
Elliptic Curve Fast Fourier Transform (ECFFT) Part II: Scalable
and Transparent Proofs over All Large Fields

Eli Ben–Sasson* Dan Carmon* Swastik Kopparty† David Levit*

January 1, 2024

Abstract

Concretely efficient interactive oracle proofs (IOPs) are of interest due to their applications to scaling blockchains,
their minimal security assumptions, and their potential future-proof resistance to quantum attacks.

Scalable IOPs, in which prover time scales quasilinearly with the computation size and verifier time scales poly-
logarithmically with it, have been known to exist thus far only over a set of finite fields of negligible density, namely,
over “FFT-friendly” fields that contain a sub-group of size 2k.

Our main result is to show that scalable IOPs can be constructed over any sufficiently large finite field, of size
that is at least quadratic in the length of computation whose integrity is proved by the IOP. This result has practical
applications as well, because it reduces the proving and verification complexity of cryptographic statements that are
naturally stated over pre-defined finite fields which are not “FFT-friendly”.

Prior state-of-the-art scalable IOPs relied heavily on arithmetization via univariate polynomials and Reed–Solomon
codes over FFT-friendly fields. To prove our main result and extend scalability to all large finite fields, we generalize
the prior techniques and use new algebraic geometry codes evaluated on sub-groups of elliptic curves (elliptic curve
codes). We also show a new arithmetization scheme that uses the rich and well-understood group structure of elliptic
curves to reduce statements of computational integrity to other statements about the proximity of functions evaluated
on the elliptic curve to the new family of elliptic curve codes.

This paper continues our recent work [BCKL21] that used elliptic curves and their subgroups to create FFT-based
algorithms for polynomial manipulation over generic finite fields. However, our new IOP constructions force us to
use new codes (ones that are not based on polynomials), and this poses a new set of challenges involving the more
restricted automorphism group of these codes, and the constraints of Riemann–Roch spaces of strictly positive genus.

*StarkWare Industries Ltd. {eli,dancar,david}@starkware.co
†Department of Mathematics and Department of Computer Science, University of Toronto. Research supported by NSERC Discovery Grant.

swastik.kopparty@gmail.com

1

1 Introduction

Arithmetization was first used to construct interactive proofs in the seminal work of Lund et al. [LFKN92] and shortly
after played a key role in Shamir’s proof of IP = PSPACE [Sha92]. Ever since, this invaluable tool has dominated
the construction of interactive proofs (IP), multiprover interactive proofs (MIP), zero knowledge proofs (ZK), prob-
abilistically checkable proofs (PCP) and related protocols. Arithmetization reduces statements about computational
integrity, like

“I processed T = 10, 000 valid Ethereum transactions, leading to new Ethereum state S”

to completely different statements, about low degree polynomials over a finite field F, like

“I know polynomials A(X), B(X) over finite field F of degree at most T that satisfy a set of polynomial
constraints”.

The question studied in this paper is: Which finite fields F can be used to create transparent1, scalable and concretely
efficient proof systems? We start by surveying the existing state of the art in this area.

To reach polynomial efficiency, any large finite field suffices. Early uses of arithmetization, for example, in the
seminal proofs of (i) MIP = NEXP [BFL91], (ii) the poly-logarithmic verification of NP [BFLS91] and (iii) the PCP
Theorem [ALM+98, AS98], all work with any sufficiently large finite field, of size at least poly(T), where T denotes
the length of the (nondeterministic) computation whose integrity is being proved; in the case of the PCP Theorem,
a field of size polylog(T) suffices. The communication complexity in all of these celebrated protocols is extremely
efficient — at most poly-logarithmic in T. However, none of these early constructions were ever deployed in practice
because their proofs, although of polynomial length in T, were of impractical size, and the arithmetic complexity of
both prover and verifier were, concretely, prohibitively large.

Scalable proof systems over FFT-friendly fields. The situation changed dramatically, in terms of both efficiency
and field type, with the advent of scalable information theoretic proof systems. A proof system is called scalable when
both (i) proving time2 scales quasilinearly in T and, simultaneously (ii) verification time scales poly-logarithmically in
T (and polynomially in the description of the computation whose integrity is proved); see [BBHR19, Definition 3.3] for
an exact definition. Scalable PCP systems for any language in NEXP were presented by [BS08, BGH+05, BCGT13],
improving proving time from TO(1) to TpolylogT. However, these constructions limited F to be FFT-friendly which
means it must contain a sub-group of size 2k, for integer k (the group can be multiplicative or additive)3. In spite of
their improved efficiency, scalable PCPs are not used in practice because the exponents in the poly-log expressions
for proving and verification time, and the amortized soundness error per PCP-query, are still, practically speaking, too
large.

The last and final step needed to create concretely efficient proof systems for NEXP was taken within a relatively
new computational model, the interactive oracle proof (IOP) model [BCS16, RRR16] that generalizes both IP and
PCP. From a computational complexity point of view, IOP = MIP = PCP = NEXP (see [BCS16]). Within this
model, proving time was reduced to O(T logT) and verification time to O(logT), with relatively small asymptotic
constants [BBHR19]. The requirement that F be an FFT-friendly field remained.

To summarize, early IP,MIP and PCP constructions work over any sufficiently large finite field, but scalable PCPs
and IOPs required FFT-friendly ones. This raises the question of whether FFT-friendliness is needed for scalability,
and sets the ground for our main result.

1A proof system is transparent when all verifier messages are public random coins; such systems are also called Arthur Merlin protocols.
2Unless mentioned otherwise, throughout the paper running time is measured in number of field operations, i.e., we assign unit cost to arithmetic

operations over the finite field.
3More generally, scalable PCPs and IOPs can be constructed over any F which has a sub-group of size that is a product of small primes, but

prover and verifier running time increase as the prime factors increase in number and size. For simplicity we stick to interpreting an FFT-friendly
field as one containing a multiplicative subgroup of size 2k.

1

1.1 Main Results

The language most naturally suited for creating scalable IOPs is that of arithmetic intermediate representations (AIR) [BBHR19,
Sta21]. Informally, an AIR instance of complexitym and length T is defined over a finite field F by a set of low-degree
multivariate constraints, described by arithmetic circuits whose total sum (number of gates) ism, and by a cyclic group
D of size T (see Definition 2.1). An AIR witness is a tuple of functions f1, . . . , fw : D → F (see Definition 2.4),
and the AIR instance is satisfied by it if the application of the polynomial constraints to the functions f1, . . . , fw and
various cyclic shifts of them satisfy the polynomial constraints of the AIR instance (see Definition 2.5).

From a concrete complexity point of view, the language of AIRs is used to define computational integrity statements
for scalable and transparent argument of knowledge (STARK) systems, directly for specific computations like hashing
with ethSTARK [Sta21], for domain specific languages like Winterfell, and for universal (Turing complete) virtual
machines like Cairo [GPR21]. In all these cases, the computations and virtual machines are specified by AIRs.
Systems written over these machines, like StarkEx, have been used to process millions of transactions and billions
of dollars on Ethereum, underscoring their practical relevance.

From an asymptotic complexity point of view, the language of satisfiable AIR instances is complete for NEXP. When
restricting AIR to FFT-friendly fields, the ensuing sub-language (FFT-friendly-AIR) remains NEXP-complete. As
mentioned earlier, prior to this work, it was known that the language of FFT-friendly-AIR has a strictly scalable and
transparent IOP [BBHR19]. By strictly scalable we mean that (i) prover complexity is T · (O(logT) + poly(m)) and,
simultaneously, (ii) verifier complexity is O(logT) + poly(m), i.e., the exponents in all polylog expressions are 1.

The main result of this paper is to remove the FFT-friendly requirement about fields, leading to the following statement.

Theorem 1.1 (Main Theorem — Informal). For any finite field F and T ≤
√
|F|, the satisfiability of AIR instances

over F of size m and computation length at most T can be verified by a strictly scalable and transparent IOP of
knowledge with advice4. In particular, there exist randomized procedures for proving and verification that require T ·
(O(logT) + poly(m)) arithmetic operations over F for proving, and λ · (O(logT) + poly(m)) arithmetic operations
over F for verification with knowledge soundness error at most 2−λ.

We point out that our results apply to other NEXP complete languages for succinct IOPs, such as the succinct R1CS
systems used in [BCG+19]; due to the concrete considerations mentioned above, as well as space limitations, we focus
only on AIR.

Remark 1.2 (Zero Knowledge). The construction used in Theorem 1.1 can be augmented to achieve perfect zero
knowledge, just like the FFT-friendly version of it (Theorem 2.8) can be augmented to an IOP with perfect zero
knowledge [BCF+17]. We omit the addition of zero knowledge from this version due to space considerations.

Remark 1.3 (Post-quantum security). A number of works have shown that applying the Kilian-Micali and/or the BCS
transformation from IOPs to noninteractive arguments are secure in the quantum random oracle model, and these
generic transformations apply to all our results, rendering them post-quantum secure in this model [COS20, CMS19,
CMSZ21].

Fast IOPs of Proximity for Reed–Solomon and Elliptic Curve codes A major step, and bottleneck, in the con-
struction of IOPs and PCPs is that of low-degree testing. This is the sub-protocol that is given oracle access to a
function f : D′ → F and is charged with distinguishing between the case that f is a low-degree polynomial, i.e., a
Reed–Solomon (RS) codeword, and the case that f is far, in Hamming distance, from the RS code. Strictly scalable
IOPs use the Fast RS IOPP (FRI) [BBHR18] protocol targeted for RS codes. For a function of blocklength n = |D′|,
the FRI protocol guarantees linear proving time (O(n) arithmetic operations), strictly logarithmic verification time
and query complexity (O(λ log n) arithmetic operations, to reduce the soundness error to 2−λ).

One of the main reasons that until now scalable IOPs were limited to FFT-friendly fields was the fact that the FRI
protocol is tightly related to the FFT algorithm, and can be described as “randomly folding” an FFT. As part of our

4The proving and verifying procedures depend on O(T log q) bits of advice that depend only on |F| and T – furthermore, this advice can be
generated by a randomized algorithm in time O(Tpolylog(T · q)) with high probability.

2

https://github.com/starkware-libs/ethSTARK
https://engineering.fb.com/2021/08/04/open-source/winterfell/
https://www.cairo-lang.org/
https://starkware.co/starkex/

proof of Theorem 1.1 we also extend the FRI protocol from [BBHR18], and its analysis from [BCI+20], to hold over
all fields, provided |F| ≥ Ω(n2).

Theorem 1.4 (FRI over all fields, informal). For any finite field F of size q, integer n a power of 2 satisfying n ≤ √
q,

integer t and integer R, the following holds.

There exists a subset D′ ⊆ F, |D′| = n, such that the family of RS codes of rate5 ρ = 2−R evaluated over D′ has an
IOP of proximity with:

• O(n) proving complexity,

• O(t · log n) verification complexity,

• t · log n query complexity,

• the following soundness behavior: if f is δ-far in Hamming distance from the code, the probability that f is
accepted by the protocol is at most

(max {(1− δ),
√
ρ} − o(1))

t
.

See Section 2.3 for more details and a formal statement of the result above.

We point out that we also obtain (and need, to prove Theorem 1.1) an IOPP for a more general family of codes –
which comprises evaluations of functions over certain carefully selected points on an elliptic curve E; the points of
evaluation are cosets of a cyclic group of size 2k inside the elliptic curve group. We call this protocol an elliptic curve
FRI, abbreviated EC-FRI, because the IOPP for this family of elliptic curve codes works by “decomposing” a function
on the elliptic curve into a pair of RS codewords and applying Theorem 1.4 to this pair. See Section 6.3 for details.

Applications to concrete scalability We briefly argue why Theorem 1.1 is interesting from the point of view of
concrete (rather than asymptotic) complexity, in applied cryptography settings. There are quite a few cryptographic
primitives used in practice that are naturally defined over specific, and non-FFT-friendly, finite fields. Examples in-
clude the NIST Curve P-256 (used, e.g., on Apple smartphones) and the secp256k1 curve (used for Bitcoin signatures),
both of which are prime, non-FFT-friendly, fields. Consider a prover attempting to prove she processed correctly a
large batch of ECDSA signatures over either one of these primes, denoting it by p. Today, the prover would need
to arithmetize her statement over some FFT-friendly field, and thus simulate the basic arithmetic operations of the
(non-FFT friendly) field Fp over some other field Fq , resulting in significant overhead. For example, the implemen-
tation of secp256k1 and NIST P-256 ECDSA in the Cairo programming language (which uses an IOP-based STARK
over a 254-bit, FFT-friendly, prime field Fq) requires roughly 128 arithmetic operations over Fq to simulate a single Fp
multiplication (this implementation uses various optimizations, the naive bit-wise multiplication would be far costlier).

Using the construction of Theorem 1.1 one may do better. The statement for each of these curves could be constructed
over the native prime field Fp, meaning that each multiplication gate in the computation of the ECDSA “costs” only
one constraint, and addition comes for free. When computing the tradeoff between using an FFT-friendly field Fq
or our new construction over Fp, one should carefully measure the difference resulting from the new construction
(which, as explained later, involves elliptic curves rather than plain polynomials). We leave this interesting question
for future work, but speculate that in most cases the new Fp-native constructions will be far better, in terms of prover
time, verifier time, and proof length, than arithmetization over a different, yet FFT-friendly, field.

Next we discuss the four parts in which FFT-friendliness was demanded in prior scalable systems, and then explain
how we get rid of this requirement.

5The rate parameter, defined as the ratio between a code’s dimension and its blocklength, can be picked to be any constant ρ < 1, and affects
the soundness error and proximity parameters; see [BCI+20] for state of the art soundness bounds as a function of rate.

3

https://github.com/starkware-libs/cairo-examples/tree/master/secp
https://github.com/spartucus/nistp256-cairo

1.2 Why do PCPs and IOPs require FFT-friendliness?

The very first step taken by a scalable PCP/IOP prover, when writing a proof for the integrity of a computation of
length T, is typically to view the execution trace of the computation as a series of functions f1, . . . , fw : D → F for
some evaluation domain D ⊂ F, |D| = T, and then compute the low degree extension of each fi by first interpolating
the polynomial Pi(X),deg(Pi) < T that agrees with fi, and then evaluating P1, . . . , Pw on a larger domain D′ ⊂
F, |D′| ≫ |D|, leading to a new sequence f ′1, . . . , f

′
w : D′ → F that are submitted to the verifier as the very first part of

the PCP/IOP. The four reasons D needs to be a cyclic group of size 2k are explained next. If we wish to create scalable
IOPs over all fields, including ones that do not contain such groups, we shall need to find other ways to achieve these
properties.

• Super-efficient Reed–Solomon encoding: The main asymptotic bottleneck of scalable IOPs on the prover
side is the computation of the low degree extensions of f1, . . . , fw from D to D′. When D is a subgroup of
size 2k and D′ is a finite union of cosets of D, as used in all scalable PCP/IOP constructions, the classical FFT
algorithm can be used to solve the encoding problem in time O(wT logT); the asymptotic constants hidden by
O-notation are rather small, which helps for concrete prover efficiency.

• Codewords are invariant to cyclic shifts: The algebraic constraints in AIRs over the trace involve elements
from previous timesteps, which correspond to evaluations of f ′1, . . . , f

′
w at translated arguments. Thus we need

work not only with the codewords f ′1, . . . , f
′
w, but with words obtained by cyclic shifts of their values (where the

cyclic order is determined by the indexing of the trace’s elements by D). To control the degree of the evaluated
constraints, it is necessary to know that these shifted words are also evaluations of polynomials of degree < T,
i.e. codewords. This is indeed the case when D is a cyclic group generated by g, D′ is a finite union of its cosets,
and the rows are indexed according to the cyclic order: shifting the values of f ′i(x) by t yields the function
f ′i(g

tx), which has the same degree as f ′i(x) (each coset of D undergoes the same cyclic shift).

• Polylogarithmic verification requires sparse domain polynomials: To allow the verifier to check that the
polynomial constraints arising out of the arithmetization reduction hold for each of the T steps of the computa-
tion, as claimed by the prover, the verifier needs to evaluate the “vanishing polynomial” of D, denoted ZD(X),
which is the degree-T monic polynomial whose roots are D, as well as polynomials that vanish on certain sub-
sets D1, . . . , Ds ⊂ D, denoted ZDi

(X). To facilitate scalable (polylogarithmic) verification, the verifier needs
to evaluate ZD(X), ZD1

(X), . . . , ZDs
(X) all in time polylogT. When D is a multiplicative group of size T we

have ZD(X) = XT − 1. This is a sparse polynomial that can be evaluated on any x0 using O(logT) arithmetic
operations. Likewise, when D1, . . . , Ds are subgroups of D or, more generally, of “low-complexity” when
expressed using subgroups (see Definition 2.3 for a definition of this term), then scalable (poly-logarithmic)
verification is possible.

• Low-degree testing: Soundness of scalable PCPs/IOPs requires a protocol designed to verify that each of the
functions f ′1, . . . , f

′
w : D′ → F submitted by the prover is an RS codeword (or is close to it in Hamming

distance). All scalable protocols — from the quasilinear RS-PCP of Proximity (PCPP) of [BS08] to the linear
Fast RS IOP of Proximity (IOPP) protocol of [BBHR18] (abbreviated as FRI) — rely on the FFT-friendly
structure of the domain D′ over which functions are evaluated. In more detail, the fact that a cyclic group of size
2k has a cyclic group of size 2k−1 as a quotient group plays a vital role in the FRI protocol.

To summarize, there are four separate places in which FFT-friendliness is important in the construction of FRI-AIR
STARK systems. RS encoding requires quasilinear running time over any finite field but the best asymptotic running
time is obtained over multiplicative groups of order 2k, i.e., within FFT-friendly fields. Expressing general constraints
requires the RS codewords to be invariant to cyclic shifts, which occurs when the domain is itself a cyclic group.
Scalable (poly-logarithmic) verification requires an evaluation domain that is represented by a sparse polynomial, and
any multiplicative subgroup could be used. Finally, the low-degree testing protocol that lies at the heart of scalable
PCP/IOP constructions requires an FFT-friendly domain.

4

1.3 Elliptic curves save the day, again

The virtues of elliptic curves in cryptography, computer science and mathematics are well established [Sil09, Was08,
Kob87]. Here we make novel use of their properties — to create strictly scalable IOPs over any sufficiently large
finite field, with the same asymptotic and concrete arithmetic complexity as obtained over FFT-friendly fields. A brief
overview of some relevant standard facts and terms related to elliptic curves may be found in Appendix A.

Our starting point is our recent work [BCKL21], that showed how to use elliptic curve groups to enable an FFT-like
computation over all finite fields, thus enabling fast low degree extensions. This essentially gives us (with some small
modifications) the analogue of the first item from Section 1.2. Developing analogues of the remaining three items is
completely new to this paper, and it requires us to dig deeper than [BCKL21] into the elliptic curve group structure
and properties of Riemann–Roch spaces over elliptic curves.

Another contribution of this paper is a randomized near-linear time algorithm for doing all the (one-time) precom-
putation required for the ECFFT and the EC based IOP. Additionally, in this paper we also provide a more explicit
description of the curves and maps that appear in the isogeny chain, which in turn give us more explicit formulas
for the FFTs themselves. This allows for easy implementation and easy determination of running time with concrete
constants. See Section 4 and Section 4.3 in particular.

Taking a 30,000-feet view, fix any finite field F of size q. The family of elliptic curves defined over F is a family of
algebraic groups whose size range and structure are well understood. Size-wise, nearly any number in the Hasse–Weil
bound [q + 1 ± 2

√
q] is the size of some elliptic curve over F (when q is prime then every number in that range is

the size of an elliptic curve). The group structure of elliptic curves is somewhat more elaborate, but suffice to say that
for any size 2k, there will exist some elliptic curve that contains a cyclic6 subgroup of size 2k, permitted that 2k is,
roughly, at most

√
q.

Based on these observations, we shall replace the multiplicative subgroup of size 2k (which may not exist inside
F∗
q) with a cyclic subgroup of size 2k of points of some elliptic curve E defined over Fq . Then, we shall use a

novel arithmetization scheme that reduces computational problems to problems regarding “low-degree” functions
defined over the points of the elliptic curve; formally, these functions will be members of a low-degree Riemann–Roch
(RR) space. The choice of this Riemann–Roch space in a way that enables arithmetization is the crux of our IOP
construction, and we discuss this next.

1.3.1 Arithmetization and automorphisms

One property of polynomials (in the classical FFT-friendly field IOP setting) which is needed for efficient arithmetiza-
tion is their invariance under certain linear transformations. In particular, ifG ⊂ Fq is a multiplicative group generated
by g, and f : G → Fq is an evaluation of a polynomial of degree d, then f(g · x) is also a polynomial of degree d. In
other words, the space of functions of degree at most d is invariant under the permutation that maps x to g · x.

Now suppose we wish to arithmetize using a cyclic group H that is generated by a point h on an elliptic curve (i.e, H
is a sub-group of the curve). A permutation that is natural in this context is given by x 7→ x+h (where x, h are points
on the curve and + is the curve’s group operand). We need a space of functions that are invariant under this action,
and this identifies a natural candidate space – the Riemann–Roch space of functions that is supported in a symmetric
way on H , defined by the divisor

∑
z∈H [z].

Another way of viewing this generalization is as follows. The space of polynomials of degree at most d in the projective
space P1 (cf. Appendix A.1) is the Riemann–Roch space associated with the divisor D = d · [∞] (see Eq. (30)), and
D is invariant under the action [x] 7→ [g · x]. In the case of an elliptic curve group, ∞ ̸= h + ∞ so we cannot use
D but rather need a different divisor, one that is invariant under the mapping induced by h. The natural divisor is
D′ :=

∑
z∈H [z] which is clearly invariant under the action of h because H is cyclic.

6The need for cyclic subgroups of size 2k, as opposed to general subgroups of size 2k, of elliptic curve groups is new to this paper in comparison
to [BCKL21]. The cyclicity is essential for arithmetization.

5

1.3.2 Key ingredients for the new IOPs, and the relationship to ECFFT Part I [BCKL21]

Let us now see the elliptic curve analogues of the four ingredients that go into IOPs in FFT-friendly fields. The first of
these essentially comes from [BCKL21].

• Super-efficient EC code encoding: This essentially comes from [BCKL21]. Here we generalize the results
slightly to extend low-degree functions evaluated over D to evaluations over a constant number of other cosets
of D, in time O(T logT) and with small concrete asymptotic constants. See Section 6.2 for details.

• Invariance to cyclic shifts: This is where the choice of the Riemann–Roch space is crucially used. It was
specifically constructed to be invariant to translation of the argument by any element of the cyclic subgroup of
size 2k in E, similarly to the case of polynomials with bounded degree. Since D′ is a union of cosets of the
cyclic subgroup, these translations correspond to cyclic permutations of each coset in D′. See Section 5.4 for
details.

• Polylogarithmic evaluation of the “vanishing RR function” of D: The verifier now needs to evaluate “low-
degree” “vanishing RR functions” (the analogue of a vanishing polynomial in the Riemann–Roch space) ẐD(P)
on an arbitrary point P = (x0, y0) of E, where ẐD is the RR function that vanishes over D. It turns out that D
can be constructed using a sequence of k = logT rational functions and this implies that ẐD(P) is computable
using O(logT) arithmetic operations, as before. Likewise, for subsets D1, . . . , Ds ⊂ D of “low complexity”
(per Definition 2.3), the verifier can evaluate ẐDi

(P) as efficiently for subsets of elliptic curves as was the case
with subsets of multiplicative groups. See section Section 7 for details.

• Low-degree testing: The FRI protocol can be described informally as “random folding of an FFT”. Thus, once
we have obtained a generalization of the FFT algorithm to codes defined over elliptic curve groups, we also
generalize the FRI protocol to verify the proximity of functions to low-degree RR functions. Details appear in
Section 6.3.

