists affine permutations B,C : Fm
Q → Fm

Q such that
A(x) = B(C(x)1, . . . , C(x)r, 0, . . . , 0) where r < m is the dimension of the image of A. By closure
under affine permutations, it follows f ◦C ∈ F . Applying the assertion above m− r times we have
that f ′(x) = f ◦C(x1, . . . , xr, 0, . . . , 0) is also in F . Finally f ◦A = f ′ ◦B is also in F . So we turn
to proving that for every f ∈ F the function f̃ = f(x1, . . . , xm−1, 0) is also in F .

Let f(x) =
∑

d
cdx

d. Notice f̃(x) =
∑

d|dm=0 cdx
d. Writing f = f̃ + f1, we use Lemma A.2 to

split f till we express it as a sum of basic functions f =
∑N

i=1 bi, where each bi is a basic function
in F . Note that for every bi, we have supp(bi) ⊆ supp(f̃) or supp(bi) ⊆ supp(f1) (since the trace
preserves dm = 0). By reordering the bi’s assume the first M bi’s have their support in the support
of f̃ . Then we have f̃ =

∑M
i=1 bi ∈ F .

We thus turn to the proof of Lemma A.2. We prove the lemma in a sequence of cases, based
on the kind of monomials that f has in its support.

We say that d and e are equivalent (modulo q), denoted d ≡q e if there exists a j such that for
every i, di = qjei (mod∗ Q). The following proposition is immediate from previous works (see, for
example, [6]). We include a proof for completeness.

Proposition A.3. If every pair d, e in the support of f : Fm
Q → Fq are equivalent, then f is a basic

function.

Proof. We first note that since the Tr : FQ → Fq is a (Q/q)-to-one function, we have in particular
that for every β ∈ Fq there is an α ∈ FQ such that Tr(α) = β. As an immediate consequence we
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have that every function f : Fm
Q → Fq can be expressed Tr ◦g where g : Fm

Q → FQ. Finally we note
that we can view g as an element of FQ[x], to conclude that f = Tr ◦g for some polynomial g.

Now fix f : Fm
Q → Fq all of whose monomials are equivalent. By the above we can express

f = Tr ◦g for some polynomial g. By inspection we can conclude that all monomials in the
support of g are equivalent to the monomials in the support of f . Finally, using the fact that
Tr(αxd) = Tr(αqxqd (mod∗ Q)) we can assume that g is supported on a single monomial and so
f = Tr(λxd for some λ ∈ FQ.

So it suffices to show that every function that contains non-equivalent degrees in its support
can be split. We first prove that functions with “non-weakly-equivalent” monomials can be split.

We say that d and e are weakly equivalent if there exists a j such that for every i, di = qjei(
mod Q− 1).

Lemma A.4. If F ⊆ {Fm
Q → Fq} is an Fq-linear code invariant under affine permutations and

f ∈ F contains a pair of non-weakly equivalent monomials in its support, then f can be split.

Proof. Let d and e be two non weakly-equivalent monomials in the support of f . Fix j and consider

the function fj(x) =
∑

a∈(F∗
Q
)m
∏

a−qjdi
i f(a1x1, . . . , amxm). We claim that (1) the support of fj is

a subset of the support of f , (2) qjd is in the support of fj, (3) f is in the support of fj only if for
every i fi = qjdi( mod Q− 1) and in particular (4) e is not in the support of fj.

Now let b = b(d) be the smallest positive integer such that qbdi = di (mod∗Q) for every i. Now
consider the function g =

∑b−1
j=0 fj. We have that g ∈ F since it is an Fq-linear combination of

linear transforms of functions in F . By the claims about the fj’s we also have that d is in the
support of g, the support of g is contained in the support of f and e is not in the support of f .
Expressing f = g + (f − g) we now have that f can be split.

The remaining cases are those where some of coordinates of d are zero or Q− 1 for every d in
the support of f . We deal with a special case of such functions next.

Lemma A.5. Let F be a linear affine-invariant code. Let f ∈ F be given by f(x,y) = Tr(ydp(x))
where every variable in p(x) has degree in {0, Q − 1} in every monomial, and d is arbitrary.
Further, let degree of p(x) be a(Q − 1). Then for every 0 ≤ b ≤ a and for every λ ∈ FQ, the
function (x1 · · · xb)Q−1 Tr(λyd) ∈ F .

Note that in particular the lemma above implies that such f ’s can be split into basic functions.

Proof. We prove the lemma by a triple induction, first on a, then on b, and then on the number of
monomials in p. The base case is a = 0 and that is trivial. So we consider general a > 0.