1.4 Related work

Over the past decade we have experienced a Cambrian explosion in the field of concretely efficient proof systems,
with and without zero knowledge. These systems are classified under various definitions including CS proofs [Mic00],
NIZKs and succinct NIZKs [GGPR13], SNARGs, SNARKs, STARKs, and more. Realizations in code include Pinoc-
chio [PGHR13], C-SNARKs [BCG+13], PLONK [GWC19], Halo [BGH19], Fractal [COS20], Marlin [CHM+20],
Ligero [AHIV17], Sonic [MBKM19], Bulletproofs [BBB+18] and more.

Nearly all of these systems involve arithmetization via polynomials (univariate and multivariate) over large fields, of
size at least poly(T), and thus when efficiency (concrete and asymptotic) is of interest, FFT-friendliness is required,
along with proving time that is quasi-linear (or worse). An interesting research question, not addressed here, is whether
the techniques discussed in this paper are relevant to some of these works. It seems likely to conjecture that many of
the works that are information theoretically secure, like the important lines of works based on “interactive proofs for
muggles” [GKR08] and “MPC in the head” [IKOS07] may be constructed with better efficiency over general large
fields, using our results.

A class of concretely efficient and widely deployed ZK-SNARK systems is based on knowledge-of-exponent as-
sumptions and bi-linear pairings, starting with the work of [PGHR13]. Several blockchain systems, including Zcash,
Filecoin and Tornado cash use the popular and efficient Groth16 ZK-SNARK [Gro16]. The use of bilinear pairings
significantly limits the class of fields that can be arithmetized efficiently, requiring F to be a prime field with small em-
bedding degree and ruling out fields that are of prime power size7. Other constructions that rely on number-theoretic
assumptions but which do not require knowledge of exponent assumptions, nor bilinear pairings (e.g., BulletProofs

7Arithmetization in the context of such SNARKs has as its output a system of R1CS constraints defined over an elliptic curve subgroup of prime
order p that has small constant embedding degree.

6

and Halo), may be amenable to efficient constructions over non-FFT friendly, cryptographically large primes/curves
(but it seems unlikely they can be amended to allow native arithmetization over fields of small characteristic).

An interesting and noteworthy recent line of works gives strictly linear proving time, thereby avoiding the need for
FFTs [BCG+17b, BCG20, RR21, GLS+21] and large fields and offering strictly better asymptotic proving time than
mentioned above. However, thus far this line of works has not produced scalable systems (per the definition above)
and requires super-polylogarithmic verification time which should be performed either directly by the verifier or by a
pre-processing entity trusted by it. In particular, our main results (Theorems 1.1 and 1.4) do not imply these works
and vice versa.

Elliptic curves and FFT. This work is a direct continuation of our previous paper on quasilinear time Elliptic Curve
FFT [BCKL21] (cf. [CC89] for an earlier work on using elliptic curves to compute an FFT-like transform, as well as
the discussion in [BCKL21] of that paper). Indeed, the sequence of isogenies used in Section 4.2 is adapted from that
work, and the EC-FRI protocol of Section 6.3 relies on our FFT-like interpolation and evaluation algorithms of that
work. Although we made this paper self-contained, reading our previous work should help the reader with intuition
(and notation) here. See Section 1.3 for a detailed discussion of what is new in this paper in comparison to [BCKL21].

1.4.1 Algebraic Geometry codes and PCPs/IOPs

A line of works used algebraic geometry codes to obtain PCPs and IOPs with extremely efficient proof length and
query complexity over constant size fields [BKK+16, BCG+17a]. Those works are incomparable to ours because the
curves there are of much higher genus, and the end results are not related to our goal of constructing scalable proof
systems over any finite field.

1.5 Outline of the rest of the paper

The next section presents the main results more formally, and Section 3 gives a self-contained proof of our main result
(Section 3). This proof relies on further results discussed later, as follows. Section 4 gives an efficient procedure for
selecting a “good”, i.e., “FFT-like” sequence of curves, needed for the IOP. Section 5 defines the family of elliptic
curve codes used by our arithmetization, and discusses some of their properties. Section 6 presents quasi-linear
algorithms for encoding (or “low-degree extending”) functions in this family of codes, and analyzes efficient IOPs
of proximity for them. Section 7 defines and discusses the zero loci of elliptic curve code members that is needed
to define the enforcement domains of AIR constraints. The appendix contains mathematical definitions and a more
detailed analysis of the EC version of the FRI protocol (Appendices A and B, respectively).

We note that Sections 4 to 7 use notations which differ slightly from the notation used in Section 3. The main reason
for this is that the in-depth sections must deal not with a single curve, Riemann–Roch space etc., but with families and
chains of such, and the relationships between them, due to the recursive nature of algorithms such as FFT and FRI,
and the likewise recursive structure of this objects. These families require an additional level of indexation. However,
to simply use FFT and FRI as done in Section 3, it is not necessary to go beyond the first layer. Thus, we are able to
use a slightly simplified notation in that section.

2 Main results

Our main result below is a scalable and transparent IOP of knowledge (abbreviated as STIK) for the language of
satisfiable AIR instances defined over any sufficiently large finite field. Thus, we start by defining this language
(Definition 2.6). Then we state and discuss our main theorem (Theorem 2.10). We conclude with a statement of the
auxiliary results on FRI and EC-FRI over any finite field.

7

2.1 The AIR Language and Relation

We recall the definition of an AIR instance from [BBHR19], using the more recent formulation in [Sta21, Section 5],
generalizing it slightly by using an abstract cyclic group instead of a multiplicative group8 of a finite field. As shown
in that paper, this language, even when restricted to FFT-friendly fields, is NEXP-complete. We start with the notion
of an AIR instance.

Definition 2.1 (AIR Instance). An Algebraic Intermediate Representation (AIR) instance is a tuple A = (F,w, h, d, s,H0, g, I,Cset)
where:

• F is a finite field

• w, h, d, s are integers indicating the following sizes:

– w is the number of columns in the trace

– h denotes the logarithm of the size of the trace domain

– d is the maximal degree of a constraint

– s is the size of the set of constraints

• H0 is a cyclic group of size 2h, and g is a generator of it. We write H0 multiplicatively, so that gj · y means
applying gj (the j-length cyclic shift) to y. We call H0 the trace domain.

• I ⊆ {0, 1, . . . , 2h−1}×{1, . . . ,w} is a set of pairs known as the set of mask indices. Let Z = {Zj,l : (j, l) ∈ I}
be a set of formal variables, called the mask variables, indexed by elements of I.

• Cset = {C1, . . . ,Cs} is a finite set of constraints, of size s. Each constraint is an ordered pair Cα = (Qα,Hα)
where:

– Qα ∈ F≤d[Z] is a multivariate polynomial over the mask variables, of total degree at most d, called the
α-th constraint polynomial.

– Hα ⊆ H0 is a subset of the group, called the α-th constraint enforcement domain.

The kind of result we will show is that the language of satisfiable AIRs over every field has an efficient IOPP. The
efficiency will be in terms of the complexity of the constraints of the AIR, which we define next. Informally, the
complexity of the AIR constraints depend on two things. The first is the circuit complexity of individual constraints,
defined first (Definition 2.2). The second, less trivial, component, is the specification of the domain on which different
constraints must be enforced (Definition 2.3).

Definition 2.2 (Complexity of Constraints of an AIR). Given an AIR A = (F,w, h, d, s,H0, g, I,Cset), we define the
complexity of the constraints of A, denoted ∥Cset∥, as:

∥Cset∥ :=

s∑
α=1

(∥Qα∥+ ∥Hα∥),

where ∥Qα∥ is the arithmetic complexity of the circuit computing the polynomial Qα, and ∥Hα∥ is the coset complexity
of Hα (see definition below).

As motivation for the following definition, consider a linear computation in which a constraint should be applied only
to half of the timesteps. Informally, a constraint applied periodically, every other step (on even-numbered time steps)
has lower complexity than a constraint that should be applied to a randomly selected set of time steps. We define the
set of relevant time steps using polynomials and rational functions, and it turns out the the following measure is an
upper bound on their complexity as arithmetic circuits.

8An AIR can also be defined using Hamiltonian paths in affine graphs, but restricting to cyclic groups suffices for NEXP-completeness, see
[BBHR19].

8

Definition 2.3 (Coset Complexity). For a subset S of a finite group H , we define the coset complexity of S, denoted
∥S∥, to be the smallest value of ∑

i

(log2(|Ji|) + 1),

over all ways of writing the indicator function 1S of S as a signed sum of indicator functions:

1S =
∑
i

ϵi · 1Ji ,

where each Ji is a coset of a subgroup of H and ϵi = ±1.

Next, we recall the definition of an AIR witness.

Definition 2.4 (AIR witness and composition). An AIR witness is a sequence of functions f⃗ = (f1, . . . , fw), where
each fl is a function from H0 to F. The witness size is w · |H0|.

Given an AIR constraint polynomial Q ∈ F[Z], the composition of Q and the witness f⃗ is the function

Q ◦ f⃗ : H0 → F,

where, for all y ∈ H0:
(Q ◦ f⃗)(y) = Q

((
fl(g

j · y)
)
j,l

)
.

(On the right hand side, we replaced the variable Zj,l ∈ Z that appears in Q(Z) with fl(g
j · y)).

We now define which witnesses are said to satisfy an instance. As motivation, consider a typical way that an AIR can
encode a computation. We could have a machine with w Fq-registers, and ask that fl(gj) represents the contents of
the l-th register at time j. Then we use the constraints to (1) capture the transition rules between time step j and j + 1
for all j in the enforcement domain [0, T], and (2) enforce boundary constraints on the values of the registers at time
0 and at time T .

Definition 2.5 (Satisfiability). We say that the AIR witness f⃗ = (f1, . . . , fw) satisfies the AIR instance A = (F,w, h, d, s,H0, g, I,Cset)
if and only if

∀α ∈ [s] : y ∈ Hα ⇒ (Qα ◦ f⃗)(y) = 0.

In words, f⃗ satisfies A iff for every constraint Cα = (Qα,Hα) ∈ Cset it holds that Qα ◦⃗f vanishes on the α-th constraint
enforcement domain Hα. We say that the AIR A is satisfiable if there exists an AIR witness f⃗ that satisfies it.

We now reach the main definition of this subsection, that of the language, and relation, corresponding to satisfiable
AIRs over fields of quadratic size.

Definition 2.6 (AIR Language/Relation). The AIR relation RAIR is

RAIR = {(A, f⃗) | A = (F,w, h, d, s,H0, g, I,Cset) is an AIR,

f⃗ is a satisfying AIR witness for A,

|F| ≥ Ω(d2 · 22h)}.

The language of satisfiable AIRs is the projection of RAIR onto its first coordinate,

LAIR = {A | ∃⃗f (A, f⃗) ∈ RAIR}.

Remark 2.7 (Field size). The definition above requires |F| > (d|H0|)2. When this is not the case one may embed F
in a finite extension field K which is sufficiently large, and apply our results to the AIR over K. This increases the
various complexity measures (proving time, verification time and query complexity) by a multiplicative factor of at
most M([K : F]), where M([K : F]) denotes the complexity of K-multiplication in terms of arithmetic operations
over F; notice that M(k) ≤ k2 for any K that is the degree k extension of F. For instance, in the extremal case of the
smallest possible field size, F2, any AIR per Definition 2.1 over F2, using an (abstract) group H0 of size n, would lead
to using k = 2 log n+O(1), leading to total prover complexity of O(n log n ·M([F22 log n+O(1) : F2]) ≤ O(n log3 n)
measured in arithmetic operations over F2.

9

2.2 A Scalable and Transparent IOP for LAIR

To state our main result we assume familiarity with the definition of an IOP, and briefly recall its main parame-
ters [BCS16, RRR16].

An Interactive Oracle Proof (IOP) for a language L is an interactive proof system defined by a prover P and verifier
V, in which the verifier need not read the prover’s messages in full. Rather, the IOP model allows the verifier oracle
access to the prover’s messages. (The prover is assumed to read all verifier messages in entirety.) The main parameters
of interest are:

• query complexity q is the total number of symbols queried by the verifier from the prover’s messages

• round complexity k is the number of rounds of interaction between the two parties.

• prover complexity timeP and verifier complexity timeV, which, in this paper, will assume unit cost for arithmetic
operations over the ambient field

• proof length l is the sum of lengths of oracles sent by the prover throughout the protocol.

• soundness error err is the probability of the verifier accepting a false statement.

Main Result. It was shown by [BBHR19] that the sub-language of LAIR restricted to FFT-friendly fields has a
scalable and transparent IOP of knowledge. Formally, let

LAIR,FFT = {A ∈ LAIR | A = (F,w, h, d, s,H0, g, I,Cset) satisfies 2h | |F| − 1}.

The main theorem of [BBHR19] is:

Theorem 2.8 (STIK for LAIR,FFT – Prior state of art). There is an IOP protocol for the language LAIR,FFT such that
for A = (F,w, h, d, s,H0, g, I,Cset) of witness size n = w · 2h and parameter t we have:

• Completeness, Proving time and Proof size: There is a Prover algorithm that given f⃗ such that (A, f⃗) ∈ RAIR,
makes the verifier accept with probability 1. Prover running time is

O(n · (log n+ ∥Cset∥)),

and proof length l is O(n).

• Verifier runtime and query complexity: For all instances

A = (F,w, h, d, s,H0, g, I,Cset),

the verifier runs in time O(∥Cset∥+ t · h) and makes a total of of q ≤ t log n queries

• Knowledge soundness and soundness: There exists an efficient extractor running in time poly(n) such that,
given access to a Prover which satisfies the verifier with probability greater than 2−t, outputs f⃗ such that
(A, f⃗) ∈ RAIR. In particular, if A ̸∈ LAIR then, for any Prover strategy, the verifier will reject with probability at
least 1− 2−t.

Remark 2.9 (Soundness and knowledge soundness). Often in the analysis of interactive proofs, the soundness error
parameter is smaller than the knowledge soundness parameter. In the theorem above we state the same parameter for
both because the state-of-the-art soundness analysis in our case is actually efficient, and uses a witness extractor.

10

The first step of the above IOPP is to identify the cyclic group H0 with a subgroup of the multiplicative group F∗
q , and

to view satisfying AIR witnesses fl : H0 → Fq as the values of a low degree univariate polynomial fl(Y) ∈ Fq[Y].
This then makes the AIR a collection of constraints on the values of low-degree polynomials at certain points of the
field Fq , and brings the tools of algebra into play.

The FFT-friendliness is crucial for this approach — without it, there is no suitable multiplicative subgroup in F∗
q to

identify the cyclic group H0 with, and the above approach fails to get off the ground (see Section 1.2).

Our main result, given below, removes the FFT-friendliness restriction, and gives an IOPP for satisfiable AIRs over
all finite fields with almost identical guarantees as Theorem 2.8. The key ingredient is to identify the cyclic group H0

with a cyclic subgroup of an elliptic curve E over F, and to view satisfying AIR witnesses fl : H0 → Fq as the values
of low degree rational functions fl defined9 on the curve E.

Theorem 2.10 (Scalable and Transparent IOPs of Knowledge over all large fields). There is an IOP protocol for the
language LAIR with properties and parameters as stated in Theorem 2.8 above.

The complexity parameters of the theorem, along with completeness, are argued along the lines of the proof of The-
orem 2.8 (see [Sta21, Section 5]). The most delicate part is the soundness analysis (as is always the case with IOP
systems). The proof appears in Section 3.3.

EC-STARKs Assuming the existence of a family of collision resistant hash functions, and replacing the interactive
oracles with Merkle commitment schemes a la [Kil92], one obtains an interactive Scalable Transparent ARgument of
Knowledge (STARK) as defined in [BBHR19]. Alternatively, working in the random oracle model and applying the
BCS reduction [BCS16], one obtains a noninteractive STARK (which is also, in particular, a transparent SNARK).
Details of both reductions are identical to prior STARKs and discussed elsewhere (e.g., [Kil92, Mic00, BCS16, CY21b,
CY21a]). We point out that STARKs based on FFT-friendly fields (Theorem 2.8) are concretely practical, as evidenced
by the StarkEx system which implements them to scale transactions on Ethereum. We conjecture that the new EC-
based construction of Theorem 1.1 will have practical applications in certain settings (as discussed in Section 1.1).

2.3 IOPs of Proximity (IOPPs) for RS codes over all large fields

In this section we state our auxiliary main result: FRI over all large finite fields. We start with a few necessary
definitions.

We use ∆ to denote relative Hamming distance between two vectors u, v ∈ Fn, defined as ∆(u, v) = 1
n | {i ∈ [n] | ui ̸= vi} |,

and for a set V ⊂ Fn we let ∆(u, V) = min {∆(u, v) | v ∈ V }. The agreement of u, v and u, V is defined to be
agree(u, v) = 1−∆(u, v), agree(u, V) = 1−∆(u, V).

Definition 2.11 (IOP of Proximity (IOPP)). Fix V ⊂ Fn. An IOP system (P,V) is said to be an IOP of proximity
(IOPP) for V with soundness error function err : [0, 1] → [0, 1] (and additional complexity parameters as defined for
standard IOP systems above) if, assuming the verifier has oracle access to v ∈ Fn, the following hold:

• There exists a prover P such that for v ∈ V ,

Pr [⟨Vv ↔ P(v)⟩ = accept] = 1

• If v ̸∈ V (so ∆(v, V) > 0) then for any prover P∗ we have

Pr [⟨Vv ↔ P(v)⟩ = accept] ≤ err(∆(v, V))

9To be precise, we work with a suitable Riemann–Roch space.

11

https://starkware.co/starkex/

Reed Solomon Codes Let RS[Fq, L, ρ] denote the Reed–Solomon code over field Fq , evaluation domain L and rate
ρ:

RS[Fq, L, ρ] = {f : L→ Fq : deg(f) < ρ|L|}. (1)

Recall the previous state of the art with respect to IOPPs for Reed–Solomon codes. We call a finite field F n-smooth
if it contains a sub-group (additive or multiplicative) of size n = 2k for integer k.

Theorem 2.12 (FRI over smooth fields [BBHR18, BCI+20]). Let F be an n-smooth finite field. Then there is a subset
L ⊆ F with size n such that for any rate parameter ρ = 2−R (R ∈ N) and repetition parameter t, the Reed–Solomon
code RS[F, L, ρ] has an IOPP with:

• linear proving time timeP = O(n) and proof length l < n,

• logarithmic query complexity q = t · log(n) +O(1) and verification time timeV = O(t log n)

• soundness error function err, where:

err(δ) = O

(
n2

q

)
+ (min(δ, 1−√

ρ)− o(1))
t
.

Our second main result shows essentially the same bounds over any finite field, not just smooth ones.

Theorem 2.13 (FRI over all fields). Let F be the finite field of size q, a prime power. Then for every n ≤ O(
√
q) there

exists a set L ⊆ Fq of size Θ(n) such that for any rate parameter ρ = 2−R (R ∈ N) and repetition parameter t the
Reed–Solomon code RS[F, L, ρ] has an IOPP with the complexity measures as stated in Theorem 2.12.

2.4 Fast IOPs of Proximity for Elliptic Curve Codes

We generalize Theorem 2.13 to certain algebraic geometry codes, evaluations of functions in a low-degree Riemann–
Roch space over FFT-friendly subgroups of elliptic curves(definitions of these terms appear in Appendix A). To define
the specific codes recall the definition of Algebraic Geometry (or Goppa) codes.

Definition 2.14 (Algebraic Geometry Codes). Let X be a non-singular projective curve over a field F, let D =
{x1, . . . , xn} be a set of F-rational points andG be a divisor with support disjoint fromD. Let L (G) be the Riemann–
Roch space defined by G. Then the algebraic geometry (AG) code (also known as a Goppa code) C(D,G) is

C(D,G) := {f(x1), . . . , f(xn) | f ∈ L (G), xi ∈ D} (2)

Our next result is the following.

Theorem 2.15 (Fast Elliptic Curve Code IOPP). Let E be an elliptic curve over F, letG ⊂ E be a cyclic group of size
2h and let D be a union of m nontrivial and disjoint cosets of G, such that G ∩D = ∅. Let [G] :=

∑
P∈G[P] be the

divisor naturally associated with G (see Appendix A.5). Then, for any repetition parameter t and setting ρ = 1/m,
the AG code C(D, [G]) has an IOPP with complexity parameters as in Theorem 2.12.

3 Scalable IOPs for AIRs over any large field

In this section we prove our main theorem – Theorem 2.10, relying on certain claims that are proved in later sections.

12

3.1 The ECFFT Infrastructure

The proof of Theorem 2.10 relies on delicately chosen elliptic curves, subgroups of those curves, Riemann–Roch
spaces and AG codes, and special “degree-correction” functions on the curve. All of these are explained meticulously,
and the required properties proven formally, in later sections. The goal of this section is to lay out, in a self-contained
manner, all the results which are needed to derive our main results regarding IOPs and IOPs of proximity (in Sec-
tion 3.2).

This section builds upon our recent results in [BCKL21], and we advise the reader to consult that paper regarding the
results quoted here from that work.

3.1.1 The EC backbone

The backbone of all of the constructions in this paper is the chain of 2-isogenies whose existence was shown in
[BCKL21, Theorem 4.9], which we quote here:

Theorem 3.1 (Good Curve Sequence). For any prime power q ≥ 7 and any 1 < K = 2k ≤ 2
√
q, there exist

elliptic curves E0, E1, . . . , Ek over Fq in extended Weierstrass form, a subgroup G0 ⊆ E0 of size K, 2-isogenies
φi : Ei → Ei+1 and rational functions ψi : P1 → P1 of degree 2, such that the following diagram is commutative:

E0 E1 · · · Ek

P1 P1 · · · P1

φ0

π0

φ1

π1

φk−1

πk

ψ0 ψ1 ψk−1

(3)

where:

• πi are the projection maps to the x-coordinate of each curve;

• |φi−1 ◦ · · · ◦ φ0(G0)| = 1
2i |G0| = 2k−i.

• G0 has a coset C such that C ̸= −C (as elements of the quotient group E0(Fq)/G0).

Note that this theorem is very abstract: It only establishes the existence of these curves and maps, but says almost
nothing about the form of the equations defining Ei or of the isogenies φi and maps ψi, does not specify the structure
of G0, and does not show how to find such curves.

In Section 4 we revisit this theorem, and strengthen and refine it for our needs. First, we show a realization of the above
curve sequence using elliptic curvesEi of a simple form, and and obtain simple, explicit formulas for φi and ψi. Next,
we show how to get the above sequence with G0 being a cyclic group (isomorphic to Z/2kZ) — this is crucial for
doing efficient arithmetization of AIRs (which are defined in terms of cyclic groups). Finally, we give a probabilistic
algorithm for finding such curves in nearly optimal O(2k polylog q) time. The following statement summarizes these
improvements to Theorem 3.1.

Theorem 3.2. There exists a randomized algorithm Find Curve, that on input k and q ≥ max
{
7, 22(k−1)

}
, runs in

time O(2k log2q log log q), and with high probability finds elliptic curves Ei in Weierstrass form and maps φi, ψi as
in Theorem 3.1, such that G0 is a cyclic group of size 2k and the maps φi, ψi are computable via O(1) operations in
Fq .

The upper bound on the algorithm’s runtime can be improved by a Õ(log q) factor assuming the Riemann Hypothesis,
and we believe that it should be even faster. For details see Section 4.

13

3.1.2 Function Spaces and Evaluation Domains

We are now ready to explicitly describe the setup we will need for our IOP for satisfiable AIRs. For analogues of the
FFT and IFFT algorithms and the FRI protocol, we will need to identify some special functions and some special sets
of evaluation points. These are captured below.

Setup 3.3. For every q, k with q ≥ Ω(22k), there exists an elliptic curve E/Fq such that E(Fq) contains a cyclic group
G of size 2k.

Fixing such a curve E, we introduce some notation:

• For each ℓ ≤ k, let G⟨ℓ⟩ be the cyclic subgroup of G of size 2ℓ.

• A basic subset S of E(Fq) at scale ℓ is a set S = C ∪ (−C), where C ⊆ E(Fq) is a coset of G⟨ℓ⟩ with C ̸= −C.
Note that |S| = 2|C| = 2ℓ+1.

• An evaluation domain S of E(Fq) at scale ℓ is a union of disjoint basic subsets of E(Fq) at scale ℓ.

• Let K⟨ℓ⟩ be the Fq-linear space L ([G⟨ℓ+1⟩]) of rational functions on E. By the Riemann–Roch theorem, we
have dim(K⟨ℓ⟩) = 2ℓ+1.

We now set up similar notions on the projective line, obtained by projecting down to the x-coordinate via the map π.
The curve E is assumed to be in Weierstrass form.

• A basic subset T of Fq at scale ℓ is the projection T = π(S) of a basic subset of E(Fq) at scale ℓ. Note that
|T | = 2ℓ.

• An evaluation domain of Fq at scale ℓ is a union of disjoint basic subsets of Fq at scale ℓ. Equivalently, it is a
set of the form T = π(S), where S is an evaluation domain of E(Fq).

• Let M⟨ℓ⟩ denote the space of polynomials in Fq[X] of degree at most 2ℓ − 1. Note that dim(M⟨ℓ⟩) = 2ℓ.

The K⟨ℓ⟩ and M⟨ℓ⟩ spaces above are related through a certain univariate polynomial Ω⟨ℓ⟩(X) of degree exactly 2ℓ− 1
(see Section 5.1 for an explicit description). Corollary 5.9 shows that every rational function f(X,Y) ∈ K⟨ℓ⟩ can be
written uniquely in the following form:

f(X,Y) =
1

Ω⟨ℓ⟩(X)

(
f0(X) +

Y

X
f1(X)

)
, (4)

where f0(X), f1(X) ∈ M⟨ℓ⟩. We will sometimes write this as:

f(Z) =
1

Ω⟨ℓ⟩(π(Z))
(f0(π(Z) + ζ(Z)f1(π(Z))) ,

where Z = (X,Y) is a pair of formal (related) variables representing a point on the curve, π is the projection from E
onto the x-coordinate, and ζ((X,Y)) = Y

X .

This representation will let us move between the space of rational functions K⟨ℓ⟩ and the space of polynomials M⟨ℓ⟩.

3.1.3 FFT and IFFT

The following theorems give the new FFT and IFFT transformations that we will need. The proofs of the following
theorems appear in Section 6.1. The bases that appear in the theorems are defined in Definitions 5.5 and 5.8. Following
the notation in [BCKL21], for a function f defined on an evaluation domain S, we denote by ⟨f ≀ S⟩ the evaluation
table of f on S. When f belongs in a linear space spanned by a basis β, we denote by [f]β the representation of f in
the basis.

14

Theorem 3.4 (FFT and IFFT- Elliptic Curve Version). For each ℓ, there is a basis κ⟨ℓ⟩ = (κ
⟨ℓ⟩
j)2

ℓ+1−1
j=0 of K⟨ℓ⟩ such

that for any basic set S at scale ℓ:

• there is a O(ℓ · 2ℓ) time algorithm FFTS , that when given [f]κ⟨ℓ⟩ as input, computes
〈
f ≀ S

〉
.

• there is aO(ℓ ·2ℓ) time algorithm IFFTS , that when given
〈
f ≀ S

〉
as input for some f ∈ K⟨ℓ⟩, computes [f]κ⟨ℓ⟩ .

(In particular, f ∈ K⟨ℓ⟩ is uniquely specified by
〈
f ≀ S

〉
).

Theorem 3.5 (FFT and IFFT- Univariate Polynomial Version). For each ℓ, there is a basis µ⟨ℓ⟩ = (µ
⟨ℓ⟩
j)2

ℓ−1
j=0 of M⟨ℓ⟩

such that for any basic subset T of Fq at scale ℓ:

• there is a O(ℓ · 2ℓ) time algorithm FFTT , that when given [g]µ⟨ℓ⟩ as input, computes
〈
g ≀ T

〉
.

• there is aO(ℓ ·2ℓ) time algorithm IFFTT , that when given
〈
g ≀ T

〉
as input for some g ∈ M⟨ℓ⟩, computes [g]µ⟨ℓ⟩ .

(In particular, g ∈ M⟨ℓ⟩ is uniquely specified by
〈
g ≀ T

〉
).

3.1.4 FRI

Our key tool is the FRI protocol for testing proximity to univariate polynomials. Specifically, when the set of evalu-
ation points T is an evaluation domain in Fq , then the FFT infrastructure enables a version of the FRI protocol for
RS[Fq,T, ρ], stated below. The proof appears in Appendix B.

Theorem 3.6 (Basic FRI). Let q, k,E and the setup be as above. Let ℓ ≤ k. Let R be a positive integer, and set
ρ = 2−R. Let T ⊆ Fq be an evaluation domain at scale ℓ with |T| = 1

ρ2
ℓ.

Given a repetition parameter t > 0, there is an IOPP protocol (FRI) with prover P and verifier V for RS[Fq,T, ρ]
with:

• Completeness: There exists a prover P such that for any f ∈ RS[Fq,T, ρ] causes the verifier V to accept f
with probability 1.

• Soundness: If f is δ far from RS[Fq,T, ρ] then for any prover P∗, we have

Pr [⟨V(f) ↔ P∗(f)⟩ = accept] ≤ (1−min {∆(f,RS[Fq,T, ρ]),
√
ρ}+ o(1))

t

• Prover runtime: O(|T|) arithmetic operations over Fq

• Verifier runtime: O(t log |T|) arithmetic operations over Fq

• Proof length: O(|T|) field elements in Fq .

From the proximity gap property of Reed–Solomon codes [BCI+20], this leads to a protocol for simultaneously check-
ing a batch of functions evaluated on an evaluation domain in Fq are low-degree. The proof appears in Appendix B.

Theorem 3.7 (Batched FRI). Let q, k,E and the setup be as above. Let ℓ ≤ k. Let R be a positive integer, and set
ρ = 2−R. Let T ⊆ Fq be an evaluation domain at scale ℓ with |T| = 1

ρ2
ℓ.

Let d1, . . . , dk be integers such that di ≤ ρ|T| for all i. Given a repetition parameter t > 0 and oracle access to
functions

g1, g2, . . . , gk : T → Fq,

there is an IOP protocol with the following behavior.

• Completeness: If for all i, gi is the evaluation of some polynomial in Fq[X] of degree < di, then there is a
prover strategy to make the verifier accept with probability 1.

15

• Soundness: Suppose the protocol accepts with probability

p ≥ (ρ1/2 + ϵ)t +O

(
ρ2|T|2

ϵ7q

)
.

Then there exist polynomials G1(X), . . . , Gk(X) ∈ Fq[X], with deg(Gi) < di and a set V ⊆ T such that:

1. |V | ≥ (ρ1/2 + ϵ)|T|,
2. gi(x) = Gi(x) for all x ∈ V , i ∈ [k].

• Prover runtime: O(k|T|) arithmetic operations over Fq

• Verifier runtime: O(t(k + log |T|)) arithmetic operations over Fq

• Proof length: O(|T|) field elements in Fq .

Note: The constants in O(·) in the last three items in both Theorems 3.6 and 3.7 are some explicit small constants that
are each at most 10.

3.1.5 Vanishing detection

The final tool that we need is a way to check that some given rational function on E vanishes at a given set of points.
This is essentially the content of Lemma 7.2 and Theorem 7.3, and is proved in Section 7.

Theorem 3.8 (Vanishing detection). Let I ⊆ E(Fq) be a subset which is contained in a coset of G⟨ℓ⟩. There is a
well-defined rational function ω⟨ℓ⟩

I ∈ L ([G⟨ℓ+1⟩ \G⟨ℓ⟩]− [G⟨ℓ⟩] + [I]) on E with the following properties:

• For every f ∈ L (2[G⟨ℓ⟩]), we have:

f vanishes on I ⇔ ω
⟨ℓ⟩
I · f ∈ L ([G⟨ℓ+1⟩]).

• For almost every P ∈ E(Fq), excluding at most three cosets ofG⟨ℓ+1⟩, ω⟨ℓ⟩
I (P) can be computed usingO(∥I∥+

ℓ) Fq-operations (where ∥I∥ is the coset complexity of I).

3.2 The IOP Protocol

In this section we describe an IOP for the satisfiable AIR language of Definition 2.6.

The crux of this protocol is for the prover to do a “low-degree extension” of a satisfying AIR-witness f⃗ = (f1, . . . , fw),
where each fl : H0 → Fq . This is not the standard univariate polynomial low-degree extension; instead it is an elliptic
curve variant. Indeed, we first identify H0 with a coset C of a cyclic subgroup of size 2h of a suitable elliptic curve E
over Fq . Thus we may view each fl as a function defined at some points of E. Next, we consider the Riemann–Roch
space K⟨h⟩ of E, and the prover finds elements f̂l of K⟨h⟩ whose restrictions to C agree with the values taken on H0

by the fl’s. Finally, the prover provides evaluations of these rational functions f̂l’s at another set of points D ⊆ E(Fq).
These extended evaluations are at the core of the prover’s proof of satisfiability of an AIR.

To describe the IOP for LAIR we need to fix some auxiliary parameters aux that will be used by it. For simplicity and
ease of exposition, we will only describe the IOP for AIRs which have the constraint degree d = 2.

• The rate parameter ρ = 2−R for some integer R. In practical settings, ρ is typically fixed to a small constant
such as 1

16 (thus R = 4), and it may help the reader to consider this setting on first reading.

16

• An elliptic curve E over Fq with a cyclic subgroup G of size 2k, for k = h+R+ 5. We then use the setup from
Setup 3.3 with respect to this curve.

• A choice of a coset C of G⟨h⟩ such that C ̸= −C. We identify H0 with C by first picking an arbitrary Q0 ∈ C,
an arbitrary generator g of G⟨h⟩, and identifying

gj ↔ Q0 + j · g.

With this identification, the constraint enforcement domains Hα ⊆ H0 get identified with Uα ⊆ C using:

Uα = {Q0 + j · g | gj ∈ Hα}.

Note that C ∪ (−C) is a basic set at scale h.

• An evaluation domain S ⊆ E(Fq) at scale h (as in Section 5.3), of size 2k
′
= d · 1

ρ · 2h+1 = 2h+R+1, which is
disjoint from the trace domain H0. Thus S is the union of d

ρ = 2R+1 basic sets at scale h.

• The projection T ⊆ Fq of the evaluation domain S to the x-coordinate (recall the curve is in Weierstrass form)
— this is an evaluation domain of Fq at scale h. Note that |T| = 1

ρ2
h+1 = 2h+R+1.

Later in the protocol, we shall represent functions f(x, y) : S → Fq as a pair f0(x), f1(x) : T → Fq where T
is the projection of S onto the x-coordinate, using the decomposition of (4), i.e., defining

f(x, y) :=
1

Ω⟨ℓ⟩(x)

(
f0(x) +

y

x
· f1(x)

)
,

where f is (or is supposed to be) an evaluation of a function in K⟨ℓ⟩.

We shall also use the following notation:

• For f : T → Fq and a function u : A → Fq , where A ∩ T = ∅, we define the quotient of f by u to be the
function:

Quotient (f ;u) : T → Fq, Quotient (f ;u) (x) :=
f(x)− U(x)

ZA(x)
,

where:

– U(X) ∈ Fq[X] is the unique polynomial of degree at most |A| − 1 with U |A = u,

– ZA(X) =
∏
a∈A(X − a) is the vanishing polynomial of A.

Description of the protocol The protocol starts with an AIR instance A = (F,w, h, d, s,H0, g, I,Cset) and auxiliary
IOP parameters aux = (E, G,C,S, k′, t) given to both prover and verifier.

At the high level, the steps closely track the corresponding steps in the STARK protocol given in [Sta21]10, with
rational functions and points on the curve replacing univariate polynomials and points in Fq .

At some points, we represent rational functions on the elliptic curve by pairs of univariate polynomials, and invoke
results about univariate polynomials. A more natural and clean version could have been given if we had analogues of
(i) the proximity gaps phenomenon [BCI+20], and (ii) the DEEP query and quotienting method [BGKS20], for AG
codes on elliptic curves. We believe that this approach ought to work but have not pursued these here in the interest of
the simplicity of relying on previous results for RS codes.

We now give the description of the IOP protocol.

10Some optimizations from [Sta21], which are important for practical considerations and could also be done here, are omitted for clarity.

17

1. Execution trace oracle: The prover first finds an AIR witness f⃗ = (f1, . . . , fw) that satisfies the AIR instance A
according to Definition 2.5. Next, the prover finds functions f̂1, . . . , f̂w ∈ K⟨h⟩ extending the fl’s. Specifically,
f̂l is rational function f̂l(X,Y) ∈ K⟨h⟩ such that f̂l

∣∣∣
C
= fl|H0

.

Note that a function f̂l ∈ K⟨h⟩ can be specified by giving its values on the entire basic set C ∪ (−C) (using the
IFFT from Theorem 3.4); thus the prover has many valid choices for f̂l, determined by the values of f̂l

∣∣∣
−C

.

The prover then expresses each f̂l(X,Y) using a pair of univariate polynomials f̂l,0(X), f̂l,1(X) ∈ Fq[X] of
degree < 2h, via the decomposition of (4), i.e.,

f̂l(X,Y) :=
1

Ω⟨h⟩(X)

(
f̂l,0(X) +

Y

X
f̂l,1(X)

)
.

The prover then evaluates these 2w low-degree polynomials ⟨f̂l,0, f̂l,1 | l ∈ [w]⟩ at all the points of T.

Prover sends
〈
f̂l,m ≀T

〉
for each (l,m) ∈ [w]× {0, 1}.

Note that these are evaluations of degree 2h polynomials on a set T of size 1
ρ2

h+1, so they are all supposed to
be codewords of RS(Fq,T, ρ) (and even of RS(Fq,T, ρ/2)).

2. Constraint randomness:

Verifier samples uniform randomness r⃗ := (r1, . . . , rs) ∈ Fs
q , one field element per constraint, and sends

it to the prover.

We now explain the role of this step. These random field elements will be coefficients for taking a “random
linear combination of the constraints” – and the prover will now try to convince the verifier that this random
linear combination of the constraints is satisfied by the witness underlying the f̂l,0’s and the f̂l,1’s.

In more detail, constraint Cα asks that
Qα((fl(g

j · t))l,j) = 0,

for all t ∈ Hα.

If the f̂l ∈ K⟨h⟩ are truly such that f̂l|H0 = fl|C , then this is the same as:

Qα((f̂l(P + j · g))(l,j)∈I) = 0,

for all P ∈ Uα ⊂ E.

Since f̂l ∈ K⟨h⟩ = L ([G⟨h+1⟩]) and Qα has degree at most d = 2, we get that the function Bα : E → Fq
defined by:

Bα(P) := Qα((f̂l(P + j · g))(l,j)∈I) ∀P ∈ E,

lies in L (2[G⟨h+1⟩]). Note that the verifier can simulate oracle access to Bα at points in S using oracle access
to evaluations of f̂l at points in S, which themselves can be reconstituted from evaluations of f̂l,0 and f̂l,1 at
points in T.

By Lemma 7.2, checking that Bα vanishes at all points in Hα is equivalent to checking that the rational function

ωα ·Bα

lies in L ([G⟨h+2⟩] = K⟨h+1⟩, where ωα := ωHα
is the degree adjustment function for Uα.

18

Now we can explain where the randomness r⃗ is used — it is to check all the above memberships of ωα · Bα in
K⟨h+1⟩ simultaneously. The prover will try to convince the verifier that the random linear combination:

f̂ r⃗ =
∑
α

rαωαBα (5)

lies in K⟨h+1⟩. This is what the prover does next.

3. Constraint trace oracle:
The Prover then represents the rational function f̂ r⃗ ∈ K⟨h+1⟩ as 2 univariate polynomials:

f̂ r⃗(X,Y) =
1

Ω⟨h+1⟩(X)

(
f̂ r⃗0(X) +

Y

X
f̂ r⃗1(X)

)
,

where f̂ r⃗m ∈ Mh+1 for m ∈ {0, 1}.

The prover then evaluates both univariate polynomials at the points of T.

Prover sends
〈
f̂ r⃗0 ≀T

〉
,
〈
f̂ r⃗1 ≀T

〉
.

Note that these are evaluations of univariate polynomials of degree < 2h+1 at 2h+R+1 points.

4. DEEP query:

Verifier samples DEEP query q = (x0, y0) uniformly at random from E(Fq) \ (C ∪ S), where C =
G⟨h+2⟩ ∪ (G⟨h+2⟩ + C) ∪ (G⟨h+2⟩ − C) is a union of three cosets of G⟨h+2⟩.

5. DEEP answer:

Prover sends an answer sequence

answer = ⟨⟨αj,l,0, αj,l,1 : (j, l) ∈ I⟩, ⟨β0, β1⟩⟩ ∈ FI×{0,1}
q × F2

q.

The αj,l,m are supposed to be the evaluations f̂l,m(q + jg), and βm is supposed to be the evaluation f̂ r⃗m(q).
Following the DEEP philosophy [BGKS20], we can then incorporate these claimed evaluations of f̂l,m and f̂ r⃗m
by quotienting. This will be taken into account in the next step of the protocol.

But first, the verifier has to do a basic sanity check on the claimed evaluations. Letting

αj,l :=
1

Ω⟨h⟩(π(q+ j · g))
(αj,l,0 + ζ(q+ j · g) · αj,l,1)

β :=
1

Ω⟨h+1⟩(π(q))
(β0 + ζ(q)β1)

then supposedly αj,l = f̂l(q+ j · g) and β = f̂ r⃗(q).

We say the constraints Qα are validated by answer if the following equality holds:∑
α

rαωα(q)Qα
(
(αj,l)(j,l)∈I

)
= β, (6)

i.e., the answers are consistent with Eq. (5).

19

6. FRI Protocol: This step verifies the low-degreeness of various functions simultaneously. But first, we quotient
out the functions f̂l,m and f̂ r⃗m by their evaluations that the prover claimed in the previous step.

For l ∈ [w], define Al ⊆ Fq to be the set:

Al = {π(q+ j · g) | (j, l) ∈ I}

Define ul,m : Al → Fq to be:
ul,m(π(q+ j · g)) = αj,l,m.

For l ∈ [w] and m ∈ {0, 1}, define b̂l,m : T → Fq by:

b̂l,m(x) = Quotient
(
f̂l,m;ul,m

)
(x),

and degree parameter dl,m = 2h − 1− |Al|.
For m ∈ {0, 1}, define um : {π(q)} → Fq by

um(π(q)) = βm.

Now define b̂r⃗m : T → Fq by:

b̂r⃗m(x) = Quotient
(
f̂ r⃗m;um

)
(x),

and degree parameter dm = 2h+1 − 2.

Note that oracle access to these functions can be simulated by the verifier from oracle access to f̂l,m and f̂ r⃗m on
T.

Prover and Verifier now run the Batched FRI protocol from Theorem 3.7 on all the b̂l,m and the b̂r⃗m with
degree parameters dl,m and dm, and repetition parameter t.

Observe that all the degree parameters are smaller than ρ|T| – thus the soundness of this step is governed by ρ
and t.

7. Decision:

Verifier accepts iff (i) the constraints Qα are validated by answer (i.e., equation (6) holds), and (ii) the
FRI protocol accepts.

3.3 Proof of Theorem 2.10

We now prove Theorem 2.10. As usual, the most intricate part is the claim of soundness, or, in our case, knowledge
soundness.

Theorem 3.9. Let n = 2h · w. Let η > 0 be an arbitrary real number. The protocol described in Section 3.2 has the
following properties:

• Proving Complexity: O(2h · h · w · 1
ρ + t),

• Query Complexity: O(h · w · t),

• Verification Time: O(t · h),

20

• Proof Length: 1
ρ · 2h · 2 · (2w + 3), which is at most 10 · 1

ρ · n.

• Completeness: If the AIR is satisifable, there is a strategy that makes the verifier accept with probability 1.

• Soundness and knowledge soundness: If some prover P∗ can make the verifier specified above accept with
probability greater than soundness error p0, where

p0 =
(
ρ1/2 + η

)t
+O

(
22h

η7q

)
, (7)

then the AIR is satisfiable. Furthermore, there is an extractor that runs in time poly(2h) while interacting with
P∗ and outputs w.h.p. a satisfying assignment per Definition 2.5.

3.3.1 Resources

We first verify the claims about the running times, communication and proof lengths.

An honest prover, given access to a satisfying assignment f⃗ to the AIR A, will:

• perform an IFFT and some FFTs in Step 1 to compute the f̂l and the
〈
f̂l ≀ S

〉
(in time O(w · h · 2h)),

• compute
〈
Bα ≀ S

〉
and ωα for each α (in time O

(
2h ·

∑
α(∥Qα∥+ ∥Hα∥)

)
),

• Compute f̂ r⃗ and
〈
f̂ r⃗ ≀ S

〉
,

• Find f̂l(q+ j · g) for each (j, l) ∈ I, and then use this to find f̂ r⃗(q).

The claimed running time of the prover thus follows easily.

The verifier running time is similarly easily seen.

The total proof length comes from 2w + 2 functions from T to Fq , along with what the prover sends during the FRI
protocol: this gives the desired claim about the total proof length.

3.3.2 Completeness

The intended response of the prover is specified in the description of the IOP. The completeness is immediate from
this description.

3.3.3 Soundness and knowledge soundness

Suppose the Prover has a strategy that makes the Verifier accept with probability at least p0 as defined in Eq. (7). We
will show that the AIR instance A is satisfiable, and that a knowledge extractor can find the satisfying AIR assignment.
This establishes the claimed soundness of the protocol.

For knowledge soundness, one shows that this satisfying assignment can be found by an efficient knowledge extractor
– given our soundness analysis, the details are almost identical to the FFT-friendly case [Sta21], and we omit them. A
key role is played by the Guruswami–Sudan list decoding algorithm for Reed–Solomon codes [GS99].

Since the Prover communicates first, we may as well assume that the Prover’s first message (the
〈
f̂l ≀T

〉
) is fixed to

be the one that maximizes the probability of acceptance, and thus to one which makes it at least p0.

21

Consider the list of all tuples of polynomials that have high agreement with the
〈
f̂l ≀T

〉
:

L =

{
(Pl,m)l∈[w],m∈{0,1} ∈ (Fq[X])2w |deg(Pl,m) ≤ 2h,

Pr
x∈T

[
∀(l,m) ∈ [w]× {0, 1}, Pl,m(x) = f̂l,m(x)

]
≥ ρ1/2 + η

}
.

By the Johnson bound (Theorem A.1), we have that

|L| ≤ 1

2η
√
ρ
.

The satisfying AIR assignment will come from one of these tuples.

Similarly, let

L′ =

{
(Pm)m∈{0,1} ∈ (Fq[X])2 |deg(Pm) ≤ 2h+1,

Pr
x∈T

[
∀m ∈ {0, 1}, Pm(x) = f̂ r⃗m(x)

]
≥ ρ1/2 + η

}
.

By the Johnson bound, |L′| ≤ 1
2η

√
ρ .

Define ϵ by:

ϵ :=
1

η2ρ

(
2h+R+1

q

)
+

1

η
√
ρ

1

q
.

Since 22h < q, we get that ϵ = o
(

22h

η7q

)
as q → ∞.