First we consider the case b < a. Assume w.l.o.g. that the monomial (x1 · · · xa)Q−1 is in the
support of p and write p = p0 + xQ−1

1 p1 where p0, p1 do not depend on x1. Note that p1 6= 0 and
deg(p1) = (a−1)(Q−1). We will prove that −Tr(ydp1(x)) ∈ F and this will enable us to apply the
inductive hypothesis to p1. Let g(x,y) =

∑

β∈FQ
f(x1 + β, x2, . . . , xm,y). By construction g ∈ F .

By linearity of the Trace we have

g = Tr



yd





∑

β∈FQ

p0 + (x1 + β)Q−1p1







 = Tr(yd(−p1(x))),
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where the second equality follows from the fact that
∑

β∈FQ
(z + β)Q−1 = −1. Thus we can now

use induction to claim (x1 . . . xb)
Q−1Tr(λyd) ∈ F .

Finally we consider the case b = a. Now note that since the case b < a is known, we can assume
w.l.o.g that p is homogenous (else we can subtract off the lower degree terms). Now if a = m there
is nothing to be proved since p is just a single monomial. So assume a < m. Also if p has only one
monomial then there is nothing to be proved, so assume p has at least two monomials. In particular
assume p is supported on some monomial that depends on x1 and some monomial that does not
depend on x1. Furthermore, assume w.l.o.g. that a monomial depending on x1 does not depend on
x2. Write p = xQ−1

1 p1+xQ−1
2 p2+(x1x2)

Q−1p3+p4 where the pi’s don’t depend on x1 or x2. By as-
sumption on the monomials of p we have that p1 6= 0 and at least one of p2, p3, p4 6= 0. Now consider
the affine transform A that sends x1 to x1 + x2 and preserves all other xi’s. We have g = f ◦ A =

Tr
(

yd(xQ−1
1 p1 + xQ−1

2 (p1 + p2) + (x1x2)
Q−1p3 + p4 + r)

)

where the x1-degree of every monomial

in r is in {1, . . . , Q − 2}. Now consider g′(x,y) =
∑

α∈F∗
Q
g(αx1, x2, . . . , xm,y). The terms of r

vanish in g′ leaving g′ = −(f ◦ A− r) = Tr
(

yd

(

−xQ−1
1 p1 − xQ−1

2 (p1 + p2)− (x1x2)
Q−1p3 − p4

))

.

Finally we consider the function g̃ = f + g′ = Tr(yd(−xQ−1
2 p1)) which is a function in F of de-

gree a(Q − 1) supported on a smaller number of monomials than f , so by applying the inductive
hypothesis to g̃ we have that F contains the monomial (x1 · · · xa)Q−1.

The following lemma converts the above into the final piece needed to prove Lemma A.2.

Lemma A.6. If F ⊆ {Fm
Q → Fq} is an Fq-linear code invariant under affine permutations and all

monomials in f ∈ F are weakly equivalent, then f can be split.

Proof. First we describe the structure of a function f : Fm
Q → Fq that consists only of weakly

equivalent monomials. First we note that the m variables can be separated into those in which
every monomial has degree in {1, . . . , Q − 2} and those in which every monomial has degree in
{0, Q− 1} (since every monomial is weakly equivalent). Let us denote by x the variables in which
the monomials of f have degree in {0, Q − 1} and y be the remaining monomials. Now consider
some monomial of the form M = cxeyd in f . Since f maps to Fq we must have that the coefficient

of (xeyd)q
j
is cq

j
. Furthermore, we have every other monomial M ′ in the support of f is of the

form c′yqjdxe′ . Thus f can be written as Tr(ydp(x)) where p(x1, . . . , xm) = p̃(xQ−1
1 , . . . , xQ−1

m ).
But, by Lemma A.5, such an f can be split.

Proof of Lemma A.2. If f contains a pair of non-weakly equivalent monomials then f can be split
by Lemma A.4. If not, then f is either basic or, by Lemma A.6 is can be split.

We also prove an easy consequence of Lemma A.2.

Lemma A.7. Let F ⊆ {Fm
Q → Fq} be affine invariant. If d ∈ Deg(F), then Tr(λxd) ∈ F for all

λ ∈ FQ.

Proof. We first claim that Lemma A.2 implies that there exists β ∈ FQ such that Tr(βxd) is a non-
zero function in F . To verify this, consider a “minimal” function (supported on fewest monomials)
f ∈ F with d ∈ supp(f). Since f can’t be split in F (by minimality), by Lemma A.2 f must be
basic and so equals (by definition of being basic) Tr(βxd).