Let E be the event that after the first 5 steps of the protocol, both the following happen:

• the probability of the FRI protocol accepting in step 6 is at least

p0 − ϵ ≥
(
ρ1/2 + η

)t
+O

(
22h

η7q

)
for p0 defined in Eq. (7); and

• Eq. (6) holds.

Then Pr[E] ≥ ϵ.

E implies a special relationship between L, L′ and q Suppose E occurs. Then by Theorem 3.7 we get that there
exists a subset V ⊆ T, with |V | ≥ √

ρ + η and polynomials B̂l,m(X) of degree at most dl,m and B̂m(X) of degree
at most dm such that for all x ∈ V and all l,m:

B̂l,m(x) = b̂l,m(x),

B̂m(x) = b̂r⃗m(x).

Opening up the definition of quotient in the b̂l,m and the b̂r⃗m, we get that for all x ∈ V :

Fl,m(x) = f̂l,m(x),

22

Fm(x) = f̂ r⃗m(x),

where:
Fl,m(X) = B̂l,m(X) · ZAl

(X) + Ul(X)

is a polynomial of degree at most dl,m + |Al| = 2h − 1, and

Fm(X) = B̂m(X)(X − π(q)) + βm

is a polynomial of degree at most dm + 1 = 2h+1 − 1.

Since |V | ≥ ρ1/2 + η, we conclude that
(Fl,m)l∈[w],m∈{0,1} ∈ L.

(Fm)m∈{0,1} ∈ L′.

Observe that each Fl,m and Fm is a polynomial whose evaluations are consistent with the claimed DEEP answers:

Fl,m(π(q+ j · g)) = αj,l,m.

Fm(π(q)) = βm.

Combining the above argument with Eq. (6), the situation can be summarized as follows.

• For P⃗ = (Pl,m)(l,m)∈I ∈ L, define the rational functions:

Pl(Z) :=
1

Ω⟨h⟩(π(Z))
(Pl,0(π(Z)) + ζ(Z)Pl,1(π(Z))) , l ∈ {1, . . . ,w}

γP⃗ (Z) :=
∑
α

rαωα(Z)Qα
(
(Pl(Z + j · g))(j,l)∈I

)
,

Observe that P⃗ (Z) ∈ L ([G⟨h+2⟩] + [C]). Indeed:

– For each l, Pl is in K⟨h⟩ (since deg(Pl,0),deg(Pl,1) ≤ 2h−1), and since K⟨h⟩ is invariant under translation
of the argument by g, Pl(Z + j · g) is also in K⟨h⟩.

– Applying the degree 2 polynomial Qα to a collection of elements in K⟨h⟩ = L ([G⟨h+1⟩]) results in a
rational function in L (2[G⟨h+1⟩]).

– Multiplying a rational function in L (2[G⟨h+1⟩]) with ωα results in a function in L ([G⟨h+2⟩] + [C]).

• For W⃗ = (Wm)m∈{0,1} ∈ L′, define the rational function:

λW⃗ (Z) :=
1

Ω⟨h+1⟩(π(Z))
(W0(π(Z)) + ζ(Z)W1(π(Z))) .

Observe that λW⃗ (Z) ∈ K⟨h+1⟩ (since deg(W0),deg(W1) ≤ 2h+1 − 1).

• If E occurs, then there is some P⃗ = (Pl,m)(l,m)∈I ∈ L and some W⃗ = (Wm)m∈{0,1} ∈ L′ such that the low-
degree rational functions γP⃗ ∈ L ([G⟨h+2⟩]+ [C]) and λW⃗ ∈ K⟨h+1⟩ = L ([G⟨h+2⟩]) have the same evaluation
at the point q.

23

L and L′ have a special relationship often We know that Pr[E] ≥ ϵ, and whenever E happens, there is a strong
relationship between L, L′ and q.

Note that L is determined after Step 1, and L′ is determined by Step 3 of the protocol. q is only chosen in Step 4. We
now show that by Step 3 of the protocol, L and L′ must already have quite a special relationship.

Let H be the event, determined after Step 3, that there exist some P⃗ ∈ L and some W⃗ ∈ L′ such that the rational
functions λP⃗ and γW⃗ are identical.

We will show that

Pr[H] ≥ ϵ− 1

4η2ρ

2h+R+1

q
>

1

η
√
ρ

1

q
. (8)

The second inequality is by definition of ϵ, and the first follows from:

Claim 3.10.

Pr[E | H] ≤ 1

4η2ρ

2h+R+1

q
.

Proof of Claim 3.10. Condition on the state of the protocol at the conclusion of Step 3. For fixed P⃗ ∈ L, W⃗ ∈ L′, let
EP⃗ ,W⃗ denote the event that γP⃗ and λW⃗ agree at q. By the above,

E ⊆
⋃

P⃗∈L,W⃗∈L′

EP⃗ ,W⃗ .

By the union bound, we get:
Pr[E | H] ≤

∑
P⃗∈L,W⃗∈L′

Pr[EP⃗ ,W⃗ | H].

For each P⃗ ∈ L and W⃗ ∈ L′, we know that γP⃗ and λW⃗ are distinct, low-degree rational functions (they both lie in
L ([G⟨h+2⟩] + [C]), and thus the probability that they agree on the randomly chosen point q (chosen uniformly from
among |E(Fq)| − |S| − |C| ≥ q − 2

√
q − 2h+R+3 points) is small. Explicitly, we get:

Pr[EP⃗ ,W⃗ | H] ≤ 2h+R

q − 2
√
q − 2h+R+3

≤ 2h+R+1

q
,

and by our bounds on |L|, |L′|, Claim 3.10 follows, and with it, so does Eq. (8).

Extracting the satisfying AIR assignment We just saw that the event H happens with noticeable probability.

If H happens, then it means that there is some P⃗ ∈ L such that γP⃗ ∈ K⟨h+1⟩. Recall that L is determined after Step
1 (and is deterministic by our assumption that the Prover’s first message is deterministic), but γP⃗ is only determined
after the randomness r⃗ := (r1, . . . , rs) ∈ Fs

q is chosen in Step 2.

Let us look into the structure of the rational function γP⃗ (which apriori lies in L ([G⟨h+2⟩] + [C]). It is the inner
product between

r⃗ := (r1, . . . , rs) ∈ Fs
q

and the vector ΓP⃗ ∈ L ([G⟨h+2⟩] + [C])s given by:

ΓP⃗ =
(
ωα(Z)Qα

(
(Pl(Z + j · g))(j,l)∈I

))
α∈{1,...,s}

.

We say P⃗ is good if all entries of ΓP⃗ lie in K⟨h+1⟩.

24

If P⃗ is not good, then the probability that a random linear combination of the entries of ΓP⃗ entries lies in K⟨h+1⟩

(which is a strict subspace of the span of the entries) is at most 1
q . That is,

Pr[γP⃗ ∈ K⟨h+1⟩] ≤ 1

q
.

If all the P⃗ ∈ L are not good, we get:

Pr[H] ≤ Pr[∃P⃗ ∈ L s.t. γP⃗ ∈ K⟨h+1⟩]

≤
∑
P⃗∈L

Pr[γP⃗ ∈ K⟨h+1⟩]

≤ 1

2η
√
ρ
· 1
q
,

which contradicts our lower bound (Eq. (8)) on Pr[H].

Thus some P⃗ ∈ L is good. This will give us our satisfying AIR assignment. For each l ∈ [w], let f⋆l = Pl ∈ K⟨h⟩ for
some fixed good P⃗ . Then f⋆l |C gives us a function defined on H0 (via the identification of H0 with the coset C). We
claim that this is the desired satisfying AIR assignment.

Fix α. By the goodness of P⃗ , we get that the rational function:

ωα(Z) ·Qα
(
(f⋆l (Z + j · g))(j,l)∈I

)
lies in K⟨h+1⟩, which means (by the defining property of ωα) that the rational function

B⋆α(Z) = Qα

(
(f⋆l (Z + j · g))(j,l)∈I

)
vanishes at all points is Uα (which is identified with the α-th enforcement domain Hα). This is precisely the statement
that (f⋆l)l∈[w] satisfies the α-th constraint.

Since this holds for each α, we conclude that f⋆1 , . . . , f
⋆
w is a satisfying AIR assignment per Definition 2.5, as desired.

4 Sequence of Elliptic Curve isogenies

The backbone of all of the constructions in this paper is the chain of 2-isogenies whose existence was shown in
[BCKL21, Theorem 4.9], which we quoted earlier and restate here:

Theorem 3.1 (Good Curve Sequence). For any prime power q ≥ 7 and any 1 < K = 2k ≤ 2
√
q, there exist

elliptic curves E0, E1, . . . , Ek over Fq in extended Weierstrass form, a subgroup G0 ⊆ E0 of size K, 2-isogenies
φi : Ei → Ei+1 and rational functions ψi : P1 → P1 of degree 2, such that the following diagram is commutative:

E0 E1 · · · Ek

P1 P1 · · · P1

φ0

π0

φ1

π1

φk−1

πk

ψ0 ψ1 ψk−1

(3)

where:

• πi are the projection maps to the x-coordinate of each curve;

• |φi−1 ◦ · · · ◦ φ0(G0)| = 1
2i |G0| = 2k−i.

25

• G0 has a coset C such that C ̸= −C (as elements of the quotient group E0(Fq)/G0).

Note that this theorem is very abstract: It only establishes the existence of these curves and maps, but says almost
nothing about how the form of the equations defining Ei or of the isogenies φi and maps ψi, does not specify the
structure of the 2-groups Gi, and does not show how to find such curves.

In this section we will restrict the form of the curves Ei and obtain explicit formulas for φi and ψi; we will restrict
G0 to be a cyclic group isomorphic to Z/2kZ (and thus all other Gi-s are also cyclic) and show that it is a feasible
requirement; and outline a probabilistic algorithm for finding such curves efficiently. More specifically, we show:

There is an efficient algorithm, FindCurve(q, k), which yields an elliptic curve E0 over Fq with cyclic subgroup G0 of
order 2k and run in quasilinear time (Theorem 4.8). This curve can then be presented as a good curve (Definitions 4.1
and 4.2 and Lemma 4.5), from which an isogeny chain as in Eq. (3) can be constructed (Section 4.2), where all curves
E1, . . . , Ek−1 are good curves and all isogenies φ0, . . . , φk−1 are good isogenies (Lemmas 4.3 and 4.4).

4.1 Explicit curves and isogenies

In this subsection, we define particularly nice forms for our desired curves: one form for odd q, and one for even q.
These forms will have the property that once E0 is of this form, then all the rest of the curves in the chain are, too.
They will also all share the same 2-torsion point 0 = (0, 0), and all isogenies will be such that kerφi = {0,∞},
leading to efficiently computable formulas for φi and ψi, of the same form at every level.

We first present all relevant definitions and statements about these forms.

Definition 4.1 (Good curve over odd size fields). Let q be an odd prime power. Denote by Ea,B the elliptic curve over
Fq given by the Weierstrass equation

Ea,B : Y 2 = X3 + aX2 +BX.

Note that for the curve to be non-singular, we must have B, a2 − 4B ̸= 0.

We say that the curve Ea,B is good if B = b2 ̸= 0 is a non-zero quadratic residue, and a+ 2b is a quadratic residue.
In this case the point P =

(
b, b

√
a+ 2b

)
is an Fq-point on the curve, which we call its good point.

Definition 4.2 (Good curve over even size fields). Let q be a power of 2. Denote by EB the elliptic curve over Fq
given by the Weierstrass equation

EB : Y 2 +XY = X3 +BX.

Note that the curve is non-singular iff B ̸= 0, and all such curves will be called good. Write B = b2 with b ∈ Fq
(always possible in characteristic 2). The good point of Eb2 is P = (b, b).

These curves have the following properties: All curves Ea,B and EB pass through the points ∞ = [0 : 1 : 0] and
0 = (0, 0), and 0 is a 2-torsion point, as mentioned above. For good curves, the good point P is always a 4-torsion
point, with 2P = 0 (the conditions for being a good curve are exactly the conditions for the existence of such a point).
Finally, the good curves all have nice isogenies to other curves of similar forms, as described by the following lemmas:

Lemma 4.3 (Good isogenies over odd size fields). Let E = Ea,b2 be a good curve in odd characteristic, with good
point P . Let E′ = Ea+6b,4ab+8b2 . Then there is a 2-isogeny φ = φb : E → E′ given by

φ(x, y) =

(
x− 2b+

b2

x
,

(
1− b2

x2

)
y

)
.

Furthermore, we have kerφ = {0,∞} and φ−1(0) = {±P}. We call this φ the good isogeny of E.

26

Lemma 4.4 (Good isogenies over even size fields). Let E = Eb2 be a good curve in even characteristic, with good
point P . Denote E′ = Eb. Then there is a 2-isogeny φ = φb : E → E′ given by

φ(x, y) =

(
x+

b2

x
,
b(b+ x)

x
+

(
1 +

b2

x2

)
y

)
Furthermore, we have kerφ = {0,∞} and φ−1(0) = {±P}. We call this φ the good isogeny of E.

We also remark that these forms do not restrict us in any way; in either odd or even characteristic, any curve with a
4-torsion point can be expressed as a good curve, after an appropriate change of coordinates. Formally, we have:

Lemma 4.5. Given an elliptic curve E over any finite field with a 4-torsion point P , it is isomorphic to a good curve
with good point that corresponds to P .

We now explore and prove the above properties and statements, dealing separately with the odd and even cases.

4.1.1 Odd characteristic case

Let Ea,B be a curve as in Definition 4.1. We explore the conditions for there being a point P = (b, yb) ∈ E(Fq) with
2P = 0. Since 0 = −0, this is equivalent to the tangent to the curve at P passing through 0. Equivalently, the vector
0P⃗ = (b, yb) must be parallel to the tangent at P , which is equivalent to being perpendicular to the gradient of the
curve equation at P , i.e. to ∇(b,yb)Ea,B . Thus 2P = 0 is equivalent to

0 = ⟨∇(b,yb)Ea,B , (b, yb)⟩ = 2y2b − 3b3 − 2ab2 −Bb = −b3 +Bb.

Note that b ̸= 0 (since otherwise it would imply 2P = ∞), so we can divide the identity by b to obtain B = b2. In
other words, such curves are of the form

Ea,b2 : Y 2 = X3 + aX2 + b2X,

with the point P being
(
b, b

√
a+ 2b

)
, as per the definition of a good curve and point. Note that in general there may

be multiple viable options for P : Clearly −P =
(
b,−b

√
a+ 2b

)
always works, and when the 2-torsion is of size 4

(which is equivalent to a2−4b2 and a−2b also being quadratic residues) then the points P ′ =
(
−b,±b

√
a− 2b

)
also

satisfy 2P ′ = 0. Our definition partially eliminates this ambiguity: the statement “Ea,b2 is a good curve with good
point P ” always means Px = b, and never allows for Px = −b. In other words, writing B = b2 explicitly requires a
specific choice of square-root b of B, and this choice will always be equal to the x-coordinate of the good point P .

We now prove the properties of the good isogeny, described in Lemma 4.3:

Proof of Lemma 4.3. We first demonstrate this is a curve morphism, i.e. that if (x, y) ∈ E, then (x′, y′) = φ(x, y) ∈
E′. From the definition of φ we have

y′ =

(
1− b2

x2

)
y, x′ =

(
1− b

x

)2

x

Thus

y′
2

x′
=

1

x′

(
1− b2

x2

)2

y2 =
1

x

(
1 +

b

x

)2

(x3 + ax2 + b2x) =
(x+ b)2(x2 + ax+ b2)

x2

=
1

x2
(
x4 + (a+ 2b)x3 + (2ab+ 2b2)x2 + (ab2 + 2b3)x+ b4

)
,

27

and on the other hand

x′
2
+ (a+ 6b)x′ + (4ab+ 8b2) =

(x− b)4 + (a+ 6b)(x− b)2x+ (4ab+ 8b2)

x2

=
1

x2
(
(x4 − 4bx3 + 6b2x2 − 4b3x+ b4)

+ ((a+ 6b)x3 − (2ab+ 12b2)x2 + (ab2 + 6b3)x) + (4ab+ 8b2)x2
)

=
1

x2
(
x4 + (a+ 2b)x3 + (2ab+ 2b2)x2 + (ab2 + 2b3)x+ b4

)
=
y′

2

x′
,

as claimed. Note that φ is not immediately defined at ∞ and 0 (even in projective coordinates) but using the orders of
zeros/poles of X and Y at 0 and ∞ it is easy to see that φ(0) = φ(∞) = ∞, and in particular φ is an isogeny. It is
also clear that φ(Q) ̸= ∞ for any Q /∈ {0,∞} (since Qx ̸= 0), thus kerφ = {0,∞} and φ is a 2-isogeny. Finally,

φ(Q) = 0 ⇔ φ(Q)x = 0 ⇔
(
1− b

Qx

)2

= 0 ⇔ Qx = b⇔ Q = ±P,

thus φ−1(0) = ±P .

Remark 4.6. Since (a+6b)2−4(4ab+8b2) = a2−4ab+4b2 = (a−2b)2 is always a quadratic residue, E′(Fq)[2] is
always of size 4, containing the points {∞,0, (−4b, 0), (−a− 2b, 0)}. If #E(Fq)[2] = 4 as well, then the other good
point candidates satisfy φ((−b,±b

√
a− 2b)) = (−4b, 0) and the other 2-torsion points satisfy φ((−a±

√
a2−4b2

2 , 0)) =
(−a − 2b, 0). Otherwise, (−4b, 0), (−a − 2b, 0) are not in the image of φ. We do not use these properties in the rest
of the paper.

4.1.2 Even characteristic case

LetEB be a curve as in Definition 4.2. To find conditions for existence of P ∈ E(Fq) with 2P = 0, let us calculate the
x-coordinate of the formula for doubling a point on EB . Differentiate the equation to compute the tangent at (x0, y0):

λ =

(
−∂EB
∂X

/
∂EB
∂Y

)∣∣∣∣
(x0,y0)

=
y0 + x20 +B

x0
.

The tangent equation is then Y = λX + µ for some µ. Substitute λX + µ for Y in the curve equation to get a
polynomial equation in X , with a double root at x0 and another root at x1 = (2(x0, y0))x = (−2(x0, y0))x:

(λX + µ)2 +X(λX + µ) +X3 +BX = 0.

This is a monic polynomial, thus the coefficient of X2 equals the sum of its roots, i.e.

x1 = x0 + x0 + x1 = λ2 + λ =
y20 + x40 +B2

x20
+
y0 + x20 +B

x0
=
x40 +B2

x20
,

where in the last transition we used the fact that y20 + x0y0 + x30 +Bx0 = 0. Thus in general:

(2(x, y))x =
x4 +B2

x2
.

This means that 0 is the only 2-torsion point on EB other than ∞ and that the points ±P = {(b, 0), (b, b)} ⊂ EB ,
where b2 = B, satisfy 2P = 0 and are the only 4-torsion points of EB . Again note that squaring is an automorphism
of Fq , so such b uniquely exists. Thus, as per Definition 4.2, all curves Eb2 are good and the good point P = (b, b)
satisfies 2P = 0. Note that we may as well have defined P = (b, 0) as the good point with no other changes.

We now prove the properties of the good isogeny, described in Lemma 4.4:

28

Proof of Lemma 4.4. We first show that (x′, y′) = φ(x, y) ∈ E′. Denote r = 1+ b
x , then x′ = r2x and y′ = br+r2y.

Thus

y′
2
+ x′y′ = b2r2 + r4y2 + br3x+ r4xy = r4

(
y2 + xy

)
+ b2r2 + br3x

= r4
(
x3 + b2x

)
+ b2r2 + br3x = r4 (x+ b)

2
x+ br2 (b+ rx)

= r6x3 + br2x = x′
3
+ bx′.

The kernel of φ is at the poles of the rational function from E to P1 given by the x-coordinate of φ, i.e. x′ = r2x =
(x+b)2

x , which are at 0 and ∞. Likewise, φ−1(0) are the zeros of x′, which are the points with x = b, namely
{±P}.

Remark 4.7. In the even-characteristic case, the good isogeny φ is the dual of the Frobenius isogeny F : E′ → E
which maps (x, y) ∈ E′ to (x2, y2) ∈ E: The composition F ◦ φ is the doubling endomorphism of E, and φ ◦ F is
the doubling endomorphism of E′. Equivalently, one can define φ as the composition of the inverse of Frobenius on
the doubling endomorphism.

4.1.3 Moving to a good curve

Finally, we prove Lemma 4.5, that every curve with a 4-torsion point can be expressed as a good curve.

Proof of Lemma 4.5. If the characteristic is odd (including 3), E is isomorphic to a curve of the form

Y 2 = X3 + a2X
2 + a4X + a6.

In that representation the y coordinate of 2P is 0 because 2P is a 2-torsion point. Applying the change of variables
X ′ = X − x0, Y

′ = Y , where x0 is the x coordinate of 2P , maps 2P to the point (0, 0) in coordinates (X ′, Y ′), thus
in these coordinates the equation of the curve takes the form:

Y ′2 = X ′3 + a′2X
′2 + a′4X

′

and 2P ′ = 0, i.e. P ′ is a good point.

Now assume that the characteristic is 2. Then E is isomorphic to a curve of the form

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

where a1 ̸= 0, since otherwise E is either singular (if a3 = 0) or supersingular, and then it has no 4-torsion point.
Substituting X = X ′ + a3

a1
, the left hand side then becomes Y 2 + a1X

′Y and the right hand side stays a monic
polynomial in X ′ of degree 3. Thus our equation is

Y 2 + a1X
′Y = X ′3 + a′2X

′2 + a′4X
′ + a′6.

We next substitute Y = Y ′ + γ, where γ2 = a′6, and get

Y ′2 + a1X
′Y ′ = X ′3 + a′2X

′2 + a′′4X
′

where a′′4 = a′4 + a1γ. In these coordinates (x′, y′) = (0, 0) is the only 2-torsion point, as X ′ = 0 is the only
vertical line that intersects E exactly once (and more generally, we have −(x′, y′) = (x′, y′ + a1x

′)) . In particular
(2P ′)x′ = 0, where P ′ = (x′1, y

′
1) is the representation of P in (x′, y′) coordinates. Computing as in Section 4.1.2 we

find the doubling formula and substitute P ′:

0 = (2P ′)x′ =
x′1

4
+ a′′4

2

a21x
′
1
2 ,

29

hence x′1
2
= a′′4 . Finally, we make the last change of variables: X ′ = a21X

′′ and Y ′ = a31Y
′′ + a21

y′1
x′
1
X ′′. The curve

equation becomes

a61Y
′′2 + a41

y′1
2

x′1
2X

′′2 + a61X
′′Y ′′ + a51

y′1
x′1
X ′′2 = a61X

′′3 + a′2a
4
1X

′′2 + a′′4a
2
1X

′′.

Since a1 ̸= 0 we can divide both sides by a61. Additionally, we use the known curve equation on (x′1, y
′
1) together with

x′1
2
= a′′4 to erase the coefficient of X ′′2, which is

a41
y′1

2
+ a1x

′
1y

′
1 + a′2x

′
1
2

x′1
2 = a41

x′1
3
+ a′′4x

′
1

x′1
2 = 0.

The final curve equation is then

Y ′′2 +X ′′Y ′′ = X ′′3 +
a′′4
a41
X ′′,

which is exactly Eb2 for b = x′
1

a21
as claimed.

4.2 An isogeny chain of good curves

In this subsection we show that any elliptic curve E with a large cyclic subgroup of order 2k gives rise to an isogeny
chain where all curves and all isogenies are good.

Suppose that E = E0 is an elliptic curve over Fq (any finite field) such that E(Fq) contains a cyclic subgroup of
order 2k with k ≥ 2, and let g = g0 be the generator of such a subgroup. According to Lemma 4.5, by applying
projective transformations we may assume that E is a good curve with good point P0 = 2k−2g0, with E = Ea0,b20
if the characteristic is odd, or E = Eb20 if the characteristic is 2. Lemmas 4.3 and 4.4 give us the good 2-isogeny
φ0 = φb0 : E0 → E1, with φ0(0) = ∞, φ0(2

k−2g0) = 0. It follows that g1 = φ0(g0) generates a cyclic subgroup of
order 2k−1 inside E1, and satisfies 2k−2g1 = 0. If k > 2, we may continue similarly:

For the general iteration 0 ≤ i ≤ k− 2, we have a curve Ei with a point gi of order 2k−i satisfying 2k−i−1gi = 0. It
follows that Ei (which equals Eai,b2i if the characteristic is odd, or Eb2i if the characteristic is 2) is a good curve with
good point Pi = 2k−i−2gi (note that Pi is well defined, and bi is chosen to equal (Pi)x). Lemmas 4.3 and 4.4 then
give us the good 2-isogeny φi : Ei → Ei+1, with gi+1 = φi(gi) of order 2k−i−1 satisfying 2k−i−2gi+1 = 0. The
final curve Ek−1 need not necessarily be good, and bk−1 is not necessarily defined, but b2k−1 is still meaningful.

Considering the x-projection maps πi : Ei → P1, the x-coordinate of φi is the degree 2 rational function ψi :
P1(Fq) → P1(Fq) given by

ψi(x) :=

{
(x−bi)2

x x /∈ {0,∞}
∞ x ∈ {0,∞}

and the following diagram commutes:

E0 E1 · · · Ek−1

P1 P1 · · · P1

φ0

π0

φ1

π1

φk−2

πk

ψ0 ψ1 ψ(k−2)

(9)

30

4.3 Finding the start of a long isogeny chain

As explained in Section 4.2, an isogeny chain of length k can be constructed from an elliptic curve with a point of
order 2k. In [BCKL21] it was shown that for a finite field of size q such curve exists for any k ≤ 1

4 log2 q, but the
question of how to find it was not investigated. This section provides a probabilistic algorithm, called FindCurve, for
efficiently finding such curves, with the following proven and conjectural runtime bounds:

Theorem 4.8. Let q be a prime power and k ≤ 1
2 log2q − 2. The algorithm FindCurve(q, k) will find a curve over Fq

with a point of order 2k using, on average, at most O(2k log2qmin(k, log log q)) field operations.

Assuming the generalized Riemann Hypothesis, the bound can be replaced by O(2k log q log log qmin(k, log log q))
field operations.

Conjecture 4.9. Let q be a prime power and k ≤ 1
2 log2q + 1. The algorithm FindCurve(q, k) will find a curve over

Fq with a point of order 2k using, on average, O(2k log q) field operations.

The conjectural bound is based on commonly accepted heuristics as well as experimental implementation.

The main idea of this method is to exhaustively pick random elliptic curves and compute their maximal 2-subgroups
until we get one with a subgroup of order 2k. We then use the found curve to find another elliptic curve of the same
order, in which the maximal 2-subgroup is cyclic.

To bound the expected number of elliptic curves that will be picked this way we cite Proposition 4.10, proven by
Lenstra in [Len87], where he deals with a similar problem of sampling curves until one is of order divisible by a given
prime for the famous ECM factoring algorithm.

Proposition 4.10 (Lenstra). There exist effectively computable positive constants c1, c2 such that for each prime
number p > 3 the following two assertions are valid:

• If S is a set of integers s with |s− (p+ 1)| ≤ 2
√
p then

#′{E : E elliptic curve over Fp, |E(Fp)| ∈ S}/ ∼=Fp≤ c1|S|
√
p(log p)(log log p)2.

• If S is a set of integers s with |s− (p+ 1)| ≤ √
p then

#′{E : E elliptic curve over Fp, |E(Fp)| ∈ S}/ ∼=Fp
≥ c2(|S| − 2)

√
p/ log p.

Here ∼=Fp denotes the isomorphism over Fp relation and #′A of a set A of elliptic curves denotes the weighted size∑
E∈A

1
|Aut(E)| of the set.

Lenstra proves this result only for prime fields, as that was the sole focus of his paper. Nonetheless, his method can be
immediately applied for proving a similar claim over all finite fields, with a few extra conditions. The main tool used
in the proof is a theorem by Schoof relating the number of curves of a given size to class numbers [Sch87], which is
valid for all prime powers, but slightly simpler for primes. The other elements of the proof are related to estimating
the class number itself, in which the original field size plays no role. Using the simplest case of Schoof’s result for
general prime powers inside Lenstra’s argument yields the following:

Proposition 4.11. Let q = pe be a prime power.

• If S is a set of integers s with |s− (q + 1)| ≤ √
q, then

#′{E : E elliptic curve over Fq, |E(Fq)| ∈ S}/ ∼=Fq≤ c1|S|
√
q(log q)(log log q)2.

• If S is a set of integers s with |s− (q + 1)| ≤ √
q and s ̸≡ 1 (mod p), then

#′{E : E elliptic curve over Fq, |E(Fq)| ∈ S}/ ∼=Fq
≥ c2(|S| − 2)

√
q/ log q.

31

Note that the constants c1, c2 are the same as in Lenstra’s result, and only the lower bound required a more delicate
condition on the elements of S. Lenstra comments that if the generalized Riemann hypothesis is assumed then the
log p in the denominator of the lower bound can be replaced by log log p, and |S| − 2 may be replaced by |S|. The
same is true in our generalized result, with p replaced by q.

Earlier in that paper, Lenstra observes that the number of (a, b) pairs of Fp elements such that the curve Y 2 =
X3 + aX + b is isomorphic to a given elliptic curve E is equal to p−1

|Aut(E)| with |Aut(E)| ∈ {2, 4, 6}, and the same
is true for odd prime powers. For binary fields, it is the case that each elliptic curve E with 4 | |E| is isomorphic to
θ(1) curves of the form EB (see Section 4.1.3). Together with Proposition 4.11 this yields the following corollary:

Corollary 4.12. For every odd prime power q = pe and natural number v <
√
q/3, when a and b are sampled

uniformly at random from Fq , the random curve E : Y 2 = X3 + aX + b satisfies:

Pr(E is ordinary ∧ |E| ≡ 0 (mod v)) = Ω

(
1

v log q

)
.

For binary fields the same lower bound holds, but when the random curve is in the form EB , where B is sampled
uniformly from F∗

q , and under the additional condition that 4 | v.

Proof. Define sets

S′ = {s ∈ [q −√
q + 1, q +

√
q + 1] ∩ Z : s ≡ 0 (mod v)}

S = {s ∈ [q −√
q + 1, q +

√
q + 1] ∩ Z : s ≡ 0 (mod v), s ̸≡ 1 (mod p)}

= S′ \ {s ≡ 1 (mod p)}.

Note that the event |E| ∈ S is a sub-event of |E| ≡ 0 (mod v). The set S′ is an arithmetic sequence modulo v
contained in an interval of length 2

√
q, thus |S′| ≥

⌊
2
√
q

v

⌋
≥ 6. S is obtained from S′ by removing the elements

which are 1 modulo p. Note that if p | v then the conditions s ≡ 0 (mod v) and s ≡ 1 (mod p) are incompatible, so
no elements are removed, and otherwise, at most

⌈
|S′|
p

⌉
are removed, so |S| ≥

⌊
(p−1)
p |S′|

⌋
≥ 3. We thus have

|S| − 2 = Ω(|S|) = Ω(|S′|) = Ω

(√
q

v

)
,

where the constant in the final Ω expression can be bounded from below by 1
8 (but in practice is closer to 2(p−1)

p , when
v ≪ √

q). From Proposition 4.11 it then follows that

#′{E : E elliptic curve over Fq, |E(Fq)| ∈ S}/ ∼=Fq
= Ω

(
q

v log q

)
.

For odd characteristic, combining the last bound with the fact that each isomorphism class of curves has θ(q) repre-
sentatives and dividing by the q2 different options for (a, b) yields the claimed lower bound on the probability. For
binary fields, similarly each isomorphism class has only θ(1) representatives, and we must divide by q different values
of B, yielding the same bound.

Taking v = 2k <
√
q

3 in Corollary 4.12, we see that the expected number of elliptic curves that will be considered in
FindCurve is O(2k log q).

Nevertheless, for v < 2
√
q, all the sets of numbers in the Hasse bound that correspond to the different residue classes

modulo v are of almost the same size. Moreover, by [Deu41, Wat69], we know that any number N = q + 1− t such
that |t| ≤ 2

√
q and t is coprime to q, has an elliptic curve E over Fq with |E| = N . These facts, together with known

empirical observations, make it reasonable to believe in Conjecture 4.13, which reduces the number of elliptic curves
that will be considered in FindCurve to O(2k).

32

Conjecture 4.13. For every odd prime power q and a power of two 2k < 2
√
q, when a and b are sampled uniformly

at random from Fq , the random curve E : Y 2 = X3 + aX + b satisfies:

Pr
(
E is ordinary ∧ |E| ≡ 0 (mod 2k)) = Θ

(
2−k
))
.

For binary fields we conjecture the same bound, but when the curve is in the form EB , where B is sampled uniformly
from F∗

q .

To compute the maximal 2-subgroup ofE without first computing its size, we use the algorithm given in [MMCRV05],
which terminates after O(l) calls to a univariate quadratic equation solver, where 2l is the maximal power of 2 that
divides |E|. An additional cubic equation needs to be solved if the equation is not given in one of the good forms
Ea,B or EB . Solving a univariate polynomial of degree ≤ 3 can be done in O(log q) field operations using the
Cantor–Zassenhaus algorithm [CZ81].

In the context of FindCurve, we consider the average running time of a randomly chosen input. Considering the
algorithm of [MMCRV05] as a loop with l steps, let Pi denote the probability of entering the i-th iteration, which
equals the probability of |E| being divisible by 2i. Thus each loop executes a total of O(

∑k
i=1 Pi) iterations in

expectation. This is of course bounded by O(k), but this bound can be improved for large k. By Proposition 4.11,
Pi = O

(
(log p)(log log p)2

2i

)
, which improves on Pi ≤ 1 starting from i0 = log log p + 2 log log log p. Thus, using the

trivial bound for the first i0 iterations and Proposition 4.11 for the remaining iterations, we find

O

(
k∑
i=1

Pi

)
= O

log log p+ 2 log log log p+
∑
j≥0

1

2j

 = O(log log p).

If Conjecture 4.13 is true, then for any prime power q we have Pi = O(2−i), hence O(
∑k
i=1 Pi) = O(1).

Once we find an ordinary11 elliptic curve E whose size is divisible by 2k, we use Sutherland’s [Sut12] FindFloor
algorithm, which finds an elliptic curve E′ isogenous to E and with a cyclic subgroup of order 2k, in O(δ log q) field
operations. The log q term stands for the running time of finding all the 2-isogenies of a given curve and δ denotes the
distance of E from Vd (the “floor”) in the 2-isogenies graph.

Sutherland describes the components of this graph as “volcanoes” whose vertices are partitioned into one or more
levels V0, . . . , Vd such that the following hold:

• The subgraph on V0 (the surface) is a regular graph of degree at most 2;

• For i > 0, each vertex in Vi has exactly one neighbor in level Vi−1, and this accounts for every edge not on the
surface; and

• For i < d, each vertex in Vi has degree 3.

It follows that 2|Vi| = |Vi+1| for all 0 < i < d and |V0| ≤ |V1| if V1 is nonempty. In particular, for δ ≤ d, at least
2−δ−1 of the vertices lie on Vd−δ . Thus, the average δ is O(

∑
δ≥0 δ · 2−δ−1) = O(1). We conclude that FindFloor

takes O(log q) field operations in expectation on an equidistributed random curve of given order.

The above analysis is not valid for the exceptional case of components containing the curves with j-invariants 0 and
1728. These components are not classical volcanoes, but the analysis of FindFloor for them is similar.

11for a supersingular curve E sometimes such E′ does not exist.

33

Empirical results To demonstrate the efficiency of this method, we present empirical results of our C++ implemen-
tation of FindCurve. We were looking for an elliptic curve over F264 with order divisible by 234. The only such
number in the Hasse bound is 264 and we found an elliptic curve of this order after checking 1803907700 curves
in less then 8 hours on a single thread. Note that we came across significantly less than 234 curves, that is because
we checked only curves of the form EB , which are known to have size divisible by 4. The curve that we found is
EB : Y 2 +XY = X3 +BX where B is a root of the following degree 64 irreducible polynomial over F2:

X64 +X59 +X54 +X53 +X52 +X51 +X50 +X49 +X48 +X46 +X43 +X42

+X41 +X40 +X37 +X35 +X33 +X29 +X27 +X26 +X25 +X23 +X20

+X18 +X17 +X14 +X12 +X9 +X6 +X4 +X3 +X2 + 1.

Alternative search methods We remark that elliptic curves with constraints on their group size and underlying
field size can be constructed efficiently using Lay and Zimmer’s method [LZ94], based on curves with complex
multiplication and special endomorphism rings. Specifically, the method could be used to generate curves with orders
divisible by 2k in time poly(k), from which FindFloor could then be used to find an isogenous curve with a cyclic
subgroup of the same size, as above. However, this method requires some flexibility in the size of the field over which
the curve will be defined: the size q will be generated by the algorithm, and only some specific could be attainable
by the method in reasonable time. For applications where q may be chosen arbitrarily, it would be better still to take
q ≡ 1 (mod 2k), so that the standard FFT and accompanying algorithms may be used. For the case where q must be
a general prespecified value, FindCurve outperforms any other known method.

5 Codes derived from the elliptic curves

In this section we construct two related families of linear codes, which are the main characters in our IOPP and STARK
protocols. One family consists of AG codes, and the other of Reed–Solomon codes over specially chosen evaluation
domains. AG codes are defined by three parameters: The curve that gives rise to the code; the divisor in the curve
which defines a Riemann–Roch space of functions on the curve; and a set of points on the curve, disjoint from the
divisor, on which the functions are evaluated.

We have already defined the relevant curves: these are the elliptic curves Ei discussed in the previous section. To
describe the codes we still need to specify their divisors and evaluation domains. In the next subsections we will
define these divisors and sets, building up to the codes themselves, and prove some useful properties which will be
necessary for our protocols in the following sections.

5.1 Special sets in Ei and Fq

In this subsection we define special sets Gi, G′
i ⊂ Ei and Hi ⊂ Fq , as well as polynomials Ωi(X) ∈ Fq[X], which

will be necessary for defining the AG-code and relating it to the Reed–Solomon codes.

Let E0, . . . , Ek−1 be a sequence of curves as in Section 4.2, with cyclic subgroups ⟨gi⟩ ⊂ Ei of size 2k−i and good
points Pi = 2k−i−2gi ∈ Ei for i ≤ k− 2. Denote Gi = ⟨gi⟩ and define for each i ≤ k− 1

G′
i = Gi \ {0,∞} = Gi \ {2k−i−1gi, 2

k−igi},

which is of size 2k−i − 2. Denote Hi = πi(G
′
i), and note that |Hi| = 2k−i−1 − 1, since πi : G′

i → Hi is 2-to-1:
indeed, the preimage of any πi(P) ∈ Hi is π−1

i (πi(P)) = {P,−P}, and P ̸= −P since the only 2-torsion points in
Gi are 0,∞.

We can also characterize Hi by a reverse-recursive construction, starting with Hk−1 = ∅, and defining

Hi = ψ−1
i (Hi+1) ∪ {bi}. (10)

34

Indeed, every point P = (x, y) ∈ G′
i either satisfies φi(P) ∈ G′

i+1, in which case ψi(x) = πi+1(φi(P)) ∈ Hi+1, or
else φ(P) = 0, i.e. P = ±Pi and x = bi. This establishes

Hi ⊆ ψ−1
i (Hi+1) ∪ {bi}.

In the other direction, note that ψi is at most 2-to-1, so

|ψ−1
i (Hi+1) ∪ {bi}| ≤ 2|Hi+1|+ 1 = |Hi|.

This also implies that ψi|Hi\{bi} : Hi \ {bi} → Hi+1 is exactly 2-to-1. It can also be directly checked that for every

x = πi(±P) ∈ Hi \ {bi}, the point x′ = b2i
x with ψi(x′) = ψi(x) is also given by

x′ = πi(±P + 0) = πi(±P + 2k−i−1gi) ∈ Hi,

and indeed {±P + 0} is disjoint from {±P} whenever P ̸= ±Pi.

Define Ωi(X) =
∏
u∈Hi

(X−u), the vanishing polynomial ofHi, which is monic of degree 2k−i−1−1 (for i = k−1,
the empty product gives Ωk−1 = 1). Note that from (10) and ψi(X) having denominator X we get for i < k − 1 the
recursive formula

Ωi(X) = (X − bi) ·X2k−i−2−1 · Ωi+1(ψi(X)). (11)

5.2 Function and polynomial spaces

In this section we define three families of linear spaces, one consisting of polynomial over Fq , another of rational
functions over Fq , and the third of functions on the elliptic curves Ei. The first and third will be the backbones of our
Reed–Solomon and AG codes, respectively, whereas the second will act as a useful stepping stone between them. We
will also define special bases for these spaces and prove several lemmas relating these spaces and bases to each other,
which will be key to obtaining FFT and FRI equivalents for these functions and codes.

For any positive integer d, let
Fq[X]<d = {p(X) ∈ Fq[X] : deg(p(X)) < d}

denote the d-dimensional space of polynomials of degree strictly less than d. Denote Mi = Fq[X]<2k−i−1

for every
i ≤ k− 1. We define a related space of rational functions,

Li =
{
p(X)

Ωi(X)
: p(X) ∈ Mi

}
⊂ Fq(X).

Clearly, Li and Mi are isomorphic as linear spaces, with the isomorphism given by dividing or multiplying by Ωi(X).
In particular Li is also of dimension 2k−i−1. Another characterization of the elements of Li is that they are the rational
functions which have at most a simple pole at each u ∈ Hi, and no other poles (including at ∞). In other words, it is
the Riemann–Roch space L ([Hi]).

Similarly to Li, let Ki = L ([Gi]) ⊂ kEi be the Riemann–Roch space with divisor [Gi], i.e., the space of rational
functions on Ei whose poles are all simple and lie in the subgroup Gi. By the Riemann–Roch theorem, dimKi =
|Gi| = 2k−i.

We now wish to connect between adjacent spaces Mi and Mi+1; by the above-mentioned isomorphism, this will
also be equivalent to a connection between adjacent Li and Li+1. Additionally we would like to connect between
Ki and Li, which is again equivalent to a connection between Ki and Mi. In all of the above, we are connecting a
certain space to a space of half its dimension; and indeed, these connections will all show that the larger space is the
direct sum of two copies of the smaller space, suitably transformed, and these connections will give rise to recursively
defined bases for the spaces.

35

5.2.1 Connections and bases for Mi and Li

To connect adjacent Mi-s, we use the degree 2 rational functions ψi as well as two auxiliary linear functions:

Lemma 5.1. Let i ≤ k − 2, and let χi,0, χi,1 be a basis of Fq[X]<2, i.e. any two independent linear polynomials.
Denote vi(X) = X , the denominator of ψi. Then

Mi = (χi,0 · ψ∗
i (Mi+1)⊕ χi,1 · ψ∗

i (Mi+1)) · v2
k−i−2−1
i . (12)

In other words, any f(X) ∈ Mi can be uniquely decomposed as

f(X) = (χi,0(X)f0(ψi(X)) + χi,1(X)f1(ψi(X))) ·X2k−i−2−1

with f0, f1 ∈ Mi+1, and vice versa, every f of this form is in Mi.

Proof. The lemma is an almost immediate application of [BCKL21, Lemma 3.1], with d = 2k−i−1 and δ = 2. There
is a slight difference in that the original statement was only for the standard basis χi,0 = 1, χi,1 = X of Fq[X]<2. We
leave it as an exercise for the reader to verify that the proof applies equally well over any basis; alternatively, that a
decomposition in one basis can be transformed into a decomposition in any other basis by applying the corresponding
base change transformation to the polynomials f0, f1.

Next, we connect adjacent Li-s, again using ψi and an auxiliary function ξi, described below. This decomposi-
tion will be equivalent to the above decomposition of Mi, under the identifications Li = Ωi(X)−1Mi, Li+1 =
Ωi+1(X)−1Mi+1; thus, the validity of the two decompositions will also be equivalent. For completeness, we will
prove the validity of the Li decomposition directly; thus the reader need not rely on [BCKL21, Lemma 3.1] for the
proof of Lemma 5.1.

Lemma 5.2. Let i ≤ k − 2, and let ξi ∈ Fq(X) be a rational function with a simple pole at bi, and no other poles,
including at ∞. Then

Li = ψ∗
i (Li+1)⊕ ξi · ψ∗

i (Li+1). (13)

In other words, any f ∈ Li can be uniquely decomposed as

f(X) = f0(ψi(X)) + ξi(X)f1(ψi(X))

with f0, f1 ∈ Li+1, and vice versa, every f of this form is in Li.

Proof. We first show that the sum on the right hand side of (13) is direct. Note that ψi is ramified at the points ±bi,
and only there, and the ramification degree at those points is 2. It follows that every function in ψ∗

i (Li+1) has a zero
or pole of even multiplicity at bi. On the other hand, ξi has a simple pole at bi, so any function in ξi · ψ∗

i (Li+1) will
have a zero or pole of odd multiplicity at bi. In particular the two spaces are disjoint and the sum is direct.

It is now clear that both sides of (13) are of dimension dimLi = 2k−i−1 = 2dimLi+1, so it suffices to show that
one contains the other in order to prove equality. Let us show that the right hand side is contained in the left hand
side. As noted before, the only ramification points of ψi are at ±bi, but these points are not in ψ−1

i (Hi+1), since they
are x-coordinates of 4-torsion points, which φi maps either to 0 or outside Gi+1. It follows that for any functions
f0, f1 ∈ Li+1, which have at most simple poles and only at the points of Hi+1, the functions fj ◦ ψi will also have
at most simple poles and only at the points of ψ−1

i (Hi+1) ⊂ Hi, thus f0 ◦ ψi ∈ Li. Similarly, since ξi has only a
simple pole at bi /∈ ψ−1

i (Hi+1), ξi · (f1 ◦ ψi) will have at most simple poles at ψ−1
i (Hi+1) ∪ {bi} = Hi and again

ξi · (f1 ◦ ψi) ∈ Li. Thus f0 ◦ ψi + ξi · (f1 ◦ ψi) ∈ Li for any f0, f1 ∈ Li+1, as we wanted to show.

Remark 5.3. To make the lemma more explicit, the condition on the poles of ξi is equivalent to it being equal to some
linear function divided by X − bi, such that the ratio is non-constant. We will see in Section 6.1 that it is also useful to
have some nice connection between the values of ξi(X) and ξi

(
b2i /X

)
, allowing for more efficient computations. For

example, choosing ξi(X) = X+bi
X−bi gives ξi

(
b2i /X

)
= −ξi(X). This function only works for odd characteristic, since

in characteristic 2 it is constant; there we may take instead ξi(X) = bi
X−bi , which satisfies ξi

(
b2i /X

)
= ξi(X) + 1 in

characteristic 2.

36

Remark 5.4. As previously noted, Lemma 5.2 is equivalent to Lemma 5.1; more specifically, to the case where χi,0 =
X−bi and χi,1 is the numerator of ξi. The reader is invited to verify that the two decompositions can be deduced from
each other by multiplying or dividing both sides by Ωi(X), using the RHS of the recursion formula (11) for relating
between Li+1 and Mi+1.

Lemma 5.2 gives us constructions for natural bases {λi,j(X)}2
k−i−1−1
j=0 to each Li and {µi,j(X)}2

k−i−1−1
j=0 to Mi:

Definition 5.5. Let ξ0, . . . , ξk−2 be as in Lemma 5.2. The base {λk−1,0} for Lk−1 is defined by λk−1,0 = 1, and for
each i = k− 2, . . . , 0, the basis {λi,j(X)}2

k−i−1−1
j=0 is defined recursively by

λi,2j = λi+1,j ◦ ψi, λi,2j+1 = ξi · λi+1,j ◦ ψi.