Now let b = b(d) be the smallest positive integer such that qbd (mod∗ Q) = d. If Q = qn, note
that b divides n and so one can write Tr : FQ → Fq as Tr1 ◦Tr2 where Tr1 : Fqb → Fq is the function
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Tr1(z) = z + zq + · · · + zq
b−1

and Tr2 : FQ → Fqb is the function Tr2(z) = z + zq
b
+ · · · + zQ/qb .

(Both Tr1 and Tr2 are trace functions mapping the domain to the range.) It follows that Tr(βxd) =
Tr1(Tr2(β)x

d).
We first claim that Tr1(τx

d) ∈ F for every τ ∈ Fqb . Let S = {
∑

α∈(F∗
Q
)m aα · αd | aα ∈ Fq}.

We note that by linearity and affine-invariance of F , we have that Tr1(Tr2(β) · ηxd) ∈ F for every
η ∈ S. By definition S is closed under addition and multiplication and so is a subfield of FQ. In

fact, since every η ∈ S satisfies ηq
b
= η (which follows from the fact that αd = αqbd), we have that

S ⊆ Fqb . It remains to show S = Fqb . Suppose it is a strict subfield of size qc for c < b. Consider

γdi for γ ∈ FQ and i ∈ [m]. Since γdi ∈ S, we have that γdiq
c
= γdi for every γ ∈ FQ and so we

get xq
cdi

i = xi mod (xQi − xi). We conclude that xqcd = xd (mod xQ − x) which contradicts the
minimality of b = b(d). We conclude that S = Fqb . Since Tr2(β) ∈ F∗

qb
, we conclude that the set of

coefficients τ such that Tr1(τx
d) ∈ F is all of Fqb as desired.

Finally consider any λ ∈ FQ. since Tr2(λ) ∈ Fqb , we have that Tr1(Tr2(λ)x
d) ∈ F (from the

previous paragraph), and so Tr(λxd) = Tr1(Tr2(λ)x
d) ∈ F

B Coefficients of multinomial expansions modulo a prime

For an integer d, let d(i) denote the ith digit in the p-ary expansion of d, so that d =
∑∞

i=1 d
(i)pi.

Let ≡p denote equivalence modulo p. The following is a well known theorem of Lucas.

Theorem B.1 (Lucas’ theorem). If d, e ∈ Z, then
(d
e

)

≡p
∏

i

(di
ei

)

.

In particular,
(d
e

)

6≡ 0 (mod p) if and only if e ≤p d, so we have (x+y)d ≡p
∑

e≤pd
xeyd−e. More

generally, we would like to know when
(

d

E

)

vanishes modulo p. To this end, we use the following
claim.

Lemma B.2. If d ∈ Z and e ∈ Zt, then
(d
e

)

6≡p 0 only if e ≤p d. More generally, if d ∈ Zm and

E ∈ Zm×t, then
(

d

E

)

6≡p 0 only if E ≤p d.

Proof. We have
(d
e

)

=
∏t−1

i=1

(d−
∑i−1

j=1 ej
ei

)

. For this to be nonzero modulo p, by Lucas’ theorem we

have ei ≤p d−
∑i−1

j=1 ej , from which it follows that e ≤p d. The more general statement then follows
immediately from definition.

Lemma B.3. Let A ∈ Zm×t and let d,b ∈ Zm and x ∈ Zt. Then

(Ax+ b)d =
∑

E

(

d

E

)

AExΣ(E)bd−Σ(E⊤).

Proof. For matrices A,E, let aij , eij denote their entries respectively. The lemma follows by
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straightforward calculation. We have

(Ax+ b)d =

m
∏

i=1





t
∑

j=1

aijxj + bi





di

=
m
∏

i=1





∑

ei1,...,eit

(

di
〈ei1, . . . , eit〉

)





t
∏

j=1

a
eij
ij x

eij
j



 b
di−

∑t
j=1 eij

i





=
∑

E

m
∏

i=1





(

di
〈ei1, . . . , eit〉

)





t
∏

j=1

a
eij
ij x

eij
j



 b
di−

∑t
j=1 eij

i





=
∑

E

(

d

E

)





m
∏

i=1

t
∏

j=1

a
eij
ij









t
∏

j=1

x
∑m

i=1 eij
j





(

m
∏

i=1

b
di−

∑t
j=1 eij

i

)

=
∑

E

(

d

E

)

AExΣ(E)bd−Σ(E⊤).
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