The bases {µi,j(X)}2
k−i−1−1
j=0 to Mi are then defined by µi,j = Ωi · λi,j .

Note that the µi,j defined above also satisfy recursion relations similar to Lemma 5.1, specifically,

µi,2j = X2k−i−2−1 · χi,0 · µi+1,j ◦ ψi, µi,2j+1 = X2k−i−2−1 · χi,1 · µi+1,j ◦ ψi

where χi,0 = X − bi, χi,1 = (X − bi) · ξi,

5.2.2 Connections and bases for Ki

Next, we decompose Ki as the sum of two copies of Li:

Lemma 5.6. Let i ≤ k− 1, and let ζi(X,Y) = Y
X . Then

Ki = π∗
i (Li)⊕ ζi · π∗

i (Li).

In other words, any f(X,Y) ∈ Ki can be uniquely decomposed as

f(X,Y) = f0(πi(X,Y)) + ζi(X,Y)f1(πi(X,Y)) = f0(X) +
Y

X
f1(X) (14)

with f0, f1 ∈ Li, and vice versa, every f of this form is in Ki.

Proof. Since Y 2 can be written as a function of X on the curve, it is immediate and well known that any rational
function f(X,Y) can be decomposed uniquely as in (14), with f0, f1 rational functions. Thus it only remains to be
seen that given such a decomposition, f is in Ki if and only if f0, f1 are both in Li.

In one direction, suppose f0, f1 ∈ Li. Since Ki is a linear space, it is enough to check that f0(X) and Y
X f1(X) are

both in Ki. By definition of Li we know that as rational functions in one variable, f0, f1 can have at most simple poles
and only at points of Hi. It follows that f0 ◦ πi, f1 ◦ πi can have poles only at the points of π−1

i (Hi) = G′
i ⊂ Gi,

and indeed these poles are all simple since πi|G′
i
: G′

i → Hi is exactly 2-to-1 and has no ramified points. In particular
f0 ◦πi ∈ Ki. Furthermore, the function ζi = Y

X has exactly two simple poles, one at each point of Gi \G′
i = {0,∞}.

Since f1 ◦ πi does not have poles at these points, it follows that ζi · f1 ◦ πi also has at most simple poles at the points
of Gi, i.e. belongs to Ki, as claimed.

From the above analysis it follows that the map

(f0, f1) 7→ f0 ◦ πi + ζi · f1 ◦ πi

is a linear map from Li⊕Li to Ki. The uniqueness of the (general) decomposition implies this map is injective. Since
we also have dimKi = 2k−i = dim(Li ⊕ Li), the map must be an isomorphism, and in particular surjective, i.e. the
required decomposition indeed exists.

37

Remark 5.7. As in Lemma 5.2 and Remark 5.3, one may replace Y
X by a different function ζi, as long as it has the

same poles, which is equivalent to it being a linear combination of Y
X and a constant function. The particular choice

of ζi = Y
X will provide elegant formulas in both odd and even characteristic.

Using the basis we have for Li, Lemma 5.6 also yields a canonical basis {κi,j}2
k−i−1
j=0 to Ki:

Definition 5.8. For each i = 0, . . . , k− 1, the basis {κi,j}2
k−i−1
j=0 is defined by

κi,2j = λi,j ◦ πi, κi,2j+1 = ζi · λi,j ◦ πi.

As a corollary of Lemma 5.6, we can also decompose Ki as the sum of two copies of Mi, simply by including an
additional factor of Ωi:

Corollary 5.9. Let i ≤ k− 1, and let ζi(X,Y) = Y
X . Then

Ki = (π∗
i (Mi)⊕ ζi · π∗

i (Mi)) · (Ωi ◦ πi)−1.

In other words, any f(X,Y) ∈ Ki can be uniquely decomposed as

f(X,Y) =
f0(πi(X,Y)) + ζi(X,Y)f1(πi(X,Y))

Ωi(X)
=
f0(X)

Ωi(X)
+
Y

X

f1(X)

Ωi(X)
(15)

with f0, f1 ∈ Mi, and vice versa, every f of this form is in Ki.

Remark 5.10. The curious reader might ask: If Mi and Li are direct sums of copies of ψ∗
i (Mi) and ψ∗

i (Li), corre-
spondingly, shouldn’t Ki also be a direct sum of copies of φ∗

i (Ki+1)? Shouldn’t there be such a decomposition which
commutes with the decompositions of Lemmas 5.2 and 5.6? Perhaps surprisingly, the answer is no. The reader is
invited to check that the only functions ηi such that ηi · φ∗

i (Ki+1) ⊂ Ki are the constant functions: ηi may not have
any poles, because for every point in Ei there exists functions in φ∗

i (Ki+1) with the maximal allowed order of pole
at the point (i.e. 1 if the point is in Gi or 0 otherwise). Thus, any sum ηi,0 · φ∗

i (Ki+1) + ηi,1 · φ∗
i (Ki+1) is either not

direct or not wholly contained in Ki, and in any case is not equal to it. Attempting to construct such a decomposition
so as to commute with those of Lemmas 5.2 and 5.6 fails because ζi does not equal ζi+1 ◦ φi, and in fact is not in
φ∗
i (kEi+1) at all.

5.3 Evaluation domains

In this subsection we construct the evaluation domains used for our Reed–Solomon and AG codes.

Let Q0 be a point on E0 such that 2Q0 is not in 2G0 = ⟨2g0⟩. Define the basic set for G0 corresponding to Q0 as

S0 = S0(Q0) = (Q0 + ⟨2g0⟩) ∪ (−Q0 + ⟨2g0⟩).

Because 2Q0 ̸∈ 2G0, this is a union of two distinct, complementary cosets of 2G0, and is of size 2k. Define inductively
for 0 ≤ i ≤ k − 2, Qi+1 = φi(Qi). Note that 2Qi+1 = φi(2Qi) /∈ 2Gi+1, since 2Qi /∈ 2Gi = φ−1

i (2Gi+1), and
therefore

Si+1 = φi+1(Si) = (Qi+1 + ⟨2gi+1⟩) ∪ (−Qi+1 + ⟨2gi+1⟩)
is again a union of two complementary and distinct cosets of 2Gi+1, and of size 2k−i−1.

Define Ti = πi(Si) for 0 ≤ i ≤ k− 1, and note that |Ti| = 2k−i−1, since πi|Si
is exactly 2-to-1, with all fibers being

of the form {Qi + 2kgi,−Qi − 2kgi}. By the commutativity of Eq. (3) we also get that Ti+1 = ψi(Ti), with ψi|Ti

being 2-to-1. We note that it is easy to to split Ti to the pairs corresponding to fibers of ψi, i.e. pairs {x, x′} ⊂ Ti,
such that ψi(x) = ψi(x

′) (or equivalently, x′ = b2i
x): indeed, if x = xj = πi(Qi + 2jgi), then it will be paired with

x′ = xj+2k−i−2 = πi(Qi + 2(j + 2k−i−2)gi), since

φi(Qi + 2(j + 2k−i−2)gi) = φi(Qi + 2jgi) + φi(2
k−i−1gi)

38

= φi(Qi + 2jgi) +∞ = φi(Qi + 2jgi)

⇒ψi(πi(Qi + 2(j + 2k−i−2)gi)) = πi+1(φi(Qi + 2(j + 2k−i−2)gi))

= πi+1(φi(Qi + 2jgi)) = ψi(πi(Qi + 2jgi)).

Note that the Si are disjoint fromGi, and thus similarly Ti are disjoint fromHi. It follows that for any function f ∈ Ki
we can evaluate f(s) ∈ Fq for all s ∈ Si, and likewise for f ∈ Li we can evaluate f(t) ∈ Fq for all t ∈ Ti, since such
functions are guaranteed to not have poles in Si or Ti, respectively. Similarly, the polynomial Ωi(t) is non-zero for
any t ∈ Ti.

Our evaluation domains will be made from unions of disjoint basic sets. For a set of points Q0 = {Q0,1, . . . , Q0,m} ⊂
E0 such that the corresponding basic sets are all pairwise disjoint, let

S0 =

m⋃
k=1

S0,k =

m⋃
k=1

S0(Q0,k), T0 =

m⋃
k=1

T0,k =

m⋃
k=1

π0(S0,k)

and again define Qi,Si,Ti using φi, πi, ψi. We will have |Si| = 2k−i ·m, |Ti| = 2k−i−1 ·m.

Following the notation in [BCKL21], for a function f defined on an evaluation domain S, we denote by ⟨f ≀ S⟩ the
evaluation table of f on S.

Remark 5.11. Readers might recognize the construction of the sets Ti from [BCKL21]: these correspond exactly to
the construction of an FFTree, with Ti(Qi) being its i-th layer. The new notions here are the construction of the sets
Si, which can be considered as an extension of the FFTree to the curves rather than just Fq; and considering multiple
such trees side-by-side in Ti and Si, useful for error-correcting codes.

5.4 The codes

We are finally ready to introduce our families of codes, mentioned earlier:

Definition 5.12 (Elliptic Curve Codes). Given a curve Ei and an evaluation domain Si as above, denote

Ui = Ui(Si) = C(Si, [Gi]) = {⟨f ≀ Si⟩ : f ∈ Ki}.

This is the AG code overEi with divisor [Gi] and evaluation domain Si, which has blocksize |Si| = 2k−i·m, dimension
dimKi = 2k−i and rate 1

m .

Similarly, denote
Wi = RS[Fq,Ti,

1
m] = {⟨f ≀Ti⟩ : f ∈ Mi},

which is a Reed–Solomon code of blocksize |Ti| = 2k−i−1 ·m, dimension dimMi = 2k−i−1 and rate 1
m .

The two codes are deeply related: Corollary 5.9 gives us a natural isomorphism between Ui and Wi ⊕Wi, which will
be discussed further in Section 6.4. It will also be useful to keep in mind the AG code

Vi = C(Ti, [Hi]) = {⟨f ≀Ti⟩ : f ∈ Li},

defined over the projective line P1, as an intermediary between Ui and Wi. The isomorphism between Li and Mi

yields an isomorphism between Vi and Wi, via pointwise multiplication or division by ⟨Ωi ≀Ti⟩ (which is non-zero
valued).

An important property of the code Ui is that it has a large automorphism group, and more specifically that there
is a large cyclic group of code automorphisms. An automorphism of a code is a permutation of the words’ entries
which preserves the property of being a codeword12. These automorphisms can be described explicitly: For any point

12The definition of an automorphism sometimes allows also an additional coordinate-wise scaling before or after the permutation; this will not
be relevant for our purposes.

39

P ∈ Ei, let τP : Ei → Ei denote the translation by P map, defined by τP (Q) = Q+ P, ∀Q ∈ Ei. Note that for any
P ∈ Gi, τP (Gi) = Gi, which implies that τ∗P : f 7→ f ◦τP is an automorphism of Ki, as simple poles inGi are shifted
to simple poles in Gi. If we further restrict to P ∈ 2Gi, we find that the map τ∗P : ⟨f ≀ Si⟩ 7→ ⟨f ◦ τP ≀ Si⟩ is indeed
an automorphism of Ui, where the entries are permuted inside the 2m different cosets of 2Gi which comprise Si; the
different cosets are never intermixed by these automorphisms. Finally, note that τ : P 7→ τP is itself a homomorphism,
i.e. τP+Q = τP ◦ τQ, and thus so is τ∗ : P 7→ τ∗P , It follows that τ∗2Gi

= ⟨τ∗2gi⟩ is a cyclic group of automorphisms of
Ui of size 2k−i−1. Equivalently, this can be viewed as a faithful action of 2Gi on Ui by code automorphisms.

Remark 5.13. There are additional natural automorphisms of the code Ui, given by composition with reflection maps
Q ↔ P − Q, for P ∈ 2Gi. These automorphisms no longer preserve the cosets of 2Gi comprising Si, but rather
switch between the two pairs of cosets in each basic sets Si,k. These reflection maps, together with the translations
τ2Gi , form a dihedral group of size 2k−i; equivalently we can say that this dihedral group acts on Ei and on Ui. In
fact, it is more natural to define the basic sets Si,k as orbits of this dihedral action. For our purposes, the cyclic part of
the action is more useful than the full dihedral action, and the reader can safely ignore these extra automorphisms.

6 ECFFT and ECFRI

In this section we examine FFT-like algorithms for the spaces Ki,Li,Mi, which transform between their represen-
tations in the bases defined in Section 5.2 and their evaluations on the basic sets defined in Section 5.3 in quasilinear
time, as described in Theorem 6.1. We then present several applications of these algorithms: In Section 6.2 we de-
scribe low degree extensions, which allows for fast generation of the codewords from codes defined in Section 5.4. In
Section 6.3 we give a high level description of fast IOPP for these same curves. Finally, in Section 6.4 we describe in
detail a certain relationship between the codes which arises from the FFT structure.

Some of the results in this section, particularly in Section 6.2, are retreading of ideas appearing in [BCKL21]. This
section generalizes and expands on these ideas, to more general function spaces and further applications.

6.1 ECFFT

Recall that the function spaces Ki,Li,Mi have special bases κi,j , λi,j , µi,j (Definitions 5.5 and 5.8). For a function
f ∈ Ki, let [f]κi represent its representation in the κi basis, i.e. the vector (cj)j=0,...,2k−i−1 such that f =

∑
cjκi,j .

Similarly, we will denote by [f]λi
the representation of a function f ∈ Li in the λi basis, and by [f]µi

the representation
of a function f ∈ Mi in the µi basis.

Let Qi ∈ Ei generate an orbit Si of size 2k−i and let Ti = πi(Si).

Theorem 6.1 (ECFFT). There exist invertible linear transformations FFTKi,Si
, IFFTKi,Si

such that ∀f ∈ Ki,

FFTKi,Si
([f]κi

) = ⟨f ≀ Si⟩ , IFFTKi,Si
(⟨f ≀ Si⟩) = [f]κi

.

Similarly, there exist invertible linear transformations FFTLi,Ti , IFFTLi,Ti such that ∀f ∈ Li,

FFTLi,Ti([f]λi) = ⟨f ≀ Ti⟩ , IFFTLi,Ti(⟨f ≀ Ti⟩) = [f]λi ,

and invertible linear transformations FFTMi,Ti
, IFFTMi,Ti

such that ∀f ∈ Mi,

FFTMi,Ti
([f]µi

) = ⟨f ≀ Ti⟩ , IFFTMi,Ti
(⟨f ≀ Ti⟩) = [f]µi

.

Moreover, all FFT, IFFT above are computable in O(N log2N) arithmetic operations over the ambient field, where
N is the dimension of the space (which equals the size of the evaluation domain).

40

Proof. We first prove for Li, Ti. For i = k−1, Li consists only of constant functions, with [c] = (c) and ⟨c ≀ Ti⟩ = (c),
so the transforms are simply the identity. We continue by reverse induction. For any f ∈ Li, i ≤ k− 2, write

f(x) = f0(ψi(x)) + ξi(x)f1(ψi(x)) (16)

as in Lemma 5.2, with f0, f1 ∈ Li+1. Note that by the definition of the base λi from λi+1, the translation between
[f]λi

and [f0]λi+1
, [f1]λi+1

is trivial — the coefficient of λi+1,j in [fk]λi+1
is exactly the coefficient of λi,2j+k in

[f]λi
. Using FFTTi+1

or IFFTTi+1
, we can replace [f0]λi+1

, [f1]λi+1
by ⟨f0 ≀ Ti+1⟩ , ⟨f1 ≀ Ti+1⟩ (or vice versa) in

O(2|Ti+1| log2 |Ti+1|) operations. To conclude, we need to show that ⟨f0 ≀ Ti+1⟩ , ⟨f1 ≀ Ti+1⟩ and ⟨f ≀ Ti⟩ can be
interchanged inO(|Ti|) operations. And this is indeed doable: let x0, x1 ∈ Ti be any pair with ψi(x0) = ψi(x1) = x′.
As noted in Section 5.3, such pairs satisfy x0x1 = b2i , so x′ = x0 + x1 − 2bi, and they can be easily located as they
are always at distance 1

2 |Ti| from each other when ordered according to the coset. Substituting x = xj in (16), we find

f(x0) = f0(x
′) + ξi(x0)f1(x

′), f(x1) = f0(x
′) + ξi(x1)f1(x

′). (17)

Since ξi is a degree-1 rational function, it is one-to-one, thus ξi(x0) ̸= ξi(x1) and the equation system (17) is invertible,
allowing to solve for f0(x′), f1(x′) from f(x0), f(x1). When ξi(x0), ξi(x1) are nicely related, the inversion formula
can also be simplified: If ξi(x1) = −ξi(x0) (in the odd characteristic case), then

f0(x
′) =

f(x0) + f(x1)

2
, f1(x

′) =
f(x0)− f(x1)

2ξi(x0)
; (18)

and in characteristic 2, if ξi(x1) = ξi(x0) + 1, then

f1(x
′) = f(x0) + f(x1), f0(x

′) = f(x0) + ξi(x0)f1(x
′). (19)

We can thus exchange between f(x0), f(x1) and f0(x′), f1(x′) in O(1) operations, using one of (17), (18) or (19)
depending on the direction and characteristic. More specifically, assuming precomputation of values of the ξi(x0) and
their inverses, we use only 1 multiplication and 2 additions/subtractions for each pair, in either direction (for IFFT in
odd characteristic, we can postpone all divisions by 2 to the end). We repeat this 1

2 |Ti| times to cover all values, to
obtain the transition in O(|Ti|) operations, as claimed.

For functions in Ki, the argument is similar to the argument for Li, using the decomposition

f(x, y) = f0(x) + ζi(x, y)f1(x) (20)

from Lemma 5.6, with f0, f1 ∈ Li. Again the translation between [f]κi
and [f0]λi

, [f1]λi
is trivial by the choice of

the base, the coefficients [fj]λi can be translated to and from values on Ti using FFTLi,Ti and IFFTLi,Ti , and for any
pair (x, y), (x, y′) ∈ Si (where y′ = −y in odd characteristic, or y′ = y + x in characteristic 2) we use the relations

f(x, y) = f0(x) + ζi(x, y)f1(x), f(x, y′) = f0(x) + ζi(x, y
′)f1(x), (21)

for the remaining transitions in FFT. Similarly to the above for ξi, for ζi(X,Y) = Y
X we again have ζi(x, y′) =

−ζi(x, y) in odd characteristic and ζi(x, y′) = ζi(x, y) + 1 in even characteristic, so to complete the IFFT we may
use either of

f0(x) =
f(x, y) + f(x,−y)

2
, f1(x) =

f(x, y)− f(x,−y)
2ζi(x, y)

, or (22)

f1(x) = f(x, y) + f(x, y + x), f0(x) = f(x, y) + ζi(x, y)f1(x) (23)

depending on the parity of the characteristic.

For Mi, Ti, we may argue similarly to the Li case using Lemma 5.1, with the forward formulas

f(x0) = x2
k−i−1−1

0 · (χi,0(x0)f0(x′) + χi,1(x0)f1(x
′)), (24)

41

f(x1) = x2
k−i−1−1

1 · (χi,0(x1)f0(x′) + χi,1(x1)f1(x
′)), (25)

and inverse formulas similarly involving more coefficients; thus we may need to perform up to 4 multiplications
instead of only one at every level of the transform; the coefficients themselves are assumed to be precomputed and
given as advice.

A more efficient way to compute FFTMi,Ti
is by instead running FFTLi,Ti

on the same input (interpreted as coeffi-
cients in λi), and multiplying the result pointwise by precomputed values of ⟨Ωi ≀ Ti⟩, in |Ti| operations. This yields
the correct result, since µi,j = Ωi · λi,j . Similarly, IFFTMi,Ti

can be computed by first dividing by ⟨Ωi ≀ Ti⟩ and then
running IFFTLi,Ti .

These FFTs and their inverses are analogous to the usual FFT. The main difference is that for standard FFT, the basis
for the space of polynomials is the standard basis, so [f] is simply the vector of coefficients of monomials, whereas
in the EC case the “natural” basis is more complicated. The circuit itself is very similar, consisting of N

2 butterflies
in each of the log2N layers, each layer using a different stride size. For the transforms of Ki and Li in the odd
characteristic case, the only difference between these butterflies and those of the usual FFT is in the twiddle factors
used: the values of ζi or ξi at the points of Si or Ti, instead of roots of unity (or a coset). These values are determined
by a precomputation, which the FFT/IFFT circuit need not be aware of.

6.2 Low Degree Extensions and the codes

Let Si =
⋃m
k=1 Si,k be an evaluation domain as in Section 5.3. Given an array of elements of Fq of size 2k−i, we can

interpret it as an evaluation table ⟨f ≀ Si,1⟩ of a unique function f ∈ Ki, and compute [f]κi
by IFFTKi,Si,1

. Then, by
applying FFTKi,Si,2

, . . . ,FFTKi,Si,m
to [f]κi

, we can evaluate ⟨f ≀ Si⟩ ∈ Ui. This process is the low degree extension
(or LDE) from ⟨f ≀ Si,1⟩ to ⟨f ≀ Si⟩, which extends a given array into the unique Ui codeword that matches it.

Similarly, let Ti =
⋃m
k=1 Ti,k be an evaluation domain for Li or Mi. We can uniquely extend any function ⟨f ≀ Ti,1⟩

to ⟨f ≀Ti⟩ with f ∈ Li or f ∈ Mi, yielding codewords in Vi or Wi respectively, and again the extensions can be
computed efficiently with inverse and forward FFTs.

In [BCKL21], the main building block of the algorithms was the EXTEND algorithm, transforming an evaluation
table of a low degree polynomial ⟨P ≀ Ti,0⟩ to an evaluation of it on a different set ⟨P ≀ Ti,1⟩. It can be seen that this
algorithm indeed simply the composition of FFTMi,Ti,1

on IFFTMi,Ti,0
, as was briefly mentioned in the paper. The

reader is encouraged to compare the EXTEND algorithm as described in [BCKL21] to this composition of FFTs and
observe they are equivalent.

6.3 EC-FRI

In this section we present a high-level description of how the FFT structure enables the FRI protocol for the Reed–
Solomon codes Wi, and similar results for the AG-codes Ui and Vi. More details about this protocol, including the
choice of the queries and the soundness analysis, appear in Appendix B.

Let T0 =
⋃m
k=1 T0,k be an evaluation domain for M0 as in Section 5.3, and let Ti,k,Ti be the corresponding domains

for Mi. A prover P has access to a function f0 : T0 → Fq , and wishes to prove to verifier V that it is an evaluation
table ⟨f ≀T0⟩ of a function f ∈ M0, i.e. a codeword from U0, or at least close to one in Hamming distance.

Over k− 1 (or fewer) rounds of interaction, the verifier will provide randomness zi, and the prover will commit (and
provide oracle access to) a table ⟨fi+1 ≀Ti+1⟩, where fi+1 is supposedly defined by

fi+1(X) = fi,0(X) + zifi,1(X) (26)

where fi,0, fi,1 ∈Mi+1 are the functions from the decomposition

fi(X) = (χi,0(X)fi,0(ψi(X)) + χi,1(X)fi,1(ψi(X))) ·X2k−i−2−1 (27)

42

given by Lemma 5.1. The verifier can check that fi+1 was appropriately computed by querying fi+1 at points x′ ∈
Ti+1 and fi at {x0, x1} = ψ−1

i (x′) ⊂ Ti, computing fi,0(x′), fi,1(x′) from fi(x0), fi(x1) by (27) (as in the matching
IFFTMi

), and verifying (26) holds at x′. In the final round the prover will also commit to fk−1 being a constant
function; or, if performing only r rounds, will give fr explicitly, for example by the coefficient list [fr]µr

, allowing
for quick evaluation to each Tr,k.

A similar method can be used for proving proximity to the V0 code, i.e. to an evaluation table ⟨f ≀T0⟩ with f ∈ L0.
The process is equivalent to that for Mi and the Ui codes above, and in each step both the words and the codes
differ only by fixed pointwise multiplications, which does not affect the Hamming distance. Note that verifying the
relationship between fi and fi+1 in this setting will require the prover and the verifier to use the IFFTLi formulas
(either (18) or (19) depending on the characteristic) instead, which are computationally cheaper than inverting (26).

We can extend this method to an IOPP for the AG code U0: Given an evaluation domain S0 =
⋃m
k=1 S0,k for K0 and

an evaluation table ⟨h ≀ S0⟩ supposedly of a function h ∈ K0, the prover can either compute the decomposition

h(X,Y) = h̃0(X) + ζ0(X,Y)h̃1(X) (28)

from Lemma 5.6 or

h(X,Y) =
h0(X)

Ω0(X)
+ ζ0(X,Y)

h1(X)

Ω0(X)
(29)

from Corollary 5.9. The prover then computes f0 = h̃0 + z · h̃1 (or h0 + z · h1) and commits to ⟨f0 ≀T0⟩, where z
is randomness from the verifier. After this first step the protocol continues as above to show f0 is close to a V0/W0

codeword. As before, the methods are equivalent whether we work with Vi or Wi, but the Vi method is more efficient.
However, we will focus on working overWi in the next section, to more immediately apply existing soundness results.

6.4 The isomorphism between U0 and W0 ⊕W0

We note that equation (29), evaluated at all points (x, y) ∈ S0, gives rise to an isomorphism between U0 andW0⊕W0,
which sends ⟨h ≀ S0⟩ to the table of pairs ⟨(h0, h1) ≀T0⟩ and vice versa; the same equation and map can also be applied
to evaluation tables or pairs which are not necessarily codewords. Importantly, this map is local: to access h0(x)
and/or h1(x), h need only be accessed at the two points in {(x, y), (x, y′)} = π−1

0 (x). This also implies that this
isomorphism roughly preserves the Hamming distance; more specifically, if we consider U0 and W0 ⊕W0 as codes
over the alphabet F2

q , whose characters are folded as (h(x, y), h(x, y′)) and (h0(x), h1(x)), correspondingly, then the
isomorphism preserves the Hamming distance of errors in these pairs: each character is independently acted upon by
an invertible GL2(Fq) matrix.

The above protocol can thus be viewed as applying the isomorphism to replace ⟨h ≀ S0⟩ with ⟨(h0, h1) ≀T0⟩, then
moving to a random linear combination of h0, h1 to prove that both are proximal to W0 simultaneously. Our main ap-
plication for this protocol would involve proving proximity not for a single table ⟨h ≀ S0⟩ but multiple tables ⟨hl ≀ S0⟩,
l = 1, . . . ,w batched together. In this scenario we would prefer to first split each hl into hl,0, hl,1 via our isomorphism,
then take a random linear combination

∑w
l=1

∑1
j=0 zl,jhl,j of all 2w functions and apply FRI to it, batching all 2w

proofs together. An alternative, and perhaps more natural, approach would be to take first a random linear combination∑w
l=1 zlhl of the w functions on S0, and then apply once the full proximity proof to U0. The difference between the

two approaches is subtle, and the main advantage of the first approach over the second is that its soundness analysis is
again an immediate application of existing results.

7 Degree Adjustment

In Section 6.3 we discussed a proof protocol for showing an evaluation table ⟨f ≀ S0⟩ arises from a function f ∈ K0 =
L ([G0]). Our STARK proofs will need another, slightly more complex tool: we would like to show that certain

43

functions also have zeros on a specified set of points; and on the other hand, the poles of these functions might not be
simple and not at the entirety of G0, but rather be contained in some subgroup 2eG0, and have multiplicity at most 2e

each.

More explicitly, let e ≥ 1 and let C be some coset of 2e+1G0 which is disjoint from S0 and from G0. Our goal in this
section is to construct a proof of proximity to the AG code of evaluation tables ⟨f ≀ S0⟩ where f ∈ L (2e[2eG0]− [I]),
where I is any non-empty subset of C; it will be assumed that f is already known to be in L (2e[2eG0]). This will
be achieved by reducing this problem to the problem of proximity testing to U0, where the reduction is performed by
pointwise multiplication by a function ωI with appropriate properties, listed below. For simplicity of presentation, we
will henceforth assume e = 1; the results can be immediately generalized to larger e.

Definition 7.1. A function ωI ∈ kE0
is called a degree adjustment for validity domain I , if it satisfies the following

four properties:

1. For every P ∈ 2G0, ωI has (at least) a simple zero at P ;

2. For every P ∈ g0 + 2G0, ωI has (at most) a simple pole at P ;

3. For every P ∈ I , ωI has (exactly) a simple pole at P ;

4. ωI has no other poles except as specified above. It may have other zeros.

The following claim shows that such a function enables the wanted reduction:

Lemma 7.2. Let ωI be a degree adjustment for a set I ⊂ C. Then for every f ∈ L (2[2G0]), we have

f vanishes at all points in I ⇔ ωI · f ∈ L ([G0]) = K0.

In other words, if it is known that a function f has poles only at 2G0 and of multiplicity at most 2, then f also vanishes
at the points of I if and only if ωI · f is a K0 function, i.e. with at most simple poles and only at G0.

Proof. In terms of divisors, properties 1–4 translate immediately to the inequality

div(ωI) ≥ [2G0]− [g0 + 2G0]− [I] = (2[2G0]− [I])− [G0],

from which the ⇒ direction follows immediately by the definition of the spaces.

Note that the above inequality does not capture the conditions perfectly: specifically, property 3 states that ωI has
poles at the points of I , and rules out the possibility of the function being defined or vanishing at those points, which
the inequality itself does not. This in turn is necessary (and sufficient) for the ⇐ direction: if ωI ·f ∈ L ([G0]), then it
does not have poles at the points of I (which is disjoint from G0). Since ωI does have poles at those points, it follows
that f must vanish at them. Since we already assume f ∈ L (2[2G0]), giving the necessary bounds on the location
and multiplicity of poles, this is enough to deduce f ∈ L (2[2G0]− [I]).

Our aim in this section is to construct such degree adjustments. Moreover, since these are to be used as part of a proof
protocol, we need the construction to be well defined in terms of I , and succinct, so that both prover and verifier can
compute it in reasonable time. We will show:

Theorem 7.3. Let C be a coset of 2G0 disjoint from G0. Denote C = G0 ∪ (C +G0)∪ (−C +G0), a union of three
cosets of G0. For every non-empty subset I ⊂ C, there exists a well-defined degree-adjustment ωI . Moreover, for any
point P ∈ E0 \ C, ωI(P) is computable in O(∥I∥+ k) field operations, where ∥I∥ is the coset complexity of I .

In the following subsections we construct the degree adjustment in three steps. Each step will provide us with a
function with some properties related to the definition of the degree adjustment. We denote these functions ν0, µI , ηI
(ν0 will not depend on the zero-set I , only on the curve). The full degree adjustment will be the product of the three
functions, ωI = ν0 · µI · ηI .

A useful tool in the construction of these functions will be the following lemma:

44

Lemma 7.4. Let P,Q,R, S ∈ E be points on an elliptic curve with P + Q = R + S. Then there exists a function
r = rP,Q;R,S ∈ kE with

div(r) = [P] + [Q]− [R]− [S].

Moreover, r(T) can be computed in O(1) field operations for any T ∈ E \ {R,S,−R− S}.

Proof. Consider the equations defining the line passing through P,Q, and the line passing through R,S (if, say
P = Q, then we use the tangent to the curve). Both lines pass through a common third point, −P − Q = −R − S.
The ratio of the two equations gives a function as desired. Since the function is of the form r(X,Y) = a1X+b1Y+c1

a2X+b2Y+c2
,

clearly it is computable in O(1) field operations whenever the denominator is non-zero. Additionally, extracting the
coefficients of r from the points P,Q,R, S can also be done in O(1) operations.

Remark 7.5. Note that r is only well defined up to multiplication by a constant. For consistency we should normalize it
such that the process always returns the same function. For example, we can normalize each line equation aX+bY +c
to have either a = 1, or a = 0 and b = 1, or a = b = 0 and c = 1.

The condition that P + Q = R + S is necessary for such r to exist. In the next subsections, whenever we refer to a
function rP,Q;R,S , it will be implicit that P +Q = R+ S (and this will always be obvious to verify).

7.1 Step 1 - the independent part of the degree adjustment

In this section we construct the function ν0, whose job is to shift the double poles at 2G0 to simple poles at G0, i.e.
to satisfy properties 1 and 2 of the degree adjustment. This is in fact too much to ask: due to structure of the curve,
no function exists with exactly this property. We compromise by allowing ν0 not to touch the pole at 0, and have a
double zero at ∞ instead.

More precisely, we construct functions νi ∈ kEi
for i ≤ k− 2 with the following properties:

1. For every P ∈ 2Gi \ {0,∞}, νi has a simple zero at P ;

2. For every P ∈ gi + 2Gi, νi has a simple pole at P ;

3. νi has a double zero at ∞;

4. νi has no other poles and zeros except as specified above, in particular it has no pole and no zero at 0.

In other words, νi must have the divisor

div(νi) = [2Gi]− [gi + 2Gi] + [∞]− [0],

which defines it up to a scalar. We thus show the following claim:

Claim 7.6. There exists an explicit function ν0 ∈ kE0 with

div(ν0) = [2G0]− [g0 + 2G0] + [∞]− [0].

For any P /∈ G0, ν(P) can be computed using O(k) field operations.

Proof. We construct νi by backwards induction, starting from i = k− 2. We have that 2Gk−2 = {0,∞} so we only
need a double zero at ∞ and simple poles at ±Pk−2, which is satisfied by the function

νk−2(X,Y) =
1

X − bk−2
= r∞,∞;Pk−2,−Pk−2

(X,Y).

45

We then construct each νi from νi+1 by

νi(X,Y) =
X − bi
X

· νi+1(φi(X,Y)).

The simple poles of νi+1 at gi+1+2Gi+1 are translated to simple poles of νi+1◦φi at gi+2Gi = φ−1
i (gi+1+2Gi+1).

The simple zeros of νi+1 at 2Gi+1 \ {0,∞} are translated to simple zeros of νi+1 ◦φi at 2Gi \ {0,∞,±Pi} and the
double zero of νi+1 at ∞ is translated to double zeros of νi+1 ◦ φi at 0 and ∞. The term X−bi

X = rPi,−Pi;0,0(X,Y)
then compensates for the lack of zero at ±Pi and the spare double zero at 0.

Using this recursive formula, the function ν0 can be evaluated at any point outside of G0 in just O(k) field operations
(which is logarithmic in the number of evaluation points). Moreover, when evaluating ν0 on a coset of 2G0 we use
νi+1(φi(P)) both in the evaluation of νi(P) and of νi(P + 0). Since the sizes of the layers shrink exponentially,
it follows that evaluating ν0 on an entire coset of 2G0 can be done in O(|2G0|) field operations. Moreover, this
computation does not depend on I , so it can be done once and stored as a precomputation for any required ωI .

7.2 Step 2 - the part that depends on the validity domain

In this subsection we construct the function µI , which is the part of ωI responsible for ensuring there are simple poles
at the points of I (property 3). More precisely, we show the following:

Claim 7.7. For any I ⊂ C, there exists an explicit function µI ∈ kE0 with

div(µI) = [|I|g0]− [∞] +
∑
P∈I

([P − g0]− [P]).

For any P /∈ C, µI(P) can be computed in O(∥I∥) field operations.

Note that such a function exists (and well defined up to a constant) since it has the same number of poles and zeros,
and the sum of poles equals the sum of zeros. Additionally, since I is contained in a coset of 2G0 which is disjoint
from G0, all points in the divisor above are pairwise different, and in particular µI does have simple poles at every
point of I .

Recall that the coset complexity of ∥I∥ of I is the smallest possible sum
∑
J(log2(|J |) + 1) over all presentations

1I =
∑
J ϵJ · 1J , where each J is a coset of a subgroup of 2G0. We first show how to construct each µJ with the

above divisor, then show that µJ can be obtained from
∏
µϵJJ and a small correction.

7.2.1 Periodic validity domain J

Since J is a coset of a subgroup of 2G0, we have |J | = 2m for somem ≤ k−1. Denote J0 = J and define recursively
J1, . . . , Jm by Ji+1 = φi(Ji). We then have that each Ji is a coset of a subgroup 2Gi with |Ji| = 2m−i. We construct
µJi ∈ kEi

with
div(µJi) = [2m−igi]− [∞] +

∑
P∈Ji

([P − gi]− [P])

by backwards induction, starting from i = m.

For i = m we have Jm = {P}. The function µJm should satisfy

div(µJm) = [gm] + [P − gm]− [∞]− [P],

so we take µJm = rgm,P−gm;∞,P , which is computable in O(1) everywhere except ±P and ∞.

46

Because Ji = φ−1
i (Ji+1), we get

div(µJi+1 ◦ φi) = [2m−i−1gi] + [2m−i−1gi + 0]− [∞]− [0] +
∑
P∈Ji

([P − gi]− [P]).

To get the right divisor we must therefore add a correction of

[2m−igi] + [0]− [2m−i−1gi]− [2m−i−1gi + 0],

which can do by defining
µJi = r2m−igi,0;2m−i−1gi,2m−i−1gi+0 · µJi+1

◦ φi.

Putting this all together, we find that the computation of µJ can be performed everywhere outside G0 and (J ∪−J) ⊂
(C ∪ −C), in O(m + 1) = O(log2 |J | + 1) operations, and the computation of all relevant µJ is done in O(∥I∥)
operations, and we conclude the proof.

7.2.2 Obtaining µI from
∏
J µ

ϵJ
J

We now wish to obtain a way to compute µI from its components µJ . To do this, it can be helpful to first expand
the notion of µI from merely subsets I ⊂ C, to signed multisubsets of C. These are simply integer valued functions
I : C → Z, and we would like the function µI to satisfy

div(µI) = [|I|g0]− [∞] +
∑
P∈C

I(P) · ([P − g0]− [P]),

where |I| =
∑
P∈C I(P). Note that standard sets can be identified with their indicator functions, and the definition of

µI = µ1I
remains consistent. Since we have 1I =

∑
J ϵJ ·1J , we see that to obtain µ1I

it will be sufficient to be able
to relate µJ , µJ′ to µJ±J′ , for any two signed multisets J, J ′, and apply this procedure repeatedly on the

∑
J ϵJJ .

And indeed, it can be verified that

µJ+J′ = r|J+J′|g0,∞;|J|g0,|J′|g0 · µJ · µJ′ ,

µJ−J′ = r|J−J′|g0,|J′|0;|J|g0,∞ · µJ · µ−1
J′

and both can be computed in O(1) field operations, given the values of µJ and µJ′ . Thus the additional work of
deriving µI from the {µJ} is also bounded by O(∥I∥) operations per evaluation.

7.3 Step 3 - the last small adjustments

We are almost done by now. The function ν0 · µI almost matches all properties of ωI . Its divisor is

div(ν0 · µI) = div(ν0) + div(µI)

= [2G0]− [g0 + 2G0] + [∞]− [0] + [|I|g0]− [∞] +
∑
P∈I

([P − g0]− [P])

= ([2G0]− [g0 + 2G0]− [I]) + [I − g0] + [|I|g0]− [0],

and the only possible remaining issue is the “−[0]” which appears at the end, meaning ν0 · µI does not have a zero
at 0 as it should (except in the special case I = C, where |I|g0 = 0). On the other hand, we have extra zeros, at the
points of I − g0 and |I|g0, which we may move to assist us in creating a zero at 0. We show the following:

Claim 7.8. For any non-empty I ⊂ C, there exists an explicit function ηI ∈ kE0
such that

div(ηI) = [0]− [|I|g0]− [Q] + [Q′],

where Q,Q′ ∈ E0 are points such that Q ∈ I − g0 and Q′ /∈ I . For any P /∈ C, ηI(P) is computable in O(1) field
operations.

47

Proof. We first want to find a pair Q ∈ I − g0, Q
′ /∈ I with Q′ = Q+ |I|g0 − 0. This is equivalent to finding a point

P = Q+ g0 ∈ I such that P +(|I| − 1+ 2k−1)g0 = Q′ /∈ I . If no such pair exists, then since I is non-empty, it must
be a union of cosets of (|I|+ 2k−1 − 1)G0. These cosets are all even sized, so I must be even; but then it follows that
these are cosets of G0 itself, which is a contradiction since I is fully contained inside a coset of 2G0.

Having found such a pair, we have Q + |I|g0 = Q′ + 0, so we may simply define ηI = rQ′,0;Q,|I|g0 , which is
computable in O(1), and we are done.

Finally, when we take ωI = ν0 · µI · ηI , we obtain

div(ωI) = ([2G0]− [g0 + 2G0]− [I]) + ([I − g0]− [Q]) + [Q′]

which indeed satisfies all requirements, since the additional zeros at (I−g0)\{Q}∪{Q′} are all outside I . Furthermore,
by checking the components we immediately see that ωI(P) is computable for all P ∈ E0\C inO(∥I∥+k) operations,
as claimed.

References

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. In Proceedings of the 24th ACM Confer-
ence on Computer and Communications Security, CCS ’17, pages 2087–2104, 2017.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verification
and the hardness of approximation problems. Journal of the ACM, 45(3):501–555, 1998. Preliminary
version in FOCS ’92.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new characterization of NP.
Journal of the ACM, 45(1):70–122, 1998. Preliminary version in FOCS ’92.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell.
Bulletproofs: Short proofs for confidential transactions and more. In Proceedings of the 39th IEEE
Symposium on Security and Privacy, S&P ’18, pages 315–334, 2018.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-solomon interactive oracle
proofs of proximity. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald San-
nella, editors, ICALP, volume 107 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018.

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable zero knowledge with no
trusted setup. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO, volume 11694 of
Lecture Notes in Computer Science, pages 701–732. Springer, 2019.

[BCF+17] Eli Ben-Sasson, Alessandro Chiesa, Michael A. Forbes, Ariel Gabizon, Michael Riabzev, and Nicholas
Spooner. Zero knowledge protocols from succinct constraint detection. In Yael Kalai and Leonid
Reyzin, editors, Theory of Cryptography - 15th International Conference, TCC 2017, Baltimore, MD,
USA, November 12-15, 2017, Proceedings, Part II, volume 10678 of Lecture Notes in Computer Sci-
ence, pages 172–206. Springer, 2017.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs for C:
Verifying program executions succinctly and in zero knowledge. In Proceedings of the 33rd Annual
International Cryptology Conference, CRYPTO ’13, pages 90–108, 2013.

48

[BCG+17a] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas Spooner. Interactive
oracle proofs with constant rate and query complexity. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian
Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 40:1–40:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[BCG+17b] Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Hajiabadi, and Sune K.
Jakobsen. Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In Tsuyoshi Takagi
and Thomas Peyrin, editors, Advances in Cryptology - ASIACRYPT 2017 - 23rd International Con-
ference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part III, volume 10626 of Lecture Notes in Computer Science, pages
336–365. Springer, 2017.

[BCG+19] Eli Ben-Sasson, Alessandro Chiesa, Lior Goldberg, Tom Gur, Michael Riabzev, and Nicholas Spooner.
Linear-size constant-query IOPs for delegating computation. In Proceedings of the 17th Theory of
Cryptography Conference, TCC ’19, 2019.

[BCG20] Jonathan Bootle, Alessandro Chiesa, and Jens Groth. Linear-time arguments with sublinear verification
from tensor codes. In Rafael Pass and Krzysztof Pietrzak, editors, Theory of Cryptography - 18th
International Conference, TCC 2020, Durham, NC, USA, November 16-19, 2020, Proceedings, Part II,
volume 12551 of Lecture Notes in Computer Science, pages 19–46. Springer, 2020.

[BCGT13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On the concrete efficiency of
probabilistically-checkable proofs. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages
585–594. ACM, 2013.

[BCI+20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity gaps for
reed-solomon codes. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 900–909. IEEE, 2020.

[BCKL21] Eli Ben-Sasson, Dan Carmon, Swastik Kopparty, and David Levit. Elliptic curve fast fourier trans-
form (ECFFT) part I: fast polynomial algorithms over all finite fields. Electron. Colloquium Comput.
Complex., page 103, 2021.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In Theory of
Cryptography Conference, pages 31–60. Springer, 2016.

[BFL91] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has two-prover
interactive protocols. Computational Complexity, 1:3–40, 1991. Preliminary version appeared in
FOCS ’90.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations in polylog-
arithmic time. In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, STOC ’91,
pages 21–32, 1991.

[BGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Short PCPs veri-
fiable in polylogarithmic time. In Proceedings of the 20th Annual IEEE Conference on Computational
Complexity, CCC ’05, pages 120–134, 2005.

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Recursive proof composition without a trusted setup.
Cryptology ePrint Archive, Report 2019/1021, 2019. https://ia.cr/2019/1021.

[BGKS20] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. DEEP-FRI: sampling outside
the box improves soundness. In Thomas Vidick, editor, 11th Innovations in Theoretical Computer
Science Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs,
pages 5:1–5:32. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

49

https://ia.cr/2019/1021

[BKK+16] Eli Ben-Sasson, Yohay Kaplan, Swastik Kopparty, Or Meir, and Henning Stichtenoth. Constant rate
pcps for circuit-sat with sublinear query complexity. J. ACM, 63(4):32:1–32:57, 2016.

[BKS18] Eli Ben-Sasson, Swastik Kopparty, and Shubhangi Saraf. Worst-case to average case reductions for the
distance to a code. In Proceedings of the 33rd ACM Conference on Computer and Communications
Security, CCS ’18, pages 24:1–24:23, 2018.

[BS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM J. Comput,
38(2):551–607, 2008.

[CC89] D. V. Chudnovsky and G. V. Chudnovsky. Computational problems in arithmetic of linear differential
equations. some diophantine applications. In David V. Chudnovsky, Gregory V. Chudnovsky, Harvey
Cohn, and Melvyn B. Nathanson, editors, Number Theory, pages 12–49, Berlin, Heidelberg, 1989.
Springer Berlin Heidelberg.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas Ward.
Marlin: Preprocessing zkSNARKs with universal and updatable SRS. In Proceedings of the 39th
Annual International Conference on the Theory and Applications of Cryptographic Techniques, EU-
ROCRYPT ’20, pages 738–768, 2020.

[CMS19] Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. Succinct arguments in the quantum random
oracle model. In Dennis Hofheinz and Alon Rosen, editors, Theory of Cryptography - 17th Interna-
tional Conference, TCC 2019, Nuremberg, Germany, December 1-5, 2019, Proceedings, Part II, volume
11892 of Lecture Notes in Computer Science, pages 1–29. Springer, 2019.

[CMSZ21] Alessandro Chiesa, Fermi Ma, Nicholas Spooner, and Mark Zhandry. Post-quantum succinct argu-
ments. Electron. Colloquium Comput. Complex., page 38, 2021.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and transparent recursive
proofs from holography. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology - EURO-
CRYPT 2020 - 39th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I, volume 12105 of Lecture Notes in
Computer Science, pages 769–793. Springer, 2020.

[CY21a] Alessandro Chiesa and Eylon Yogev. Subquadratic snargs in the random oracle model. In Tal Malkin
and Chris Peikert, editors, Advances in Cryptology - CRYPTO 2021 - 41st Annual International Cryp-
tology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part I, volume
12825 of Lecture Notes in Computer Science, pages 711–741. Springer, 2021.

[CY21b] Alessandro Chiesa and Eylon Yogev. Tight security bounds for micali’s snargs. In Kobbi Nissim and
Brent Waters, editors, Theory of Cryptography - 19th International Conference, TCC 2021, Raleigh,
NC, USA, November 8-11, 2021, Proceedings, Part I, volume 13042 of Lecture Notes in Computer
Science, pages 401–434. Springer, 2021.

[CZ81] David G. Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials over finite fields.
Math. Comp., pages 587–592, 1981.

[Deu41] Max Deuring. Die typen der multiplikatorenringe elliptischer funktionenkörper. Abhandlungen aus
dem Mathematischen Seminar der Universität Hamburg, 14(1):197–272, Dec 1941.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and
succinct NIZKs without PCPs. In Proceedings of the 32nd Annual International Conference on Theory
and Application of Cryptographic Techniques, EUROCRYPT ’13, pages 626–645, 2013.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: Interactive
proofs for Muggles. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing,
STOC ’08, pages 113–122, 2008.

50

[GLS+21] Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin Thaler, and Riad S. Wahby. Brakedown:
Linear-time and post-quantum snarks for r1cs. Cryptology ePrint Archive, Report 2021/1043, 2021.
https://ia.cr/2021/1043.

[GPR21] Lior Goldberg, Shahar Papini, and Michael Riabzev. Cairo - a turing-complete stark-friendly CPU
architecture. IACR Cryptol. ePrint Arch., page 1063, 2021.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-
Sébastien Coron, editors, Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-
12, 2016, Proceedings, Part II, volume 9666 of Lecture Notes in Computer Science, pages 305–326.
Springer, 2016.

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved decoding of reed-solomon and algebraic-
geometry codes. IEEE Trans. Information Theory, 45(6):1757–1767, 1999.

[Gur07] Venkatesan Guruswami. Algorithmic results in list decoding. Foundations and Trends® in Theoretical
Computer Science, 2(2):107–195, 2007.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. Plonk: Permutations over lagrange-bases
for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953,
2019. https://ia.cr/2019/953.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multi-
party computation. In Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Comput-
ing, STOC ’07, page 21–30, New York, NY, USA, 2007. Association for Computing Machinery.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In Proceed-
ings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, STOC ’92, page 723–732,
New York, NY, USA, 1992. Association for Computing Machinery.

[Kob87] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48:203–209, 1987.

[Len87] H. W. Lenstra. Factoring integers with elliptic curves. Annals of Mathematics, 126(3):649–673, 1987.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for interactive
proof systems. Journal of the ACM, 39(4):859–868, 1992.

[LZ94] Georg-Johann Lay and Horst G. Zimmer. Constructing elliptic curves with given group order over large
finite fields. In Leonard M. Adleman and Ming-Deh Huang, editors, Algorithmic Number Theory, pages
250–263, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

[MBKM19] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-knowledge SNARKs
from linear-size universal and updateable structured reference strings. Cryptology ePrint Archive, Re-
port 2019/099, 2019.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298, oct 2000.

[MMCRV05] Josep M. Miret, Ramiro Moreno Chiral, Anna Rio, and M. Valls. Determining the 2-sylow subgroup of
an elliptic curve over a finite field. Mathematics of Computation, 74:411–427, 01 2005.

[PGHR13] Brian Parno, Craig Gentry, Jon Howell, and Mariana Raykova. Pinocchio: Nearly practical verifiable
computation. In Proceedings of the 34th IEEE Symposium on Security and Privacy, Oakland ’13, pages
238–252, 2013.

[RR21] Noga Ron-Zewi and Ron Rothblum. Proving as fast as computing: Succinct arguments with constant
prover overhead. Electron. Colloquium Comput. Complex., page 180, 2021.

51

https://ia.cr/2021/1043
https://ia.cr/2019/953

[RRR16] Omer Reingold, Ron Rothblum, and Guy Rothblum. Constant-round interactive proofs for delegating
computation. In Proceedings of the 48th ACM Symposium on the Theory of Computing, STOC ’16,
pages 49–62, 2016.

[Sch87] René Schoof. Nonsingular plane cubic curves over finite fields. Journal of Combinatorial Theory,
Series A, 46(2):183–211, 1987.

[Sha92] Adi Shamir. IP = PSPACE. Journal of the ACM, 39(4):869–877, 1992.

[Sil09] Joseph H. Silverman. The Arithmetic of Elliptic Curves. Graduate texts in mathematics. Springer,
Dordrecht, 2nd edition, 2009.

[Sta21] StarkWare. ethstark documentation. Cryptology ePrint Archive, Report 2021/582, 2021. https:
//eprint.iacr.org/2021/582.

[Sut12] Andrew Sutherland. Isogeny volcanoes. The Open Book Series, 1, 08 2012.

[Was08] Lawrence C. Washington. Elliptic Curves: Number Theory and Cryptography, Second Edition. Chap-
man & Hall/CRC, 2 edition, 2008.

[Wat69] William C. Waterhouse. Abelian varieties over finite fields. Annales scientifiques de l’École Normale
Supérieure, Ser. 4, 2(4):521–560, 1969.

A Mathematical background

In this section we survey some standard notions and notations from the theory of algebraic geometry and elliptic curves
in particular. We list definitions and statements without proof; further details can be found in [Sil09, Was08].

A.1 Projective Space

We denote by Pn(Fq) (or simply Pn) the n-dimensional projective space over Fq; only P1 and P2 will appear in the
paper. Points in Pn are given by homogenized coordinates [x1 : x2 : · · · : xn+1] where at least one xi is non-zero, and
with the equivalence relation

[x1 : x2 : · · · : xn+1] ∼ [cx1 : cx2 : · · · : cxn+1], ∀c ̸= 0.

Points in the affine space Fnq are given by affine coordinates (x1, . . . , xn), and in this paper we equate such points with
their standard embedding into projective space, i.e.

(x1, . . . , xn) = [x1 : · · · : xn : 1].

Thus, Pn is the disjoint union of Fnq and a copy of Pn−1 “at infinity”, i.e. with an additional xn+1 = 0 coordinate. In
particular, P1(Fq) = Fq ∪ {∞}, where ∞ denotes the unique point at infinity, [1 : 0].

We will refer to the two coordinates of the affine plane F2
q as x and y. For a point P ∈ F2

q , we will denote its x, y
coordinates by Px, Py , respectively. For a point P ∈ P2, the coordinates Px, Py will only be defined if it is an affine
point, according to the above notation.

52

https://eprint.iacr.org/2021/582
https://eprint.iacr.org/2021/582

A.2 Elliptic Curves

An elliptic curve E over Fq is the set of solutions to a cubic equation in the projective plane, with the additional
condition of being smooth. Every elliptic curve can be presented in extended Weierstrass form, where the defining
equation is

E(X,Y) : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

with a1, a2, a3, a4, a6 ∈ Fq . All curves mentioned in this paper are assumed to be represented in Weierstrass form,
and this will be essential when discussing the projection of the curve to P1. Every such curve passes through a unique
non-affine point, ∞ = [0 : 1 : 0]. The points of an elliptic curve form an abelian group, where ∞ is the neutral
element and for any three points P,Q,R ∈ E, P +Q+R = ∞ if and only if the three points are colinear (and if any
two are equal, the line must be tangent to the curve at that point). The rank of the group is at most 2, meaning it is of
the form Z/m1Z×Z/m2Z, where m2 | m1. The size of the group m1 ·m2 is in the Hasse–Weil bound [q+1±2

√
q].

A.3 Rational functions

Rational functions over Fq are quotients R(X) = P (X)/Q(X) where P,Q ∈ Fq[X] are coprime polynomials and Q
is non-zero. Rational functions form a field, denoted by Fq(X), as well as kP1 .

Rational functions can be considered as maps from P1 to itself, where zeros of Q are mapped to ∞ and are called
poles of the rational function, with multiplicity equal to their multiplicity as zeros of Q. Depending on whether
deg(P)−deg(Q) is positive, negative, or zero, the point ∞ is either a pole of multiplicity deg(P)−deg(Q), a zero of
multiplicity deg(Q)− deg(P), or mapped to the ratio between the leading coefficients of P and Q, correspondingly.

The degree of R is defined as deg(R) := max(deg(P),deg(Q)), and is equal to both the total number of zeros and
the total number of poles of R, including at ∞, counted with multiplicity.

Rational functions over F2
q are simply ratios of polynomial in Fq[X,Y]. Given an elliptic curve E, the rational

functions on E are simply restrictions of rational functions of F2
q to E, and are thus defined only modulo the equation

of E. The field of rational functions on E is denoted kE , and is equal to the function field Fq(X,Y)/(E(X,Y)).
A non-zero rational function over E can also have zeros or poles at some points of E, with multiplicities. The total
number of zeros will always equal the total number of poles, and be called the degree of the rational function.

A.4 Rational functions between varieties

A rational function between elliptic curves is a function φ : E → E′ whose coordinates are given by rational func-
tions. If a rational function also maps the neutral element of E to the neutral element of E′, then it is also a group
homomorphism, and is called an isogeny.

For any rational function φ : A → B between varieties (in our cases: P1 → P1, E → P1 or E → E′), the fibers of φ
are the preimages {φ−1(P) : P ∈ B}. When considered over the algebraic closure Fq , almost all fibers are of the same
maximal size. This size is the separable degree of φ. In this paper we shall deal only with separable functions, where
the separable degree is also the degree itself (and this definition coincides with the previous definitions for functions
to P1). The points P ∈ B where |φ−1(P)| = deg(φ) are called unramified, and the points where |φ−1(P)| < deg(φ)
are ramification points; over the algebraic closure, all but finitely many points are unramified. For an isogeny of curves,
because it is a group homomorphism, it is unramified everywhere, and its degree is equal to the size of the kernel.

The map φ : A → B induces a pullback map φ∗ : kB → kA : f 7→ f ◦ φ. The zeros and poles of φ∗(f) = f ◦ φ
are exactly at points P such that φ(P) is a zero or pole of f , i.e., at the fibers of φ over the zeros and poles of f . For
every P ∈ A, there is a ramification index eP ≥ 1 which satisfies that f has a zero/pole of multiplicity m at φ(P) iff
f ◦ φ has a zero/pole of multiplicity eP ·m at P , for every m. In each fiber, the sum of all ramification indices of the
points is equal to the degree. Thus a point is unramified iff all ramification indices of points above it are 1, and zeros
and poles of f translate to zeros and poles of f of the same multiplicity over the fiber. A special case of interest is that
if φ has degree 2, then every point is either unramified, or its fiber is a single point with ramification index 2.

53

A.5 Divisors and Riemann–Roch spaces

For a variety A (either P1 or an elliptic curve for our purposes), its divisor group Div(A) is a free abelian group
generated by the symbols {[P] : P ∈ A}, whose elements are called divisors. A divisor D =

∑
P∈A nP [P] is said to

be non-negative if nP ≥ 0 for every P ∈ A. The degree of a divisor is deg(D) =
∑
nP . Divisors have a partial order

given by D ≥ D′ iff D −D′ is non-negative. For sets S ⊂ A, we abuse the notation and write [S] as shorthand for
the divisor

∑
P∈S [P].

Let k×A = kA \ {0} be the set of all non-zero rational functions on f . For any f ∈ k×A , the divisor of f is div(f) =∑
mP [P], where the sum is taken over all zeros and poles of f : for zeros mP equals their multiplicity, and for poles

mP is minus the multiplicity. Thus deg(div(f)) = 0, since the total multiplicities of zeros and poles are equal.
Divisors of the form div(f) are called principal divisors. For P1, every divisor of degree 0 is a principal divisor. For
elliptic curves, a divisor

∑
nP [P] of degree 0 is principal iff

∑
nPP = ∞ according to the group structure.

For a given divisor D, the Riemann–Roch space associated with D is

L (D) = {f ∈ k×A : div(f) ≥ −D} ∪ {0}, (30)

which is a linear space over Fq . Its dimension is denoted by ℓ(D) = dimL (D). Note that since deg(div(f)) = 0, it
follows that ℓ(D) = 0 whenever deg(D) < 0. The Riemann–Roch theorem is a useful tool for estimating ℓ(D) when
deg(D) ≥ 0. We won’t describe it in general, but mention its applications for the projective line and elliptic curves:

• In P1, for any divisor D with deg(D) ≥ 0, ℓ(D) = deg(D) + 1.

• In an elliptic curve, for any divisor D with deg(D) ≥ 1, ℓ(D) = deg(D). If deg(D) = 0, then ℓ(D) ∈ {0, 1},
and the value depends on whether D is a principal divisor or not.

A.6 The Johnson Bound

We say that a code V ⊂ Fnq is (γ, ℓ)-list decodable if for every u ∈ Fnq , there are no more than ℓ codewords of V that
are within relative Hamming distance at most γ from u. Our first result is the Johnson bound for RS codes; see, e.g.,
[Gur07, Theorem 3.3] for a proof of this particular version.

Theorem A.1 (Johnson bound). For every η ∈ (0, 1 − √
ρ), the code RS[Fq,T, ρ] is (1 − √

ρ − η, 1/(2η
√
ρ))-list-

decodable.

B FRI over all finite fields

We begin by recapping (verbatim from [BGKS20]) the FRI protocol, as well as its main technical ingredient, a certain
algebraic hash function based on the classical FFT (which hence constrains the ambient finite field to be special).
We will then introduce a new (but closely related) algebraic hash function based on the ECFFT, that can be defined
over all finite fields. Finally, we sketch the proof that original FRI protocol with the new algebraic hash function has
the desired soundness properties over all finite fields — here we simply state the key features of the algebraic hash
function that were needed for the soundness analysis from [BCI+20] of the original FRI protocol to work, and observe
that the new algebraic has function also has them.

B.1 FRI

Our starting point is a function f0 : L0 → F where F is a finite field, the evaluation domain L0 ⊂ F is a coset of a
group13 contained in F, and |L0| = 2k0 . We assume the target rate is ρ = 2−R for some positive integer R. The FRI

13The group can be additive, in which case F is a binary field, or multiplicative, in which case it is not.

54

protocol is a two-phase protocol (the two phases are called COMMIT and QUERY) that convinces a verifier that f0 is
close to the Reed–Solomon code RS[F, L0, ρ].

The COMMIT phase of the FRI protocol involves k = k0 − R rounds. Before any communication, the prover and
verifier agree on a sequence of (cosets of) sub-groups Li, where |Li| = 2k0−i. Let RSi denote the Reed–Solomon
code RS[F, Li, di], where di = ρ · |Li|.

The main ingredient of the FRI protocol is a special algebraic hash function Hz , which takes a seed z ∈ F, and given
as input a function f : Li → F, it produces as output a hash whose length is 1/2 as long as f . More concretely, Hz[f]
is a function

Hz[f] : Li+1 → F

with the following properties:

1. locality: For any s ∈ Li+1, Hz[f](s) can be computed by querying f at just two points in its domain (these two
points are (qi)

−1(s)).

2. completeness: If f ∈ RSi, then for all z ∈ F, we have that Hz[f] ∈ RSi+1.

3. soundness: If f is far from RSi, then with high probability over the choice of seed z, Hz[f] is quite far from
RSi+1.

These last two properties roughly show that for random z,Hz preserves distance to Reed–Solomon codes. The original
Hz from the FRI protocol was based on the classical FFT decomposition [BKS18]. In the next subsection, we propose
a different Hz , based on ECFFT and Equation (12) in particular, that allows FRI to be generalized to all fields.

The high-level idea of the FRI protocol can then be described as follows. First we are in the COMMIT phase of
the protocol. The verifier picks a random z0 ∈ F and asks the prover to write down the hash Hz0 [f0] : L

(1) → F.
By Properties 2 and 3 above, our original problem of estimating the distance of f0 to RS0 reduces to estimating the
distance of Hz0 [f0] to RS(1) (which is a problem of 1/2 the size). This process is then repeated: the verifier picks a
random z(1) ∈ F and asks the prover to write down Hz(1) [Hz0 [f0]], and so on. After k rounds of this, we are reduced
to a constant sized problem which can be solved in a trivial manner. However, the verifier cannot blindly trust that the
functions f (1), . . . that were written down by the prover truly are obtained by repeatedly hashing f0. This has to be
checked, and the verifier does this in the QUERY phase of the protocol, using Property 1 above.

We describe the phases of the protocol below.

COMMIT Phase:

1. For i = 0 to k− 1:

(a) The verifier picks uniformly random zi ∈ F and sends it to the prover.

(b) The prover writes down a function fi+1 : Li+1 → F. (In the case of an honest prover, fi+1 = Hzi [fi].)

2. The prover writes down a value C ∈ Fq . (In the case of an honest prover, f (k) is the constant function with
value = C).

QUERY Phase: (executed by the Verifier)

1. Repeat ℓ times:

(a) Pick s0 ∈ L0 uniformly at random.

(b) For i = 0 to k− 1:

i. Define si+1 ∈ Li+1 by si+1 = qi(si).

55

ii. Compute Hzi [fi](si+1) by making 2 queries to fi.
iii. If fi+1(si+1) ̸= Hzi [fi](si+1), then REJECT.

(c) If f (k)(s(k)) ̸= C, then REJECT.

2. ACCEPT

B.2 The new algebraic hash function

We now describe our new algebraic hash function Hz .

The description of the hash function requires us to first fix a certain chain of isogenies of elliptic curves, as we do
to define the ECFFT. For each i ∈ [0, k] we let Li ⊆ Fq be the set Ti of size 2k−i from that theorem, and let
ψi ∈ Fq(X) be the degree 2 rational function that maps Li in a 2-to-1 manner to Li+1. Let ψi = ui(X)/vi(X), where
ui(X), vi(X) ∈ Fq[X] polynomials with deg(ui),deg(vi) ≤ 2.

Given z ∈ F, f : Li → F, the hash of f with seed z is defined to be the function Hz[f] : Li+1 → F as follows. For
s ∈ Li+1, let s0, s1 ∈ Li be the two roots of ψi(X) − s. Let Pf,s(Z) ∈ F[Z] be the unique degree ≤ 1 polynomial
satisfying

Pf,s(s0) =
f(s0)

(vi(s0))(di/2)−1
, (31)

Pf,s(s1) =
f(s1)

(vi(s1))(di/2)−1
. (32)

Then we define
Hz[f](s) = Pf,s(z). (33)

Observe that Hz[f](s) can be computed by querying f on the set {s0, s1}, and we denote this set by Si(s). Note also
that the definition of Hz[f] for f ∈ Li explicitly depends on the degree di = ρ|Li| — this is a difference from the
definition of Hz in the original FRI protocol, where the definition of Hz[f] did not depend on the ρ at all.

To understand Hz better, it is instructive to see what it does to RSi. Let f ∈ RSi. The underlying polynomial f(X)
thus has degree less than d = ρ|Li|. We may write f(X) as:

f(X) = (f0(ψi(X)) +X · f1(ψi(X))) · v(X)(d/2)−1, (34)

where each fi(Y) has degree less than d/2.

Now take any s ∈ Li+1, and let Si(s) = {s0, s1}. Substituting X = si into the above equation and using the fact that
ψi(si) = s, we get:

f(si)

v(si)(d/2)−1
= f0(s) + si · f1(s).

Comparing with Equations (31) and (32), we get that:

Pf,s(Z) = f0(s) + Z · f1(s),

and thus for all s ∈ Li+1, we have:
Hz[f](s) = f0(s) + zf1(s).

Thus Hz[f] equals ⟨f0 + zf1 ≀ Li+1⟩, and is thus an element of RSi+1.

56

B.3 Analysis of the new FRI protocol

The proof of soundness of the new FRI protocol is almost identical to the proof of soundness of the original FRI
protocol from [BCI+20]. Indeed, the only properties of the algebraic hash function Hz that are used in that proof are:

• For every f : Li → Fq , there are two functions g, h : Li+1 → Fq such that:

– Hz[f] = g + z · h,

– Let µ : Li → [0, 1] be a weight function. Let µ′ : Li+1 → [0, 1] be defined by:

µ′(s) = Et∈Si(s)µ(t).

Then the µ-weighted agreement of f with RSi is completely determined by g and h by the following
formula:

agreeη(f,RSi) = agreeη′(g ⊕ h,RSi+1 ⊕ RSi+1),

where for two vectors u, v ∈ Fnq , we let u ⊕ v ∈ (F2
q)
n be the vector whose ith coordinate equals

(ui, vi) ∈ (F2
q).

B.4 Batched FRI

In this section, we prove Theorem 3.7 on Batched FRI. To simultaneously check that a collection of functions
g1, . . . , gk : T → Fq are all low-degree (deg(gi) < di), they key is to take a random linear combination of the
gi with appropriate polynomial coefficients (in order to adjust their claimed degrees to all be the same) and run the
FRI protocol on this. The reason this works is the proximity gaps phenomenon for Reed–Solomon codes [BCI+20].

Formally, the Batched FRI protocol is given below:

1. For each i ∈ [k], define ci = ρ|T | − 1− di.

2. For each i ∈ [k], pick random (ri, r
′
i) ∈ F2

q .

3. Consider the function f : T → Fq given by:

f(x) =

k∑
i=1

(ri + r′ix
ci)gi(x).

4. Run FRI on f with degree parameter ρ|T | and repetition parameter t.

The analysis is identical to the analysis of Batched FRI in [BCI+20], which we sketch below. If f passes the FRI
step with good probability, then f itself must be close to degree < ρ|T |. The key point is that f is a random linear
combination of the functions gi and the functions g′i, where g′i(x) = xcigi(x). By the basic Proximity Gaps result
of [BCI+20], if f ends up being close to degree < ρ|T | with good probability, then all the functions gi and g′i must
themselves agree with degree polynomials Gi and G′

i on a large common agreement set. By the definition of g′i, this
means that Gi(X) and XciGi(X) are both polynomials of degree < ρ|T |, and this means that for each i, Gi(X)
(which we know is close to gi) is in fact a polynomial of degree < ρ|T | − ci, as desired.

57

	Introduction
	Main Results
	Why do PCPs and IOPs require FFT-friendliness?
	Elliptic curves save the day, again
	Arithmetization and automorphisms
	Key ingredients for the new IOPs, and the relationship to ECFFT Part I ECFFTiacr

	Related work
	Algebraic Geometry codes and PCPs/IOPs

	Outline of the rest of the paper

	Main results
	The AIR Language and Relation
	A Scalable and Transparent IOP for LAIR
	IOPs of Proximity (IOPPs) for RS codes over all large fields
	Fast IOPs of Proximity for Elliptic Curve Codes

	Scalable IOPs for AIRs over any large field
	The ECFFT Infrastructure
	The EC backbone
	Function Spaces and Evaluation Domains
	FFT and IFFT
	FRI
	Vanishing detection

	The IOP Protocol
	Proof of thm:main
	Resources
	Completeness
	Soundness and knowledge soundness

	Sequence of Elliptic Curve isogenies
	Explicit curves and isogenies
	Odd characteristic case
	Even characteristic case
	Moving to a good curve

	An isogeny chain of good curves
	Finding the start of a long isogeny chain

	Codes derived from the elliptic curves
	Special sets in Ei and Fq
	Function and polynomial spaces
	Connections and bases for Mi and Li
	Connections and bases for Ki

	Evaluation domains
	The codes

	ECFFT and ECFRI
	ECFFT
	Low Degree Extensions and the codes
	EC-FRI
	The isomorphism between U0 and W0W0

	Degree Adjustment
	Step 1 - the independent part of the degree adjustment
	Step 2 - the part that depends on the validity domain
	Periodic validity domain J
	Obtaining I from J JJ

	Step 3 - the last small adjustments

	Mathematical background
	Projective Space
	Elliptic Curves
	Rational functions
	Rational functions between varieties
	Divisors and Riemann–Roch spaces
	The Johnson Bound

	FRI over all finite fields
	FRI
	The new algebraic hash function
	Analysis of the new FRI protocol
	Batched FRI

